Théorie Financière 2. Valeur actuelle Evaluation d obligations

Dimension: px
Commencer à balayer dès la page:

Download "Théorie Financière 2. Valeur actuelle Evaluation d obligations"

Transcription

1 Théorie Financière 2. Valeur actuelle Evaluation d obligations

2 Objectifs de la session. Comprendre les calculs de Valeur Actuelle (VA, Present Value, PV) Formule générale, facteur d actualisation (discount factor) et taux d intérêt du marché Formules utiles Taux d intérêts et intérêts composés Taux d intérêts réels et nominaux 2. Introduire les principales catégories d obligations 3. Comprendre l évaluation des obligations 4. Analyser le lien entre taux d intérêts et cours des obligations 5. Introduire la structure par terme des taux d intérêts 6. Examiner pourquoi les taux d intérêts peuvent varier en fonction de la maturité 2

3 Valeur Actuelle (formule générale) Cash flows: C, C 2, C 3,,C t, C T Facteur d actualisation: v, v 2,,v t,, v T Valeur Actuelle: PV = C v + C 2 v C T v T Un exemple: Année Cash flow Facteur d actualisation Valeur actuelle VAN = =

4 Les U.S. Treasury STRIPS STRIPS Separate Trading of Registered Interest and Principal of Securities Prix de zéro-coupons Exemple: Supposons qu on observe les cours suivants Maturité Prix pour un facial de $00 (face value) Le prix de marché pour $ dans 5 ans est v 5 =

5 Valeur Actuelle et Actualisation Combien un investisseur serait-il prêt à payer en t = 0 pour recevoir C t dans t années connaissant le taux du marché r t? Nous savons que 0 => (+r t ) t t D ou PV (+r t ) t = C t => PV = C t / (+r t ) t = C t v t Le processus permettant de calculer la valeur actuelle (present value) des cash flows futurs s appelle l actualisation (discounting). La valeur actuelle d un cash flow futur est obtenue en multipliant ce cash flow par un facteur d actualisation (discount factor ou present value factor) v t La formule générale pour un facteur d actualisation pour t-années est: v t ( r ) t t 5

6 Taux d intérêts spot Revenons au STRIPS. Supposons que le cours d un zéro-coupon avec une maturité de 5 ans et une valeur faciale de 00 vaille 75. Quel est alors le taux d intérêt sous-jacent? Le taux de rendement actuariel (YTM, yield-to-maturity) d une obligation est le taux d intérêt qui égalise le cours avec la valeur actuelle des cash flows futurs. Sachant que 75 = 00 * v 5 et v 5 = /(+r 5 ) 5 Le YTM r 5 est la solution de: ( r ) 5 5 La solution : 5 00 r % Équivaut au taux spot à 5 ans 6

7 Structure par terme des taux d intérêts Relations entre taux spot et maturité. Exemple: Maturité Prix (facial de 00) YTM (Spot) r = 2.00% r 2 = 2.79% r 3 = 3.4% r 4 = 3.70% r 5 = 4.56% La structure par terme: Est croissante si r t > r t- pour tout t Plate (Flat) si r t = r t- pour tout t Est décroissante (ou inverse) si r t < r t- pour tout t 7

8 Utilisation d un taux unique Lors de l analyse de cash flows sans risque, il est important de capturer la structure par terme des taux: les taux d actualisation devraient varier avec la maturité. Dans le cas de cash flows risqués, la structure par terme des taux est souvent ignorée. Les Valeurs Actuelles sont souvent calculées en utilisant un taux d actualisation unique r, identique pour toutes les maturités. Pour rappel: ce taux représente la rentabilité attendue (espérée). = Taux sans risque + Prime de risque Cette hypothèse simplificatrice permet de considérer les formules pour des: Perpétuités (constantes ou croissantes à taux constant ) Annuités (constantes ou croissantes à taux constant ) 8

9 Perpétuité constante C t =C pour t =, 2, 3,... PV C r Preuve: PV = C d + C d² + C d3 + PV(+r) = C + C d + C d² + PV(+r) PV = C PV = C/r Exemples: Actions Privilégiées (Preferred stock) payant un dividende fixe Si r =0% et le Dividende annuel = 50 Valeur de Marché P 0? Note: prix attendu en t = => Rentabilité attendue = P P div ( P P 0 P ) 50 ( ) 0 % 9

10 Perpétuité croissante C t =C (+g) t- pour t=, 2, 3,... r>g PV Exemple: Evaluation d action basée sur: Prochain dividende div, et croissance long terme du dividende g Si r = 0%, div = 50, g = 5% Note: Prix attendu en t = C r P g ,000 P ,050 Rentabilité attendue = div ( P P ) P 0 50 (,050,000), % 0

11 Annuité constante Un ensemble de cash flows constant pour un nombre fixé de périodes C = C 2 = = C T = C Exemple: Remboursement constant dans le cadre d un crédit hypothécaire PV = C * v + C * v C * v T + = C * [v + v v T ] = C * Facteur d Annuité Facteur d Annuité = valeur actuelle d payé à la fin de chacune des périodes T.

12 Annuité constante C t = C pour t =, 2,,T PV C r Différence entre deux perpétuités: [ T ( r) Commençant en t = PV= C/r Commençant en t = T+ PV = C/r [/(+r) T ] Exemple: crédit hypothécaire sur 20 ans Paiement annuel = 25,000 Taux d emprunt = 0% PV =( 25,000/0.0)[-/(.0) 20 ] = 25,000 * 0 *( 0.486) = 25,000 * = 22,839 ] 2

13 Annuité croissante C t = C (+g) t- pour t =, 2,, T Si r g: Si r = g: PV PV C r g C T r g r T De nouveau différence entre deux annuités croissantes: Commençant en t =, premier cash flow = C Commençant en t = T+ avec comme premier cash flow = C (+g) T Exemple: Quelle est la VAN du projet suivant si r = 0%? Investissement initial = 00, C = 20, g = 8%, T = 0 VAN= 00 + [20/(0% - 8%)]*[ (.08/.0) 0 ] = =

14 Formules utiles: résumé Perpétuité constante: C t = C pour tout t PV C r Perpétuité croissante : C t = C t- (+g), pour t = à r>g PV r C g Annuité constante: C t =C, pour t = to T PV C r ( ( r) T ) Annuité croissante : C t = C t- (+g), pour t = à T si r g: si r = g: PV PV C ( r g C T r ( ( g) r) T T ) 4

15 Fréquence des paiements d intérêts Jusqu à présent, intérêts payés annuellement Si n paiements par an, la valeur avec intérêts composés sera après an de : Exemple: Paiement mensuel : ( r ) n Taux d intérêt annuel annoncé = r = 2%, n = 2 Valeur avec intérêts composés après un an: ( + 0.2/2) 2 =.268 Taux d intérêt annuel Effectif: 2.68% Taux d intérêt continu: [+(r/n)] n e r (e= 2.783) Exemple : Taux d intérêt annuel annoncé = r = 2%, e 2 =.275 Taux d intérêt annuel Effectif: : 2.75% n 5

16 Jongler avec les fréquences de paiement Supposons que le taux d intérêt annuel effectif soit de 0% Considérons une perpétuité avec cash flow annuel C = 2 Si ce cash flow est payé une fois par an: PV = 2 / 0.0 = 20 Supposons maintenant que le cash flow est payé une fois par mois (le cash flow mensuel vaut 2/2 = ). Quelle est alors la valeur actuelle? Solution : considérons qu une période = mois. Calculons le taux d intérêt mensuel (en gardant le taux effectif annuel constant) (+r monthly ) 2 =.0 r mensuel = % 2. La formule de la perpétuité donne: VA = / =

17 Jongler avec les fréquences de paiement Solution 2: utiliser le taux d intérêt annuel annoncé. Calculer taux d intérêt annuel annoncé = % * 2 = 9.568% 2. Utiliser la formule pour une perpétuité : PV = 2 / = A l évidence, ces éléments ne sont pas intuitifs, d ou un danger d abus par des personnes malveillantes mais aussi une potentielle difficulté pour comparer différentes offres. Concept de TAEG = Taux Annuel Effectif Global et législation fixant les taux maximaux légaux 7

18 Taux d intérêts et inflation: Taux d intérêt réel Taux d intérêt Nominal = 0% Date 0 Date Investissement $,000 Montant perçu $,00 Hamburger se vend $ $.06 Taux d nflation = 6% Pouvoir d achat (# hamburgers) H,000 H,038 Taux d intérêt Réel = 3.8% (+Taux Nominal) = (+Taux Réel) (+Inflation) Approximation: Taux Réel Taux Nominal - Inflation 8

19 Catégories d obligation (/2) Zéro-coupon bond (Pure discount bond - Bullet bond) Le détenteur de l obligation à le droit de recevoir: Un paiement future ( la valeur faciale) F À une date donnée (l échéance (maturity) T Exemple : un zéro-coupon échéant dans 0 ans, valeur faciale $,000 PV T ( r Valeur du zéro-coupon: T ) Si le taux spot à 0 ans est de 5% Le zéro-coupon se vendra à: PV,000 0 (.05)

20 Catégories d obligation(2/2) Obligation classique (Level-coupon bond) Paiement périodique d intérêts (coupons) Europe : US : d ordinaire une fois par an tous les 6 mois Coupon d ordinaire exprimé en % du principal A l échéance, remboursement du principal Exemple : Emprunt d état émis en 20 dont le er coupon tombe dans exactement un an Coupon 5.00% Valeur Faciale 00 Échéance finale

21 Coupon, valeur faciale 2

22 Evaluer une obligation classique P 0 C r C ( r ) C ( 00 ) T r T ) ( rt T Coupon 5% Face value 00 n 5 ans CF Spot rates 0,80%,46%,96% 2,34% 2,66% DF 0, , , , , DCF 4,96 4,86 4,72 4,56 92,08 Price,8 "=SOMME(C0:G0)" Yield to Maturity 2,59% "=TRI(B7:G7)" -,8 5,00 5,00 5,00 5,00 05,00 Note: Si P 0 > F: l obligation cote au-dessus du pair Si P 0 <F: l obligation cote en-dessous du pair 22

23 Yield to maturity Si on connaît le cours de l obligation Yield to maturity = taux d actualisation implicite YTM TRI (IRR) C C C F Solution de l équation: P T y ( y) ( y) Titre de l'axe Cours 0% % 2% 3% 4% 5% 6% 7% 8% 9% 0% % 2% 3% 4% 5% YTM Cours 23

24 Quand une obligation cote-t-elle au-dessus du pair? P 0 > F C/F > y Notations: C = coupon, F = valeur faciale, P = prix (cours) Supposons C / F > y an avant l échéance: 2 ans avant l échéance : P P 0 C C F F F P y y 0 C P y 0 avec P F C F y Si: P > F P 0 C F y C F F y F 24

25 Une obligation classique, somme de zérocoupons «Découper» l obligation classique en autant de zéro-coupons coupons que de paiements Si le taux du marché = 5% et le coupon vaut 6.5% Valeur faciale Echéance Valeur Zéro Zéro Zéro Zéro Zéro Total

26 Loi du Prix Unique Supposons que l on observe les données suivantes: Maturity Bond Price 2 3 A B C Que valent les taux d intérêts sous-jacents? Méthode de Bootstrap = v = v 7 + v = v v v Discount factors Spot rates 3% 4% 5% 26

27 Sensibilité des Z-C aux taux Bond market price Bond price as a function of market interest rate 0% 5% 0% 5% 20% Market interest rate 5-year ZC 0-year ZC 5-year ZC 27

28 Sensibilité des cours, qu est-ce qui joue un rôle? % change in bond price Obligation Coupon Échéance YTM initial A 2% 5 ans 0% B 2% 30 ans 0% C 3% 30 ans 0% D 3% 30 ans 6% A B C % change in YTM D 28

29 Malkiel (962) Toutes autres choses étant égales par ailleurs: ) Le prix des obligations est inversement relié aux taux actuariels 2) Un accroissement du YTM d une obligation entraîne une plus petite variation de prix qu une diminution de YTM de même magnitude 3) Le cours d obligations à LT tend à être plus sensible à une variation de taux 4) Le risque de taux est inversement relié au taux du coupon de l obligation => Apparition du concept de duration pour tenir compte de ces éléments Reference: Burton G. Malkiel, Expectations, bond prices and the term structure of interest rates, Quarterly Journal of Economics, 76, (May 962), pp

30 Duration pour un Zéro-coupon Supposons un zéro-coupon avec une échéance de t années: P Que se passe-t-il si r change? dp dr 00 t t ( r) 00 ( r) t 00 t r ( r) t t P r Pour un P donné, le changement est proportionnel à l échéance. Comme ère approximation (pour un petit changement de r): P P t r r Duration = Echéance 30

31 Duration pour obligations classiques Supposons une obligation avec les cash flows: C,...,C T Similaire à un portefeuille de T zéro-coupons. La valeur de l obligation est: P = PV(C ) + PV(C 2 ) PV(C T ) Fraction investie dans chaque zéro-coupon t: w t = PV(C t ) / P Duration : moyenne pondérée des échéances des zéro-coupons D= w + w w w t t + + w T T 3

32 Duration - exemple Revenons à notre obligation à 5ans au coupon de 6.50% (taux d intérêt du marché = 5%): Valeur faciale VA w t ZC % ZC % ZC % ZC % ZC % Total Duration D = 5.8% % % % % 5 = 4.44 Ceci représente la duration si le taux d intérêt vaut 5% Pour des obligations classiques, duration < échéance 32

33 Formule générale: Estimation de la variation de prix sur base de la duration P P Duration r r Dans l exemple: Duration = 4.44 (quand r=5%) Si Δr =+% : Δ 4.44 % = % Check: Si r = 6%, P = 02. ΔP/P = ( )/06.49 = - 4.% Différence due à la convexité 33

34 Duration - maths Si le taux d interêt change: Divisons les deux termes par P pour déterminer le % de changement: Comme: dp dr dpv ( C) dpv ( C2 ) dpv ( CT )... dr dr dr 2 T PV ( C) PV ( C2 )... r r r dp dr PV ( C) PV ( C2 ( 2 P r P P PV ( C )... T T ) PV ( C P PV ( C) PV ( C2) PV ( CT ) Duration 2... T P P P T ) ) On obtient: dp dr P Duration r 34

35 Gestion obligataire Deux types de risque interviennent dans la gestion obligataire:. Le risque de taux (quand les taux montent le prix baisse et vice versa) 2. Le risque de réinvestissement (à quel taux est-il possible de réinvestir les coupons reçus?) Ces éléments vont dans des directions opposées!!! Stratégie d immunisation : se couvrir contre les changements de taux. Idée de base: deux portefeuilles de même duration réagissent identiquement à des changements de taux. Supposons que nous recevons un dépôt de 0000$ pour lequel nous devons payer un intérêt de 8% en moyenne chaque année pour les 5 prochaines années. Le paiement se fera cependant en une fois dans 5 ans. Nous devrons donc: 0000 x (,08) 5 = 4693,28$ Comment pourrions-nous nous couvrir du risque de taux? En achetant une obligation classique à 5 ans avec un coupon de 8%? 35

36 Immunisation Si les taux restent constants: pas de problème, les coupons seront réinvestis à du 8% et finalement nous aurons: 0000 x (,08) 5 = 4693,28$ Que se passerait-il cependant si les taux devaient varier? Imaginons que les taux changent l an prochain puis demeurent à leur nouveau niveau? Taux Valeur en t = 5 5% 4420,5 6% 4509,67 7% 4600,59 8% 4693,28 9% 4787,77 0% 4884,08 36

37 Immunisation Cet exemple montre que l échéance seule ne nous permet pas de couvrir notre position de manière satisfaisante... Alternative: stratégie d immunisation basée sur la duration Dans notre cas: un paiement final ZC donc la duration à couvrir échéance. Une obligation classique à 6 ans payant un coupon de 8% a presque la même duration. Voyons ce que ça donne dans ce cas là... 37

38 Année Immunisation (/3), taux passe à 7% Années restantes Valeur finale Total x, , x, , x, , x, Revente obligation /, ,46 TOTAL 4 694,05 38

39 Année Immunisation (2/3), taux passe à 9% Années restantes Valeur finale Total x, , x, , x, , x, Revente obligation /, ,28 TOTAL 4 696,02 39

40 Année Immunisation (3/3), taux passe à 6% Années restantes Valeur finale Total x, , x, , x, , x, Revente obligation /,06 988,8 TOTAL 4 698,36 40

41 Taux Spots Taux spot yield to maturity d un zéro coupon Considérons les cours suivants pour des zéro-coupons (Face value = 00): Echéance Prix -an ans Le taux spot à un an est obtenu en résolvant: r r 5% Le taux spot à deux ans est obtenu en résolvant : r 2 2 ( r ) 2 5.5% L achat d un ZC à deux ans implique qu on investit à un taux moyen de 5.5% sur ces deux ans Mais on peut vouloir emprunter de t = à t = 2 en fixant le taux déjà aujourd hui quelle devrait être sa valeur? 4

42 Taux Spots et Taux forward 0 2 an an Taux connus en t=0 2 ans Taux inconnu en t=0 42

43 Taux Forward Supposons que le taux à un an soit égal à 5%. Quel taux puis-je obtenir pour la seconde année? Ce taux est nommé le taux forward Il se calcule comme suit (cf données): (.05) (+f 2 ) = 00 f 2 = 6% De manière plus générale: En résolvant pour f 2 : (+r )(+f 2 ) = (+r 2 )² 2 ( r2 ) d f 2 r d 2 La formule générale devient: f t ( r t ( rt ) d t t t ) dt Si la relation liant les taux spots aux taux forwards n était pas vérifiée il y aurait des opportunités d arbitrage 43

44 Taux forwards: exemples Echéance Discount factor Taux Spot Taux Forward Taux spot à 3 ans : Forward d un an de t=2 à t= 3: r3 ( ) 3 ( r ) % 3 ( r3 ) d f3 2 ( r ) d % 44

45 Structure par terme des taux Pourquoi les taux spots diffèrent-ils pour des échéances différentes? Si: r < r 2 alors f 2 > r r = r 2 alors f 2 = r r > r 2 alors f 2 < r La relation des taux spot rates d échéances différentes est nommée la structure par terme des taux Spot rate Upward sloping Flat Downward sloping Time to maturity 45

46 Taux forwards et taux spots attendus Supposons un individu neutre au risque Taux spot à un an r = 5% Supposons que le taux spot attendu dans un an vaille E(r ) = 6% STRATEGIE : ROLLOVER Valeur future espérée de cette stratégie: ($00) investis pour 2 ans:.3 = = 00 (+r ) (+E(r )) STRATEGIE 2: Acheter.3 ZC de valeur faciale = 00 échéant dans deux ans 46

47 Taux forward d équilibre Chaque stratégies mène au même cash flow futur espéré leur coût devrait être identique ( r )( E( r )) 2 ( r2 ) ( r )( f 2 ) Dans ce cadre simplifié, le taux forward équivaut au taux spot futur espéré f 2 =E(r ) Les taux forward contiennent une information par rapport aux attentes relatives à l évolution des taux spots futurs 47

Table des matières. Avant-propos. Chapitre 2 L actualisation... 21. Chapitre 1 L intérêt... 1. Chapitre 3 Les annuités... 33 III. Entraînement...

Table des matières. Avant-propos. Chapitre 2 L actualisation... 21. Chapitre 1 L intérêt... 1. Chapitre 3 Les annuités... 33 III. Entraînement... III Table des matières Avant-propos Remerciements................................. Les auteurs..................................... Chapitre 1 L intérêt............................. 1 1. Mise en situation...........................

Plus en détail

Chapitre 2 L actualisation... 21

Chapitre 2 L actualisation... 21 III Table des matières Avant-propos Remerciements.... Les auteurs... XI XII Chapitre 1 L intérêt.... 1 1. Mise en situation.... 1 2. Concept d intérêt... 1 2.1. L unité de temps... 2 2.2. Le taux d intérêt...

Plus en détail

Chapitre 2 : l évaluation des obligations

Chapitre 2 : l évaluation des obligations Chapitre 2 : l évaluation des obligations 11.10.2013 Plan du cours Flux monétaires, prix et rentabilité Bibliographie: caractéristiques générales Berk, DeMarzo: ch. 8 obligations zéro-coupon obligations

Plus en détail

Théorie Financière 8 P. rod i u t its dé dérivés

Théorie Financière 8 P. rod i u t its dé dérivés Théorie Financière 8P 8. Produits dit dérivés déié Objectifsdelasession session 1. Définir les produits dérivés (forward, futures et options (calls et puts) 2. Analyser les flux financiers terminaux 3.

Plus en détail

Chapitre 8 L évaluation des obligations. Plan

Chapitre 8 L évaluation des obligations. Plan Chapitre 8 L évaluation des obligations Plan Actualiser un titre à revenus fixes Obligations zéro coupon Obligations ordinaires A échéance identique, rendements identiques? Évolution du cours des obligations

Plus en détail

Les obligations. S. Chermak infomaths.com

Les obligations. S. Chermak infomaths.com Les obligations S. Chermak Infomaths.com Saïd Chermak infomaths.com 1 Le marché des obligations est un marché moins médiatique mais tout aussi important que celui des actions, en terme de volumes. A cela

Plus en détail

Institut pour le Développement des Capacités / AFRITAC de l Ouest / COFEB. Cours régional sur la Gestion macroéconomique et les

Institut pour le Développement des Capacités / AFRITAC de l Ouest / COFEB. Cours régional sur la Gestion macroéconomique et les Institut pour le Développement des Capacités / AFRITAC de l Ouest / COFEB Cours régional sur la Gestion macroéconomique et les questions de dette Dakar, Sénégal du 4 au 15 novembre 2013 S-7 Cours et rendement

Plus en détail

LA GESTION DU RISQUE DE TAUX D INTERÊT

LA GESTION DU RISQUE DE TAUX D INTERÊT LA GESTION DU RISQUE DE TAUX D INTERÊT Finance internationale, 9 ème éd. Y. Simon & D. Lautier 1 Pour les investisseurs, le risque de taux d intérêt est celui : - d une dévalorisation du patrimoine - d

Plus en détail

Propriétés des options sur actions

Propriétés des options sur actions Propriétés des options sur actions Bornes supérieure et inférieure du premium / Parité call put 1 / 1 Taux d intérêt, capitalisation, actualisation Taux d intéret composés Du point de vue de l investisseur,

Plus en détail

Éléments de calcul actuariel

Éléments de calcul actuariel Éléments de calcul actuariel Master Gestion de Portefeuille ESA Paris XII Jacques Printems printems@univ-paris2.fr 3 novembre 27 Valeur-temps de l argent Deux types de décisions duales l une de l autre

Plus en détail

Théorie Financière 2014-2015

Théorie Financière 2014-2015 Théorie Financière 2014-2015 1. Introduction Professeur Kim Oosterlinck E-mail: koosterl@ulb.ac.be Organisation du cours (1/4) Cours = Théorie (24h) + TPs (12h) + ouvrages de référence Cours en français

Plus en détail

Théorie Financière 4E 4. Evaluation d actions et td d entreprises

Théorie Financière 4E 4. Evaluation d actions et td d entreprises Théorie Financière 4E 4. Evaluation d actions et td d entreprises Objectifs de la session 1. Introduire le «dividend discount model» (DDM) 2. Comprendre les sources de croissance du dividende 3. Analyser

Plus en détail

LISTE D EXERCICES 2 (à la maison)

LISTE D EXERCICES 2 (à la maison) Université de Lorraine Faculté des Sciences et Technologies MASTER 2 IMOI, parcours AD et MF Année 2013/2014 Ecole des Mines de Nancy LISTE D EXERCICES 2 (à la maison) 2.1 Un particulier place 500 euros

Plus en détail

Problèmes de crédit et coûts de financement

Problèmes de crédit et coûts de financement Chapitre 9 Problèmes de crédit et coûts de financement Ce chapitre aborde un ensemble de préoccupations devenues essentielles sur les marchés dedérivésdecréditdepuislacriseducréditde2007.lapremièredecespréoccupations

Plus en détail

Les techniques des marchés financiers

Les techniques des marchés financiers Les techniques des marchés financiers Exercices supplémentaires Christine Lambert éditions Ellipses Exercice 1 : le suivi d une position de change... 2 Exercice 2 : les titres de taux... 3 Exercice 3 :

Plus en détail

COURS GESTION FINANCIERE SEANCE 5 VOCABULAIRE BANCAIRE ET FINANCIER MATHEMATIQUES FINANCIERES

COURS GESTION FINANCIERE SEANCE 5 VOCABULAIRE BANCAIRE ET FINANCIER MATHEMATIQUES FINANCIERES COURS GESTION FINANCIERE SEANCE 5 VOCABULAIRE BANCAIRE ET FINANCIER MATHEMATIQUES FINANCIERES SEANCE 5 VOCABULAIRE BANCAIRE ET FINANCIER MATHEMATIQUES FINANCIERES Objet de la séance 5: les séances précédentes

Plus en détail

Les techniques des marche s financiers Exercices supple mentaires

Les techniques des marche s financiers Exercices supple mentaires Les techniques des marche s financiers Exercices supple mentaires Exercice 1 : le suivi d une position de change... 2 Exercice 2 : les titres de taux... 3 Exercice 3 : mathématiques et statistiques...

Plus en détail

Calcul et gestion de taux

Calcul et gestion de taux Calcul et gestion de taux Chapitre 1 : la gestion du risque obligataire... 2 1. Caractéristique d une obligation (Bond/ Bund / Gilt)... 2 2. Typologie... 4 3. Cotation d une obligation à taux fixe... 4

Plus en détail

Pratique des produits dérivés P3 : futures, forwards

Pratique des produits dérivés P3 : futures, forwards Pratique des produits dérivés P3 : futures, forwards Olivier Brandouy Université de Bordeaux 2014 2015 Diapo 1/60 Olivier Brandouy Master 2 Métiers de la Banque (CPA) Plan 1 Introduction Futures et Forwards

Plus en détail

Finance de marché Thèmes abordés Panorama des marches de capitaux Fonctionnement des marchés de capitaux Le marché des obligations Le marchés des

Finance de marché Thèmes abordés Panorama des marches de capitaux Fonctionnement des marchés de capitaux Le marché des obligations Le marchés des FINANCE DE MARCHE 1 Finance de marché Thèmes abordés Panorama des marches de capitaux Fonctionnement des marchés de capitaux Le marché des obligations Le marchés des actions Les marchés dérivés Les autres

Plus en détail

Finance 1. Université d Evry Val d Essonne Séance 4. Philippe PRIAULET

Finance 1. Université d Evry Val d Essonne Séance 4. Philippe PRIAULET Finance 1 Université d Evry Val d Essonne Séance 4 Philippe PRIAULET Plan de la formation Les swaps Définition Terminologie, convention et cotation Utilisations en pratique des swaps Evaluation des swaps

Plus en détail

Table des matières. l a r c i e r

Table des matières. l a r c i e r Chapitre 1 Introduction... 1 1.1. Objectifs et structure du livre.... 1 1.2. Qu est-ce que la gestion de portefeuille?.... 2 1.3. Qu est-ce que «investir»?.... 3 1.4. Canalisation des flux d épargne et

Plus en détail

Fondements de Finance

Fondements de Finance Programme Grande Ecole Fondements de Finance Chapitre 5 : L évaluation des actions Cours proposé par Fahmi Ben Abdelkader Version étudiants Mars 2012 Valorisation des actifs financiers 1 Les taux d intérêt

Plus en détail

Les techniques des marchés financiers

Les techniques des marchés financiers Les techniques des marchés financiers Corrigé des exercices supplémentaires Christine Lambert éditions Ellipses Exercice 1 : le suivi d une position de change... 2 Exercice 2 : les titres de taux... 3

Plus en détail

Question 1: Analyse et évaluation d obligations

Question 1: Analyse et évaluation d obligations Question 1: Analyse et évaluation d obligations (43 points) Vous êtes responsable des émissions obligataires pour une banque européenne. Il y a 10 ans cette banque a émis l obligation perpétuelle subordonnée

Plus en détail

Question 1: Analyse et évaluation des obligations / Gestion de portefeuille

Question 1: Analyse et évaluation des obligations / Gestion de portefeuille Question 1: Analyse et évaluation des obligations / Gestion de portefeuille (33 points) Monsieur X est un gérant de fonds obligataire qui a repris la responsabilité de gestion du portefeuille obligataire

Plus en détail

Marchés nationaux et internationaux

Marchés nationaux et internationaux Marchés nationaux et internationaux Introduction Fonctions des marchés financiers : Les banques ont un rôle intermédiaire dans les marchés financiers, elle prête l argent de ses clients. 2 types d agents

Plus en détail

ERRATA ET AJOUTS. ( t) 2 s2 dt (4.7) Chapitre 2, p. 64, l équation se lit comme suit : Taux effectif = 1+

ERRATA ET AJOUTS. ( t) 2 s2 dt (4.7) Chapitre 2, p. 64, l équation se lit comme suit : Taux effectif = 1+ ERRATA ET AJOUTS Chapitre, p. 64, l équation se lit comme suit : 008, Taux effectif = 1+ 0 0816 =, Chapitre 3, p. 84, l équation se lit comme suit : 0, 075 1 000 C = = 37, 50$ Chapitre 4, p. 108, note

Plus en détail

Chapitre 20. Les options

Chapitre 20. Les options Chapitre 20 Les options Introduction Les options financières sont des contrats qui lient deux parties. Les options existent dans leur principe depuis plusieurs millénaires, mais elles connaissent depuis

Plus en détail

La valeur présente (ou actuelle) d une annuité, si elle est constante, est donc aussi calculable par cette fonction : VA = A [(1-1/(1+k) T )/k]

La valeur présente (ou actuelle) d une annuité, si elle est constante, est donc aussi calculable par cette fonction : VA = A [(1-1/(1+k) T )/k] Evaluation de la rentabilité d un projet d investissement La décision d investir dans un quelconque projet se base principalement sur l évaluation de son intérêt économique et par conséquent, du calcul

Plus en détail

Principes de Finance

Principes de Finance Principes de Finance 12. Théorie des options I Daniel Andrei Semestre de printemps 211 Principes de Finance 12. Théorie des options I Printemps 211 1 / 43 Plan I Introduction II Comprendre les options

Plus en détail

CORRIGES DES CAS TRANSVERSAUX. Corrigés des cas : Emprunts

CORRIGES DES CAS TRANSVERSAUX. Corrigés des cas : Emprunts CORRIGES DES CAS TRANSVERSAUX Corrigés des cas : Emprunts Remboursement par versements périodiques constants - Cas E1 Objectifs : Construire un échéancier et en changer la périodicité, Renégocier un emprunt.

Plus en détail

MODELES DE LA COURBE DES TAUX D INTERET. UNIVERSITE d EVRY Séance 1. Philippe PRIAULET

MODELES DE LA COURBE DES TAUX D INTERET. UNIVERSITE d EVRY Séance 1. Philippe PRIAULET MODELES DE LA COURBE DES TAUX D INTERET UNIVERSITE d EVRY Séance 1 Philippe PRIAULET Plan du Cours Introduction Définition de la courbe des taux La multitude de courbes des taux Pourquoi utiliser un modèle

Plus en détail

VALORISATION DES PRODUITS DE CHANGE :

VALORISATION DES PRODUITS DE CHANGE : VALORISATION DES PRODUITS DE CHANGE : TERMES, SWAPS & OPTIONS LIVRE BLANC I 2 Table des Matières Introduction... 3 Les produits non optionnels... 3 La méthode des flux projetés... 3 Les options de change

Plus en détail

Etude de Cas de Structuration Magistère d Economie et de Statistiques

Etude de Cas de Structuration Magistère d Economie et de Statistiques Etude de Cas de Structuration Magistère d Economie et de Statistiques David DUMONT - TEAM CALYON 22 avril 2008 Dans 2 ans, si l EURODOL est inférieur à 1,40 touchez 116% du nominal investi en euros, sinon

Plus en détail

COURS GESTION FINANCIERE A COURT TERME SEANCE 4 LE VOCABULAIRE BANCAIRE ET FINANCIER

COURS GESTION FINANCIERE A COURT TERME SEANCE 4 LE VOCABULAIRE BANCAIRE ET FINANCIER COURS GESTION FINANCIERE A COURT TERME SEANCE 4 LE VOCABULAIRE BANCAIRE ET FINANCIER SEANCE 4 LE VOCABULAIRE BANCAIRE ET FINANCIER Objet de la séance 4: définir les termes techniques utilisés par le trésorier

Plus en détail

Fondements de Finance

Fondements de Finance Programme Grande Ecole Fondements de Finance Chapitre 3 : Les taux d intérêt Cours proposé par Fahmi Ben Abdelkader Version étudiants Février 2012 Préambule «Le taux d intérêt est la rémunération de l

Plus en détail

Chapitre 4 - La valeur de l argent dans le temps et l'actualisation des cash-flows

Chapitre 4 - La valeur de l argent dans le temps et l'actualisation des cash-flows Chapitre 4 - La valeur de l argent dans le temps et l'actualisation des cash-flows Plan Actualisation et capitalisation Calculs sur le taux d intérêt et la période Modalités de calcul des taux d intérêts

Plus en détail

Cours de gestion financière (M1) Séance (6) du 24 octobre 2014 Choix d investissement, VAN, TRI

Cours de gestion financière (M1) Séance (6) du 24 octobre 2014 Choix d investissement, VAN, TRI Cours de gestion financière (M1) Séance (6) du 24 octobre 2014 Choix d investissement, VAN, TRI 1 2 Décision financière des entreprises Plan de la séance du 24 octobre Chapitres 6 et 7 du livre Cas avec

Plus en détail

Licence 2 Mathématiques- Semestre 3 Introduction aux mathématiques

Licence 2 Mathématiques- Semestre 3 Introduction aux mathématiques Licence 2 Mathématiques- Semestre 3 Introduction aux mathématiques financières Année universitaire 2010-11 1 Version Septembre 2010 1 Responsable du cours: Marie-Amélie Morlais 2 0.1 Plan sommaire du cours

Plus en détail

Chapitre 1 : principes d actualisation

Chapitre 1 : principes d actualisation Chapitre 1 : principes d actualisation 27.09.2013 Plan du cours Principes valeur actuelle arbitrage loi du prix unique Valeur temps valeur actuelle et valeur future valeur actuelle nette (VAN) annuités

Plus en détail

Les produits dérivés. Chapitre 2. 2.1 Forwards et futures

Les produits dérivés. Chapitre 2. 2.1 Forwards et futures Chapitre 2 Les produits dérivés Di érents types des taux d intérêt. Formule de valorisation d un forward sur un actif financier (action, obligation). Classification des options et terminologie associée,

Plus en détail

Chapitre 1. L intérêt. 2. Concept d intérêt. 1. Mise en situation. Au terme de ce chapitre, vous serez en mesure de :

Chapitre 1. L intérêt. 2. Concept d intérêt. 1. Mise en situation. Au terme de ce chapitre, vous serez en mesure de : Chapitre 1 L intérêt Au terme de ce chapitre, vous serez en mesure de : 1. Comprendre la notion générale d intérêt. 2. Distinguer la capitalisation à intérêt simple et à intérêt composé. 3. Calculer la

Plus en détail

Dérivés Financiers Contrats à terme

Dérivés Financiers Contrats à terme Dérivés Financiers Contrats à terme Mécanique des marchés à terme 1) Supposons que vous prenez une position courte sur un contrat à terme, pour vendre de l argent en juillet à 10,20 par once, sur le New

Plus en détail

5- Le risque de taux d'intérêt

5- Le risque de taux d'intérêt 5- Le risque de taux d'intérêt Risque de taux d'intérêt : «risque de variation des prix d'un titre de dette (obligations, titres de créance négociables) ou d'un titre composé ou d'un produit dérivé, résultant

Plus en détail

Options et des stratégies sur dérivés

Options et des stratégies sur dérivés Options et des stratégies sur dérivés 1. Les stratégies impliquant les options 2. Les propriétés des options sur actions 1. Stratégies sur les options De nombreuses combinaisons sont possibles Prendre

Plus en détail

Chapitre 14 Cours à terme et futures. Plan

Chapitre 14 Cours à terme et futures. Plan hapitre 14 ours à terme et futures Plan Différences entre contrat à terme et contrat de future Fonction économique des marchés de futures Rôle des spéculateurs Futures de matières premières Relation entre

Plus en détail

Plan. 5 Actualisation. 7 Investissement. 2 Calcul du taux d intérêt 3 Taux équivalent 4 Placement à versements fixes.

Plan. 5 Actualisation. 7 Investissement. 2 Calcul du taux d intérêt 3 Taux équivalent 4 Placement à versements fixes. Plan Intérêts 1 Intérêts 2 3 4 5 6 7 Retour au menu général Intérêts On place un capital C 0 à intérêts simples de t% par an : chaque année une somme fixe s ajoute au capital ; cette somme est calculée

Plus en détail

Dérivés Financiers Evaluation des options sur action

Dérivés Financiers Evaluation des options sur action Dérivés Financiers Evaluation des options sur action Owen Williams Grenoble Ecole de Management > 2 Définitions : options sur actions Option : un contrat négociable donnant le droit d acheter ou vendre

Plus en détail

I. Introduction. 1. Objectifs. 2. Les options. a. Présentation du problème.

I. Introduction. 1. Objectifs. 2. Les options. a. Présentation du problème. I. Introduction. 1. Objectifs. Le but de ces quelques séances est d introduire les outils mathématiques, plus précisément ceux de nature probabiliste, qui interviennent dans les modèles financiers ; nous

Plus en détail

MATHÉMATIQUES FINANCIÈRES

MATHÉMATIQUES FINANCIÈRES MATHÉMATIQUES FINANCIÈRES Table des matières Version 2012 Lang Fred 1 Intérêts et taux 2 1.1 Définitions et notations................................ 2 1.2 Intérêt simple......................................

Plus en détail

COURS Nº7 : LES OBLIGATIONS

COURS Nº7 : LES OBLIGATIONS COURS Nº7 : LES OBLIGAIONS DÉFINIION E CARACÉRISIQUES LES PRINCIPALES CLAUSES DU CONRA DU PRÊ ÉVALUAION DES OBLIGAIONS LES OBLIGAIONS ZÉRO-COUPON E LES COUPONS DÉACHÉS : CONSÉQUENCES FISCALES LES MESURES

Plus en détail

Principes de Finance

Principes de Finance Principes de Finance 9 et 10. Politique de financement Daniel Andrei Semestre de printemps 2011 Principes de Finance 9 & 10. Financement Printemps 2011 1 / 62 Plan I Introduction II La structure financière

Plus en détail

TD de Macroéconomie 2011-2012 Université d Aix-Marseille 2 Licence 2 EM Enseignant: Benjamin KEDDAD

TD de Macroéconomie 2011-2012 Université d Aix-Marseille 2 Licence 2 EM Enseignant: Benjamin KEDDAD TD de Macroéconomie 2011-2012 Université d Aix-Marseille 2 Licence 2 EM Enseignant: Benjamin KEDDAD 1. Balance des paiements 1.1. Bases comptable ˆ Transactions internationales entre résident et non-résident

Plus en détail

Les stratégies d investissement. avance ou en retard sur la courbe? Une gestion active s impose aussi aux portefeuilles.

Les stratégies d investissement. avance ou en retard sur la courbe? Une gestion active s impose aussi aux portefeuilles. Les stratégies d investissement obligataire en avance ou en retard sur la courbe? Une gestion active s impose aussi aux portefeuilles obligataires. Juillet 2012 Comprendre. Agir. 2 Sommaire 4 Analyse de

Plus en détail

Chapitre 15 Options et actifs conditionnels. Plan

Chapitre 15 Options et actifs conditionnels. Plan Chapitre 15 Options et actifs conditionnels Plan Fonctionnement des options Utilisation des options La parité put-call Volatilité et valeur des options Les modèles de détermination de prix d option Modèle

Plus en détail

SOMMAIRE. Bulletin de souscription

SOMMAIRE. Bulletin de souscription SOMMAIRE Flash-emprunt subordonné «Tunisie Leasing 2011-2» Chapitre 1 : Responsables de la note d opération 1.1. Responsables de la note d opération 1.2. Attestation des responsables de la note d opération

Plus en détail

Eléments de Gestion Bilancielle. Dr. Kpate Adjaouté HEG, Décembre 2006

Eléments de Gestion Bilancielle. Dr. Kpate Adjaouté HEG, Décembre 2006 Eléments de Gestion Bilancielle Dr. Kpate Adjaouté HEG, Décembre 2006 Plan du Cours I Introduction II Problématique du Calcul du Revenu Net III Typologie des Produits et leur Traitement IV Approche en

Plus en détail

Ecole Nationale des Ponts et Chaussées Option Adjusted Spread

Ecole Nationale des Ponts et Chaussées Option Adjusted Spread Ecole Nationale des Ponts et Chaussées Option Adjusted Spread Dimitri Kassatkine, Sofiane Maayoufi IMI Finance Mars 2006 1 INTRODUCTION 1.1 Présentation des produits obligataires Une obligation est un

Plus en détail

MATHS FINANCIERES. Mireille.Bossy@sophia.inria.fr. Projet OMEGA

MATHS FINANCIERES. Mireille.Bossy@sophia.inria.fr. Projet OMEGA MATHS FINANCIERES Mireille.Bossy@sophia.inria.fr Projet OMEGA Sophia Antipolis, septembre 2004 1. Introduction : la valorisation de contrats optionnels Options d achat et de vente : Call et Put Une option

Plus en détail

Dérivés Financiers Futures et Contrats à Terme

Dérivés Financiers Futures et Contrats à Terme Dérivés Financiers Futures et Contrats à Terme Owen Williams Grenoble Ecole de Management > 2 Introduction Les forwards et futures sont des engagements à acheter ou vendre un actif à une date future donnée,

Plus en détail

0592 Les contrats à terme de taux d intérêt

0592 Les contrats à terme de taux d intérêt Le 12 avr. 2012 Les crises.fr - Des images pour comprendre 0592 Les contrats à terme de taux d intérêt Ce billet fait suite à celui présentant les produits dérivés. Les futures, sur taux d intérêt Les

Plus en détail

Chapitre 5. Calculs financiers. 5.1 Introduction - notations

Chapitre 5. Calculs financiers. 5.1 Introduction - notations Chapitre 5 Calculs financiers 5.1 Introduction - notations Sur un marché économique, des acteurs peuvent prêter ou emprunter un capital (une somme d argent) en contrepartie de quoi ils perçoivent ou respectivement

Plus en détail

Université de Montréal MAT 1240 Département de Math. et Stat. Mathématiques financières. FINAL 24 avril 2007

Université de Montréal MAT 1240 Département de Math. et Stat. Mathématiques financières. FINAL 24 avril 2007 Université de Montréal MAT 1240 Département de Math. et Stat. Mathématiques financières FINAL 24 avril 2007 Vous avez trois heures pour répondre aux questions. Seules les calculatrices appouvées peuvent

Plus en détail

Options, Futures, Parité call put

Options, Futures, Parité call put Département de Mathématiques TD Finance / Mathématiques Financières Options, Futures, Parité call put Exercice 1 Quelle est la différence entre (a) prendre une position longue sur un forward avec un prix

Plus en détail

COURS GESTION FINANCIERE SEANCE 9 CREDITS BANCAIRES ET EMPRUNTS OBLIGATAIRES LE MARCHE OBLIGATAIRE LE RISQUE DE TAUX

COURS GESTION FINANCIERE SEANCE 9 CREDITS BANCAIRES ET EMPRUNTS OBLIGATAIRES LE MARCHE OBLIGATAIRE LE RISQUE DE TAUX COURS GESTION FINANCIERE SEANCE 9 CREDITS BANCAIRES ET EMPRUNTS OBLIGATAIRES LE MARCHE OBLIGATAIRE LE RISQUE DE TAUX SEANCE 9 CREDITS BANCAIRES ET EMPRUNTS OBLIGATAIRES LE MARCHE OBLIGATAIRE LE RISQUE

Plus en détail

Probabilités III Introduction à l évaluation d options

Probabilités III Introduction à l évaluation d options Probabilités III Introduction à l évaluation d options Jacques Printems Promotion 2012 2013 1 Modèle à temps discret 2 Introduction aux modèles en temps continu Limite du modèle binomial lorsque N + Un

Plus en détail

Valorisation d es des options Novembre 2007

Valorisation d es des options Novembre 2007 Valorisation des options Novembre 2007 Plan Rappels Relations de prix Le modèle binomial Le modèle de Black-Scholes Les grecques Page 2 Rappels (1) Définition Une option est un contrat financier qui confère

Plus en détail

GLOBAL ANALYZER. Guide de l utilisateur du

GLOBAL ANALYZER. Guide de l utilisateur du Guide de l utilisateur du GLOBAL ANALYZER LES «RAPPORTS» 1 La partie «Signalétique» 1 La partie «Diagnostic» 1 La partie«conclusions» 1 Le profil de la société 2 Les autres mesures : 2 LA SECTION VALORISATION

Plus en détail

Taux d intérêts simples

Taux d intérêts simples Taux d intérêts simples Les caractéristiques : - < à 1 ans - Rémunération calculée uniquement sur investissement initial. Période de préférence = période sur laquelle on définit le taux de l opération

Plus en détail

Le modèle de Black et Scholes

Le modèle de Black et Scholes Le modèle de Black et Scholes Alexandre Popier février 21 1 Introduction : exemple très simple de modèle financier On considère un marché avec une seule action cotée, sur une période donnée T. Dans un

Plus en détail

(10 points) ACIIA Questions Examen Final I Mars 2006 page 1 / 11

(10 points) ACIIA Questions Examen Final I Mars 2006 page 1 / 11 Question 1: Economie (40 points) a) Depuis ces dernières années, la Chine connaît de très forts taux de croissance de son produit intérieur brut (GDP) et de ses exportations. Dans le même temps, la Chine

Plus en détail

Dérivés Financiers Options

Dérivés Financiers Options Stratégies à base d options Dérivés Financiers Options 1) Supposons que vous vendiez un put avec un prix d exercice de 40 et une date d expiration dans 3 mois. Le prix actuel de l action est 41 et le contrat

Plus en détail

Les mathématiques financières

Les mathématiques financières Chapitre 13 Les mathématiques financières Gérer ses finances personnelles ou jouer le rôle de conseiller dans ce domaine demande que l on ait une bonne connaissance des produits financiers et des marchés

Plus en détail

DISCOUNTED CASH-FLOW

DISCOUNTED CASH-FLOW DISCOUNTED CASH-FLOW Principes généraux La méthode des flux futurs de trésorerie, également désignée sous le terme de Discounted Cash Flow (DCF), est très largement admise en matière d évaluation d actif

Plus en détail

Cours de calculs nanciers. Chapitre 7 : Evaluation des actions

Cours de calculs nanciers. Chapitre 7 : Evaluation des actions Cours de calculs nanciers Chapitre 7 : Evaluation des actions L2 Economie et Gestion Vincent Bouvatier vbouvatier@u-paris10.fr Université de Paris 10 - Nanterre Année universitaire 2008-2009 Modèle d actualisation

Plus en détail

Apllication au calcul financier

Apllication au calcul financier Apllication au calcul financier Hervé Hocquard Université de Bordeaux, France 1 er novembre 2011 Intérêts Généralités L intérêt est la rémunération du placement d argent. Il dépend : du taux d intérêts

Plus en détail

Fiche mathématiques financières

Fiche mathématiques financières Fiche mathématiques financières Thème 1 : Les taux d'intérêts simples et composés Taux d'intérêts simples : Les taux d'intérêts simples sont appliqués dans le cas d'emprunts dont la durée est inférieure

Plus en détail

Utilisation des fonctions financières d Excel

Utilisation des fonctions financières d Excel Utilisation des fonctions financières d Excel TABLE DES MATIÈRES Page 1. Calcul de la valeur acquise par la formule des intérêts simples... 4 2. Calcul de la valeur actuelle par la formule des intérêts

Plus en détail

Chapitre 2. Valeur temps de l argent : arbitrage, actualisation et capitalisation

Chapitre 2. Valeur temps de l argent : arbitrage, actualisation et capitalisation Fondements de Finance Chapitre 2. Valeur temps de l argent : arbitrage, actualisation et capitalisation Cours proposé par Fahmi Ben Abdelkader Version étudiants Février 2012 1 Préambule «Time is money»

Plus en détail

Pratique des options Grecs et stratégies de trading. F. Wellers

Pratique des options Grecs et stratégies de trading. F. Wellers Pratique des options Grecs et stratégies de trading F. Wellers Plan de la conférence 0 Philosophie et structure du cours 1 Définitions des grecs 2 Propriétés des grecs 3 Qu est ce que la volatilité? 4

Plus en détail

Finance 1 Université d Evry Val d Essonne 2006-2007 Séance 1. Philippe PRIAULET

Finance 1 Université d Evry Val d Essonne 2006-2007 Séance 1. Philippe PRIAULET Finance 1 Université d Evry Val d Essonne 2006-2007 Séance 1 Philippe PRIAULET L environnement d investissement: banques et marchés Depuis le début des années 70, on a assisté à un décloisonnement des

Plus en détail

Hedging delta et gamma neutre d un option digitale

Hedging delta et gamma neutre d un option digitale Hedging delta et gamma neutre d un option digitale Daniel Herlemont 1 Introduction L objectif de ce projet est d examiner la couverture delta-gamma neutre d un portefeuille d options digitales Asset-Or-Nothing

Plus en détail

Master IMEA 1 Calcul Stochastique et Finance Feuille de T.D. n o 1

Master IMEA 1 Calcul Stochastique et Finance Feuille de T.D. n o 1 Master IMEA 1 Calcul Stochastique et Finance Feuille de T.D. n o 1 1. a. On considère un modèle de marché (B, S) à une étape. On suppose que S = 5 C et qu à la date t = 1 on a (S u 1 = 51, S d 1 = 48).

Plus en détail

ANNUITES. Les annuités définissent une suite de versements identiques ou non effectués à intervalles de temps égaux. -annuités non constantes

ANNUITES. Les annuités définissent une suite de versements identiques ou non effectués à intervalles de temps égaux. -annuités non constantes ANNUITES I Notions d annuités a.définition Les annuités définissent une suite de versements identiques ou non effectués à intervalles de temps égaux. Le processus de versements dépend du montant de l annuité,

Plus en détail

TP1 Méthodes de Monte Carlo et techniques de réduction de variance, application au pricing d options

TP1 Méthodes de Monte Carlo et techniques de réduction de variance, application au pricing d options Université de Lorraine Modélisation Stochastique Master 2 IMOI 2014-2015 TP1 Méthodes de Monte Carlo et techniques de réduction de variance, application au pricing d options 1 Les options Le but de ce

Plus en détail

Suites numériques 4. 1 Autres recettes pour calculer les limites

Suites numériques 4. 1 Autres recettes pour calculer les limites Suites numériques 4 1 Autres recettes pour calculer les limites La propriété suivante permet de calculer certaines limites comme on verra dans les exemples qui suivent. Propriété 1. Si u n l et fx) est

Plus en détail

Guide de l investisseur

Guide de l investisseur Guide de l investisseur Sommaire 2 Les principes d investissement 5 Les différentes formes d investissement 6 Les obligations 16 Les actions 24 Les fonds d investissement 36 Les produits dérivés 42 Les

Plus en détail

DCG 6. Finance d entreprise. L essentiel en fiches

DCG 6. Finance d entreprise. L essentiel en fiches DCG 6 Finance d entreprise L essentiel en fiches DCG DSCG Collection «Express Expertise comptable» J.-F. Bocquillon, M. Mariage, Introduction au droit DCG 1 L. Siné, Droit des sociétés DCG 2 V. Roy, Droit

Plus en détail

Les mathématiques de la finance Université d été de Sourdun Olivier Bardou olivier.bardou@gdfsuez.com 28 août 2012 De quoi allons nous parler? des principales hypothèses de modélisation des marchés, des

Plus en détail

CHOIX OPTIMAL DU CONSOMMATEUR. A - Propriétés et détermination du choix optimal

CHOIX OPTIMAL DU CONSOMMATEUR. A - Propriétés et détermination du choix optimal III CHOIX OPTIMAL DU CONSOMMATEUR A - Propriétés et détermination du choix optimal La demande du consommateur sur la droite de budget Résolution graphique Règle (d or) pour déterminer la demande quand

Plus en détail

Formules et Approches Utilisées dans le Calcul du Coût Réel

Formules et Approches Utilisées dans le Calcul du Coût Réel Formules et Approches Utilisées dans le Calcul du Coût Réel Objectifs du Taux Annuel Effectif Global (TAEG) et du Taux d Intérêt Effectif (TIE) Le coût réel d un crédit inclut non seulement l intérêt,

Plus en détail

INSTRUMENTS FINANCIERS ET RISQUES ENCOURUS

INSTRUMENTS FINANCIERS ET RISQUES ENCOURUS INSTRUMENTS FINANCIERS ET RISQUES ENCOURUS L objet de ce document est de vous présenter un panorama des principaux instruments financiers utilisés par CPR AM dans le cadre de la fourniture d un service

Plus en détail

3- Le risque de taux d'intérêt

3- Le risque de taux d'intérêt 3- Le risque de taux d'intérêt Risque de taux d'intérêt : «risque de variation des prix d'un titre de dette (obligations, titres de créance négociables) ou d'un titre composé ou d'un produit dérivé, résultant

Plus en détail

10. L épargne, l investissement et le système financier

10. L épargne, l investissement et le système financier 10. L épargne, l investissement et le système financier 1. Le système financier Un système financier = ensemble des institutions financières qui ont pour objet de mettre en relation les besoins de financement

Plus en détail

S informer sur. Les obligations

S informer sur. Les obligations S informer sur Les obligations Octobre 2012 Autorité des marchés financiers Les obligations Sommaire Qu est-ce qu une obligation? 03 Quel est le rendement? 04 Quels sont les risques? 05 Quels sont les

Plus en détail

CALCULATEUR D OPTIONS GUIDE PRATIQUE. Reshaping Canada s Equities Trading Landscape

CALCULATEUR D OPTIONS GUIDE PRATIQUE. Reshaping Canada s Equities Trading Landscape CALCULATEUR D OPTIONS GUIDE PRATIQUE Reshaping Canada s Equities Trading Landscape OCTOBER 2014 Table des matières Introduction 3 Évaluation des options 4 Exemples 6 Évaluation d une option de style américain

Plus en détail

Les OAT investir en direct. > OAT à taux fixe > OAT indexées > OAT de capitalisation. Guide à l usage des particuliers

Les OAT investir en direct. > OAT à taux fixe > OAT indexées > OAT de capitalisation. Guide à l usage des particuliers Les OAT investir en direct > OAT à taux fixe > OAT indexées > OAT de capitalisation Guide à l usage des particuliers 1 Gérer son patrimoine financier Simplicité Liquidité Sécurité Les OAT à taux fi xe,

Plus en détail

Chapitre 4 : cas Transversaux. Cas d Emprunts

Chapitre 4 : cas Transversaux. Cas d Emprunts Chapitre 4 : cas Transversaux Cas d Emprunts Échéanciers, capital restant dû, renégociation d un emprunt - Cas E1 Afin de financer l achat de son appartement, un particulier souscrit un prêt auprès de

Plus en détail

I Suites géométriques, maths fi (1 + α + α 2 + + α n )

I Suites géométriques, maths fi (1 + α + α 2 + + α n ) UPV MathsL1S1 1 Suites. Maths fi I Suites géométriques, maths fi (1 + α + α 2 + + α n ) I Deux résultats fondamentaux 1) 1 + 2 + + n = n (n + 1) / 2 On peut connaître ce résultat par coeur. (D ailleurs

Plus en détail