Théorie Financière 2. Valeur actuelle Evaluation d obligations

Dimension: px
Commencer à balayer dès la page:

Download "Théorie Financière 2. Valeur actuelle Evaluation d obligations"

Transcription

1 Théorie Financière 2. Valeur actuelle Evaluation d obligations

2 Objectifs de la session. Comprendre les calculs de Valeur Actuelle (VA, Present Value, PV) Formule générale, facteur d actualisation (discount factor) et taux d intérêt du marché Formules utiles Taux d intérêts et intérêts composés Taux d intérêts réels et nominaux 2. Introduire les principales catégories d obligations 3. Comprendre l évaluation des obligations 4. Analyser le lien entre taux d intérêts et cours des obligations 5. Introduire la structure par terme des taux d intérêts 6. Examiner pourquoi les taux d intérêts peuvent varier en fonction de la maturité 2

3 Valeur Actuelle (formule générale) Cash flows: C, C 2, C 3,,C t, C T Facteur d actualisation: v, v 2,,v t,, v T Valeur Actuelle: PV = C v + C 2 v C T v T Un exemple: Année Cash flow Facteur d actualisation Valeur actuelle VAN = =

4 Les U.S. Treasury STRIPS STRIPS Separate Trading of Registered Interest and Principal of Securities Prix de zéro-coupons Exemple: Supposons qu on observe les cours suivants Maturité Prix pour un facial de $00 (face value) Le prix de marché pour $ dans 5 ans est v 5 =

5 Valeur Actuelle et Actualisation Combien un investisseur serait-il prêt à payer en t = 0 pour recevoir C t dans t années connaissant le taux du marché r t? Nous savons que 0 => (+r t ) t t D ou PV (+r t ) t = C t => PV = C t / (+r t ) t = C t v t Le processus permettant de calculer la valeur actuelle (present value) des cash flows futurs s appelle l actualisation (discounting). La valeur actuelle d un cash flow futur est obtenue en multipliant ce cash flow par un facteur d actualisation (discount factor ou present value factor) v t La formule générale pour un facteur d actualisation pour t-années est: v t ( r ) t t 5

6 Taux d intérêts spot Revenons au STRIPS. Supposons que le cours d un zéro-coupon avec une maturité de 5 ans et une valeur faciale de 00 vaille 75. Quel est alors le taux d intérêt sous-jacent? Le taux de rendement actuariel (YTM, yield-to-maturity) d une obligation est le taux d intérêt qui égalise le cours avec la valeur actuelle des cash flows futurs. Sachant que 75 = 00 * v 5 et v 5 = /(+r 5 ) 5 Le YTM r 5 est la solution de: ( r ) 5 5 La solution : 5 00 r % Équivaut au taux spot à 5 ans 6

7 Structure par terme des taux d intérêts Relations entre taux spot et maturité. Exemple: Maturité Prix (facial de 00) YTM (Spot) r = 2.00% r 2 = 2.79% r 3 = 3.4% r 4 = 3.70% r 5 = 4.56% La structure par terme: Est croissante si r t > r t- pour tout t Plate (Flat) si r t = r t- pour tout t Est décroissante (ou inverse) si r t < r t- pour tout t 7

8 Utilisation d un taux unique Lors de l analyse de cash flows sans risque, il est important de capturer la structure par terme des taux: les taux d actualisation devraient varier avec la maturité. Dans le cas de cash flows risqués, la structure par terme des taux est souvent ignorée. Les Valeurs Actuelles sont souvent calculées en utilisant un taux d actualisation unique r, identique pour toutes les maturités. Pour rappel: ce taux représente la rentabilité attendue (espérée). = Taux sans risque + Prime de risque Cette hypothèse simplificatrice permet de considérer les formules pour des: Perpétuités (constantes ou croissantes à taux constant ) Annuités (constantes ou croissantes à taux constant ) 8

9 Perpétuité constante C t =C pour t =, 2, 3,... PV C r Preuve: PV = C d + C d² + C d3 + PV(+r) = C + C d + C d² + PV(+r) PV = C PV = C/r Exemples: Actions Privilégiées (Preferred stock) payant un dividende fixe Si r =0% et le Dividende annuel = 50 Valeur de Marché P 0? Note: prix attendu en t = => Rentabilité attendue = P P div ( P P 0 P ) 50 ( ) 0 % 9

10 Perpétuité croissante C t =C (+g) t- pour t=, 2, 3,... r>g PV Exemple: Evaluation d action basée sur: Prochain dividende div, et croissance long terme du dividende g Si r = 0%, div = 50, g = 5% Note: Prix attendu en t = C r P g ,000 P ,050 Rentabilité attendue = div ( P P ) P 0 50 (,050,000), % 0

11 Annuité constante Un ensemble de cash flows constant pour un nombre fixé de périodes C = C 2 = = C T = C Exemple: Remboursement constant dans le cadre d un crédit hypothécaire PV = C * v + C * v C * v T + = C * [v + v v T ] = C * Facteur d Annuité Facteur d Annuité = valeur actuelle d payé à la fin de chacune des périodes T.

12 Annuité constante C t = C pour t =, 2,,T PV C r Différence entre deux perpétuités: [ T ( r) Commençant en t = PV= C/r Commençant en t = T+ PV = C/r [/(+r) T ] Exemple: crédit hypothécaire sur 20 ans Paiement annuel = 25,000 Taux d emprunt = 0% PV =( 25,000/0.0)[-/(.0) 20 ] = 25,000 * 0 *( 0.486) = 25,000 * = 22,839 ] 2

13 Annuité croissante C t = C (+g) t- pour t =, 2,, T Si r g: Si r = g: PV PV C r g C T r g r T De nouveau différence entre deux annuités croissantes: Commençant en t =, premier cash flow = C Commençant en t = T+ avec comme premier cash flow = C (+g) T Exemple: Quelle est la VAN du projet suivant si r = 0%? Investissement initial = 00, C = 20, g = 8%, T = 0 VAN= 00 + [20/(0% - 8%)]*[ (.08/.0) 0 ] = =

14 Formules utiles: résumé Perpétuité constante: C t = C pour tout t PV C r Perpétuité croissante : C t = C t- (+g), pour t = à r>g PV r C g Annuité constante: C t =C, pour t = to T PV C r ( ( r) T ) Annuité croissante : C t = C t- (+g), pour t = à T si r g: si r = g: PV PV C ( r g C T r ( ( g) r) T T ) 4

15 Fréquence des paiements d intérêts Jusqu à présent, intérêts payés annuellement Si n paiements par an, la valeur avec intérêts composés sera après an de : Exemple: Paiement mensuel : ( r ) n Taux d intérêt annuel annoncé = r = 2%, n = 2 Valeur avec intérêts composés après un an: ( + 0.2/2) 2 =.268 Taux d intérêt annuel Effectif: 2.68% Taux d intérêt continu: [+(r/n)] n e r (e= 2.783) Exemple : Taux d intérêt annuel annoncé = r = 2%, e 2 =.275 Taux d intérêt annuel Effectif: : 2.75% n 5

16 Jongler avec les fréquences de paiement Supposons que le taux d intérêt annuel effectif soit de 0% Considérons une perpétuité avec cash flow annuel C = 2 Si ce cash flow est payé une fois par an: PV = 2 / 0.0 = 20 Supposons maintenant que le cash flow est payé une fois par mois (le cash flow mensuel vaut 2/2 = ). Quelle est alors la valeur actuelle? Solution : considérons qu une période = mois. Calculons le taux d intérêt mensuel (en gardant le taux effectif annuel constant) (+r monthly ) 2 =.0 r mensuel = % 2. La formule de la perpétuité donne: VA = / =

17 Jongler avec les fréquences de paiement Solution 2: utiliser le taux d intérêt annuel annoncé. Calculer taux d intérêt annuel annoncé = % * 2 = 9.568% 2. Utiliser la formule pour une perpétuité : PV = 2 / = A l évidence, ces éléments ne sont pas intuitifs, d ou un danger d abus par des personnes malveillantes mais aussi une potentielle difficulté pour comparer différentes offres. Concept de TAEG = Taux Annuel Effectif Global et législation fixant les taux maximaux légaux 7

18 Taux d intérêts et inflation: Taux d intérêt réel Taux d intérêt Nominal = 0% Date 0 Date Investissement $,000 Montant perçu $,00 Hamburger se vend $ $.06 Taux d nflation = 6% Pouvoir d achat (# hamburgers) H,000 H,038 Taux d intérêt Réel = 3.8% (+Taux Nominal) = (+Taux Réel) (+Inflation) Approximation: Taux Réel Taux Nominal - Inflation 8

19 Catégories d obligation (/2) Zéro-coupon bond (Pure discount bond - Bullet bond) Le détenteur de l obligation à le droit de recevoir: Un paiement future ( la valeur faciale) F À une date donnée (l échéance (maturity) T Exemple : un zéro-coupon échéant dans 0 ans, valeur faciale $,000 PV T ( r Valeur du zéro-coupon: T ) Si le taux spot à 0 ans est de 5% Le zéro-coupon se vendra à: PV,000 0 (.05)

20 Catégories d obligation(2/2) Obligation classique (Level-coupon bond) Paiement périodique d intérêts (coupons) Europe : US : d ordinaire une fois par an tous les 6 mois Coupon d ordinaire exprimé en % du principal A l échéance, remboursement du principal Exemple : Emprunt d état émis en 20 dont le er coupon tombe dans exactement un an Coupon 5.00% Valeur Faciale 00 Échéance finale

21 Coupon, valeur faciale 2

22 Evaluer une obligation classique P 0 C r C ( r ) C ( 00 ) T r T ) ( rt T Coupon 5% Face value 00 n 5 ans CF Spot rates 0,80%,46%,96% 2,34% 2,66% DF 0, , , , , DCF 4,96 4,86 4,72 4,56 92,08 Price,8 "=SOMME(C0:G0)" Yield to Maturity 2,59% "=TRI(B7:G7)" -,8 5,00 5,00 5,00 5,00 05,00 Note: Si P 0 > F: l obligation cote au-dessus du pair Si P 0 <F: l obligation cote en-dessous du pair 22

23 Yield to maturity Si on connaît le cours de l obligation Yield to maturity = taux d actualisation implicite YTM TRI (IRR) C C C F Solution de l équation: P T y ( y) ( y) Titre de l'axe Cours 0% % 2% 3% 4% 5% 6% 7% 8% 9% 0% % 2% 3% 4% 5% YTM Cours 23

24 Quand une obligation cote-t-elle au-dessus du pair? P 0 > F C/F > y Notations: C = coupon, F = valeur faciale, P = prix (cours) Supposons C / F > y an avant l échéance: 2 ans avant l échéance : P P 0 C C F F F P y y 0 C P y 0 avec P F C F y Si: P > F P 0 C F y C F F y F 24

25 Une obligation classique, somme de zérocoupons «Découper» l obligation classique en autant de zéro-coupons coupons que de paiements Si le taux du marché = 5% et le coupon vaut 6.5% Valeur faciale Echéance Valeur Zéro Zéro Zéro Zéro Zéro Total

26 Loi du Prix Unique Supposons que l on observe les données suivantes: Maturity Bond Price 2 3 A B C Que valent les taux d intérêts sous-jacents? Méthode de Bootstrap = v = v 7 + v = v v v Discount factors Spot rates 3% 4% 5% 26

27 Sensibilité des Z-C aux taux Bond market price Bond price as a function of market interest rate 0% 5% 0% 5% 20% Market interest rate 5-year ZC 0-year ZC 5-year ZC 27

28 Sensibilité des cours, qu est-ce qui joue un rôle? % change in bond price Obligation Coupon Échéance YTM initial A 2% 5 ans 0% B 2% 30 ans 0% C 3% 30 ans 0% D 3% 30 ans 6% A B C % change in YTM D 28

29 Malkiel (962) Toutes autres choses étant égales par ailleurs: ) Le prix des obligations est inversement relié aux taux actuariels 2) Un accroissement du YTM d une obligation entraîne une plus petite variation de prix qu une diminution de YTM de même magnitude 3) Le cours d obligations à LT tend à être plus sensible à une variation de taux 4) Le risque de taux est inversement relié au taux du coupon de l obligation => Apparition du concept de duration pour tenir compte de ces éléments Reference: Burton G. Malkiel, Expectations, bond prices and the term structure of interest rates, Quarterly Journal of Economics, 76, (May 962), pp

30 Duration pour un Zéro-coupon Supposons un zéro-coupon avec une échéance de t années: P Que se passe-t-il si r change? dp dr 00 t t ( r) 00 ( r) t 00 t r ( r) t t P r Pour un P donné, le changement est proportionnel à l échéance. Comme ère approximation (pour un petit changement de r): P P t r r Duration = Echéance 30

31 Duration pour obligations classiques Supposons une obligation avec les cash flows: C,...,C T Similaire à un portefeuille de T zéro-coupons. La valeur de l obligation est: P = PV(C ) + PV(C 2 ) PV(C T ) Fraction investie dans chaque zéro-coupon t: w t = PV(C t ) / P Duration : moyenne pondérée des échéances des zéro-coupons D= w + w w w t t + + w T T 3

32 Duration - exemple Revenons à notre obligation à 5ans au coupon de 6.50% (taux d intérêt du marché = 5%): Valeur faciale VA w t ZC % ZC % ZC % ZC % ZC % Total Duration D = 5.8% % % % % 5 = 4.44 Ceci représente la duration si le taux d intérêt vaut 5% Pour des obligations classiques, duration < échéance 32

33 Formule générale: Estimation de la variation de prix sur base de la duration P P Duration r r Dans l exemple: Duration = 4.44 (quand r=5%) Si Δr =+% : Δ 4.44 % = % Check: Si r = 6%, P = 02. ΔP/P = ( )/06.49 = - 4.% Différence due à la convexité 33

34 Duration - maths Si le taux d interêt change: Divisons les deux termes par P pour déterminer le % de changement: Comme: dp dr dpv ( C) dpv ( C2 ) dpv ( CT )... dr dr dr 2 T PV ( C) PV ( C2 )... r r r dp dr PV ( C) PV ( C2 ( 2 P r P P PV ( C )... T T ) PV ( C P PV ( C) PV ( C2) PV ( CT ) Duration 2... T P P P T ) ) On obtient: dp dr P Duration r 34

35 Gestion obligataire Deux types de risque interviennent dans la gestion obligataire:. Le risque de taux (quand les taux montent le prix baisse et vice versa) 2. Le risque de réinvestissement (à quel taux est-il possible de réinvestir les coupons reçus?) Ces éléments vont dans des directions opposées!!! Stratégie d immunisation : se couvrir contre les changements de taux. Idée de base: deux portefeuilles de même duration réagissent identiquement à des changements de taux. Supposons que nous recevons un dépôt de 0000$ pour lequel nous devons payer un intérêt de 8% en moyenne chaque année pour les 5 prochaines années. Le paiement se fera cependant en une fois dans 5 ans. Nous devrons donc: 0000 x (,08) 5 = 4693,28$ Comment pourrions-nous nous couvrir du risque de taux? En achetant une obligation classique à 5 ans avec un coupon de 8%? 35

36 Immunisation Si les taux restent constants: pas de problème, les coupons seront réinvestis à du 8% et finalement nous aurons: 0000 x (,08) 5 = 4693,28$ Que se passerait-il cependant si les taux devaient varier? Imaginons que les taux changent l an prochain puis demeurent à leur nouveau niveau? Taux Valeur en t = 5 5% 4420,5 6% 4509,67 7% 4600,59 8% 4693,28 9% 4787,77 0% 4884,08 36

37 Immunisation Cet exemple montre que l échéance seule ne nous permet pas de couvrir notre position de manière satisfaisante... Alternative: stratégie d immunisation basée sur la duration Dans notre cas: un paiement final ZC donc la duration à couvrir échéance. Une obligation classique à 6 ans payant un coupon de 8% a presque la même duration. Voyons ce que ça donne dans ce cas là... 37

38 Année Immunisation (/3), taux passe à 7% Années restantes Valeur finale Total x, , x, , x, , x, Revente obligation /, ,46 TOTAL 4 694,05 38

39 Année Immunisation (2/3), taux passe à 9% Années restantes Valeur finale Total x, , x, , x, , x, Revente obligation /, ,28 TOTAL 4 696,02 39

40 Année Immunisation (3/3), taux passe à 6% Années restantes Valeur finale Total x, , x, , x, , x, Revente obligation /,06 988,8 TOTAL 4 698,36 40

41 Taux Spots Taux spot yield to maturity d un zéro coupon Considérons les cours suivants pour des zéro-coupons (Face value = 00): Echéance Prix -an ans Le taux spot à un an est obtenu en résolvant: r r 5% Le taux spot à deux ans est obtenu en résolvant : r 2 2 ( r ) 2 5.5% L achat d un ZC à deux ans implique qu on investit à un taux moyen de 5.5% sur ces deux ans Mais on peut vouloir emprunter de t = à t = 2 en fixant le taux déjà aujourd hui quelle devrait être sa valeur? 4

42 Taux Spots et Taux forward 0 2 an an Taux connus en t=0 2 ans Taux inconnu en t=0 42

43 Taux Forward Supposons que le taux à un an soit égal à 5%. Quel taux puis-je obtenir pour la seconde année? Ce taux est nommé le taux forward Il se calcule comme suit (cf données): (.05) (+f 2 ) = 00 f 2 = 6% De manière plus générale: En résolvant pour f 2 : (+r )(+f 2 ) = (+r 2 )² 2 ( r2 ) d f 2 r d 2 La formule générale devient: f t ( r t ( rt ) d t t t ) dt Si la relation liant les taux spots aux taux forwards n était pas vérifiée il y aurait des opportunités d arbitrage 43

44 Taux forwards: exemples Echéance Discount factor Taux Spot Taux Forward Taux spot à 3 ans : Forward d un an de t=2 à t= 3: r3 ( ) 3 ( r ) % 3 ( r3 ) d f3 2 ( r ) d % 44

45 Structure par terme des taux Pourquoi les taux spots diffèrent-ils pour des échéances différentes? Si: r < r 2 alors f 2 > r r = r 2 alors f 2 = r r > r 2 alors f 2 < r La relation des taux spot rates d échéances différentes est nommée la structure par terme des taux Spot rate Upward sloping Flat Downward sloping Time to maturity 45

46 Taux forwards et taux spots attendus Supposons un individu neutre au risque Taux spot à un an r = 5% Supposons que le taux spot attendu dans un an vaille E(r ) = 6% STRATEGIE : ROLLOVER Valeur future espérée de cette stratégie: ($00) investis pour 2 ans:.3 = = 00 (+r ) (+E(r )) STRATEGIE 2: Acheter.3 ZC de valeur faciale = 00 échéant dans deux ans 46

47 Taux forward d équilibre Chaque stratégies mène au même cash flow futur espéré leur coût devrait être identique ( r )( E( r )) 2 ( r2 ) ( r )( f 2 ) Dans ce cadre simplifié, le taux forward équivaut au taux spot futur espéré f 2 =E(r ) Les taux forward contiennent une information par rapport aux attentes relatives à l évolution des taux spots futurs 47

Table des matières. Avant-propos. Chapitre 2 L actualisation... 21. Chapitre 1 L intérêt... 1. Chapitre 3 Les annuités... 33 III. Entraînement...

Table des matières. Avant-propos. Chapitre 2 L actualisation... 21. Chapitre 1 L intérêt... 1. Chapitre 3 Les annuités... 33 III. Entraînement... III Table des matières Avant-propos Remerciements................................. Les auteurs..................................... Chapitre 1 L intérêt............................. 1 1. Mise en situation...........................

Plus en détail

Chapitre 2 : l évaluation des obligations

Chapitre 2 : l évaluation des obligations Chapitre 2 : l évaluation des obligations 11.10.2013 Plan du cours Flux monétaires, prix et rentabilité Bibliographie: caractéristiques générales Berk, DeMarzo: ch. 8 obligations zéro-coupon obligations

Plus en détail

Théorie Financière 8 P. rod i u t its dé dérivés

Théorie Financière 8 P. rod i u t its dé dérivés Théorie Financière 8P 8. Produits dit dérivés déié Objectifsdelasession session 1. Définir les produits dérivés (forward, futures et options (calls et puts) 2. Analyser les flux financiers terminaux 3.

Plus en détail

Chapitre 8 L évaluation des obligations. Plan

Chapitre 8 L évaluation des obligations. Plan Chapitre 8 L évaluation des obligations Plan Actualiser un titre à revenus fixes Obligations zéro coupon Obligations ordinaires A échéance identique, rendements identiques? Évolution du cours des obligations

Plus en détail

Les obligations. S. Chermak infomaths.com

Les obligations. S. Chermak infomaths.com Les obligations S. Chermak Infomaths.com Saïd Chermak infomaths.com 1 Le marché des obligations est un marché moins médiatique mais tout aussi important que celui des actions, en terme de volumes. A cela

Plus en détail

Institut pour le Développement des Capacités / AFRITAC de l Ouest / COFEB. Cours régional sur la Gestion macroéconomique et les

Institut pour le Développement des Capacités / AFRITAC de l Ouest / COFEB. Cours régional sur la Gestion macroéconomique et les Institut pour le Développement des Capacités / AFRITAC de l Ouest / COFEB Cours régional sur la Gestion macroéconomique et les questions de dette Dakar, Sénégal du 4 au 15 novembre 2013 S-7 Cours et rendement

Plus en détail

Propriétés des options sur actions

Propriétés des options sur actions Propriétés des options sur actions Bornes supérieure et inférieure du premium / Parité call put 1 / 1 Taux d intérêt, capitalisation, actualisation Taux d intéret composés Du point de vue de l investisseur,

Plus en détail

Théorie Financière 2014-2015

Théorie Financière 2014-2015 Théorie Financière 2014-2015 1. Introduction Professeur Kim Oosterlinck E-mail: koosterl@ulb.ac.be Organisation du cours (1/4) Cours = Théorie (24h) + TPs (12h) + ouvrages de référence Cours en français

Plus en détail

LISTE D EXERCICES 2 (à la maison)

LISTE D EXERCICES 2 (à la maison) Université de Lorraine Faculté des Sciences et Technologies MASTER 2 IMOI, parcours AD et MF Année 2013/2014 Ecole des Mines de Nancy LISTE D EXERCICES 2 (à la maison) 2.1 Un particulier place 500 euros

Plus en détail

Théorie Financière 4E 4. Evaluation d actions et td d entreprises

Théorie Financière 4E 4. Evaluation d actions et td d entreprises Théorie Financière 4E 4. Evaluation d actions et td d entreprises Objectifs de la session 1. Introduire le «dividend discount model» (DDM) 2. Comprendre les sources de croissance du dividende 3. Analyser

Plus en détail

Problèmes de crédit et coûts de financement

Problèmes de crédit et coûts de financement Chapitre 9 Problèmes de crédit et coûts de financement Ce chapitre aborde un ensemble de préoccupations devenues essentielles sur les marchés dedérivésdecréditdepuislacriseducréditde2007.lapremièredecespréoccupations

Plus en détail

Éléments de calcul actuariel

Éléments de calcul actuariel Éléments de calcul actuariel Master Gestion de Portefeuille ESA Paris XII Jacques Printems printems@univ-paris2.fr 3 novembre 27 Valeur-temps de l argent Deux types de décisions duales l une de l autre

Plus en détail

Calcul et gestion de taux

Calcul et gestion de taux Calcul et gestion de taux Chapitre 1 : la gestion du risque obligataire... 2 1. Caractéristique d une obligation (Bond/ Bund / Gilt)... 2 2. Typologie... 4 3. Cotation d une obligation à taux fixe... 4

Plus en détail

Finance de marché Thèmes abordés Panorama des marches de capitaux Fonctionnement des marchés de capitaux Le marché des obligations Le marchés des

Finance de marché Thèmes abordés Panorama des marches de capitaux Fonctionnement des marchés de capitaux Le marché des obligations Le marchés des FINANCE DE MARCHE 1 Finance de marché Thèmes abordés Panorama des marches de capitaux Fonctionnement des marchés de capitaux Le marché des obligations Le marchés des actions Les marchés dérivés Les autres

Plus en détail

Table des matières. l a r c i e r

Table des matières. l a r c i e r Chapitre 1 Introduction... 1 1.1. Objectifs et structure du livre.... 1 1.2. Qu est-ce que la gestion de portefeuille?.... 2 1.3. Qu est-ce que «investir»?.... 3 1.4. Canalisation des flux d épargne et

Plus en détail

Fondements de Finance

Fondements de Finance Programme Grande Ecole Fondements de Finance Chapitre 5 : L évaluation des actions Cours proposé par Fahmi Ben Abdelkader Version étudiants Mars 2012 Valorisation des actifs financiers 1 Les taux d intérêt

Plus en détail

Finance 1. Université d Evry Val d Essonne Séance 4. Philippe PRIAULET

Finance 1. Université d Evry Val d Essonne Séance 4. Philippe PRIAULET Finance 1 Université d Evry Val d Essonne Séance 4 Philippe PRIAULET Plan de la formation Les swaps Définition Terminologie, convention et cotation Utilisations en pratique des swaps Evaluation des swaps

Plus en détail

Pratique des produits dérivés P3 : futures, forwards

Pratique des produits dérivés P3 : futures, forwards Pratique des produits dérivés P3 : futures, forwards Olivier Brandouy Université de Bordeaux 2014 2015 Diapo 1/60 Olivier Brandouy Master 2 Métiers de la Banque (CPA) Plan 1 Introduction Futures et Forwards

Plus en détail

Question 1: Analyse et évaluation des obligations / Gestion de portefeuille

Question 1: Analyse et évaluation des obligations / Gestion de portefeuille Question 1: Analyse et évaluation des obligations / Gestion de portefeuille (33 points) Monsieur X est un gérant de fonds obligataire qui a repris la responsabilité de gestion du portefeuille obligataire

Plus en détail

ERRATA ET AJOUTS. ( t) 2 s2 dt (4.7) Chapitre 2, p. 64, l équation se lit comme suit : Taux effectif = 1+

ERRATA ET AJOUTS. ( t) 2 s2 dt (4.7) Chapitre 2, p. 64, l équation se lit comme suit : Taux effectif = 1+ ERRATA ET AJOUTS Chapitre, p. 64, l équation se lit comme suit : 008, Taux effectif = 1+ 0 0816 =, Chapitre 3, p. 84, l équation se lit comme suit : 0, 075 1 000 C = = 37, 50$ Chapitre 4, p. 108, note

Plus en détail

Les techniques des marchés financiers

Les techniques des marchés financiers Les techniques des marchés financiers Corrigé des exercices supplémentaires Christine Lambert éditions Ellipses Exercice 1 : le suivi d une position de change... 2 Exercice 2 : les titres de taux... 3

Plus en détail

MODELES DE LA COURBE DES TAUX D INTERET. UNIVERSITE d EVRY Séance 1. Philippe PRIAULET

MODELES DE LA COURBE DES TAUX D INTERET. UNIVERSITE d EVRY Séance 1. Philippe PRIAULET MODELES DE LA COURBE DES TAUX D INTERET UNIVERSITE d EVRY Séance 1 Philippe PRIAULET Plan du Cours Introduction Définition de la courbe des taux La multitude de courbes des taux Pourquoi utiliser un modèle

Plus en détail

La valeur présente (ou actuelle) d une annuité, si elle est constante, est donc aussi calculable par cette fonction : VA = A [(1-1/(1+k) T )/k]

La valeur présente (ou actuelle) d une annuité, si elle est constante, est donc aussi calculable par cette fonction : VA = A [(1-1/(1+k) T )/k] Evaluation de la rentabilité d un projet d investissement La décision d investir dans un quelconque projet se base principalement sur l évaluation de son intérêt économique et par conséquent, du calcul

Plus en détail

Fondements de Finance

Fondements de Finance Programme Grande Ecole Fondements de Finance Chapitre 3 : Les taux d intérêt Cours proposé par Fahmi Ben Abdelkader Version étudiants Février 2012 Préambule «Le taux d intérêt est la rémunération de l

Plus en détail

CORRIGES DES CAS TRANSVERSAUX. Corrigés des cas : Emprunts

CORRIGES DES CAS TRANSVERSAUX. Corrigés des cas : Emprunts CORRIGES DES CAS TRANSVERSAUX Corrigés des cas : Emprunts Remboursement par versements périodiques constants - Cas E1 Objectifs : Construire un échéancier et en changer la périodicité, Renégocier un emprunt.

Plus en détail

COURS GESTION FINANCIERE A COURT TERME SEANCE 4 LE VOCABULAIRE BANCAIRE ET FINANCIER

COURS GESTION FINANCIERE A COURT TERME SEANCE 4 LE VOCABULAIRE BANCAIRE ET FINANCIER COURS GESTION FINANCIERE A COURT TERME SEANCE 4 LE VOCABULAIRE BANCAIRE ET FINANCIER SEANCE 4 LE VOCABULAIRE BANCAIRE ET FINANCIER Objet de la séance 4: définir les termes techniques utilisés par le trésorier

Plus en détail

Chapitre 4 - La valeur de l argent dans le temps et l'actualisation des cash-flows

Chapitre 4 - La valeur de l argent dans le temps et l'actualisation des cash-flows Chapitre 4 - La valeur de l argent dans le temps et l'actualisation des cash-flows Plan Actualisation et capitalisation Calculs sur le taux d intérêt et la période Modalités de calcul des taux d intérêts

Plus en détail

Cours de gestion financière (M1) Séance (6) du 24 octobre 2014 Choix d investissement, VAN, TRI

Cours de gestion financière (M1) Séance (6) du 24 octobre 2014 Choix d investissement, VAN, TRI Cours de gestion financière (M1) Séance (6) du 24 octobre 2014 Choix d investissement, VAN, TRI 1 2 Décision financière des entreprises Plan de la séance du 24 octobre Chapitres 6 et 7 du livre Cas avec

Plus en détail

Licence 2 Mathématiques- Semestre 3 Introduction aux mathématiques

Licence 2 Mathématiques- Semestre 3 Introduction aux mathématiques Licence 2 Mathématiques- Semestre 3 Introduction aux mathématiques financières Année universitaire 2010-11 1 Version Septembre 2010 1 Responsable du cours: Marie-Amélie Morlais 2 0.1 Plan sommaire du cours

Plus en détail

Chapitre 1 : principes d actualisation

Chapitre 1 : principes d actualisation Chapitre 1 : principes d actualisation 27.09.2013 Plan du cours Principes valeur actuelle arbitrage loi du prix unique Valeur temps valeur actuelle et valeur future valeur actuelle nette (VAN) annuités

Plus en détail

Dérivés Financiers Contrats à terme

Dérivés Financiers Contrats à terme Dérivés Financiers Contrats à terme Mécanique des marchés à terme 1) Supposons que vous prenez une position courte sur un contrat à terme, pour vendre de l argent en juillet à 10,20 par once, sur le New

Plus en détail

Chapitre 1. L intérêt. 2. Concept d intérêt. 1. Mise en situation. Au terme de ce chapitre, vous serez en mesure de :

Chapitre 1. L intérêt. 2. Concept d intérêt. 1. Mise en situation. Au terme de ce chapitre, vous serez en mesure de : Chapitre 1 L intérêt Au terme de ce chapitre, vous serez en mesure de : 1. Comprendre la notion générale d intérêt. 2. Distinguer la capitalisation à intérêt simple et à intérêt composé. 3. Calculer la

Plus en détail

I. Introduction. 1. Objectifs. 2. Les options. a. Présentation du problème.

I. Introduction. 1. Objectifs. 2. Les options. a. Présentation du problème. I. Introduction. 1. Objectifs. Le but de ces quelques séances est d introduire les outils mathématiques, plus précisément ceux de nature probabiliste, qui interviennent dans les modèles financiers ; nous

Plus en détail

Plan. 5 Actualisation. 7 Investissement. 2 Calcul du taux d intérêt 3 Taux équivalent 4 Placement à versements fixes.

Plan. 5 Actualisation. 7 Investissement. 2 Calcul du taux d intérêt 3 Taux équivalent 4 Placement à versements fixes. Plan Intérêts 1 Intérêts 2 3 4 5 6 7 Retour au menu général Intérêts On place un capital C 0 à intérêts simples de t% par an : chaque année une somme fixe s ajoute au capital ; cette somme est calculée

Plus en détail

MATHÉMATIQUES FINANCIÈRES

MATHÉMATIQUES FINANCIÈRES MATHÉMATIQUES FINANCIÈRES Table des matières Version 2012 Lang Fred 1 Intérêts et taux 2 1.1 Définitions et notations................................ 2 1.2 Intérêt simple......................................

Plus en détail

Principes de Finance

Principes de Finance Principes de Finance 9 et 10. Politique de financement Daniel Andrei Semestre de printemps 2011 Principes de Finance 9 & 10. Financement Printemps 2011 1 / 62 Plan I Introduction II La structure financière

Plus en détail

COURS Nº7 : LES OBLIGATIONS

COURS Nº7 : LES OBLIGATIONS COURS Nº7 : LES OBLIGAIONS DÉFINIION E CARACÉRISIQUES LES PRINCIPALES CLAUSES DU CONRA DU PRÊ ÉVALUAION DES OBLIGAIONS LES OBLIGAIONS ZÉRO-COUPON E LES COUPONS DÉACHÉS : CONSÉQUENCES FISCALES LES MESURES

Plus en détail

Eléments de Gestion Bilancielle. Dr. Kpate Adjaouté HEG, Décembre 2006

Eléments de Gestion Bilancielle. Dr. Kpate Adjaouté HEG, Décembre 2006 Eléments de Gestion Bilancielle Dr. Kpate Adjaouté HEG, Décembre 2006 Plan du Cours I Introduction II Problématique du Calcul du Revenu Net III Typologie des Produits et leur Traitement IV Approche en

Plus en détail

Dérivés Financiers Futures et Contrats à Terme

Dérivés Financiers Futures et Contrats à Terme Dérivés Financiers Futures et Contrats à Terme Owen Williams Grenoble Ecole de Management > 2 Introduction Les forwards et futures sont des engagements à acheter ou vendre un actif à une date future donnée,

Plus en détail

Chapitre 14 Cours à terme et futures. Plan

Chapitre 14 Cours à terme et futures. Plan hapitre 14 ours à terme et futures Plan Différences entre contrat à terme et contrat de future Fonction économique des marchés de futures Rôle des spéculateurs Futures de matières premières Relation entre

Plus en détail

COURS GESTION FINANCIERE SEANCE 9 CREDITS BANCAIRES ET EMPRUNTS OBLIGATAIRES LE MARCHE OBLIGATAIRE LE RISQUE DE TAUX

COURS GESTION FINANCIERE SEANCE 9 CREDITS BANCAIRES ET EMPRUNTS OBLIGATAIRES LE MARCHE OBLIGATAIRE LE RISQUE DE TAUX COURS GESTION FINANCIERE SEANCE 9 CREDITS BANCAIRES ET EMPRUNTS OBLIGATAIRES LE MARCHE OBLIGATAIRE LE RISQUE DE TAUX SEANCE 9 CREDITS BANCAIRES ET EMPRUNTS OBLIGATAIRES LE MARCHE OBLIGATAIRE LE RISQUE

Plus en détail

SOMMAIRE. Bulletin de souscription

SOMMAIRE. Bulletin de souscription SOMMAIRE Flash-emprunt subordonné «Tunisie Leasing 2011-2» Chapitre 1 : Responsables de la note d opération 1.1. Responsables de la note d opération 1.2. Attestation des responsables de la note d opération

Plus en détail

TD de Macroéconomie 2011-2012 Université d Aix-Marseille 2 Licence 2 EM Enseignant: Benjamin KEDDAD

TD de Macroéconomie 2011-2012 Université d Aix-Marseille 2 Licence 2 EM Enseignant: Benjamin KEDDAD TD de Macroéconomie 2011-2012 Université d Aix-Marseille 2 Licence 2 EM Enseignant: Benjamin KEDDAD 1. Balance des paiements 1.1. Bases comptable ˆ Transactions internationales entre résident et non-résident

Plus en détail

Probabilités III Introduction à l évaluation d options

Probabilités III Introduction à l évaluation d options Probabilités III Introduction à l évaluation d options Jacques Printems Promotion 2012 2013 1 Modèle à temps discret 2 Introduction aux modèles en temps continu Limite du modèle binomial lorsque N + Un

Plus en détail

MATHS FINANCIERES. Mireille.Bossy@sophia.inria.fr. Projet OMEGA

MATHS FINANCIERES. Mireille.Bossy@sophia.inria.fr. Projet OMEGA MATHS FINANCIERES Mireille.Bossy@sophia.inria.fr Projet OMEGA Sophia Antipolis, septembre 2004 1. Introduction : la valorisation de contrats optionnels Options d achat et de vente : Call et Put Une option

Plus en détail

Apllication au calcul financier

Apllication au calcul financier Apllication au calcul financier Hervé Hocquard Université de Bordeaux, France 1 er novembre 2011 Intérêts Généralités L intérêt est la rémunération du placement d argent. Il dépend : du taux d intérêts

Plus en détail

Le modèle de Black et Scholes

Le modèle de Black et Scholes Le modèle de Black et Scholes Alexandre Popier février 21 1 Introduction : exemple très simple de modèle financier On considère un marché avec une seule action cotée, sur une période donnée T. Dans un

Plus en détail

Dérivés Financiers Options

Dérivés Financiers Options Stratégies à base d options Dérivés Financiers Options 1) Supposons que vous vendiez un put avec un prix d exercice de 40 et une date d expiration dans 3 mois. Le prix actuel de l action est 41 et le contrat

Plus en détail

Options, Futures, Parité call put

Options, Futures, Parité call put Département de Mathématiques TD Finance / Mathématiques Financières Options, Futures, Parité call put Exercice 1 Quelle est la différence entre (a) prendre une position longue sur un forward avec un prix

Plus en détail

Chapitre 5. Calculs financiers. 5.1 Introduction - notations

Chapitre 5. Calculs financiers. 5.1 Introduction - notations Chapitre 5 Calculs financiers 5.1 Introduction - notations Sur un marché économique, des acteurs peuvent prêter ou emprunter un capital (une somme d argent) en contrepartie de quoi ils perçoivent ou respectivement

Plus en détail

DISCOUNTED CASH-FLOW

DISCOUNTED CASH-FLOW DISCOUNTED CASH-FLOW Principes généraux La méthode des flux futurs de trésorerie, également désignée sous le terme de Discounted Cash Flow (DCF), est très largement admise en matière d évaluation d actif

Plus en détail

Fiche mathématiques financières

Fiche mathématiques financières Fiche mathématiques financières Thème 1 : Les taux d'intérêts simples et composés Taux d'intérêts simples : Les taux d'intérêts simples sont appliqués dans le cas d'emprunts dont la durée est inférieure

Plus en détail

Finance 1 Université d Evry Val d Essonne 2006-2007 Séance 1. Philippe PRIAULET

Finance 1 Université d Evry Val d Essonne 2006-2007 Séance 1. Philippe PRIAULET Finance 1 Université d Evry Val d Essonne 2006-2007 Séance 1 Philippe PRIAULET L environnement d investissement: banques et marchés Depuis le début des années 70, on a assisté à un décloisonnement des

Plus en détail

Chapitre 2. Valeur temps de l argent : arbitrage, actualisation et capitalisation

Chapitre 2. Valeur temps de l argent : arbitrage, actualisation et capitalisation Fondements de Finance Chapitre 2. Valeur temps de l argent : arbitrage, actualisation et capitalisation Cours proposé par Fahmi Ben Abdelkader Version étudiants Février 2012 1 Préambule «Time is money»

Plus en détail

Valorisation d es des options Novembre 2007

Valorisation d es des options Novembre 2007 Valorisation des options Novembre 2007 Plan Rappels Relations de prix Le modèle binomial Le modèle de Black-Scholes Les grecques Page 2 Rappels (1) Définition Une option est un contrat financier qui confère

Plus en détail

Les mathématiques financières

Les mathématiques financières Chapitre 13 Les mathématiques financières Gérer ses finances personnelles ou jouer le rôle de conseiller dans ce domaine demande que l on ait une bonne connaissance des produits financiers et des marchés

Plus en détail

Taux d intérêts simples

Taux d intérêts simples Taux d intérêts simples Les caractéristiques : - < à 1 ans - Rémunération calculée uniquement sur investissement initial. Période de préférence = période sur laquelle on définit le taux de l opération

Plus en détail

Hedging delta et gamma neutre d un option digitale

Hedging delta et gamma neutre d un option digitale Hedging delta et gamma neutre d un option digitale Daniel Herlemont 1 Introduction L objectif de ce projet est d examiner la couverture delta-gamma neutre d un portefeuille d options digitales Asset-Or-Nothing

Plus en détail

Guide de l investisseur

Guide de l investisseur Guide de l investisseur Sommaire 2 Les principes d investissement 5 Les différentes formes d investissement 6 Les obligations 16 Les actions 24 Les fonds d investissement 36 Les produits dérivés 42 Les

Plus en détail

DCG 6. Finance d entreprise. L essentiel en fiches

DCG 6. Finance d entreprise. L essentiel en fiches DCG 6 Finance d entreprise L essentiel en fiches DCG DSCG Collection «Express Expertise comptable» J.-F. Bocquillon, M. Mariage, Introduction au droit DCG 1 L. Siné, Droit des sociétés DCG 2 V. Roy, Droit

Plus en détail

ANNUITES. Les annuités définissent une suite de versements identiques ou non effectués à intervalles de temps égaux. -annuités non constantes

ANNUITES. Les annuités définissent une suite de versements identiques ou non effectués à intervalles de temps égaux. -annuités non constantes ANNUITES I Notions d annuités a.définition Les annuités définissent une suite de versements identiques ou non effectués à intervalles de temps égaux. Le processus de versements dépend du montant de l annuité,

Plus en détail

Les mathématiques de la finance Université d été de Sourdun Olivier Bardou olivier.bardou@gdfsuez.com 28 août 2012 De quoi allons nous parler? des principales hypothèses de modélisation des marchés, des

Plus en détail

CHOIX OPTIMAL DU CONSOMMATEUR. A - Propriétés et détermination du choix optimal

CHOIX OPTIMAL DU CONSOMMATEUR. A - Propriétés et détermination du choix optimal III CHOIX OPTIMAL DU CONSOMMATEUR A - Propriétés et détermination du choix optimal La demande du consommateur sur la droite de budget Résolution graphique Règle (d or) pour déterminer la demande quand

Plus en détail

3- Le risque de taux d'intérêt

3- Le risque de taux d'intérêt 3- Le risque de taux d'intérêt Risque de taux d'intérêt : «risque de variation des prix d'un titre de dette (obligations, titres de créance négociables) ou d'un titre composé ou d'un produit dérivé, résultant

Plus en détail

Les OAT investir en direct. > OAT à taux fixe > OAT indexées > OAT de capitalisation. Guide à l usage des particuliers

Les OAT investir en direct. > OAT à taux fixe > OAT indexées > OAT de capitalisation. Guide à l usage des particuliers Les OAT investir en direct > OAT à taux fixe > OAT indexées > OAT de capitalisation Guide à l usage des particuliers 1 Gérer son patrimoine financier Simplicité Liquidité Sécurité Les OAT à taux fi xe,

Plus en détail

S informer sur. Les obligations

S informer sur. Les obligations S informer sur Les obligations Octobre 2012 Autorité des marchés financiers Les obligations Sommaire Qu est-ce qu une obligation? 03 Quel est le rendement? 04 Quels sont les risques? 05 Quels sont les

Plus en détail

Chapitre 4 : cas Transversaux. Cas d Emprunts

Chapitre 4 : cas Transversaux. Cas d Emprunts Chapitre 4 : cas Transversaux Cas d Emprunts Échéanciers, capital restant dû, renégociation d un emprunt - Cas E1 Afin de financer l achat de son appartement, un particulier souscrit un prêt auprès de

Plus en détail

Pratique des options Grecs et stratégies de trading. F. Wellers

Pratique des options Grecs et stratégies de trading. F. Wellers Pratique des options Grecs et stratégies de trading F. Wellers Plan de la conférence 0 Philosophie et structure du cours 1 Définitions des grecs 2 Propriétés des grecs 3 Qu est ce que la volatilité? 4

Plus en détail

Principes de Finance

Principes de Finance Principes de Finance 11. Politique de dividende Daniel Andrei Semestre de printemps 2011 Principes de Finance 11. Dividendes Printemps 2011 1 / 39 Plan I Introduction II Les modalités de rémunération des

Plus en détail

Mathématiques financières

Mathématiques financières Ecole Nationale de Commerce et de Gestion de Kénitra Mathématiques financières Enseignant: Mr. Bouasabah Mohammed ) بوعصابة محمد ( ECOLE NATIONALE DE COMMERCE ET DE GESTION -KENITRA- Année universitaire:

Plus en détail

2- Comment les traders gèrent les risques

2- Comment les traders gèrent les risques 2- Comment les traders gèrent les risques front office middle office back office trading échange d'actifs financiers contrôle des risques, calcul du capital requis enregistrement des opérations traitement

Plus en détail

Utilisation des fonctions financières d Excel

Utilisation des fonctions financières d Excel Utilisation des fonctions financières d Excel TABLE DES MATIÈRES Page 1. Calcul de la valeur acquise par la formule des intérêts simples... 4 2. Calcul de la valeur actuelle par la formule des intérêts

Plus en détail

Estimation du coût de l incessibilité des BSA

Estimation du coût de l incessibilité des BSA Estimation du coût de l incessibilité des BSA Jean-Michel Moinade Oddo Corporate Finance 22 Juin 2012 Incessibilité des BSA Pas de méthode académique reconnue Plusieurs méthodes «pratiques», dont une usuelle

Plus en détail

Options et Volatilité (introduction)

Options et Volatilité (introduction) SECONDE PARTIE Options et Volatilité (introduction) Avril 2013 Licence Paris Dauphine 2013 SECONDE PARTIE Philippe GIORDAN Head of Investment Consulting +377 92 16 55 65 philippe.giordan@kblmonaco.com

Plus en détail

Comment évaluer une banque?

Comment évaluer une banque? Comment évaluer une banque? L évaluation d une banque est basée sur les mêmes principes généraux que n importe quelle autre entreprise : une banque vaut les flux qu elle est susceptible de rapporter dans

Plus en détail

Qu est-ce-qu un Warrant?

Qu est-ce-qu un Warrant? Qu est-ce-qu un Warrant? L epargne est investi dans une multitude d instruments financiers Comptes d epargne Titres Conditionnel= le detenteur à un droit Inconditionnel= le detenteur a une obligation Obligations

Plus en détail

Les valeurs mobilières. Les actions 3. Les droits et autres titres de capital 5. Les obligations 6. Les SICAV et FCP 8

Les valeurs mobilières. Les actions 3. Les droits et autres titres de capital 5. Les obligations 6. Les SICAV et FCP 8 Les actions 3 Les droits et autres titres de capital 5 Les obligations 6 Les SICAV et FCP 8 2 Les actions Qu est-ce qu une action? Au porteur ou nominative, quelle différence? Quels droits procure-t-elle

Plus en détail

Suites numériques 4. 1 Autres recettes pour calculer les limites

Suites numériques 4. 1 Autres recettes pour calculer les limites Suites numériques 4 1 Autres recettes pour calculer les limites La propriété suivante permet de calculer certaines limites comme on verra dans les exemples qui suivent. Propriété 1. Si u n l et fx) est

Plus en détail

Formules et Approches Utilisées dans le Calcul du Coût Réel

Formules et Approches Utilisées dans le Calcul du Coût Réel Formules et Approches Utilisées dans le Calcul du Coût Réel Objectifs du Taux Annuel Effectif Global (TAEG) et du Taux d Intérêt Effectif (TIE) Le coût réel d un crédit inclut non seulement l intérêt,

Plus en détail

TP1 Méthodes de Monte Carlo et techniques de réduction de variance, application au pricing d options

TP1 Méthodes de Monte Carlo et techniques de réduction de variance, application au pricing d options Université de Lorraine Modélisation Stochastique Master 2 IMOI 2014-2015 TP1 Méthodes de Monte Carlo et techniques de réduction de variance, application au pricing d options 1 Les options Le but de ce

Plus en détail

en juste valeur par résultat Placements détenus jusqu à échéance

en juste valeur par résultat Placements détenus jusqu à échéance Normes IAS 32 / Instruments financiers : Présentation Normes IAS 39 / Instruments financiers : Comptabilisation et Evaluation Normes IFRS 7 / Instruments financiers : Informations à fournir Introduction

Plus en détail

INTRODUCTION. Stratégie de gestion de portefeuille obligataire (Notes pédagogiques) Notes produites par Kodjovi ASSOÉ.

INTRODUCTION. Stratégie de gestion de portefeuille obligataire (Notes pédagogiques) Notes produites par Kodjovi ASSOÉ. Stratégie de gestion de portefeuille obligataire (Notes pédagogiques) Notes produites par Kodjovi ASSOÉ. INTRODUCTION Les obligations occupent une place prépondérante dans le portefeuille de plusieurs

Plus en détail

Le WACC est-il le coût du capital?

Le WACC est-il le coût du capital? Echanges d'expériences Comptabilité et communication financière Dans une évaluation fondée sur la méthode DCF, l objectif premier du WACC est d intégrer l impact positif de la dette sur la valeur des actifs.

Plus en détail

10. L épargne, l investissement et le système financier

10. L épargne, l investissement et le système financier 10. L épargne, l investissement et le système financier 1. Le système financier Un système financier = ensemble des institutions financières qui ont pour objet de mettre en relation les besoins de financement

Plus en détail

table des matières PARtie i introduction Notations courantes... XXIII Les auteurs... XXV Avant-propos... XXVII Remerciements...

table des matières PARtie i introduction Notations courantes... XXIII Les auteurs... XXV Avant-propos... XXVII Remerciements... table des matières Notations courantes............................................................... XXIII Les auteurs......................................................................... XXV Avant-propos.......................................................................

Plus en détail

OPTIMISATION DU RISQUE DE TAUX DANS LA FIRME BANCAIRE PAR LES SWAPS ET AUTRES INSTRUMENTS DE COUVERTURE

OPTIMISATION DU RISQUE DE TAUX DANS LA FIRME BANCAIRE PAR LES SWAPS ET AUTRES INSTRUMENTS DE COUVERTURE INSTITUT D ADMINISTRATION DES ENTREPRISES DE BRETAGNE OCCIDENTALE FACULTE DE DROIT ET SCIENCES ECONOMIQUES DESS «INGENIERIE FINANCIERE» Responsable Pr. Christian CADIOU OPTIMISATION DU RISQUE DE TAUX DANS

Plus en détail

BANQUE NATIONALE AGRICOLE

BANQUE NATIONALE AGRICOLE BANQUE NATIONALE AGRICOLE Société Anonyme au capital de 100 000 000 dinars divisé en 20 000 000 actions de nominal 5* dinars entièrement libérées Siège social : Rue Hedi Nouira 1001 Tunis Registre du Commerce

Plus en détail

CGB Contrats à terme sur obligations du gouvernement. OGB Options sur contrats à terme sur obligations du gouvernement

CGB Contrats à terme sur obligations du gouvernement. OGB Options sur contrats à terme sur obligations du gouvernement CGZ Contrats à terme sur obligations du gouvernement du Canada de deux ans CGF Contrats à terme sur obligations du gouvernement du Canada de cinq ans CGB Contrats à terme sur obligations du gouvernement

Plus en détail

FORMATIONS FINANCIÈRES RÉALISÉES

FORMATIONS FINANCIÈRES RÉALISÉES FORMATIONS FINANCIÈRES RÉALISÉES l'ensemble de ces sujets de formations ont été construits sur mesure à la demande de nos clients SOMMAIRE LES MARCHÉS 3 LES MARCHÉS FINANCIERS NIVEAU 1 4 LES MARCHÉS FINANCIERS

Plus en détail

Cet ouvrage couvre totalement le programme de l UE 6 Finance

Cet ouvrage couvre totalement le programme de l UE 6 Finance Cet ouvrage couvre totalement le programme de l UE 6 Finance d entreprise du Diplôme de Comptabilité et de Gestion (DCG) des études de l expertise comptable. Il s inscrit également dans le cadre des programmes

Plus en détail

Où investir en 2014? Grand colloque sur la gestion des actifs des caisses de retraite

Où investir en 2014? Grand colloque sur la gestion des actifs des caisses de retraite Où investir en 2014? Grand colloque sur la gestion des actifs des caisses de retraite Optimisation de la politique de placement : vers quelles classes d actifs se tourner? Stéphan Lazure Conseiller principal

Plus en détail

0DWKpPDWLTXHVGHO DUJHQW. édité par Mr. G.Moumoulidis (OTE)

0DWKpPDWLTXHVGHO DUJHQW. édité par Mr. G.Moumoulidis (OTE) 3/$,78'RF) 0DWKpPDWTXHVGHO DUJHQW HW OHVpWXGHVWHFKQTXHVpFRQRPTXHV édité par Mr. G.Moumoulidis (OTE) 8,2,7(5$7,2$/('(67(/(&2008,&$7,26,7(5$7,2$/7(/(&2008,&$7,28,2 8,2,7(5$&,2$/'(7(/(&208,&$&,2(6 - - 0DWKpPDWTXHVGHO

Plus en détail

Journées d étude n 2 et n 3. Actualisation, VAN, TRI, Emprunts, Emprunts obligataires

Journées d étude n 2 et n 3. Actualisation, VAN, TRI, Emprunts, Emprunts obligataires Journées d étude n 2 et n 3 1/22 Actualisation, VAN, TRI, Emprunts, Emprunts obligataires Chapitre 2 : L actualisation et VAN d un investissement. I L actualisation (Rappels) A L actualisation d un capital

Plus en détail

/ / / / www.warrants.commerzbank.com / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /

/ / / / www.warrants.commerzbank.com / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / warrants cb www.warrants.commerzbank.com sommaire commerzbank securities la première option sur le marché des warrants... 3 les warrants sont-ils faits pour moi?... 4 pourquoi acheter les warrants de commerzbank

Plus en détail

TURBOS WARRANTS CERTIFICATS. Les Turbos Produits à effet de levier avec barrière désactivante. Produits non garantis en capital.

TURBOS WARRANTS CERTIFICATS. Les Turbos Produits à effet de levier avec barrière désactivante. Produits non garantis en capital. TURBOS WARRANTS CERTIFICATS Les Turbos Produits à effet de levier avec barrière désactivante. Produits non garantis en capital. 2 LES TURBOS 1. Introduction Que sont les Turbos? Les Turbos sont des produits

Plus en détail

Nature et risques des instruments financiers

Nature et risques des instruments financiers 1) Les risques Nature et risques des instruments financiers Définition 1. Risque d insolvabilité : le risque d insolvabilité du débiteur est la probabilité, dans le chef de l émetteur de la valeur mobilière,

Plus en détail

Liste des notes techniques... xxi Liste des encadrés... xxiii Préface à l édition internationale... xxv Préface à l édition francophone...

Liste des notes techniques... xxi Liste des encadrés... xxiii Préface à l édition internationale... xxv Préface à l édition francophone... Liste des notes techniques.................... xxi Liste des encadrés....................... xxiii Préface à l édition internationale.................. xxv Préface à l édition francophone..................

Plus en détail

L essentiel des marchés financiers

L essentiel des marchés financiers Éric Chardoillet Marc Salvat Henri Tournyol du Clos L essentiel des marchés financiers Front office, post-marché et gestion des risques, 2010 ISBN : 978-2-212-54674-3 Table des matières Introduction...

Plus en détail

Les fonctions d Excel Guide de référence

Les fonctions d Excel Guide de référence Jack Steiner Les fonctions d Excel Guide de référence Éditions OEM (Groupe Eyrolles), 2004 ISBN 2-212-11533-4 Chapitre 5 Fonctions financières Les fonctions financières s adressent aux particuliers et

Plus en détail

Les débats sur l évolution des

Les débats sur l évolution des D o c u m e n t d e t r a v a i l d e l a B r a n c h e R e t r a i t e s d e l a C a i s s e d e s d é p ô t s e t c o n s i g n a t i o n s n 9 8-0 7 C o n t a c t : La u re nt V e r n i è r e 0 1 4

Plus en détail