Théorie des sondages : cours 5

Dimension: px
Commencer à balayer dès la page:

Download "Théorie des sondages : cours 5"

Transcription

1 Théorie des sondages : cours 5 Camelia Goga IMB, Université de Bourgogne Master Besançon-2010

2 Chapitre 5 : Techniques de redressement 1. poststratification 2. l estimateur par le ratio 3. l estimateur par la régression

3 Question : comment peut-on faire pour améliorer l estimateur de Horvitz-Thompson ˆt π = y k? π s k L estimateur d HT ne contient pas d information auxiliaire à part les probabilités d inclusion π k. Réponse : en prenant en compte l information auxiliaire. Information auxiliaire : des variables X 1,..., X J prenant les valeurs x 1k,..., x Jk pour le k-ème individu et connues avant la mise en place d une enquête. Deux situations : 1. une variable X j est connue pour chaque individus de la population ou 2. le total de X j, U x jk est connu sans avoir accès aux valeurs individuelles x jk. On note x k = (x 1k,..., x Jk ) pour tous k U.

4 Prise en compte de l information auxiliaire : estimateur par le ratio et poststratifié Information auxiliaire : une caractéristique de la théorie des sondages. Ce sont des variables disponibles dans la base de sondage Ces variables peuvent servir de deux façons pour améliorer la qualité des estimations : lors de la conception du plan de sondage : la plan stratifié, à probabilités inégales, par grappes ou à plusieurs degrés ; le plan équilibré (pas dans ce cours) lors de la conception d un nouvel estimateur : poststratifié, l estimateur par le ratio, par la régression, par le calage (pas dans ce cours).

5 L estimateur par le ratio Laplace (1802) a été le premier a avoir proposé faire un sondage au lieu d une énumération exhaustive ; Objectif : estimer la population de la France. Méthode : l estimateur par ratio (une règle de trois ) : il prend un échantillon de taille 30 de communes de toute la France et il obtient un total de ˆt habitants,30com = habitants ; il connaît également le nombre de naissances dans ces 30 communes : ˆt naissances,30com = ce qui implique que il y a une naissance pour = personnes il connaît le nombre total de naissances par an en 1802 et il fait le raisonnement que les communes avec beaucoup d habitants vont avoir plus de naissances, il estime le nombre total d habitants comme t habitants = t naissances ˆt habitants,30com ˆt naissances,30com

6 Dans l exemple de Laplace : le nombre de naissances est l information auxiliaire qui est bien corrélée avec la variable nombre d habitants. (Il doit connaître que t x et x k pour k s.) L estimateur proposé par Laplace est beaucoup utilisé pour estimer des totaux : et il s appelle l estimateur par ratio : ˆt y,ratio = t x ˆt y ˆt x = t x ˆR Propriétés : en général, cet estimateur est biaisé mais pour des échantillons de grande taille, ce biais est très proche de zéro. Si l information auxiliaire est très corrélée avec la variable d intérêt alors, l erreur quadratique moyenne de ˆt y,ratio est plus petite que si on n avait pas utilisé d information auxiliaire.

7 Exemple (Lohr, 1999) Supposons que nous voulons estimer le nombre de poissons péchés au long d un lac. On considère un plan aléatoire simple sans remise de taille n = 2 dans une population de taille N = 4 : nous avons N = 4 endroits pour pécher ; on connaît le nombre x i de filets qui se trouvent à chaque endroit pour pécher. Les valeurs pour toute la population se trouvent dans le tableau suivant : endroit, i total filet, x i t x = 22 nombre poissons, y i t y = 1400

8 P L estimateur par le ratio est ˆt yrat = t x Ps y i s x où s est un des 6 i échantillons possibles de taille 2. Par exemple, si s = (1, 2) ˆt yrat = = échantillon ˆt yrat (ˆt yrat t y ) 2 (1, 2) (1, 3) (1, 4) (2, 3) (2, 4) (3, 4) L espérance de ˆt yrat est la moyenne arithmétique des valeurs possibles de ˆt yrat pour chaque échantillon, E(ˆt yrat ) = et le biais est = 1.83

9 L erreur quadratique moyenne est donnée par EQR(ˆt yrat ) = E(ˆt yrat t y ) 2 = 1 (ˆt yrat t y ) 2 = 14451, 2 6 Considérons maintenant l estimateur par les valeurs dilatées qui ne prend pas en compte l information auxiliaire : ˆt y = N n s y i : échantillon ˆt y (ˆt y t y ) 2 (1, 2) 2 ( ) = (1, 3) (1, 4) (2, 3) (2, 4) (3, 4) Le biais de cet estimateur est 0 mais sa variance est Alors, l estimateur par le ratio est légèrement biaisé mais son EQR est nettement inférieure à celle de l estimateur par les valeurs dilatées qui est sans biais. s

10 Précision de l estimateur par le ratio L estimateur par le ratio ˆt rat = t x ˆR est un estimateur non-linéaire et il est linéarisé par : ˆt rat t y + s u k π k, avec u k la variable linéarisée de ˆt rat donnée par u k = y k Rx k Le biais est donné par E(ˆt rat ) t y = Cov(ˆR, ˆt x ) ( ) u k Pour n grand, Var(ˆt rat ) Var π k s

11 Comparaison entre l estimateur de HT et l estimateur par le ratio pour un plan SRS Nous voulons estimer le total t y = k U y k; On considère un échantillon SRS de taille n; sans inf. aux. et en utilisant l estimateur par les valeurs dilatées : ˆt y = N s y k n avec une variance estimée égale à N 2 1 f n S ys 2 = N 2 1 f 1 (y k ȳ s ) 2 ; n N 1 avec l inf.aux. et l estimateur par le ratio : ˆt yrat = t x ˆt y = t x ˆt s y k x avec une variance estimée égale à N 2 1 f n car ȳ s ˆR x s = 0. S 2 y ˆRx,s = N2 1 f n 1 N 1 s s x k (y k ˆRx k ) 2 s

12 Si on compare les deux formules, dans la première situation nous avons la somme des carrés des écarts de y k à la moyenne ȳ s et dans la deuxième situation, nous avons la somme des carrés des écarts de y k à la droite de régression y = ˆRx Superficie dediée aux fermes en Superficie dediée aux fermes en Superficie dediée aux fermes en Superficie dediée aux fermes en 1987

13 En conclusion 1. L estimateur par le ratio est conseillé lorsque la relation entre Y et X est proche d une droite passante par l origine et la variance de Y est proportionnelle avec X, var(y k ) = σ 2 x k ; 2. Dans ces conditions, le ratio ˆR est la pente de la droite de régression obtenue par des moindres carrées pondérés : (y k Rx k ) ˆR 2 = argmin R s x k

14 Application de l estimateur par le ratio : estimation dans un domaine quand la taille du domaine est connue Soit U d U un domaine et nous voulons estimer le total d une variable Y dans le domaine U d, t d = U d y k Soit s U un échantillon SRS de taille n et s d = s U d. L estimateur de HT de t d (voir TD 1) est ˆt π = N n s d y k. Si on connaît la taille du domaine, N d = U 1 k U d on peut utiliser l estimateur par le ratio qui est plus efficace : s ˆt d,rat = N d d y k = N d y s d 1 sd k Ud

15 Poststratification Considérons l exemple suivant (Lohr, 1999) : on veut estimer le nombre total d étudiants qui veulent être professeurs après leurs études dans une population de 4000 étudiants ; on prend un échantillon aléatoire simple sans remise de taille n = 400; on sait par ailleurs que dans la population totale on a 2700 femmes et 1300 hommes ; dans notre échantillon, il y a 240 femmes dont 84 veulent être des professeurs et 160 hommes dont 40 veulent être des professeurs On utilise cette information et on obtient l estimation suivante : = Il s agît d une règle de trois à l intérieur de chaque groupe!

16 Propriétés La méthode d estimation utilisée est appelée poststratification car utilise l information auxiliaire (le fait d appartenir à un certain groupe) après le tirage de l échantillon. Dans la plupart des cas, l estimateur poststratifié est meilleur que l estimateur par les valeurs dilatées et il est équivalent au plan stratifié avec l allocation proportionnelle. variation totale=variation inter-groupes+variation intra-groupes La poststratification réduit la variance si la variation entre groupes est grande. Dans l exemple donné, l information auxiliaire est le fait que la population est plus homogène à l intérieur de chaque groupe que dans la population totale.

17 Notations et résultats Considérons les notations utilisées lors du plan stratifié : Un échantillon s de taille n est sélectionné dans U selon un plan SAS (le plus utilisé mais un autre type de plan de sondage peut être envisagé). Soit s g = s U g de taille aléatoire n sg dans la sous-population U g, la partie de s se trouvant G G s = s g, n = n sg. g=1 g=1 L estimateur post-stratifié du total est la somme des g estimateurs par le ratio : G ˆt ypost = N g y sg g=1 avec y sg = s g y k /n sg pour n sg 0.

18 L estimateur post-stratifié : variance et estimateur de la variance La variance approximative est donnée par AV (ˆt ypost ) = N 2 1 f n G g=1 W g S 2 yu g + N 2 1 f n 2 pour W g = Ng N et S yu 2 g = 1 N g 1 U g (y k y Ug ) 2. G (1 W g )SyU 2 g g=1 Remarque : Supposons que les sous-populations U g sont des strates et on utilise l allocation proportionnelle, alors la variance du π-estimateur est le premier terme de l expression de AV (ˆt ypost ). L estimateur de la variance est ˆV (ˆt ypost ) = (1 f ) pour Sys 2 g = 1 n sg 1 s g (y k y sg ) 2. G N 2 Sys 2 g g n g=1 sg

19 Quand utiliser la poststratification? 1. dans le cas des sondages à plusieurs items : on peut utiliser différentes variables auxiliaires pour différentes variables d intérêt. 2. dans le traitement de la nonréponse ; 3. l appartenance d un individu à un certain groupe n est pas connue au moment de la mise en place de l enquête.

20 Exemple : On veut estimer la somme moyenne dédiée à la nourriture/mois dans les ménages américaines. Nous avons la distribution de la taille des ménages comme suit : taille du ménage pourcentage Malheureusement, la base de sondage ne contient pas l information concernant la taille de chaque ménage, par conséquent on ne peut pas faire une stratification. Mais on peut faire une poststratification.

21 L estimateur par la régression du total Si la relation entre Y et X est proche d une droite avec intercept, alors y k = β 0 + β 1 x k = X k β où β = (β 0, β 1 ) et X k = (1, x k ) peut donner une bonne approximation du nuage des points. L estimateur par la regression pour le total t y = U y k est ˆt yr = s y k ŷ k π k + U ŷ k = s y k x k B π k + U x k B ŷ k = x k B et B = ( B 0, B 1 ) l estimateur de β dans l échantillon s.

22 L estimateur par la regression pour un plan SRS Le coefficient de regression β est estimé par moindres carrés dans la population par ( ) ( B0 P = y ) U B 1 x U B 1 U (x k x U )(y k y U ) P U (x k x U ) 2 qui est ensuite estimé dans l échantillon par ( ) ( ˆB0 P = y s ˆB 1 x s ˆB 1 s (x k x s)(y k y s ) P s (x k x s) 2 ) et ˆB 1 = Sxy,s. Sx 2 L estimateur par regression est ( ) ˆt yr = N y s + ˆB 1 (x U x s )

23 Variance et estimateur de la variance pour un plan général L estimateur par régression ˆt yr = ˆt yπ + (t x t xπ ) B est approximativement sans biais pour le total t y = U y k est sa variance approximative est donné par AV (ˆt yr ) = U U kl E k π k E l π l pour E k = y k x kb et l estimateur de la variance est pour e ks = y k x k B. V (ˆt yr ) = s s kl π kl e ks π k e ls π l.

24 Variance pour un plan SRS AV (ˆt yr ) = N 2 1 f n S 2 E,U = N2 1 f n = N 2 1 f n S 2 y,u (1 R2 ) 1 N 1 (E k E U ) 2 où R 2 est le coefficient de corrélation entre X et Y dans la population. Donc, cette variance est petite si : n est grand n/n grand S y petit R = ±1 ou proche. U

Initiation à la théorie des sondages: cours IREM-Dijon

Initiation à la théorie des sondages: cours IREM-Dijon Initiation à la théorie des sondages: cours IREM-Dijon Camelia Goga IMB, Université de Bourgogne Dijon, 12 novembre 2009 Très court historique Laplace a présenté à l Académie des Sciences en 1783 une nouvelle

Plus en détail

Méthodes de sondage Echantillonnage et Redressement

Méthodes de sondage Echantillonnage et Redressement Méthodes de sondage Echantillonnage et Redressement Guillaume Chauvet École Nationale de la Statistique et de l Analyse de l Information 27 avril 2015 Guillaume Chauvet (ENSAI) Echantillonnage 27 avril

Plus en détail

Techniques avancées d échantillonnage Estimation de variance

Techniques avancées d échantillonnage Estimation de variance Techniques avancées d échantillonnage Estimation de variance Guillaume Chauvet École Nationale de la Statistique et de l Analyse de l Information 28 janvier 2014 G. Chauvet (ENSAI) Estimation de variance

Plus en détail

Introduction à la théorie des sondages Challenge Graines de sondeur

Introduction à la théorie des sondages Challenge Graines de sondeur Introduction à la théorie des sondages Challenge Graines de sondeur Camelia Goga IMB, Université de Bourgogne-Dijon camelia.goga@u-bourgogne.fr Dijon, novembre 2015 C. Goga (Univ. de Bourgogne) Sondages

Plus en détail

STA108 Enquêtes et sondages. Sondages àplusieurs degrés et par grappes

STA108 Enquêtes et sondages. Sondages àplusieurs degrés et par grappes STA108 Enquêtes et sondages Sondages àplusieurs degrés et par grappes Philippe Périé, novembre 2011 Sondages àplusieurs degrés et par grappes Introduction Sondages à plusieurs degrés Tirage des unités

Plus en détail

Traitement des données influentes dans le cas d un sondage à deux phases avec une application au traitement de la non-réponse

Traitement des données influentes dans le cas d un sondage à deux phases avec une application au traitement de la non-réponse Traitement des données influentes dans le cas d un sondage à deux phases avec une application au traitement de la non-réponse Jean-François Beaumont, Statistics Canada Cyril Favre Martinoz, Crest-Ensai

Plus en détail

Sondage stratifié. Myriam Maumy-Bertrand. Master 2ème Année 12-10-2011. Strasbourg, France

Sondage stratifié. Myriam Maumy-Bertrand. Master 2ème Année 12-10-2011. Strasbourg, France 1 1 IRMA, Université de Strasbourg Strasbourg, France Master 2ème Année 12-10-2011 Ce chapitre s appuie essentiellement sur deux ouvrages : «Les sondages : Principes et méthodes» de Anne-Marie Dussaix

Plus en détail

Collecte de données. Laurent Dorey

Collecte de données. Laurent Dorey Laurent Dorey Mercredi 16 Décembre 2014 Programme : Recensement & Echantillonnage Étapes pour sélectionner un échantillon La population observée La base de sondage Les unités d enquête La taille de l échantillon

Plus en détail

La méthode des quotas

La méthode des quotas La méthode des quotas Oliviero Marchese, décembre 2006 1 La méthode des quotas Principe de la méthode Point de départ et but recherché Caractère «intuitif» de la méthode A quoi ressemble une feuille de

Plus en détail

a) Considérons le cas où N est un multiple de n : N = Mn

a) Considérons le cas où N est un multiple de n : N = Mn 5.2 TIRAGE SYSTEMATIQUE a) Considérons le cas où N est un multiple de n : N = Mn où M N 0 Prélever un échantillon systématique consiste à tirer de manière équiprobable un individu i 1 parmi {1,..., M},

Plus en détail

Les simulations dans l enseignement des sondages Avec le logiciel GENESIS sous SAS et la bibliothèque Sondages sous R

Les simulations dans l enseignement des sondages Avec le logiciel GENESIS sous SAS et la bibliothèque Sondages sous R Les simulations dans l enseignement des sondages Avec le logiciel GENESIS sous SAS et la bibliothèque Sondages sous R Yves Aragon, David Haziza & Anne Ruiz-Gazen GREMAQ, UMR CNRS 5604, Université des Sciences

Plus en détail

Méthodologie d échantillonnage et Échantillonneur ASDE

Méthodologie d échantillonnage et Échantillonneur ASDE Méthodologie d échantillonnage et Échantillonneur ASDE Par Michel Rochon L énoncé suivant définit de façon générale la méthodologie utilisée par Échantillonneur ASDE pour tirer des échantillons téléphoniques.

Plus en détail

Chapitre 3 : INFERENCE

Chapitre 3 : INFERENCE Chapitre 3 : INFERENCE 3.1 L ÉCHANTILLONNAGE 3.1.1 Introduction 3.1.2 L échantillonnage aléatoire 3.1.3 Estimation ponctuelle 3.1.4 Distributions d échantillonnage 3.1.5 Intervalles de probabilité L échantillonnage

Plus en détail

UNIVERSITE PARIS 1 PANTHEON SORBONNE LICENCE DE SCIENCES ECONOMIQUES. STATISTIQUE APPLIQUEE F. Gardes / P. Sevestre. Fiche N 7.

UNIVERSITE PARIS 1 PANTHEON SORBONNE LICENCE DE SCIENCES ECONOMIQUES. STATISTIQUE APPLIQUEE F. Gardes / P. Sevestre. Fiche N 7. UNIVERSITE PARIS 1 PANTHEON SORBONNE LICENCE DE SCIENCES ECONOMIQUES STATISTIQUE APPLIQUEE F. Gardes / P. Sevestre Fiche N 7 (avec corrigé) L objet de ce TD est de vous initier à la démarche et à quelques

Plus en détail

Utilisation des procédures SAS dans l enseignement des sondages

Utilisation des procédures SAS dans l enseignement des sondages Utilisation des procédures SAS dans l enseignement des sondages Yves Aragon Anne Ruiz-Gazen e-mail: aragon@cict.fr, ruiz@cict.fr 1. Introduction Depuis la version 8, SAS [6] propose trois procédures pour

Plus en détail

L Estimation de Modèles Log-Linéaires sur des Tableaux de Contingence issus d Enquêtes à plan de sondage complexe :

L Estimation de Modèles Log-Linéaires sur des Tableaux de Contingence issus d Enquêtes à plan de sondage complexe : L Estimation de Modèles Log-Linéaires sur des Tableaux de Contingence issus d Enquêtes à plan de sondage complexe : un Examen de l Approche proposée par Clogg & Eliason Chris Skinner Louis-André Vallet

Plus en détail

Estimation. Anita Burgun

Estimation. Anita Burgun Estimation Anita Burgun Estimation Anita Burgun Contenu du cours Sondages Mesures statistiques sur un échantillon Estimateurs Problème posé Le problème posé en statistique: On s intéresse à une population

Plus en détail

Théorie des sondages : cours 2

Théorie des sondages : cours 2 Théorie des sondages : cours 2 Camelia Goga IMB, Université de Bourgogne e-mail : camelia.goga@u-bourgogne.fr Master 2 Besançon-2010 Sondage systématique (SY)(1) Simple à mettre en oeuvre. On fixe à l

Plus en détail

STA108 : Enquêtes et sondages. Pratique des redressements

STA108 : Enquêtes et sondages. Pratique des redressements STA108 : Enquêtes et sondages Pratique des redressements Philippe Périé, janvier 2012 1 Pratique des redressements Utilisez au mieux les sources d information auxiliaire Principe du redressent, les effets

Plus en détail

ANNEXE A PLAN DE SONDAGE

ANNEXE A PLAN DE SONDAGE ANNEXE A PLAN DE SONDAGE ANNEXE A PLAN DE SONDAGE A.1 INTRODUCTION La Deuxième Enquête Démographique et de Santé au Cameroun (EDSC-II) a prévu un échantillon d environ 6 000 femmes âgées de 15 à 49 ans

Plus en détail

Exercices corrigés de l Ethème 2 - Techniques de Sondages

Exercices corrigés de l Ethème 2 - Techniques de Sondages Exercices corrigés de l Ethème 2 - Techniques de Sondages Exercice 1 : On considère une population de N = 5 individus, pour lesquels on connaît les valeurs de la variable y : y 1 = 3, y 2 = 1, y 3 = 0,

Plus en détail

Initiation à la théorie de l échantillonnage

Initiation à la théorie de l échantillonnage Initiation à la théorie de l échantillonnage Jean VAILLANT Octobre 2005 1 Notions de base en échantillonnage L étude de propriétés caractéristiques d un ensemble, quand on ne dispose pas encore de données,

Plus en détail

La nouvelle planification de l échantillonnage

La nouvelle planification de l échantillonnage La nouvelle planification de l échantillonnage Pierre-Arnaud Pendoli Division Sondages Plan de la présentation Rappel sur le Recensement de la population (RP) en continu Description de la base de sondage

Plus en détail

Chapitre 2: Prévisions des ventes

Chapitre 2: Prévisions des ventes Chapitre 2: Prévisions des ventes AVIS IMPORTANT : Ces notes sont basées sur le livre de Steven Nahmias : Production et Operations Analysis, 4 ième édition, McGraw-Hill Irwin 200. Les figures sont issues

Plus en détail

L essentiel sur les tests statistiques

L essentiel sur les tests statistiques L essentiel sur les tests statistiques 21 septembre 2014 2 Chapitre 1 Tests statistiques Nous considérerons deux exemples au long de ce chapitre. Abondance en C, G : On considère une séquence d ADN et

Plus en détail

Mon plan de sondage en 9 questions

Mon plan de sondage en 9 questions Tiral Sidi Mon plan de sondage en 9 questions Publibook Retrouvez notre catalogue sur le site des Éditions Publibook : http://www.publibook.com Ce texte publié par les Éditions Publibook est protégé par

Plus en détail

Calcul des probabilités d inclusion dans les enquêtes par sondage probabiliste issues de bases de numéro de téléphone fixe et mobile

Calcul des probabilités d inclusion dans les enquêtes par sondage probabiliste issues de bases de numéro de téléphone fixe et mobile Calcul des probabilités d inclusion dans les enquêtes par sondage probabiliste issues de bases de numéro de téléphone fixe et mobile Retour d expérience de l enquête KABP VIH/SIDA 2010 C Sommen, J Warszawski,

Plus en détail

Module 2 29 Décembre 2009 Intervenant: Dhuin STATISTIQUES

Module 2 29 Décembre 2009 Intervenant: Dhuin STATISTIQUES STATISTIQUES I. Séries statistiques simples... 1 A. Définitions... 1 1. Population... 1 2. Caractère statistique... 1 B. Séries classées / représentations graphiques.... 2 1. Séries classées... 2 2. Représentations

Plus en détail

Approche modèle pour l estimation en présence de non-réponse non-ignorable en sondage

Approche modèle pour l estimation en présence de non-réponse non-ignorable en sondage Approche modèle pour l estimation en présence de non-réponse non-ignorable en sondage Journées de Méthodologie Statistique Eric Lesage Crest-Ensai 25 janvier 2012 Introduction et contexte 2/27 1 Introduction

Plus en détail

Comment ne pas construire un score-titanic

Comment ne pas construire un score-titanic Comment ne pas construire un score-titanic Mon mailing Olivier Decourt ABS Technologies / Educasoft Formations 1- Les principes 2- Un premier exemple : les vins de France 3- Mise en œuvre sous SAS 4- Un

Plus en détail

Comment calculer la précision des estimateurs composites d Esane

Comment calculer la précision des estimateurs composites d Esane Comment calculer la précision des estimateurs composites d Esane Thomas Deroyon Insee - 18 Bd Adolphe Pinard Paris, thomas.deroyon@insee.fr Résumé. Les statistiques structurelles d entreprise permettent

Plus en détail

Aline Drapeau, Ph.D.

Aline Drapeau, Ph.D. (Communauté de pratique en épidémiologie psychosociale) Aspects méthodologiques de l échantillonnage Aline Drapeau, Ph.D. Pourquoi échantillonner? Objectifs de l étude visent une population cible spécifique

Plus en détail

Actuariat I ACT2121. huitième séance. Arthur Charpentier. Automne 2012. charpentier.arthur@uqam.ca. http ://freakonometrics.blog.free.

Actuariat I ACT2121. huitième séance. Arthur Charpentier. Automne 2012. charpentier.arthur@uqam.ca. http ://freakonometrics.blog.free. Actuariat I ACT2121 huitième séance Arthur Charpentier charpentier.arthur@uqam.ca http ://freakonometrics.blog.free.fr/ Automne 2012 1 Exercice 1 Soit X une variable aléatoire continue de fonction de densité

Plus en détail

Critère du choix des variables auxiliaires à utiliser dans l'estimateur par calage

Critère du choix des variables auxiliaires à utiliser dans l'estimateur par calage des variables auxiliaires à utiliser dans l'estimateur par calage Mohammed El Haj Tirari Institut National de Statistique et d'economie Appliquée - roc Laboratoire de Statistique d'enquêtes, CREST - Ensai

Plus en détail

Introduction à la simulation de Monte Carlo

Introduction à la simulation de Monte Carlo Introduction à la simulation de 6-601-09 Simulation Geneviève Gauthier HEC Montréal e 1 d une I Soit X 1, X,..., X n des variables aléatoires indépendantes et identiquement distribuées. Elles sont obtenues

Plus en détail

Le bootstrap expliqué par l exemple

Le bootstrap expliqué par l exemple Le bootstrap expliqué par l exemple 1 Le bootstrap expliqué par l exemple 1. Les concepts du bootstrap 2. Des variantes adaptées au contexte 3. Comparaison des différentes méthodes 4. Les cas sensibles

Plus en détail

Cours 1: lois discrétes classiques en probabilités

Cours 1: lois discrétes classiques en probabilités Cours 1: lois discrétes classiques en probabilités Laboratoire de Mathématiques de Toulouse Université Paul Sabatier-IUT GEA Ponsan Module: Stat inférentielles Définition Quelques exemples loi d une v.a

Plus en détail

Cours de sondages approfondis

Cours de sondages approfondis Cours de sondages approfondis 1ère séance : rappels Xavier d Haultfœuille 1 Introduction Objectif du cours : aborder quelques techniques récentes en sondages, et plus précisément : - en échantillonnage

Plus en détail

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures)

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures) CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE Cinquième épreuve d admissibilité STATISTIQUE (durée : cinq heures) Une composition portant sur la statistique. SUJET Cette épreuve est composée d un

Plus en détail

Le sondage indirect, la méthode du partage des poids

Le sondage indirect, la méthode du partage des poids STA108 : Enquêtes et sondages Le sondage indirect, la méthode du partage des poids Sondages en plusieurs degrés, sondage en deux phase et sondages indirects Exemple : les enquêtes par téléphone, bases

Plus en détail

Méthodes de Bootstrap en population finie

Méthodes de Bootstrap en population finie Méthodes de Bootstrap en population finie Guillaume Chauvet To cite this version: Guillaume Chauvet. Méthodes de Bootstrap en population finie. Mathematics [math]. ENSAI, 2007. French. HAL

Plus en détail

Exploitation et analyse des données appliquées aux techniques d enquête par sondage. Introduction.

Exploitation et analyse des données appliquées aux techniques d enquête par sondage. Introduction. Exploitation et analyse des données appliquées aux techniques d enquête par sondage. Introduction. Etudes et traitements statistiques des données : le cas illustratif de la démarche par sondage INTRODUCTION

Plus en détail

Analyses de Variance à un ou plusieurs facteurs Régressions Analyse de Covariance Modèles Linéaires Généralisés

Analyses de Variance à un ou plusieurs facteurs Régressions Analyse de Covariance Modèles Linéaires Généralisés Analyses de Variance à un ou plusieurs facteurs Régressions Analyse de Covariance Modèles Linéaires Généralisés Professeur Patrice Francour francour@unice.fr Une grande partie des illustrations viennent

Plus en détail

TABLE DES MATIERES. C Exercices complémentaires 42

TABLE DES MATIERES. C Exercices complémentaires 42 TABLE DES MATIERES Chapitre I : Echantillonnage A - Rappels de cours 1. Lois de probabilités de base rencontrées en statistique 1 1.1 Définitions et caractérisations 1 1.2 Les propriétés de convergence

Plus en détail

Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles

Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles Valentin Patilea 1 Cesar Sanchez-sellero 2 Matthieu Saumard 3 1 CREST-ENSAI et IRMAR 2 USC Espagne 3 IRMAR-INSA

Plus en détail

Analyse de la variance à deux facteurs

Analyse de la variance à deux facteurs 1 1 IRMA, Université Louis Pasteur Strasbourg, France Master 1 Psychologie du développement 06-10-2008 Contexte Nous nous proposons d analyser l influence du temps et de trois espèces ligneuses d arbre

Plus en détail

FORMULAIRE DE STATISTIQUES

FORMULAIRE DE STATISTIQUES FORMULAIRE DE STATISTIQUES I. STATISTIQUES DESCRIPTIVES Moyenne arithmétique Remarque: population: m xμ; échantillon: Mx 1 Somme des carrés des écarts "# FR MOYENNE(série) MOYENNE(série) NL GEMIDDELDE(série)

Plus en détail

DOCUMENT 2.1 : INFORMATIONS COMPLEMENTAIRES SUR LA METHODE D ENQUETE

DOCUMENT 2.1 : INFORMATIONS COMPLEMENTAIRES SUR LA METHODE D ENQUETE DOCUMENT 2.1 : INFORMATIONS COMPLEMENTAIRES SUR LA METHODE D ENQUETE 1 Définir le type de variable Dans notre cas, la variable est quantitative nominale. Note : Une variable est qualitative nominale quand

Plus en détail

Enquête sur l industrie des ser. vices de taxi et de limousine. Système de documentation des données statistiques Numéro de référence 4707

Enquête sur l industrie des ser. vices de taxi et de limousine. Système de documentation des données statistiques Numéro de référence 4707 Enquête sur l industrie des ser vices de taxi et de services limousine Système de documentation des données statistiques Numéro de référence 4707 Concepts Énoncé de la qualité des données Enquête unifiée

Plus en détail

Introduction à la théorie des sondages Cours 4

Introduction à la théorie des sondages Cours 4 Introduction à la théorie des sondages Cours 4 Antoine Rebecq et Martin Chevalier antoine.rebecq@insee.fr et martin.chevalier@insee.fr INSEE, direction de la méthodologie 15 février 2016 1 / 21 Sommaire

Plus en détail

Eléments de Statistique. Jean VAILLANT

Eléments de Statistique. Jean VAILLANT Eléments de Statistique Jean VAILLANT Septembre 2010 2 Table des matières 1 Initiation à la théorie de l échantillonnage 5 1.1 Notions de base en échantillonnage............... 5 1.1.1 Population, individu

Plus en détail

Analyse de l évolution de la structure des ménages dans l enquête sur le budget des ménages

Analyse de l évolution de la structure des ménages dans l enquête sur le budget des ménages Analyse de l évolution de la structure des ménages dans l enquête sur le budget des ménages S. Winandy, R. Palm OCA GxABT/ULg oca.gembloux@ulg.ac.be décembre 2011 1 Introduction La Direction Générale Statistique

Plus en détail

C3 : Manipulations statistiques

C3 : Manipulations statistiques C3 : Manipulations statistiques Dorat Rémi 1- Génération de valeurs aléatoires p 2 2- Statistiques descriptives p 3 3- Tests statistiques p 8 4- Régression linéaire p 8 Manipulations statistiques 1 1-

Plus en détail

LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING»

LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING» LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING» Gilbert Saporta Professeur de Statistique Appliquée Conservatoire National des Arts et Métiers Dans leur quasi totalité, les banques et organismes financiers

Plus en détail

NOMBRES ALEATOIRES et PSEUDO-ALEATOIRES G.Saporta, P.Périé et S.Rousseau, octobre 2011

NOMBRES ALEATOIRES et PSEUDO-ALEATOIRES G.Saporta, P.Périé et S.Rousseau, octobre 2011 NOMBRES ALEATOIRES et PSEUDO-ALEATOIRES G.Saporta, P.Périé et S.Rousseau, octobre 2011 Utiles pour réaliser r des tirages et simuler des phénom nomènes nes aléatoires atoires Nombres aléatoires: atoires:

Plus en détail

Activité 1 : échantillonnage

Activité 1 : échantillonnage Activité échantillonnage, intervalle de fluctuation, prise de décision (à partir d un même thème) Les trois activités qui suivent s inspirent du document «ressources pour la classe de première générale

Plus en détail

Exercices supplémentaires sur l introduction générale à la notion de probabilité 2009-2010

Exercices supplémentaires sur l introduction générale à la notion de probabilité 2009-2010 Exercices supplémentaires sur l introduction générale à la notion de probabilité 2009-2010 Exercices fortement conseillés : 6, 10 et 14 1) Un groupe d étudiants est formé de 20 étudiants de première année

Plus en détail

Chapitre 8: Inférence, échantillonnage et estimation

Chapitre 8: Inférence, échantillonnage et estimation Chapitre 8: Inférence, échantillonnage et estimation 1. Echantillonnage aléatoire simple 2. Inférence statistique 3. Estimation 4. Evaluation graphique de l adéquation d un modèle de distribution 1 L inférence

Plus en détail

Chapitre 4 : RÉGRESSION

Chapitre 4 : RÉGRESSION Chapitre 4 : RÉGRESSION 4.3 Régression linéaire multiple 4.3.1 Equation et Estimation 4.3.2 Inférence 4.3.3 Coefficients de détermination 4.3.4 Spécifications Régression linéaire multiple 1 / 50 Chapitre

Plus en détail

9. Distributions d échantillonnage

9. Distributions d échantillonnage 9. Distributions d échantillonnage MTH2302D S. Le Digabel, École Polytechnique de Montréal H2015 (v3) MTH2302D: distributions d échantillonnage 1/46 Plan 1. Échantillons aléatoires 2. Statistiques et distributions

Plus en détail

Support du cours de Probabilités IUT d Orléans, Département d informatique

Support du cours de Probabilités IUT d Orléans, Département d informatique Support du cours de Probabilités IUT d Orléans, Département d informatique Pierre Andreoletti IUT d Orléans Laboratoire MAPMO (Bât. de Mathématiques UFR Sciences) - Bureau 126 email: pierre.andreoletti@univ-orleans.fr

Plus en détail

UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 2013 2014 MATHS/STATS. 1 Généralités sur les tests statistiques 2

UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 2013 2014 MATHS/STATS. 1 Généralités sur les tests statistiques 2 UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 2013 2014 Master d économie Cours de M. Desgraupes MATHS/STATS Document 4 : Les tests statistiques 1 Généralités sur les tests

Plus en détail

Examen d accès - 28 Septembre 2012

Examen d accès - 28 Septembre 2012 Examen d accès - 28 Septembre 2012 Aucun document autorisé - Calculatrice fournie par le centre d examen Cet examen est un questionnaire à choix multiples constitué de 50 questions. Plusieurs réponses

Plus en détail

1ES Février 2013 Corrigé

1ES Février 2013 Corrigé 1ES Février 213 Corrigé Exercice 1 Le tableau ci-dessous renseigne sur les besoins en eau dans le monde : Population mondiale (Milliards d habitants) Volume moyen par habitant ( ) 195 2,5 4 1 197 3,6 5

Plus en détail

DOCUMENT DE RÉVISION MAT-4104

DOCUMENT DE RÉVISION MAT-4104 CENTRE D ÉDUCATION DES ADULTES DOCUMENT DE RÉVISION MAT-4104 ÉLABORÉ PAR RICHARD ROUSSEAU, ENSEIGNANT EN MATHÉMATIQUES, CENTRE D ÉDUCATION DES ADULTES L ESCALE COMMISSION SCOLAIRE DE L AMIANTE MAI 005

Plus en détail

Analyse de variance à un facteur Tests d hypothèses Analyse de variance à deux facteurs. Analyse de la variance ANOVA

Analyse de variance à un facteur Tests d hypothèses Analyse de variance à deux facteurs. Analyse de la variance ANOVA Analyse de la variance ANOVA Terminologie Modèles statistiques Estimation des paramètres 1 Analyse de variance à un facteur Terminologie Modèles statistiques Estimation des paramètres 2 3 Exemple. Analyse

Plus en détail

Conditions d application des méthodes statistiques paramétriques :

Conditions d application des méthodes statistiques paramétriques : Conditions d application des méthodes statistiques paramétriques : applications sur ordinateur GLELE KAKAÏ R., SODJINOU E., FONTON N. Cotonou, Décembre 006 Conditions d application des méthodes statistiques

Plus en détail

Qualité de la tension des réseaux de distribution électrique : Estimations des proportions d utilisateurs mal desservis

Qualité de la tension des réseaux de distribution électrique : Estimations des proportions d utilisateurs mal desservis Qualité de la tension des réseaux de distribution électrique : Estimations des proportions d utilisateurs mal desservis Héléna CASTERMANT (*), Michel DIEBOLT (**), Myriam MAUMY-BERTRAND (***), Claire REINHARDT

Plus en détail

CALCUL DE PRECISION AU MOYEN DU LOGICIEL POULPE DANS L ENQUETE HID

CALCUL DE PRECISION AU MOYEN DU LOGICIEL POULPE DANS L ENQUETE HID CALCUL DE PRECISION AU MOYEN DU LOGICIEL POULPE DANS L ENQUETE HID Pascal ARDILLY (*), Odile JOINVILLE (**), Pierre MORMICHE (***) (*) INSEE, Unité Méthos Statistiques (**) Institut Statistique l Université

Plus en détail

LES STATISTIQUES. Valérie Bougault, PhD. valerie.bougault@univ-lille2.fr

LES STATISTIQUES. Valérie Bougault, PhD. valerie.bougault@univ-lille2.fr LES STATISTIQUES Valérie Bougault, PhD. valerie.bougault@univ-lille2.fr Référence: S. Champely. «Statistique vraiment appliquée au sport». Ed de Boeck université (Bruxelles), Coll Sciences et pratiques

Plus en détail

La survie nette actuelle à long terme Qualités de sept méthodes d estimation

La survie nette actuelle à long terme Qualités de sept méthodes d estimation La survie nette actuelle à long terme Qualités de sept méthodes d estimation PAR Alireza MOGHADDAM TUTEUR : Guy HÉDELIN Laboratoire d Épidémiologie et de Santé publique, EA 80 Faculté de Médecine de Strasbourg

Plus en détail

Plan. Entreprise Guide ou comment rendre presque séduisantes les procédures statistiques de SAS. Tirer un échantillon d'une table existante (1)

Plan. Entreprise Guide ou comment rendre presque séduisantes les procédures statistiques de SAS. Tirer un échantillon d'une table existante (1) Entreprise Guide ou comment rendre presque séduisantes les procédures statistiques de SAS Présentation au Club des Utilisateurs SAS de Québec 30 octobre 2006 Jean Hardy Services Conseils Hardy Plan Tirer

Plus en détail

Master 1 Informatique Éléments de statistique inférentielle

Master 1 Informatique Éléments de statistique inférentielle Master 1 Informatique Éléments de statistique inférentielle Faicel Chamroukhi Maître de Conférences UTLN, LSIS UMR CNRS 7296 email: chamroukhi@univ-tln.fr web: chamroukhi.univ-tln.fr 2014/2015 Faicel Chamroukhi

Plus en détail

CURRICULUM VITAE. 2004 DEA en Statistique, Université de Rennes 1 Reçu Major

CURRICULUM VITAE. 2004 DEA en Statistique, Université de Rennes 1 Reçu Major CURRICULUM VITAE Guillaume CHAUVET Né le 18 février 1977 à Clermont-Ferrand, France Nationalité française Attaché principal de l Insee - Docteur en Statistique de l Université de Rennes 2 (Centre de Recherche

Plus en détail

ASI (L2) : TP3 Calculs probabilistes avec Excel et Rstat

ASI (L2) : TP3 Calculs probabilistes avec Excel et Rstat ASI (L2) : TP3 Calculs probabilistes avec Excel et Rstat Objectifs du TP : Savoir utiliser Excel et Rstat pour calculer des moyennes pondérées, des variances pondérées et savoir faire des approximations

Plus en détail

Échantillonnage. Pierre Neuvial, http://stat.genopole.cnrs.fr/~pneuvial Evry, M1 SGO, automne 2014

Échantillonnage. Pierre Neuvial, http://stat.genopole.cnrs.fr/~pneuvial Evry, M1 SGO, automne 2014 Démarche Statistique 1 Échantillonnage Pierre Neuvial, http://stat.genopole.cnrs.fr/~pneuvial Evry, M1 SGO, automne 2014 Introduction Objectif statistique descriptive: sur l'échantillon statistique inférentielle:

Plus en détail

Introduction au cours STA 102 Analyse des données : Méthodes explicatives

Introduction au cours STA 102 Analyse des données : Méthodes explicatives Analyse des données - Méthodes explicatives (STA102) Introduction au cours STA 102 Analyse des données : Méthodes explicatives Giorgio Russolillo giorgio.russolillo@cnam.fr Infos et support du cours Slide

Plus en détail

Introduction à l analyse des données. Analyse des Données (1) Exemple, ville et (in)sécurité. Exemple, ville et (in)sécurité

Introduction à l analyse des données. Analyse des Données (1) Exemple, ville et (in)sécurité. Exemple, ville et (in)sécurité Introduction à l analyse des données Analyse des Données () Le but de l analyse de données est de synthétiser, structurer l information contenue dans des données multidimensionnelles Deux groupes de méthodes

Plus en détail

Loi normale ou loi de Laplace-Gauss

Loi normale ou loi de Laplace-Gauss LivreSansTitre1.book Page 44 Mardi, 22. juin 2010 10:40 10 Loi normale ou loi de Laplace-Gauss I. Définition de la loi normale II. Tables de la loi normale centrée réduite S il y avait une seule loi de

Plus en détail

SONDAGES D INTENTION DE VOTE : L ESTIMATION DES «MARGES D ERREUR»

SONDAGES D INTENTION DE VOTE : L ESTIMATION DES «MARGES D ERREUR» SONDAGES D INTENTION DE VOTE : L ESTIMATION DES «MARGES D ERREUR» Léo Gerville-Réache Université de Bordeaux 2, CNRS, UMR 5251, Bordeaux, F-33000, France leo.gerville@u-bordeaux2.fr Motivation «En dehors

Plus en détail

Session B2: Assurance

Session B2: Assurance 33 èmes Journées des Économistes de la Santé Français 1 er et 2 décembre 2011 Session B2: Assurance Auteurs: Sophie Guthmuller et Jérôme Wittwer, Université Paris-Dauphine Référé: Aurore Pélissier, CERDI,

Plus en détail

Analyse de données longitudinales continues avec applications

Analyse de données longitudinales continues avec applications Université de Liège Département de Mathématique 29 Octobre 2002 Analyse de données longitudinales continues avec applications David MAGIS 1 Programme 1. Introduction 2. Exemples 3. Méthodes simples 4.

Plus en détail

Le niveau de revenus des ménages est associé à la couverture vaccinale par le vaccin pneumocoque conjugué chez les enfants d'ile-de-france

Le niveau de revenus des ménages est associé à la couverture vaccinale par le vaccin pneumocoque conjugué chez les enfants d'ile-de-france Le niveau de revenus des ménages est associé à la couverture vaccinale par le vaccin pneumocoque conjugué chez les enfants d'ile-de-france Jean-Paul Guthmann, Pierre Chauvin, Yann Le Strat, Marion Soler,

Plus en détail

Travaux Dirigés de Probabilités - Statistiques, TD 4. Lois limites ; estimation.

Travaux Dirigés de Probabilités - Statistiques, TD 4. Lois limites ; estimation. Travaux Dirigés de Probabilités - Statistiques, TD 4 Lois limites ; estimation. Exercice 1. Trois machines, A, B, C fournissent respectivement 50%, 30%, 20% de la production d une usine. Les pourcentages

Plus en détail

La fumée de tabac secondaire (FTS) en Mauricie et au Centre-du- Québec, indicateurs du plan commun tirés de l ESCC de 2007-2008

La fumée de tabac secondaire (FTS) en Mauricie et au Centre-du- Québec, indicateurs du plan commun tirés de l ESCC de 2007-2008 La fumée de tabac secondaire (FTS) en Mauricie et au Centre-du- Québec, indicateurs du plan commun tirés de l ESCC de 2007-2008 Ce document se veut une analyse succincte des indicateurs se rapportant à

Plus en détail

La qualité dans les enquêtes

La qualité dans les enquêtes La qualité dans les enquêtes Anne-Marie Dussaix ESSEC Business School BP 50105 Cergy 95021 Cergy-Pontoise Cedex e-mail : dussaix@essec.fr Résumé Il existe une littérature académique très abondante sur

Plus en détail

L analyse de variance à un critère de classification (ANOVA)

L analyse de variance à un critère de classification (ANOVA) Bio 041 L analyse de variance à un critère de classification (ANOVA) Pierre Legendre & Daniel Borcard, Université de Montréal Référence: Scherrer (007), section 14.1.1.1 et 14.1. 1 - Introduction Objectif:

Plus en détail

Rapport de méthodes Analyse de données d enquêtes

Rapport de méthodes Analyse de données d enquêtes Rapport de méthodes Analyse de données d enquêtes 0 Statistische Grundlagen und Übersichten Bases statistiques et produits généraux Basi statistiche e presentazioni generali Quelques méthodes et illustration

Plus en détail

Collecter des informations statistiques

Collecter des informations statistiques Collecter des informations statistiques FICHE MÉTHODE A I Les caractéristiques essentielles d un tableau statistique La statistique a un vocabulaire spécifique. L objet du tableau (la variable) s appelle

Plus en détail

Estimation: intervalle de fluctuation et de confiance. Mars 2012. IREM: groupe Proba-Stat. Fluctuation. Confiance. dans les programmes comparaison

Estimation: intervalle de fluctuation et de confiance. Mars 2012. IREM: groupe Proba-Stat. Fluctuation. Confiance. dans les programmes comparaison Estimation: intervalle de fluctuation et de confiance Mars 2012 IREM: groupe Proba-Stat Estimation Term.1 Intervalle de fluctuation connu : probabilité p, taille de l échantillon n but : estimer une fréquence

Plus en détail

L analyse de variance à deux critère de classification

L analyse de variance à deux critère de classification L analyse de variance à deux critère de classification Objectif : comparer l influence de chaque facteur sur la moyenne de plusieurs (k) groupes indépendants d observations La méthode détaillée ci-dessous

Plus en détail

Estimation de synchrones de consommation électrique par sondage et prise en compte d information auxiliaire

Estimation de synchrones de consommation électrique par sondage et prise en compte d information auxiliaire UNIVERSITÉ DE BOURGOGNE U.F.R. Sciences et Techniques Institut de Mathématiques de Bourgogne UMR 5584 du CNRS THÈSE pour l obtention du grade de Docteur de l université de Bourgogne Discipline : Mathématiques

Plus en détail

Politique budgétaire. Notre objectif est d étudier les répercussions des dépenses publiques et de la fiscalité sur le revenu et l emploi.

Politique budgétaire. Notre objectif est d étudier les répercussions des dépenses publiques et de la fiscalité sur le revenu et l emploi. Politique budgétaire Notre objectif est d étudier les répercussions des dépenses publiques et de la fiscalité sur le revenu et l emploi. Nous continuons de supposer qu il s agit d une économie fermée mais

Plus en détail

Université René Descartes Faculté de Pharmacie - Master Professionnel Dimension Économique des Produits de Santé 14 décembre 2005

Université René Descartes Faculté de Pharmacie - Master Professionnel Dimension Économique des Produits de Santé 14 décembre 2005 Université René Descartes Faculté de Pharmacie - Master Professionnel Dimension Économique des Produits de Santé 14 décembre 2005 Prise en Compte de l Incertitude dans l Évaluation des Technologies de

Plus en détail

Estimation d un ratio

Estimation d un ratio Chapitre 6 Etimation d un ratio Dan ce chapitre, nou étudion l etimation d un ratio qui et une fonction non linéaire de deux totaux L etimation ur un domaine qui et un exemple d application de l etimation

Plus en détail

Introduction aux sondages

Introduction aux sondages Service Universitaire d Enseignement à Distance Licence AES - Troisième année Introduction aux sondages Université Rennes 2 Place du Recteur H. le Moal CS 24307-35043 Rennes Tel : 02 99 14 18 21 Mel :

Plus en détail

Fiche qualité relative à l enquête Santé et Itinéraire Professionnel 2010 (SIP) Carte d identité de l enquête

Fiche qualité relative à l enquête Santé et Itinéraire Professionnel 2010 (SIP) Carte d identité de l enquête Fiche qualité relative à Santé et Itinéraire Professionnel 2010 (SIP) Nom Années de Périodicité Panel (suivi d échantillon) Services concepteurs Service réalisant Sujets principaux traités dans Carte d

Plus en détail

METHODOLOGIE DE COLLECTE DE DONNEES dans le cadre de l enquête «Prévision et Estimation des Récoltes» (EPER)

METHODOLOGIE DE COLLECTE DE DONNEES dans le cadre de l enquête «Prévision et Estimation des Récoltes» (EPER) REPUBLIQUE DU NIGER MINISTERE DU DEVELOPPEMENT AGRICOLE METHODOLOGIE DE COLLECTE DE DONNEES dans le cadre de l enquête «Prévision et Estimation des Récoltes» (EPER) 2 I/ ENQUETE PREVISION ET ESTIMATION

Plus en détail

Simulation d un système d assurance automobile

Simulation d un système d assurance automobile Simulation d un système d assurance automobile DESSOUT / PLESEL / DACHI Plan 1 Introduction... 2 Méthodes et outils utilisés... 2.1 Chaines de Markov... 2.2 Méthode de Monte Carlo... 2.3 Méthode de rejet...

Plus en détail

Chapitre 3. Les distributions à deux variables

Chapitre 3. Les distributions à deux variables Chapitre 3. Les distributions à deux variables Jean-François Coeurjolly http://www-ljk.imag.fr/membres/jean-francois.coeurjolly/ Laboratoire Jean Kuntzmann (LJK), Grenoble University 1 Distributions conditionnelles

Plus en détail