Contrôle stochastique d allocation de ressources dans le «cloud computing»

Dimension: px
Commencer à balayer dès la page:

Download "Contrôle stochastique d allocation de ressources dans le «cloud computing»"

Transcription

1 Contrôle stochastique d allocation de ressources dans le «cloud computing» Jacques Malenfant 1 Olga Melekhova 1, Xavier Dutreilh 1,3, Sergey Kirghizov 1, Isis Truck 2, Nicolas Rivierre 3 Travaux partiellement financés par Orange Labs et par le projet ANR SALTY (ANR-09-SEGI-012) 1 Université Pierre et Marie Curie-Paris 6, CNRS, UMR 7606 LIP6 contact : 2 Université Paris 8, LIASD, EA 4383, Saint-Denis 3 Orange Labs, Issy-les-Moulineaux Atelier «Automatique pour l informatique autonomique 2011» Conférence MSR 2011, 15 novembre / 33

2 Introduction L informatique autonomique est (souvent) un problème d automatique. Beaucoup des problèmes de contrôle soulevés sont de nature markovienne. Dans plusieurs cas, le modèle stochastique sous-jacent ne peut être caractérisé par avance. Les paramètres du contrôle (temps minimal entre les actions, etc.) peuvent dépendre du modèle du système contrôlé. 2 / 33

3 Introduction L informatique autonomique est (souvent) un problème d automatique. Beaucoup des problèmes de contrôle soulevés sont de nature markovienne. Dans plusieurs cas, le modèle stochastique sous-jacent ne peut être caractérisé par avance. Les paramètres du contrôle (temps minimal entre les actions, etc.) peuvent dépendre du modèle du système contrôlé. Besoin d une approche de contrôle stochastique, en apprentissage, sous un «workflow» automatisé! 3 / 33

4 Introduction L informatique autonomique est (souvent) un problème d automatique. Beaucoup des problèmes de contrôle soulevés sont de nature markovienne. Dans plusieurs cas, le modèle stochastique sous-jacent ne peut être caractérisé par avance. Les paramètres du contrôle (temps minimal entre les actions, etc.) peuvent dépendre du modèle du système contrôlé. Besoin d une approche de contrôle stochastique, en apprentissage, sous un «workflow» automatisé! Premières expérimentations dans le «cloud computing». 4 / 33

5 Plan de la présentation 1 Introduction 2 Le problème et sa modélisation 3 Résolution 4 Automatisation 5 Conclusions 5 / 33

6 Plan 1 Introduction 2 Le problème et sa modélisation 3 Résolution 4 Automatisation 5 Conclusions 6 / 33

7 L architecture VirtRL Application Scaling Point 1 Scaling Point N Application 1 SLA 1 SLA N Application N VM VM VM VM Application Controller 1 Application Controller N Requests, releases or resizes Provides or preempts Cloud Controller Interface Provides or preempts Monitor Decision Scaler Monitor Decision Scaler Cloud Platform Application Controller 7 / 33

8 Applications «web» et «cloud computing» Scaling Point JBoss Application Server Client Apache Load Balancer MySQL Database Server JBoss Application Server 8 / 33

9 Première formulation du problème Charge W (#requêtes par seconde). Ressources allouées U (#machines virtuelles). Équilibreur de charge équirépartition des requêtes. Contrôleur activé à chaque t, observe la performance P (temps de réponse moyen durant le dernier t). et en fonction de P SLA, il décide d ajouter, de maintenir ou de retrancher des machines virtuelles. 9 / 33

10 Première formulation du problème Charge W (#requêtes par seconde). Ressources allouées U (#machines virtuelles). Équilibreur de charge équirépartition des requêtes. Contrôleur activé à chaque t, observe la performance P (temps de réponse moyen durant le dernier t). et en fonction de P SLA, il décide d ajouter, de maintenir ou de retrancher des machines virtuelles. Nota : La charge évolue de manière aléatoire, bien que selon des patrons généraux qui reviennent régulièrement. La performance du système dépend de l implantation de l application et d autres facteurs complexes. 10 / 33

11 Contrôle stochastique Définition Branche de la théorie du contrôle s intéressant à des problèmes où les données comportent de l incertitude qui peut être modélisée par des processus stochastiques. Remonte entre autres aux travaux de Bellman autour de la programmation dynamique, qui ont largement fait école depuis. Le problème de contrôle est vu comme un problème de sélection des actions de manière à optimiser l espèrance mathématique d un certain critère sur une séquence de décisions à prendre. 11 / 33

12 Vision basique Approche fondée sur une évaluation numérique de l intérêt pour l agent de se trouver dans un état s et de prendre une action a. Agent : décide Élément : système contrôlé À chaque étape : 1 observe s t, r t s t s t+1 r t r t+1 Agent Element a t 2 décide a t et ça recommence avec s t+1, r t+1 À partir des r t, on peut juger de la valeur des décisions a t 1 prises dans les états s t / 33

13 Processus de décision markovien commandé M = S, A, T, R, β : Espace d états S Espace d actions A Fonction de transition T : S A Π(S) donnant la distribution de probabilité Π(S) = P(s s, a) Fonction de revenu R : S A R Facteur d actualisation 0 < β < 1 13 / 33

14 Processus de décision markovien commandé M = S, A, T, R, β : Espace d états S Espace d actions A Fonction de transition T : S A Π(S) donnant la distribution de probabilité Π(S) = P(s s, a) Fonction de revenu R : S A R Facteur d actualisation 0 < β < 1 Nota : la fonction de revenu peut également être probabiliste. Fonction de revenu R : S A Π(R) donnant la distribution de probabilité Π(R) = P(x R s, a) 14 / 33

15 Illustration PDM P(s a1,1 s,a 1 ) s a1,1 (s, a 1 )... a 1 P(s a1,m 1 s,a 1 ) s a1,m 1 s a n (s, a n ) P(s an,1 s,a n) s an,1... P(s an,mn s,a n) s an,m n 15 / 33

16 Modélisation du problème d allocation comme un PDM M alloc = S, A, T, R, β où : S = {(w, u, p) w W max u U max p P max }, où : w N : charge en # requête par seconde ; u N : ressources allouées en # machines virtuelles homogènes ; p R + : performance en secondes (temps de réponse moyen). A = {a Z A min a A max } : ajouter, maintenir ou retirer des machines virtuelles. T? R? β? choisi en fonction des expérimentations. 16 / 33

17 Fonction de coût Pour un état s = (w, u, p) et une décision a, et une transition vers s = (w, u, p ), (avec u = u + a), alors : [ (a > 0? ci a : 0) + c f u ] [ ( + (p > P SLA? 1 + p P ) ] SLA pc t : 0) P SLA 3600 Selon données utilisées en pratique : c f = 0, 095$US/heure ramené sur t ; c i égal à c f 60 ou c f 6 ; p c égal à 10,0$US/heure ou 100,0$US/heure aussi ramené sur t. 17 / 33

18 Fonction de coût Pour un état s = (w, u, p) et une décision a, et une transition vers s = (w, u, p ), (avec u = u + a), alors : [ (a > 0? ci a : 0) + c f u ] [ ( + (p > P SLA? 1 + p P ) ] SLA pc t : 0) P SLA 3600 Selon données utilisées en pratique : c f = 0, 095$US/heure ramené sur t ; c i égal à c f 60 ou c f 6 ; p c égal à 10,0$US/heure ou 100,0$US/heure aussi ramené sur t. Nota : aléatoire car dépend de la performance incertaine p observée pendant le nouvel intervalle t! 18 / 33

19 Plan 1 Introduction 2 Le problème et sa modélisation 3 Résolution 4 Automatisation 5 Conclusions 19 / 33

20 Résolution d un PDM Si tout est connu, équation de Bellman : V (s) = max a [ R(s, a) + β T (s, a, s )V (s ) s S ] où la politique optimale π est donnée par : π (s) = argmax a [ R(s, a) + β T (s, a, s )V (s ) s S ] 20 / 33

21 Algorithme d itération sur les valeurs s S, V 0 (s) := 0 t := 0 loop t := t + 1 foreach s S foreach a A Q t (s, a) := R(s, a) + β s S T (s, a, s )V t 1 (s) π t (s) := argmax a Q t (s, a) V t (s) := Q t (s, π t (s)) until sup s V t (s) V t 1 (s) < ɛ return π t 21 / 33

22 Apprentissage par renforcement et Q-learning Q t (s, a) := R(s, a) + β T (s, a, s )V t 1 (s) s S Que faire si le modèle n est pas connu? 1 Remplacer R(s, a) par les r observés. 2 Remplacer la somme pondérée par la probabilité par une moyenne sur un échantillonnage s des valeurs de V t 1. 3 Approximer la valeur de V t 1 (s ) par Q t 1 (s, a ), a étant la décision suivante dans le processus. 4 «Fondre» le nouvel échantillon avec les précédents pour améliorer l échantillonnage pour le couple (s, a). 22 / 33

23 Apprentissage par renforcement et Q-learning Q t (s, a) := R(s, a) + β T (s, a, s )V t 1 (s) s S Que faire si le modèle n est pas connu? 1 Remplacer R(s, a) par les r observés. 2 Remplacer la somme pondérée par la probabilité par une moyenne sur un échantillonnage s des valeurs de V t 1. 3 Approximer la valeur de V t 1 (s ) par Q t 1 (s, a ), a étant la décision suivante dans le processus. 4 «Fondre» le nouvel échantillon avec les précédents pour améliorer l échantillonnage pour le couple (s, a). D où l équation d apprentissage : Q(s, a) := (1 α)q(s, a) + α ( r + βq(s, a ) ) 23 / 33

24 Algorithme Q-learning, méthode SARSA Initialize Q(s, a) arbitrarily repeat (for each episode) Initialize s Choose a from s using policy derived from Q (e.g., ɛ-greedy) repeat (for each step in episode) Take action a, observe r and s Choose a from s using policy derived from Q (e.g., ɛ-greedy) Q(s, a) (1 α)q(s, a) + α[r + βq(s, a )] s s ; a a until s is terminal 24 / 33

25 Résultats obtenus I : c i faible, p c faible Patron de charge à courte fréquence. > échantillons c i = c f /60 p c = 10.0 P SLA = / 33

26 Résultats obtenus II : c i élevé, p c faible c i = c f /6 26 / 33

27 Plan 1 Introduction 2 Le problème et sa modélisation 3 Résolution 4 Automatisation 5 Conclusions 27 / 33

28 Mise en oeuvre de l apprentissage Grandes opérations : Initialisation Apprentissage Exploitation Évolution 28 / 33

29 Cycle de vie de l apprentissage par renforcement Learning Initialize Explore No Speed Up Yes Apply No Detect Has the model changed? Is the model stable? Yes but only smooth changes occured Yes but drastic changes occured 29 / 33

30 Conclusions Application du contrôle stochastique à l allocation de ressources dans le «cloud computing» Utilisation d une approche d apprentissage pour s attaquer à la méconnaissance du contrôlé. Des résultats encourageants. 30 / 33

31 Conclusions Application du contrôle stochastique à l allocation de ressources dans le «cloud computing» Utilisation d une approche d apprentissage pour s attaquer à la méconnaissance du contrôlé. Des résultats encourageants. Perspectives : Modèle plus réaliste (délai de livraison des MV). Intégration dans un outil gérant automatiquement l ensemble du cycle de vie de l apprentissage. Accélération de la convergence et meilleures politiques initiales. SALTY : coordination locale et globale à large échelle. 31 / 33

32 Xavier Dutreilh, Nicolas Rivierre, Aurélien Moreau, Jacques Malenfant, and Isis Truck. From Data Center Resource Allocation to Control Theory and Back. In Proceedings of the 3rd IEEE International Conference on Cloud Computing, CLOUD 2010, application and industry track, pages IEEE, Olga Melekhova, Mohammed-Amine Abchir, Pierre Châtel, Jacques Malenfant, Isis Truck, and Anna Pappa. Self-Adaptation in Geotracking Applications : Challenges, Opportunities and Models. In 2nd International Conference on Adaptive and Self-adaptive Systems and Applications, ADAPTIVE 2010, pages IEEE, Xavier Dutreilh, Sergey Kirgizov, Olga Melekhova, Jacques Malenfant, Nicolas Rivierre, and Isis Truck. Using Reinforcement Learning for Autonomic Resource Allocation in Clouds : towards a fully automated workflow. In Seventh International Conference on Autonomic and Autonomous Systems, ICAS 2011, pages IEEE, Bao Le Duc, Philippe Collet, Jacques Malenfant, and Nicolas Rivierre. A QoI-aware Framework for Adaptive Monitoring. In 2nd International Conference on Adaptive and Self-adaptive Systems and Applications, ADAPTIVE 2010, pages IEEE, / 33

33 Jing Xu, Ming Zhao, Jose Fortes, Robert Carpenter, and Mazin Yousif. On the use of fuzzy modeling in virtualized data center management. In ICAC 07 : Proceedings of the Fourth International Conference on Autonomic Computing, page 25. IEEE Computer Society, G. Tesauro, N. K. Jong, R. Das, and M. N. Bennani. A hybrid reinforcement learning approach to autonomic resource allocation. In ICAC 06 : Proceedings of the 2006 IEEE International Conference on Autonomic Computing, pages IEEE Computer Society, / 33

Élasticité des applications à base de services Samir Tata, Télécom SudParis UMR Samovar Équipe ACMES

Élasticité des applications à base de services Samir Tata, Télécom SudParis UMR Samovar Équipe ACMES Élasticité des applications à base de services Samir Tata, Télécom SudParis UMR Samovar Équipe ACMES Élasticité : Définitions et Concepts Samir Tata, Télécom SudParis Élasticité Définitions Élasticité

Plus en détail

Ordonnancement sous contraintes de Qualité de Service dans les Clouds

Ordonnancement sous contraintes de Qualité de Service dans les Clouds Ordonnancement sous contraintes de Qualité de Service dans les Clouds GUÉROUT Tom DA COSTA Georges (SEPIA) MONTEIL Thierry (SARA) 05/12/2014 1 Contexte CLOUD COMPUTING Contexte : Environnement de Cloud

Plus en détail

Vers une approche Adaptative pour la Découverte et la Composition Dynamique des Services

Vers une approche Adaptative pour la Découverte et la Composition Dynamique des Services 69 Vers une approche Adaptative pour la Découverte et la Composition Dynamique des Services M. Bakhouya, J. Gaber et A. Koukam Laboratoire Systèmes et Transports SeT Université de Technologie de Belfort-Montbéliard

Plus en détail

FOURNIR UN SERVICE DE BASE DE DONNÉES FLEXIBLE. Database as a Service (DBaaS)

FOURNIR UN SERVICE DE BASE DE DONNÉES FLEXIBLE. Database as a Service (DBaaS) FOURNIR UN SERVICE DE BASE DE DONNÉES FLEXIBLE Database as a Service (DBaaS) 1 The following is intended to outline our general product direction. It is intended for information purposes only, and may

Plus en détail

Élasticité des applications à base de services dans le Cloud

Élasticité des applications à base de services dans le Cloud 1/40 Élasticité des applications à base de services dans le Cloud Mourad Amziani 12 Tarek Melliti 1 Samir Tata 2 1 IBISC, EA4526, Université d'évry Val-d'Essonne, Évry, France 2 UMR CNRS Samovar, Institut

Plus en détail

accompagner votre transformation IT vers le Cloud de confiance

accompagner votre transformation IT vers le Cloud de confiance accompagner votre transformation IT vers le Cloud de confiance Philippe LAPLANE Directeur du développement de la stratégie des produits cloud des tendances fortes structurent le marché croissance de la

Plus en détail

Analyse de performance, monitoring

Analyse de performance, monitoring Analyse de performance, monitoring Plan Principes de profilage Projet TPTP dans Eclipse Utilisation des profiling tools de TPTP Philippe Collet Master 1 Informatique 2009-2010 http://deptinfo.unice.fr/twiki/bin/view/minfo/gl

Plus en détail

Christophe Dubos Architecte Infrastructure et Datacenter Microsoft France chrisdu@microsoft.com

Christophe Dubos Architecte Infrastructure et Datacenter Microsoft France chrisdu@microsoft.com Christophe Dubos Architecte Infrastructure et Datacenter Microsoft France chrisdu@microsoft.com Microsoft et le Cloud Computing Quelle approche? Voyage au Cœur du Cloud Microsoft Self Service Client Délégation

Plus en détail

4.2 Unités d enseignement du M1

4.2 Unités d enseignement du M1 88 CHAPITRE 4. DESCRIPTION DES UNITÉS D ENSEIGNEMENT 4.2 Unités d enseignement du M1 Tous les cours sont de 6 ECTS. Modélisation, optimisation et complexité des algorithmes (code RCP106) Objectif : Présenter

Plus en détail

Elasticité logicielle pour optimiser l empreinte énergétique

Elasticité logicielle pour optimiser l empreinte énergétique Ecole des Mines de Nantes Elasticité logicielle pour optimiser l empreinte énergétique Thomas Ledoux (équipe Ascola, INRIA-EMN, LINA) direction des études décembre 2010 page 1 Relation logiciel empreinte

Plus en détail

Organiser vos données - Big Data. Patrick Millart Senior Sales Consultant

Organiser vos données - Big Data. Patrick Millart Senior Sales Consultant Organiser vos données - Big Data Patrick Millart Senior Sales Consultant The following is intended to outline our general product direction. It is intended for information purposes only, and may not be

Plus en détail

OPTIMISATION DE LA MAINTENANCE DES EQUIPEMENTS DE MANUTENTION DU TERMINAL A CONTENEURS DE BEJAIA (BMT)

OPTIMISATION DE LA MAINTENANCE DES EQUIPEMENTS DE MANUTENTION DU TERMINAL A CONTENEURS DE BEJAIA (BMT) OPTIMISATION DE LA MAINTENANCE DES EQUIPEMENTS DE MANUTENTION DU TERMINAL A CONTENEURS DE BEJAIA (BMT) LAGGOUNE Radouane 1 et HADDAD Cherifa 2 1,2: Dépt. de G. Mécanique, université de Bejaia, Targa-Ouzemour

Plus en détail

Introduction. Gestion de la consommation énergétique. Contexte du cloud computing Instrumentation et contrôle

Introduction. Gestion de la consommation énergétique. Contexte du cloud computing Instrumentation et contrôle Ctrl-Green Projet ANR INFRA (2012-2015) Coordinateur Noel De Palma (UJF/LIG) Partenaires UJF/LIG, ENSEEIHT/IRIT, INRIA, Eolas Business&Decision, Scalagent Introduction Gestion de la consommation énergétique

Plus en détail

Simulation d un système d assurance automobile

Simulation d un système d assurance automobile Simulation d un système d assurance automobile DESSOUT / PLESEL / DACHI Plan 1 Introduction... 2 Méthodes et outils utilisés... 2.1 Chaines de Markov... 2.2 Méthode de Monte Carlo... 2.3 Méthode de rejet...

Plus en détail

Application du Reinforcement Learning à un jeu de Markov de type évasion-poursuite

Application du Reinforcement Learning à un jeu de Markov de type évasion-poursuite Université catholique de Louvain Faculté des Sciences Appliquées Département d Ingénierie Informatique Application du Reinforcement Learning à un jeu de Markov de type évasion-poursuite Promoteur : Professeur

Plus en détail

Test de performance en intégration continue dans un cloud de type PaaS

Test de performance en intégration continue dans un cloud de type PaaS Test de performance en intégration continue dans un cloud de type PaaS Bruno Dillenseger Orange Labs Grenoble ComPAS, Conférence d informatique en Parallélisme, Architecture et Système, Atelier SLA pour

Plus en détail

Optimisation for Cloud Computing and Big Data

Optimisation for Cloud Computing and Big Data 1 / 31 Optimisation for Cloud Computing and Big Data Olivier Beaumont, Lionel Eyraud-Dubois 2 / 31 Le Cloud, qu est-ce que c est? C est récent Amazon qui commence (2006) avec AWS Dropbox, Google App Engine

Plus en détail

APX et VCE, Modèle d industrialisation de l intégration et du déploiement. Olivier BERNARD, VCE

APX et VCE, Modèle d industrialisation de l intégration et du déploiement. Olivier BERNARD, VCE APX et VCE, Modèle d industrialisation de l intégration et du déploiement Olivier BERNARD, VCE Généralisation des réseaux, suprématie d IP Consumérisation des terminaux informatiques Evolution vers une

Plus en détail

Algorithmique et systèmes répartis

Algorithmique et systèmes répartis Algorithmique et systèmes répartis Tendances et avenir Gérard Padiou Département Informatique et Mathématiques appliquées ENSEEIHT 30 novembre 2012 Gérard Padiou Algorithmique et systèmes répartis 1 /

Plus en détail

Du Datacenter au Cloud Quels challenges? Quelles solutions? Christophe Dubos Architecte Microsoft

Du Datacenter au Cloud Quels challenges? Quelles solutions? Christophe Dubos Architecte Microsoft Du Datacenter au Cloud Quels challenges? Quelles solutions? Christophe Dubos Architecte Microsoft Microsoft et le Cloud Computing Quelle approche? Le Cloud, un accélérateur de la transformation Un modèle

Plus en détail

Baccalauréat ES/L Amérique du Sud 21 novembre 2013

Baccalauréat ES/L Amérique du Sud 21 novembre 2013 Baccalauréat ES/L Amérique du Sud 21 novembre 2013 A. P. M. E. P. EXERCICE 1 Commun à tous les candidats 5 points Une entreprise informatique produit et vend des clés USB. La vente de ces clés est réalisée

Plus en détail

Christophe CANDILLIER Cours de DataMining mars 2004 Page 1

Christophe CANDILLIER Cours de DataMining mars 2004 Page 1 Christophe CANDILLIER Cours de DataMining mars 2004 age 1 1. Introduction 2. rocessus du DataMining 3. Analyse des données en DataMining 4. Analyse en Ligne OLA 5. Logiciels 6. Bibliographie Christophe

Plus en détail

Expérience de la mise en place s une solution de gestion de capacité pour supporter la migration des Datacenter

Expérience de la mise en place s une solution de gestion de capacité pour supporter la migration des Datacenter Expérience de la mise en place s une solution de gestion de capacité pour supporter la migration des Datacenter Gilles HANUSSE Responsable services Monitor & Operate Sanofi Global Infrastructure Services

Plus en détail

Correction du baccalauréat ES/L Métropole 20 juin 2014

Correction du baccalauréat ES/L Métropole 20 juin 2014 Correction du baccalauréat ES/L Métropole 0 juin 014 Exercice 1 1. c.. c. 3. c. 4. d. 5. a. P A (B)=1 P A (B)=1 0,3=0,7 D après la formule des probabilités totales : P(B)=P(A B)+P(A B)=0,6 0,3+(1 0,6)

Plus en détail

Optimisation multi-critère pour l allocation de ressources sur Clouds distribués avec prise en compte de l énergie

Optimisation multi-critère pour l allocation de ressources sur Clouds distribués avec prise en compte de l énergie Optimisation multi-critère pour l allocation de ressources sur Clouds distribués avec prise en compte de l énergie 1 Présenté par: Yacine KESSACI Encadrement : N. MELAB E-G. TALBI 31/05/2011 Plan 2 Motivation

Plus en détail

e need L un des premiers intégrateurs opérateurs Cloud Computing indépendants en France

e need L un des premiers intégrateurs opérateurs Cloud Computing indépendants en France e need L un des premiers intégrateurs opérateurs Cloud Computing indépendants en France Sommaire Cloud Computing Retours sur quelques notions Quelques chiffres Offre e need e need Services e need Store

Plus en détail

MCMC et approximations en champ moyen pour les modèles de Markov

MCMC et approximations en champ moyen pour les modèles de Markov MCMC et approximations en champ moyen pour les modèles de Markov Gersende FORT LTCI CNRS - TELECOM ParisTech En collaboration avec Florence FORBES (Projet MISTIS, INRIA Rhône-Alpes). Basé sur l article:

Plus en détail

Agrégation des portefeuilles de contrats d assurance vie

Agrégation des portefeuilles de contrats d assurance vie Agrégation des portefeuilles de contrats d assurance vie Est-il optimal de regrouper les contrats en fonction de l âge, du genre, et de l ancienneté des assurés? Pierre-O. Goffard Université d été de l

Plus en détail

IFT6561. Simulation: aspects stochastiques

IFT6561. Simulation: aspects stochastiques IFT 6561 Simulation: aspects stochastiques DIRO Université de Montréal Automne 2013 Détails pratiques Professeur:, bureau 3367, Pav. A.-Aisenstadt. Courriel: bastin@iro.umontreal.ca Page web: http://www.iro.umontreal.ca/~bastin

Plus en détail

Apprentissage artificiel pour l ordonnancement des tâches dans les grilles de calcul

Apprentissage artificiel pour l ordonnancement des tâches dans les grilles de calcul Université Paris-Sud Apprentissage artificiel pour l ordonnancement des tâches dans les grilles de calcul Thèse de doctorat en vue de l obtention du grade de docteur de l université Paris XI Spécialité

Plus en détail

Comment rendre un site d e-commerce intelligent

Comment rendre un site d e-commerce intelligent Comment rendre un site d e-commerce intelligent Alexei Kounine CEO +33 (0) 6 03 09 35 14 alex@tastehit.com Christopher Burger CTO +49 (0) 177 179 16 99 chris@tastehit.com L embarras du choix Donner envie

Plus en détail

Clouds/Big Data @ Inria. Frédéric Desprez Frederic.Desprez@inria.fr

Clouds/Big Data @ Inria. Frédéric Desprez Frederic.Desprez@inria.fr Clouds/Big Data @ Inria Frédéric Desprez Frederic.Desprez@inria.fr May 20, 2013 Outline 1. Inria Strategy in Clouds 2. HPC, Clouds: Where within Inria? 3. Inria Large-Scale initiatives Introduction Cloud

Plus en détail

StratusLab : Le projet et sa distribution cloud

StratusLab : Le projet et sa distribution cloud StratusLab : Le projet et sa distribution cloud M. Airaj C. Loomis (CNRS/LAL) Université Lille I 17 Mai 2010 StratusLab is co-funded by the European Community s Seventh Framework Programme (Capacities)

Plus en détail

La Recherche du Point Optimum de Fonctionnement d un Générateur Photovoltaïque en Utilisant les Réseaux NEURO-FLOUS

La Recherche du Point Optimum de Fonctionnement d un Générateur Photovoltaïque en Utilisant les Réseaux NEURO-FLOUS Rev. Energ. Ren. : Chemss 2000 39-44 La Recherche du Point Optimum de Fonctionnement d un Générateur Photovoltaïque en Utilisant les Réseaux NEURO-FLOUS D.K. Mohamed, A. Midoun et F. Safia Département

Plus en détail

E-Biothon : Une plate-forme pour accélérer les recherches en biologie, santé et environnement.

E-Biothon : Une plate-forme pour accélérer les recherches en biologie, santé et environnement. E-Biothon : Une plate-forme pour accélérer les recherches en biologie, santé et environnement. N.Bard, S.Boin, F.Bothorel, P.Collinet, M.Daydé, B. Depardon, F. Desprez, M.Flé, A.Franc, J.-F. Gibrat, D.

Plus en détail

Playbook du programme pour fournisseurs de services 2e semestre 2014

Playbook du programme pour fournisseurs de services 2e semestre 2014 Playbook du programme pour fournisseurs de services 2e semestre 2014 Sommaire 3 Bienvenue dans le programme VSPP (VMware Service Provider Program) 4 Présentation de VMware vcloud Air Network 5 VMware vcloud

Plus en détail

Introduction à l analyse numérique : exemple du cloud computing

Introduction à l analyse numérique : exemple du cloud computing Introduction à l analyse numérique : exemple du cloud computing Tony FEVRIER Aujourd hui! Table des matières 1 Equations aux dérivées partielles et modélisation Equation différentielle et modélisation

Plus en détail

Evolution des technologies et émergence du cloud computing Drissa HOUATRA, Orange Labs Issy

Evolution des technologies et émergence du cloud computing Drissa HOUATRA, Orange Labs Issy Evolution des technologies et émergence du cloud computing Drissa HOUATRA, Orange Labs Issy Séminaire Aristote, 17 Déc. 2009 Ecole Polytechnique Palaiseau Plan L'univers du cloud Ressources Grilles, middleware

Plus en détail

BI dans les nuages. Olivier Bendavid, UM2 Prof. A. April, ÉTS

BI dans les nuages. Olivier Bendavid, UM2 Prof. A. April, ÉTS BI dans les nuages Olivier Bendavid, UM2 Prof. A. April, ÉTS Table des matières Introduction Description du problème Les solutions Le projet Conclusions Questions? Introduction Quelles sont les défis actuels

Plus en détail

Incertitude et variabilité : la nécessité de les intégrer dans les modèles

Incertitude et variabilité : la nécessité de les intégrer dans les modèles Incertitude et variabilité : la nécessité de les intégrer dans les modèles M. L. Delignette-Muller Laboratoire de Biométrie et Biologie Evolutive VetAgro Sup - Université de Lyon - CNRS UMR 5558 24 novembre

Plus en détail

L informatique à l IN2P3 et le rôle du Chargé de Mission

L informatique à l IN2P3 et le rôle du Chargé de Mission L informatique à l IN2P3 et le rôle du Chargé de Mission Giovanni Lamanna Réunion du comité des DUs 29 avril 2013 Plan - Présentation du Charge de Mission pour l Informatique - Lettre de mission: défis

Plus en détail

Ada Diaconescu INFRES / S3. Appellation de Maître de Conférences. Mars 2010. ada.diaconescu@telecom-paristech.fr 01/03/2010

Ada Diaconescu INFRES / S3. Appellation de Maître de Conférences. Mars 2010. ada.diaconescu@telecom-paristech.fr 01/03/2010 Ada Diaconescu INFRES / S3 Appellation de Maître de Conférences Mars 2010 Parcours Études - Université Polytechnique Timisoara (1995-2000 ) Diplôme d Ingénieur en Informatique (BAC+5) Ingénieur R&D à Teltec,

Plus en détail

Architectures informatiques dans les nuages

Architectures informatiques dans les nuages Architectures informatiques dans les nuages Cloud Computing : ressources informatiques «as a service» François Goldgewicht Consultant, directeur technique CCT CNES 18 mars 2010 Avant-propos Le Cloud Computing,

Plus en détail

Serveur d'application à la juste taille

Serveur d'application à la juste taille Serveur d'application à la juste taille 18 Mars 2010 Benoit.Pelletier@bull.net Plan Contexte JOnAS 5, plate-forme de convergence JavaEE/OSGi Caractéristiques essentielles pour le Cloud Computing & l'autonomic

Plus en détail

Semestre HPC. Violaine Louvet. Institut Camille Jordan - CNRS louvet@math.univ-lyon1.fr. Labex MILyon, Printemps 2016

Semestre HPC. Violaine Louvet. Institut Camille Jordan - CNRS louvet@math.univ-lyon1.fr. Labex MILyon, Printemps 2016 Semestre HPC Violaine Louvet Institut Camille Jordan - CNRS louvet@math.univ-lyon1.fr Labex MILyon, Printemps 2016 V. Louvet (ICJ) Semestre HPC Printemps 2016 1 / 9 Présentation du semestre Modélisation

Plus en détail

Laboratoire 4 Développement d un système intelligent

Laboratoire 4 Développement d un système intelligent DÉPARTEMENT DE GÉNIE LOGICIEL ET DES TI LOG770 - SYSTÈMES INTELLIGENTS ÉTÉ 2012 Laboratoire 4 Développement d un système intelligent 1 Introduction Ce quatrième et dernier laboratoire porte sur le développement

Plus en détail

Modélisation aléatoire en fiabilité des logiciels

Modélisation aléatoire en fiabilité des logiciels collection Méthodes stochastiques appliquées dirigée par Nikolaos Limnios et Jacques Janssen La sûreté de fonctionnement des systèmes informatiques est aujourd hui un enjeu économique et sociétal majeur.

Plus en détail

Solutions Dell Networking pour le Big Data. Philippe MARTIN Networking Sales Specialist - p_martin@dell.com

Solutions Dell Networking pour le Big Data. Philippe MARTIN Networking Sales Specialist - p_martin@dell.com Solutions Dell Networking pour le Big Data Philippe MARTIN Networking Sales Specialist - p_martin@dell.com Peut-on faire passer des big data avec un modem 56kbs?!?? Le réseau est souvent l oublié d un

Plus en détail

Gouvernance et nouvelles règles d organisation

Gouvernance et nouvelles règles d organisation Gouvernance et nouvelles règles d organisation Didier Camous Strategy & Technology HP Software EMEA Copyright 2012 Hewlett-Packard Development Company, L.P. The information contained herein is subject

Plus en détail

mieux développer votre activité

mieux développer votre activité cloud computing mieux développer votre activité Les infrastructures IT et les applications d entreprise de plus en plus nombreuses sont une source croissante de contraintes. Data centers, réseau, serveurs,

Plus en détail

TP N 57. Déploiement et renouvellement d une constellation de satellites

TP N 57. Déploiement et renouvellement d une constellation de satellites TP N 57 Déploiement et renouvellement d une constellation de satellites L objet de ce TP est d optimiser la stratégie de déploiement et de renouvellement d une constellation de satellites ainsi que les

Plus en détail

Systèmes Répartis. Pr. Slimane Bah, ing. PhD. Ecole Mohammadia d Ingénieurs. G. Informatique. Semaine 24.2. Slimane.bah@emi.ac.ma

Systèmes Répartis. Pr. Slimane Bah, ing. PhD. Ecole Mohammadia d Ingénieurs. G. Informatique. Semaine 24.2. Slimane.bah@emi.ac.ma Ecole Mohammadia d Ingénieurs Systèmes Répartis Pr. Slimane Bah, ing. PhD G. Informatique Semaine 24.2 1 Semestre 4 : Fev. 2015 Grid : exemple SETI@home 2 Semestre 4 : Fev. 2015 Grid : exemple SETI@home

Plus en détail

Chapitre 3 : INFERENCE

Chapitre 3 : INFERENCE Chapitre 3 : INFERENCE 3.1 L ÉCHANTILLONNAGE 3.1.1 Introduction 3.1.2 L échantillonnage aléatoire 3.1.3 Estimation ponctuelle 3.1.4 Distributions d échantillonnage 3.1.5 Intervalles de probabilité L échantillonnage

Plus en détail

Hébergement MMI SEMESTRE 4

Hébergement MMI SEMESTRE 4 Hébergement MMI SEMESTRE 4 24/03/2015 Hébergement pour le Web Serveurs Mutualités Serveurs Dédiés Serveurs VPS Auto-Hébergement Cloud Serveurs Mutualités Chaque Serveur héberge plusieurs sites Les ressources

Plus en détail

VMware : De la Virtualisation. au Cloud Computing

VMware : De la Virtualisation. au Cloud Computing VMware : De la Virtualisation. au Cloud Computing Tunis, le 12 Décembre 2012 Jamal Belhachemi BDM South EMEA 2010 VMware, Inc. Tous droits réservés. 2010 #1 dans les priorités des Directeurs Informatiques

Plus en détail

Cloud Computing : Utiliser Stratos comme PaaS privé sur un cloud Eucalyptus

Cloud Computing : Utiliser Stratos comme PaaS privé sur un cloud Eucalyptus Cloud Computing : Utiliser Stratos comme PaaS privé sur un cloud Eucalyptus Mr Romaric SAGBO Ministère de l'economie et des Finances (MEF), Bénin SWD Technologies Email : rask9@yahoo.fr Tél : +229 97217745

Plus en détail

Les simulations dans l enseignement des sondages Avec le logiciel GENESIS sous SAS et la bibliothèque Sondages sous R

Les simulations dans l enseignement des sondages Avec le logiciel GENESIS sous SAS et la bibliothèque Sondages sous R Les simulations dans l enseignement des sondages Avec le logiciel GENESIS sous SAS et la bibliothèque Sondages sous R Yves Aragon, David Haziza & Anne Ruiz-Gazen GREMAQ, UMR CNRS 5604, Université des Sciences

Plus en détail

EMC VSPEX SOLUTION FOR INFRASTRUCTURE AS A SERVICE WITH MICROSOFT SYSTEM CENTER

EMC VSPEX SOLUTION FOR INFRASTRUCTURE AS A SERVICE WITH MICROSOFT SYSTEM CENTER GUIDE DE CONCEPTION ET DE MISE EN ŒUVRE EMC VSPEX SOLUTION FOR INFRASTRUCTURE AS A SERVICE WITH MICROSOFT SYSTEM CENTER EMC VSPEX Résumé Ce guide de conception et de mise en œuvre décrit la conception

Plus en détail

Utilisation des réseaux bayésiens et de l approche de Fenton pour l estimation de probabilité d occurrence d événements

Utilisation des réseaux bayésiens et de l approche de Fenton pour l estimation de probabilité d occurrence d événements Utilisation des réseaux bayésiens et de l approche de Fenton pour l estimation de probabilité d occurrence d événements Rapport LAAS-CNRS Numéro N o 13077 Quynh Anh DO HOANG, Jérémie GUIOCHET, Mohamed

Plus en détail

Application de K-means à la définition du nombre de VM optimal dans un cloud

Application de K-means à la définition du nombre de VM optimal dans un cloud Application de K-means à la définition du nombre de VM optimal dans un cloud EGC 2012 : Atelier Fouille de données complexes : complexité liée aux données multiples et massives (31 janvier - 3 février

Plus en détail

Projet ANR SAMOGWAS. Specific Advanced MOdels for Genome-wide Association Studies. Journée de lancement officielle. Nantes - vendredi 11 octobre 2013

Projet ANR SAMOGWAS. Specific Advanced MOdels for Genome-wide Association Studies. Journée de lancement officielle. Nantes - vendredi 11 octobre 2013 Projet ANR SAMOGWAS Specific Advanced MOdels for Genome-wide Association Studies Journée de lancement officielle Nantes - vendredi 11 octobre 2013 1 Les partenaires LINA Nantes GIGA-R Liège INSERM Nantes

Plus en détail

Echantillonnage Non uniforme

Echantillonnage Non uniforme Echantillonnage Non uniforme Marie CHABERT IRIT/INP-ENSEEIHT/ ENSEEIHT/TéSASA Patrice MICHEL et Bernard LACAZE TéSA 1 Plan Introduction Echantillonnage uniforme Echantillonnage irrégulier Comparaison Cas

Plus en détail

Couplage efficace entre Optimisation et Simulation stochastique Application à la maintenance optimale d une constellation de satellites

Couplage efficace entre Optimisation et Simulation stochastique Application à la maintenance optimale d une constellation de satellites Couplage efficace entre Optimisation et Simulation stochastique Application à la maintenance optimale d une constellation de satellites Benoît Beghin Pierre Baqué André Cabarbaye Centre National d Etudes

Plus en détail

Adaptation dynamique de l interaction multimodale dans les environnements ubiquitaires

Adaptation dynamique de l interaction multimodale dans les environnements ubiquitaires Adaptation dynamique de l interaction multimodale dans les environnements ubiquitaires Slim Ben Hassen Orange Labs Lannion, France slim.benhassen@orange.com Abstract Mariano Belaunde Orange Labs Lannion,

Plus en détail

Modèles à Événements Discrets. Réseaux de Petri Stochastiques

Modèles à Événements Discrets. Réseaux de Petri Stochastiques Modèles à Événements Discrets Réseaux de Petri Stochastiques Table des matières 1 Chaînes de Markov Définition formelle Idée générale Discrete Time Markov Chains Continuous Time Markov Chains Propriétés

Plus en détail

Qu est ce que le Cloud Computing?

Qu est ce que le Cloud Computing? Qu est ce que le Cloud Computing? Makhlouf Hadji Ingénieur de Recherche Qu est ce que le Cloud Computing? Agenda: Virtualisation des Ressources Introduction au Cloud Computing Caractéristiques du Cloud

Plus en détail

Containers : Outils magiques pour les Devops? OpenNebula et son écosystème pour une infrastructure cloud agile

Containers : Outils magiques pour les Devops? OpenNebula et son écosystème pour une infrastructure cloud agile Containers : Outils magiques pour les Devops? OpenNebula et son écosystème pour une infrastructure cloud agile AGENDA TAS Group REX : OpenNebula Questions TAS GROUP Software company and system integrator

Plus en détail

Maîtrise énergétique des centres de données

Maîtrise énergétique des centres de données LABORATOIRE D INFORMATIQUE DE NANTES-ATLANTIQUE UMR 6241 ÉCOLE DOCTORALE STIM, N. 503 «Sciences et technologies de l information et des mathématiques» Sujet de thèse pour 2010 Maîtrise énergétique des

Plus en détail

CloudBees AnyCloud : Valeur, Architecture et Technologie cloud pour l entreprise

CloudBees AnyCloud : Valeur, Architecture et Technologie cloud pour l entreprise CloudBees AnyCloud : Valeur, Architecture et Technologie cloud pour l entreprise Alors que les plates-formes PaaS (Platform as a Service) commencent à s imposer comme le modèle privilégié auprès des entreprises

Plus en détail

NBS System et Zend Technologies Découvrez la scalabilité sans limite pour vos applications PHP grâce au Zend Cloud

NBS System et Zend Technologies Découvrez la scalabilité sans limite pour vos applications PHP grâce au Zend Cloud NBS System et Zend Technologies Découvrez la scalabilité sans limite pour vos applications PHP grâce au Zend Cloud Christian Durel GM urope Zend Technologies Maurice Kherlakian Consultant Senior Zend Technologies

Plus en détail

Iyad Alshabani SysCom - CReSTIC Université de Reims 17/02/2011 1

Iyad Alshabani SysCom - CReSTIC Université de Reims 17/02/2011 1 SysCom - CReSTIC Université de Reims 17/02/2011 1 Motivation Gestion des expérimentations Avec les workflows Simulation Simulation des Systèmes Distribués ANR USS SimGrid Campagne de Test et gestion de

Plus en détail

Apprentissage statistique et Big Data, focus sur l algorithme online-em

Apprentissage statistique et Big Data, focus sur l algorithme online-em Apprentissage statistique et Big Data, focus sur l algorithme online-em Olivier Cappé Laboratoire Traitement et Communication de l Information CNRS, Télécom ParisTech, 75013 Paris 8 octobre 2013 0. Cappé

Plus en détail

Optimisation des niveaux de service dans le cadre de déploiements de Clouds publics

Optimisation des niveaux de service dans le cadre de déploiements de Clouds publics LIVRE BLANC Optimisation des niveaux de service dans le cadre de déploiements de Clouds publics Clés pour une gestion efficace des services agility made possible Table des matières Résumé 3 Introduction

Plus en détail

CA Automation Suite for Data Centers

CA Automation Suite for Data Centers FICHE PRODUIT : CA Automation Suite for Data Centers CA Automation Suite for Data Centers agility made possible «La technologie a devancé la capacité à la gérer manuellement dans toutes les grandes entreprises

Plus en détail

Surveillance et maintenance prédictive : évaluation de la latence de fautes. Zineb SIMEU-ABAZI Univ. Joseph Fourier, LAG)

Surveillance et maintenance prédictive : évaluation de la latence de fautes. Zineb SIMEU-ABAZI Univ. Joseph Fourier, LAG) Surveillance et maintenance prédictive : évaluation de la latence de fautes Zineb SIMEU-ABAZI Univ. Joseph Fourier, LAG) SURVEILLANCE Analyser une situation et fournir des indicateurs! Détection de symptômes!

Plus en détail

ALEATOIRE - Les enjeux du cours de Probabilités en première année de l Ecole Polytechnique

ALEATOIRE - Les enjeux du cours de Probabilités en première année de l Ecole Polytechnique ALEATOIRE - Les enjeux du cours de Probabilités en première année de l Ecole Polytechnique Télécom ParisTech, 09 mai 2012 http://www.mathematiquesappliquees.polytechnique.edu/ accueil/programmes/cycle-polytechnicien/annee-1/

Plus en détail

ez Publish Cloud Edition Présentation

ez Publish Cloud Edition Présentation ez Publish Cloud Edition Présentation Pourquoi le Cloud? Le marché 13/07/12 Slide 3 Les attentes sont fortes 13/07/12 Slide 4 les defis à relever sont tout aussi importants! 13/07/12 Slide 5 L internet

Plus en détail

RAPPORT DE PROJET DATA MINING

RAPPORT DE PROJET DATA MINING DEA 127 : INFORMATIQUE SYSTEMES INTELLIGENTS RAPPORT DE PROJET DATA MINING «Analyse des endettements par niveau de développement des pays» Réalisé par : BELEM MAHAMADOU Sous la direction de : M. EDWIN

Plus en détail

!-.!#- $'( 1&) &) (,' &*- %,!

!-.!#- $'( 1&) &) (,' &*- %,! 0 $'( 1&) +&&/ ( &+&& &+&))&( -.#- 2& -.#- &) (,' %&,))& &)+&&) &- $ 3.#( %, (&&/ 0 ' Il existe plusieurs types de simulation de flux Statique ou dynamique Stochastique ou déterministe A événements discrets

Plus en détail

ParMat : Parallélisation pour la simulation des Matériaux.

ParMat : Parallélisation pour la simulation des Matériaux. : Parallélisation pour la simulation des Matériaux. G. Bencteux (EDF) 3 septembre 2008 Outline 1 2 Un algorithme d ordre N pour les calculs ab initio (DFT/HF) 3 Simulation du dommage d irradiation par

Plus en détail

Premier Accelerate Packages: Azure Fast Start

Premier Accelerate Packages: Azure Fast Start Premier Premier Accelerate Packages: Azure Fast Start Appuyez-vous sur l excellence Premier Premier Accelerate Packages Faites un premier pas sur Azure à travers une expérience mêlant formation atelier

Plus en détail

TECH. INFOTECH # 34 Solvabilité 2 : Le calcul du capital économique dans le cadre d un modèle interne. Introduction

TECH. INFOTECH # 34 Solvabilité 2 : Le calcul du capital économique dans le cadre d un modèle interne. Introduction INFO # 34 dans le cadre d un modèle interne Comment les méthodes d apprentissage statistique peuvent-elles optimiser les calculs? David MARIUZZA Actuaire Qualifié IA Responsable Modélisation et Solvabilité

Plus en détail

LES APPROCHES CONCRÈTES POUR LE DÉPLOIEMENT D INFRASTRUCTURES CLOUD AVEC HDS & VMWARE

LES APPROCHES CONCRÈTES POUR LE DÉPLOIEMENT D INFRASTRUCTURES CLOUD AVEC HDS & VMWARE LES APPROCHES CONCRÈTES POUR LE DÉPLOIEMENT D INFRASTRUCTURES CLOUD AVEC HDS & VMWARE Sylvain SIOU VMware Laurent DELAISSE Hitachi Data Systems 1 Hitachi Data Systems Corporation 2012. All Rights Reserved

Plus en détail

Mercredi 24 Juin 2015

Mercredi 24 Juin 2015 BACCALAURÉAT GÉNÉRAL Session 2015 MATHÉMATIQUES Série ES ENSEIGNEMENT OBLIGATOIRE Durée de l épreuve : 3 heures coefficient : 5 MATHÉMATIQUES Série L ENSEIGNEMENT DE SPÉCIALITÉ Durée de l épreuve : 3 heures

Plus en détail

Projet de Chaire Machine-learning

Projet de Chaire Machine-learning Projet de Chaire Machine-learning Stéphan Clémençon Télécom ParisTech January 15, 2013 Stéphan Clémençon (Télécom ParisTech) Chaire Apprentissage January 15, 2013 1 / 1 Machine-learning: un bref tour d

Plus en détail

Automatiser le Software-Defined Data Center avec vcloud Automation Center

Automatiser le Software-Defined Data Center avec vcloud Automation Center Automatiser le Software-Defined Data Center avec vcloud Automation Center 5 Juin 2014 2014 VMware Inc. All rights reserved. CONFIDENTIAL 2 Impact de l accélération du rythme de l entreprise DEMANDES CONSEQUENCES

Plus en détail

1 ère Partie Stratégie et Directions Stockage IBM

1 ère Partie Stratégie et Directions Stockage IBM Cédric ARAGON Directeur des Ventes de Stockage IBM France 1 ère Partie Stratégie et Directions Stockage IBM Agenda Les défis actuels posés par la croissance des volumes de données IBM: acteur majeur sur

Plus en détail

Optimisation de l agrégation d un portefeuille de contrat d assurance vie

Optimisation de l agrégation d un portefeuille de contrat d assurance vie Optimisation de l agrégation d un portefeuille de contrat d assurance vie Pierre-Olivier Goffard 1 1 AXA France, Université de Aix-Marseille. pierreolivier.goffard@axa.fr Résumé. Une méthode d agrégation

Plus en détail

Programme des épreuves des concours externes de recrutement des personnels techniques et administratifs de recherche et de formation

Programme des épreuves des concours externes de recrutement des personnels techniques et administratifs de recherche et de formation Programme des épreuves des concours externes de recrutement des personnels E1 RECRUTEMENT DES ASSISTANTS INGENIEURS DE RECHERCHE ET DE FORMATION...2 E1.1 Gestionnaire de base de données...2 E1.2 Développeur

Plus en détail

ETUDE ET IMPLÉMENTATION D UNE CACHE L2 POUR MOBICENTS JSLEE

ETUDE ET IMPLÉMENTATION D UNE CACHE L2 POUR MOBICENTS JSLEE Mémoires 2010-2011 www.euranova.eu MÉMOIRES ETUDE ET IMPLÉMENTATION D UNE CACHE L2 POUR MOBICENTS JSLEE Contexte : Aujourd hui la plupart des serveurs d application JEE utilise des niveaux de cache L1

Plus en détail

Cloud Computing: de la technologie à l usage final. Patrick CRASSON Oracle Thomas RULMONT WDC/CloudSphere Thibault van der Auwermeulen Expopolis

Cloud Computing: de la technologie à l usage final. Patrick CRASSON Oracle Thomas RULMONT WDC/CloudSphere Thibault van der Auwermeulen Expopolis Cloud Computing: de la technologie à l usage final Patrick CRASSON Oracle Thomas RULMONT WDC/CloudSphere Thibault van der Auwermeulen Expopolis ADOPTION DU CLOUD COMPUTING Craintes, moteurs, attentes et

Plus en détail

e-biogenouest CNRS UMR 6074 IRISA-INRIA / Plateforme de Bioinformatique GenOuest yvan.le_bras@irisa.fr Programme fédérateur Biogenouest co-financé

e-biogenouest CNRS UMR 6074 IRISA-INRIA / Plateforme de Bioinformatique GenOuest yvan.le_bras@irisa.fr Programme fédérateur Biogenouest co-financé e-biogenouest Coordinateur : Olivier Collin Animateur : Yvan Le Bras CNRS UMR 6074 IRISA-INRIA / Plateforme de Bioinformatique GenOuest yvan.le_bras@irisa.fr Programme fédérateur Biogenouest co-financé

Plus en détail

Modélisation du comportement habituel de la personne en smarthome

Modélisation du comportement habituel de la personne en smarthome Modélisation du comportement habituel de la personne en smarthome Arnaud Paris, Selma Arbaoui, Nathalie Cislo, Adnen El-Amraoui, Nacim Ramdani Université d Orléans, INSA-CVL, Laboratoire PRISME 26 mai

Plus en détail

L apprentissage automatique

L apprentissage automatique L apprentissage automatique L apprentissage automatique L'apprentissage automatique fait référence au développement, à l analyse et à l implémentation de méthodes qui permettent à une machine d évoluer

Plus en détail

Génie logiciel (Un aperçu)

Génie logiciel (Un aperçu) (Un aperçu) (sommerville 2010) Laurent Pérochon INRA URH 63122 St Genès Champanelle Laurent.perochon@clermont.inra.fr Ensemble d activités conduisant à la production d un logiciel Sur un échantillon de

Plus en détail

/&! /)! /+! /,! /,! 01 % Programmes et contenus de la Licence Appliquée Technologies de l Informatique 2013

/&! /)! /+! /,! /,! 01 % Programmes et contenus de la Licence Appliquée Technologies de l Informatique 2013 &'&()* )'+* "#$%#% )'+(,* /&! 01 /)! $% /+! /,! 01 % +'-(.* /&! G!- /)! G! /+! G /,! G! 01 $% 01 % 1/$ Programmes et contenus de la Licence Appliquée Technologies de l Informatique 01 F 1.. Plans d études

Plus en détail

modèles génériques applicables à la synthèse de contrôleurs discrets pour l Internet des Objets

modèles génériques applicables à la synthèse de contrôleurs discrets pour l Internet des Objets modèles génériques applicables à la synthèse de contrôleurs discrets pour l Internet des Objets Mengxuan Zhao, Gilles Privat, Orange Labs, Grenoble, France Eric Rutten, INRIA, Grenoble, France Hassane

Plus en détail

Raisonnement probabiliste

Raisonnement probabiliste Plan Raisonnement probabiliste IFT-17587 Concepts avancés pour systèmes intelligents Luc Lamontagne Réseaux bayésiens Inférence dans les réseaux bayésiens Inférence exacte Inférence approximative 1 2 Contexte

Plus en détail

Exercices du Cours de la programmation linéaire donné par le Dr. Ali DERBALA

Exercices du Cours de la programmation linéaire donné par le Dr. Ali DERBALA 75. Un plombier connaît la disposition de trois tuyaux sous des dalles ( voir figure ci dessous ) et il lui suffit de découvrir une partie de chacun d eux pour pouvoir y poser les robinets. Il cherche

Plus en détail

vcloud Director Comment créer et gérer son «Cloud» Jean-Claude DAUNOIS Senior Systems Engineer VMware

vcloud Director Comment créer et gérer son «Cloud» Jean-Claude DAUNOIS Senior Systems Engineer VMware vcloud Director Comment créer et gérer son «Cloud» Jean-Claude DAUNOIS Senior Systems Engineer VMware «Rendre les choses compliquées est facile. Rendre les choses faciles est compliqué.» *Dicton informatique

Plus en détail