Bureau : 238 Tel :

Dimension: px
Commencer à balayer dès la page:

Download "Bureau : 238 Tel : 04 76 82 58 90 Email : dominique.muller@upmf-grenoble.fr"

Transcription

1 Dominique Muller Laboratoire Inter-universitaire de Psychologie Bureau : 238 Tel : Supports de cours : webcom.upmf-grenoble.fr/lip/perso/dmuller/m2r/acm/

2 Test omnibus et tests de contrastes MA : Err i + β 1 C1 i + β 2 C2 i Dans R : ma<-lm(y~c1+c2,df) summary(ma) Correspond à la comparaison du modèle déclaré et du modèle simple > effet omnibus 2

3 Test omnibus et tests de contrastes MA : MC : Err i + β 1 C1 i + β 2 C2 i Err i L'anova qui nous est donnée correspond à l'effet omnibus (dans Statistica R modèle complet ) La comparaison de modèles sous-jacente, illustre la question traitée ici : Diminue-t-on l'erreur de manière intéressante lorsqu'on prend en compte l'existence des conditions? Ici la réponse est oui mais on ne peut rien dire de plus 3

4 Modèles ANOVA à un facteur (catégoriel) : k > 2 Y i + β 1 C1 i + β 2 C2 i Y i C1 i 1.11C2 i Prédiction pour FBm : Prédiction pour FBnm : Prédiction pour NoFB : Y (2) 1.11(0) Y ( 1) 1.11(1) Y ( 1) 1.11( 1) Ces prédictions sont les moyennes des trois conditions expérimentales Groupe FBm FBnm NoFB Moyenne

5 Tests des contrastes MA : Y i + β 1 C1 i + β 2 C2 i ma<-lm(y~c1+c2,df) confint(ma) 2.5 % 97.5 % (Intercept) c c

6 Tests des contrastes Y i C1 i 1.11C2 i! Interprétation de b : prédiction pour C1 et C2 0, ces deux contrastes étant centrés, cela correspond à une condition moyenne est donc la moyenne 6

7 Tests du contraste 1 Y i C1 i 1.11C2 i -6,26 (FBnm et NoFB) Contraste 1 (FBm) 7

8 Tests des contrastes Y i C1 i 1.11C2 i! Interprétation de b : prédiction pour C1 et C2 0, ces deux contrastes étant centrés, cela correspond à une condition moyenne est donc la moyenne! Interprétation de b : pour toute augmentation d'une unité, notre prédiction diminue de Il y a 3 unités de différence entre FBnm/NoFB et FBm, 6.26 correspond donc à 1/3 de la différence entre la moyenne de FBnm/NoFB et FBm.! Interprétation de b : pour toute augmentation d'une unité, notre prédiction diminue de Il y a 2 unités de différence entre FBnm et NoFB, 1.11 correspond donc à 1/2 de la différence entre la moyenne de FBnm et NoFB. 8

9 Pourquoi une famille de contrastes orthogonaux? Y a-t-il un problème avec le fait d'utiliser des contrastes non orthogonaux? FBm FBnm NoFB C C' Moyenne Y i C1i C '2 i! b 1 devrait être égal à 1/3 de la différence entre et la moyenne de et 54.48, soit Or b , soit 2/3 de la différence entre la moyenne des deux premières conditions et NoFB, soit un contraste 0.5, 0.5, -1! b 2 devrait être égale à 1/2 de la différence entre et 52.26, soit Or b , soit la différence entre FBnm et NoFB, soit un contraste 0, -0.5, 0.5 FBm FBnm NoFB C C.O. Cont. Ortho. FBm FBnm NoFB C.O. Cont. Ortho. C' Oui, il y a un problème, nous ne savons pas ce que nous testons! 9

10 Exemple de codage non orthogonaux : dummy codings FBm FBnm NoFB D D Moyenne Y i + β 1 D1 i + β 2 D2 i Avec un tel codage, la condition codée 0 sur les deux prédicteurs sera opposée à la condition codée 1. Ainsi,! D1 : la condition NoFB est opposée à la condition FBm! D2 : la condition NoFB est opposée à la condition FBnm (NB : R utilise ce type de codage si nous lui donnons une variable catégorielle non-recodée) 10

11 Un codage alternatif : test d'une tendance linéaire Imaginons qu'un chercheur ait comme hypothèse une augmentation linéaire telle que FBm < FBnm < NoFB Nous avons vu que le codage correspondant est 1, 0, 1, donc L 1, 0, 1 Il nous faut également définir un contraste orthogonal à celui-ci pour avoir une famille de contrastes orthogonaux > contraste de tendance quadratique Q -1, 2, -1 FBm FBnm NoFB L Q L teste la tendance linéaire mais c'est aussi le test de la condition FBm contre la condition NoFB Q teste la tendance quadratique mais c'est aussi le test de la condition FBnm contre la moyenne des deux autres conditions Ainsi, pour dire que les données suivent une tendance linéaire, il faudra que le contraste de linéarité soit significatif MAIS pas celui de tendance quadratique 11

12 Modèle à un facteur catégoriel k > 2 : test de linéarité Prédiction pour FBm : Y i + β 1 L i + β 2 Q i Y i L i Q i Y ( 1) ( 1) Prédiction pour FBnm : Y (0) (2) Prédiction pour NoFB : Y (1) ( 1) Ces prédictions sont, là encore, les moyennes des trois conditions expérimentales Groupe FBm FBnm NoFB Moyenne Un arrangement, un découpage, différent pour arriver à une même solution 12

13 Modèle à un facteur catégoriel k > 2 : test de linéarité Groupe FBm FBnm NoFB Moyenne L Q Y i L i Q i 13

14 Test omnibus et tests de contrastes F omnibus identique au découpage précédent Ici encore le contraste qui teste notre hypothèse, la linéarité, est significatif, mais pas celui qui teste la variance résiduelle 14

15 Découpage du SCR (SC effet) total SCR total C2 C1 L Q Y i β β 1.1 C1 i + β 1.2 C2 i Y i β β 2.1 L i + β 2.2 Q i 15

16 Plan Introduction Modèles simples (une VD) Variables continues (une VD et une VI continue) 2 conditions inter-sujets Conditions applications et sujets déviants 2 conditions intra-sujets 3 conditions inter-sujets 3 conditions intra-sujets Inter-sujets k > 3 ANCOVA et Régressions multiples Interaction variable dichotomique et continue (inter-sujets) 2 * 2 Inter-sujets 2 * 2 Intra-sujets 2 * 2 mixtes 2 (intra) * Continue

17 Modèle ANOVA intra à 3 modalités! VI : type d'items positifs (Rien, Compatible et Incompatible)! VD : temps de réaction pour dire si l'item du milieu est positif ou négatif Rien Compatible Incompatible Comme pour les VI inter, pour traiter les VI intra à 3 modalités, utilisation de familles de contrastes orthogonaux Ici deux questions orthogonales : La présence d'un «flanker» augmente-t-elle le temps de réponse? (Q1) Les temps de réponse sont-ils plus lents avec un «flanker» incompatible qu'avec un «flanker» compatible? (Q2)

18 VI intra à 3 modalités : Flanker effect (Fenske et Eastwood, 2003) Première question : La présence d'un «flanker» augmente-t-elle le temps de réponse? Rien Compatible Incompatible Là encore, utilisation d'un contraste pour opposer la première condition aux deux autres Comme nous sommes en intra le contraste renvoie à un calcul sur les trois mesures (trois colonnes) 19

19 VI intra à 3 modalités : première question, premier contraste Modèles pour Q1 : W 1 i + ε 1i Avec : W 1 i ( 2)Rien i + (1)Comp i + (1)Inc i 2Rien i + Comp i + Inc i Tester ce premier contraste revient donc encore une fois à tester la moyenne de W 1 contre 0 (test T pour échantillon unique) 20

20 VI intra à 3 modalités : première question, premier contraste Comparaison de modèles pour Q1 : MC : W 1 i 0 MA : W 1 i 120 SCE C SCE A PRE SCEC SCE SCE C A F SCR SCE ( pa pc) A ( N pa) ( 1 0) ( 6 1) 5.52 Le contraste opposant la condition rien avec les deux autres est donc tendanciel, F(1,5) 5.52, p <.07, PRE.52

21 VI intra à 3 modalités : première question, premier contraste W 1 i + ε1 i Comme pour tous modèles simples, on peut tester b 0 contre 0 en utilisant un test t pour échantillon unique : Le contraste opposant la condition rien avec les deux autres est donc tendanciel, t(5) 2.35, p <.07, PRE.52 Aparté : quand ddl effet 1 > F t PRE F 5.52 ddlerreur F + ddl effet 0.52

22 VI intra à 3 modalités : Flanker effect (Fenske et Eastwood, 2003) Seconde question : Les temps de réponse sont-ils plus lents avec un «flanker» incompatible qu'avec un «flanker» compatible? Rien Compatible Incompatible Là encore, utilisation d'un contraste mais cette fois pour opposer les deux dernières conditions. Soit : W 2 i + ε 2i Avec: W 2 i (0)Rien i + ( 1)Comp i + (1)Inc i Inc i Comp i 23

23 VI intra à 3 modalités : seconde question, second contraste Comparaison de modèles pour Q2 : MC : W 2 i 0 MA : W 2 i 57 SCE C SCE A PRE SCEC SCE SCE C A F SCR SCE ( pa pc) A ( N pa) ( 1 0) ( 6 1) 8.67 Le contraste opposant les conditions Comp et Inc est donc significatif, F(1,5) 8.67, p <.04, PRE.63

24 VI intra à 3 modalités : test omnibus Problème : la formule omnibus W i h δ h h Y hi 2 δ h devait être appliquée pour retrouver le test Recalculons les contrastes, que nous appellerons W1' et W2', mais en utilisant la formule ci-dessus. Ceci nous donne : W1' i ( 2) Rien i ( 2) + (1) Comp 2 + (1) 2 i + (1) + (1) Inc 2 i 2Rien i + Comp 6 i + Inc i W 2' i (0) Rien i + ( 1) Comp (0) 2 + ( 1) 2 i + (1) + (1) Inc 2 i Inc i Comp 2 i Pour le test de W1' : MC : MA : W1' i 0 + ε1 ' c i W1' i + ε1 ' a i SCE C SCE A Pour le test de W2' : MC : W 2' i 0 + ε 2 ' c i MA : W 2' i + ε 2 ' a i SCE C SCE A 5542

25 VI intra à 3 modalités : test omnibus Pour le test omnibus, il nous suffit d'additionner les SC et ddl des 2 contrastes :

26 VI intra à 3 modalités : une raison pour éviter de tester des effets à plus d'1 ddl en intra! " Exemple de comparaison de modèles pour un test à plus d'1 ddl en inter (k 3) MC : Y i MA : Y i + β 1 C1 i + β 2 C2 i Le terme d'erreur utilisé pour le test de l'effet omnibus sera le même que celui que nous aurions utilisé pour les tests à 1 ddl > SCE A " Exemple de test à plus d'1 ddl en intra (k 3) MA : W1' i + ε1 ' a i SCE A1' et MA : W 2' i + ε 2 ' a i SCE A2' 5542 SCE omnibus SCE A1' + SCE A2' Le terme d'erreur utilisé pour le test de l'effet omnibus d'une variable intra est (potentiellement) un composé de deux termes d'erreur totalement différents (ici l'un est plus de deux fois plus grand que l'autre) (note : pas de test vraiment efficace pour voir si cette différence est trop importante)

27 Plan Introduction Modèles simples (une VD) Variables continues (une VD et une VI continue) 2 conditions inter-sujets Conditions applications et sujets déviants 2 conditions intra-sujets 3 conditions inter-sujets 3 conditions intra-sujets Inter-sujets k > 3 ANCOVA et Régressions multiples Interaction variable dichotomique et continue (inter-sujets) 2 * 2 Inter-sujets 2 * 2 Intra-sujets 2 * 2 mixtes 2 (intra) * Continue

28 Test d'un modèle théorique avec facteurs catégoriels k > 3 Y i + β 1 C1 i + β 2 C2 i + β 3 C3 i β k Ck 1 i Nous avons parfois une hypothèse très précise sur ce que nous attendons Exemple de prédiction avec k 4 : 1) Trouver le contraste du modèle théorique 2) Trouver des contrastes pour tester ce qui n'est pas expliqué par le modèle théorique, ce que l'on appelle le résidu ou la variance résiduelle 3) Montrer que le modèle théorique est significatif MAIS pas le(s) résidu(s) 30

29 1) Contraste du modèle théorique Placer des poids correspondant aux «hauteurs» prévues pour chaque condition Prédictions Ensuite, faire de ces poids un code de contraste (centrer) : Pds T Pds TA Pds TV Pds TVA MOY Résultats observés Nous utiliserons donc un contraste appelé «Mod» du type : - 1, 0, 0, 1 31

30 2) Contrastes du résidu Trouver deux contrastes orthogonaux avec le modèle : T TA TV TVA Mod Res k k λmod. k 0 λres1. k 0 Res k λres2. k 0 Vérification de l'orthogonalité deux à deux des contrastes : Mod * Res1 : (-1 * 0) + (0 * 1) + (0 * -1) + (1 * 0) 0 Mod * Res2 : (-1 * -1) + (0 * 1) + (0 * 1) + (1 * -1) 0 Res1 * Res2 : (0 * -1) + (1 * 1) + (-1 * 1) + (0 * -1) 0 Il s'agit donc d'une famille de contrastes orthogonaux, nous pouvons tester le modèle : Chgt i + β 1 Mod i + β 2 Res1 i + β 3 Res2 i (adresse pour trouver des contrastes orthogonaux : 32

31 3a) Test du modèle Test du modèle théorique > simplement le test du contraste lui correspondant : MA : Chgt i + β 1 Mod i + β 2 Res1 i + β 3 Res2 i SCE A MC : Chgt i + β 1 Res1 i + β2res2 i! b est significatif, le changement d'attitude est donc plus fort dans la condition Texte seul (M 34.95) que dans la condition Texte + Audio + Vidéo (M 58.43), t(16) 3.8, p <.002.! Ce contraste seul ne nous en dit pas plus 33

32 3b) Test du résidu 3b) Test du résidu > nous allons mettre ensemble tout ce qui n est pas le modèle théorique : MA : MC : Chgt i + β 1 Mod i + β 2 Res1 i + β 3 Res2 i Chgt i + β 1 Mod i Pour une fois, le logiciel ne fera pas tout seul la comparaison de modèles qui nous intéresse. Comment faire? Nous allons faire les deux modèles (MA et MC), l un après l autre : > SC Erreur SCE A > SC Erreur SCE C 34

33 Trouver la SCE A Chgt i + β 1 Mod i + β 2 Res1 i + β 3 Res2 i Ici, nous faisons «tourner» ce modèle uniquement pour obtenir la SCE > SCE A Note : dans R, après avoir utilisé ma<-lm(chgt~mod+res1+res2,df) La fonction deviance(ma) nous donne directement

34 Trouver la SCE C Chgt i + β 1 Mod i Là encore, nous faisons «tourner» ce modèle uniquement pour obtenir la SCE. ATTENTION : la SCE que nous allons retenir correspond, paradoxalement, à ce que nous appelons habituellement la SCE A > SCE C Dans R, deviance(mc) nous donne directement

35 3b) Test du résidu 3b) Test du résidu > nous allons mettre ensemble tout ce qui n est pas le modèle théorique : MA : Chgt i + β 1 Mod i + β 2 Res1 i + β 3 Res2 i SCE A MC : Chgt i + β 1 Mod i SCE C Test du résidu > SCR SCE C SCE A F SCR SCE ( pa pc) A ( N pa) ( 4 2) ( 20 4) 0.31! Modèle significatif ET résidu non significatif > hypothèse vérifiée! Nous pourrions également être encore plus durs avec nous-mêmes en testant le F du résidu avec un ddl de l effet 1 > dans ce cas F(1,16)

Les variables indépendantes catégorielles

Les variables indépendantes catégorielles Les variables indépendantes catégorielles Jean-François Bickel Statistique II SP08 Jusqu à maintenant, nous avons considéré comme variables indépendantes uniquement des variables intervalles (âge) ou traitées

Plus en détail

Analyse de la variance à deux facteurs

Analyse de la variance à deux facteurs 1 1 IRMA, Université Louis Pasteur Strasbourg, France Master 1 Psychologie du développement 06-10-2008 Contexte Nous nous proposons d analyser l influence du temps et de trois espèces ligneuses d arbre

Plus en détail

Analyse de la variance (ANOVA)

Analyse de la variance (ANOVA) Chapitre 7 Analyse de la variance (ANOVA) Introduction L analyse de la variance (ANOVA) a pour objectif d étudier l influence d un ou plusieurs facteurs sur une variable quantitative. Nous nous intéresserons

Plus en détail

Analyse de la variance

Analyse de la variance M2 Statistiques et Econométrie Fanny MEYER Morgane CADRAN Margaux GAILLARD Plan du cours I. Introduction II. Analyse de la variance à un facteur III. Analyse de la variance à deux facteurs IV. Analyse

Plus en détail

Simulation Examen de Statistique Approfondie II **Corrigé **

Simulation Examen de Statistique Approfondie II **Corrigé ** Simulation Examen de Statistique Approfondie II **Corrigé ** Ces quatre exercices sont issus du livre d exercices de François Husson et de Jérôme Pagès intitulé Statistiques générales pour utilisateurs,

Plus en détail

Master 1 de Psychologie du Travail et des Organisations : Recueil et analyse des données - Corrigés des T.D. ( 2014/2015) -

Master 1 de Psychologie du Travail et des Organisations : Recueil et analyse des données - Corrigés des T.D. ( 2014/2015) - Dominique Ferrieux - Université Paul Valéry - Montpellier III Master de Psychologie du Travail et des Organisations : Recueil et analyse des données - Corrigés des T.D. ( /) - Deuxième partie : Plans :

Plus en détail

RÉSOLUTION DE SYSTÈMES À DEUX INCONNUES

RÉSOLUTION DE SYSTÈMES À DEUX INCONNUES RÉSOLUTION DE SYSTÈMES À DEUX INCONNUES Sommaire 1 Méthodes de résolution... 3 1.1. Méthode de Substitution... 3 1.2. Méthode des combinaisons linéaires... 6 La rubrique d'aide qui suit s'attardera aux

Plus en détail

Analyse de la Variance pour Plans à Mesures Répétées

Analyse de la Variance pour Plans à Mesures Répétées Analyse de la Variance pour Plans à Mesures Répétées Pr Roch Giorgi roch.giorgi@univ-amu.fr SESSTIM, Faculté de Médecine, Aix-Marseille Université, Marseille, France http://sesstim-orspaca.org http://optim-sesstim.univ-amu.fr/

Plus en détail

3. COMPARAISON DE PLUS DE DEUX GROUPES

3. COMPARAISON DE PLUS DE DEUX GROUPES 3. COMPARAISON DE PLUS DE DEUX GROUPES La comparaison de moyennes de plus de deux échantillons se fait généralement par une analyse de variance (ANOVA) L analyse de variance suppose l homogénéité des variances

Plus en détail

Analyses de Variance à un ou plusieurs facteurs Régressions Analyse de Covariance Modèles Linéaires Généralisés

Analyses de Variance à un ou plusieurs facteurs Régressions Analyse de Covariance Modèles Linéaires Généralisés Analyses de Variance à un ou plusieurs facteurs Régressions Analyse de Covariance Modèles Linéaires Généralisés Professeur Patrice Francour francour@unice.fr Une grande partie des illustrations viennent

Plus en détail

6. Comparaisons non planifiées : tests post-hoc

6. Comparaisons non planifiées : tests post-hoc 6. Comparaisons non planifiées : tests post-hoc Soumis par Éric Raufaste Dernière mise à jour : 27-01-2013 UOH - Psychométrie et Statistique en L2 Objectifs. Montrer quand et comment comparer les moyennes

Plus en détail

Cours 11 : Homogénéité de la variance et transformations non linéaires

Cours 11 : Homogénéité de la variance et transformations non linéaires Cours 11 : Homogénéité de la variance et transformations non linéaires Table des matières Section 1. Régularité de la nature et effets linéaires... 2 Section 2. Homogénéité des variances... 2 Section 3.

Plus en détail

Analyse de la variance Comparaison de plusieurs moyennes

Analyse de la variance Comparaison de plusieurs moyennes Analyse de la variance Comparaison de plusieurs moyennes Biostatistique Pr. Nicolas MEYER Laboratoire de Biostatistique et Informatique Médicale Fac. de Médecine de Strasbourg Mars 2011 Plan 1 Introduction

Plus en détail

Comparaison entre un groupe expérimental et un groupe témoin (Corrigé) /30

Comparaison entre un groupe expérimental et un groupe témoin (Corrigé) /30 Comparaison entre un groupe expérimental et un groupe témoin (Corrigé) /30 I1 Connaissances préalables : Buts spécifiques : Outils nécessaires: Consignes générales : Test t de comparaison de moyennes pour

Plus en détail

Cours 7 : Exemples. I- Régression linéaire simple II- Analyse de variance à 1 facteur III- Tests statistiques

Cours 7 : Exemples. I- Régression linéaire simple II- Analyse de variance à 1 facteur III- Tests statistiques Cours 7 : Exemples I- Régression linéaire simple II- Analyse de variance à 1 facteur III- Tests statistiques Exemple 1 : On cherche à expliquer les variations de y par celles d une fonction linéaire de

Plus en détail

L analyse de variance à deux critère de classification

L analyse de variance à deux critère de classification L analyse de variance à deux critère de classification Objectif : comparer l influence de chaque facteur sur la moyenne de plusieurs (k) groupes indépendants d observations La méthode détaillée ci-dessous

Plus en détail

LES DÉTERMINANTS DE MATRICES

LES DÉTERMINANTS DE MATRICES LES DÉTERMINANTS DE MATRICES Sommaire Utilité... 1 1 Rappel Définition et composantes d'une matrice... 1 2 Le déterminant d'une matrice... 2 3 Calcul du déterminant pour une matrice... 2 4 Exercice...

Plus en détail

Analyse de variance à un facteur Tests d hypothèses Analyse de variance à deux facteurs. Analyse de la variance ANOVA

Analyse de variance à un facteur Tests d hypothèses Analyse de variance à deux facteurs. Analyse de la variance ANOVA Analyse de la variance ANOVA Terminologie Modèles statistiques Estimation des paramètres 1 Analyse de variance à un facteur Terminologie Modèles statistiques Estimation des paramètres 2 3 Exemple. Analyse

Plus en détail

Analyses de la variance

Analyses de la variance Analyses de la variance Frédéric Bertrand et Myriam Maumy 1 Université de Strasbourg Institut de Recherche Mathématique Avancée 19 juin 011 1. Courriel : fbertran@math.unistra.fr et mmaumy@math.unistra.fr.

Plus en détail

Cours (7) de statistiques à distance, élaboré par Zarrouk Fayçal, ISSEP Ksar-Said, 2011-2012 LES STATISTIQUES INFERENTIELLES

Cours (7) de statistiques à distance, élaboré par Zarrouk Fayçal, ISSEP Ksar-Said, 2011-2012 LES STATISTIQUES INFERENTIELLES LES STATISTIQUES INFERENTIELLES (test de Student) L inférence statistique est la partie des statistiques qui, contrairement à la statistique descriptive, ne se contente pas de décrire des observations,

Plus en détail

CODES CORRECTEURS D'ERREURS

CODES CORRECTEURS D'ERREURS CODES CORRECTEURS D'ERREURS Marc URO TABLE DES MATIÈRES DÉTECTION ET CORRECTION D'ERREURS... 6 CAS D'UN CANAL SANS SYMBOLE D'EFFACEMENT...6 CAS D'UN CANAL AVEC SYMBOLE D'EFFACEMENT...7 GÉNÉRATION ET DÉTECTION

Plus en détail

- Inventaire tournant -

- Inventaire tournant - Fiche - Inventaire tournant - L inventaire consiste à saisir l ensemble des produits composant notre stock. La difficulté est de bien maîtriser ce qui nous appartiens et ne nous appartiens pas (exemple

Plus en détail

Introduction à l étude des Corps Finis

Introduction à l étude des Corps Finis Introduction à l étude des Corps Finis Robert Rolland (Résumé) 1 Introduction La structure de corps fini intervient dans divers domaines des mathématiques, en particulier dans la théorie de Galois sur

Plus en détail

EXCEL Tableau croisé dynamique

EXCEL Tableau croisé dynamique Chapitre 0 EXCEL Tableau croisé dynamique Organisation des données But: Je souhaite organiser mes données brutes (recueillies). Cours réalisé par Benjamin Putois. 1 Excel recueillir les étapes 1. Quelles

Plus en détail

Leçon N 4 : Statistiques à deux variables

Leçon N 4 : Statistiques à deux variables Leçon N 4 : Statistiques à deux variables En premier lieu, il te faut relire les cours de première sur les statistiques à une variable, il y a tout un langage à se remémorer : étude d un échantillon d

Plus en détail

FORMULAIRE DE STATISTIQUES

FORMULAIRE DE STATISTIQUES FORMULAIRE DE STATISTIQUES I. STATISTIQUES DESCRIPTIVES Moyenne arithmétique Remarque: population: m xμ; échantillon: Mx 1 Somme des carrés des écarts "# FR MOYENNE(série) MOYENNE(série) NL GEMIDDELDE(série)

Plus en détail

Essai de répétabilité et de reproductibilité : calculs à effectuer à la main pour comprendre la démarche générale.

Essai de répétabilité et de reproductibilité : calculs à effectuer à la main pour comprendre la démarche générale. 4. EXEMPLE N 4 Essai de répétabilité et de reproductibilité : calculs à effectuer à la main pour comprendre la démarche générale. 4.1. Objectif Le calcul de la répétabilité et de la reproductibilité implique

Plus en détail

Analyse statistique de données qualitatives et quantitatives en sciences sociales : TP RÉGRESSION LOGISTIQUE (MODÈLES CHAPITRE 1)

Analyse statistique de données qualitatives et quantitatives en sciences sociales : TP RÉGRESSION LOGISTIQUE (MODÈLES CHAPITRE 1) Analyse statistique de données qualitatives et quantitatives en sciences sociales : TP RÉGRESSION LOGISTIQUE (MODÈLES CHAPITRE 1) Modèles de régression logistique à réaliser Une explicative catégorielle

Plus en détail

Référence Produit. test

Référence Produit. test Healthcare Siemens Healthcare Diagnostics SA, Freilagerstr. 40, CH-8047 Zürich Nom Département Robert Schlatter RAQS-EHS Téléphone +41 (0) 585 581 066 Téléfax +41 (0) 585 581 151 Mobile E-mail robert.schlatter@siemens.com

Plus en détail

Vecteurs.nb 1. Collège du Sud 1-ère année. Mathématiques. Vecteurs. Edition 2003/2004 - DELM

Vecteurs.nb 1. Collège du Sud 1-ère année. Mathématiques. Vecteurs. Edition 2003/2004 - DELM Vecteurs.nb 1 Collège du Sud 1-ère année Mathématiques Vecteurs Edition 00/004 - DELM Supports de cours de mathématiques de degré secondaire II, lien hypertexte vers la page mère http://www.deleze.name/marcel/sec/index.html

Plus en détail

La gestion des doublons

La gestion des doublons fims.informatique@skynet.be 01.10 10.02 N 3 La gestion des doublons Dans la plupart des bases de données, les doublons sont souvent inévitables. Il est parfois complexe de les gérer car les informations

Plus en détail

Une variable binaire prédictrice (VI) et une variable binaire observée (VD) (Comparaison de pourcentages sur 2 groupes indépendants)

Une variable binaire prédictrice (VI) et une variable binaire observée (VD) (Comparaison de pourcentages sur 2 groupes indépendants) CIVILITE-SES.doc - 1 - Une variable binaire prédictrice (VI) et une variable binaire observée (VD) (Comparaison de pourcentages sur 2 groupes indépendants) 1 PRÉSENTATION DU DOSSIER CIVILITE On s intéresse

Plus en détail

Chapitre 3. Les distributions à deux variables

Chapitre 3. Les distributions à deux variables Chapitre 3. Les distributions à deux variables Jean-François Coeurjolly http://www-ljk.imag.fr/membres/jean-francois.coeurjolly/ Laboratoire Jean Kuntzmann (LJK), Grenoble University 1 Distributions conditionnelles

Plus en détail

LE TRAITEMENT STATISTIQUE. I. Les types de traitements statistiques en fonction des questions-problèmes (QP)

LE TRAITEMENT STATISTIQUE. I. Les types de traitements statistiques en fonction des questions-problèmes (QP) LE TRAITEMENT STATISTIQUE I. Les types de traitements statistiques en fonction des questions-problèmes (QP) Dans une recherche, on se pose toujours une ou plusieurs questions qu'il s'agira de résoudre.

Plus en détail

I - Introduction à La psychologie Expérimentale

I - Introduction à La psychologie Expérimentale LA METHODE EXPERIMENTALE I - Introduction à La psychologie Expérimentale I.1. Introduction I.2. Critiques concernant l utilisation de la méthode expérimentale en psychologie I.2.A. Critiques morales I.2.A.

Plus en détail

Navigation difficile

Navigation difficile Navigation difficile Ma navigation est trop lente : Vous réussissez à vous connecter à Internet et vous naviguez sur le Web. Après quelques minutes de connexion, votre navigation devient très lente. Dans

Plus en détail

par Jean-François Deslandes

par Jean-François Deslandes GUIDE EXCEL POUR LA STATISTIQUE par Jean-François Deslandes Automne 2000 2 Table des matières RAPPORT DE TABLEAU CROISÉ DYNAMIQUE 4 CONSTRUCTION D'UN TABLEAU DE FRÉQUENCE POUR UNE VARIABLE UNIQUE 4 DISTRIBUTION

Plus en détail

Analyse de la variance à un facteur

Analyse de la variance à un facteur Analyse de la variance à un facteur Frédéric Bertrand et Myriam Maumy-Bertrand IRMA, UMR 7501, Université de Strasbourg 08 juin 2015 F. Bertrand et M. Maumy-Bertrand (UdS) Analyse de la variance à un facteur

Plus en détail

Introduction à l'analyse statistique des données

Introduction à l'analyse statistique des données INTRODUCTION À L'ANALYSE STATISTIQUE DES DONNÉES CONCEPTS DE BASE Un certain nombre de concepts, préalables indispensables à la compréhension des analyses présentées, sont définis ici. De même pour quelques

Plus en détail

Cours 9 : Plans à plusieurs facteurs

Cours 9 : Plans à plusieurs facteurs Cours 9 : Plans à plusieurs facteurs Table des matières Section 1. Diviser pour regner, rassembler pour saisir... 3 Section 2. Définitions et notations... 3 2.1. Définitions... 3 2.2. Notations... 4 Section

Plus en détail

Les effets d une contrainte de crédit sur la convergence économique : Le cas des pays de l UEMOA

Les effets d une contrainte de crédit sur la convergence économique : Le cas des pays de l UEMOA Les effets d une contrainte de crédit sur la convergence économique : Le cas des pays de l UEMOA Auteurs : Abdoulaye DIAGNE et Abdou-Aziz NIANG Introduction Ceci devrait contribuer à réduire l écart entre

Plus en détail

La régression logistique. Par Sonia NEJI et Anne-Hélène JIGOREL

La régression logistique. Par Sonia NEJI et Anne-Hélène JIGOREL La régression logistique Par Sonia NEJI et Anne-Hélène JIGOREL Introduction La régression logistique s applique au cas où: Y est qualitative à 2 modalités Xk qualitatives ou quantitatives Le plus souvent

Plus en détail

Introduction à l'analyse de contenu qualitative : Voyage au pays du qualitatif

Introduction à l'analyse de contenu qualitative : Voyage au pays du qualitatif 1 Introduction à l'analyse de contenu qualitative : Voyage au pays du qualitatif Narration pour présentation Prezi (http://prezi.com/5tjog4mzpuhh/analyse-de-donneestextuelles-analyse-de-contenu-qualitative/)

Plus en détail

III- Raisonnement par récurrence

III- Raisonnement par récurrence III- Raisonnement par récurrence Les raisonnements en mathématiques se font en général par une suite de déductions, du style : si alors, ou mieux encore si c est possible, par une suite d équivalences,

Plus en détail

Cours (8) de statistiques à distance, élaboré par Zarrouk Fayçal, ISSEP Ksar-Said, 2011-2012. Test du Khi 2

Cours (8) de statistiques à distance, élaboré par Zarrouk Fayçal, ISSEP Ksar-Said, 2011-2012. Test du Khi 2 Test du Khi 2 Le test du Khi 2 (khi deux ou khi carré) fournit une méthode pour déterminer la nature d'une répartition, qui peut être continue ou discrète. Domaine d application du test : Données qualitatives

Plus en détail

Validité prédictive des questionnaires Cebir. Etude 1 : validité critérielle dans le secteur du gardiennage

Validité prédictive des questionnaires Cebir. Etude 1 : validité critérielle dans le secteur du gardiennage Validité prédictive des questionnaires Cebir Introduction Dans le domaine de la sélection, il est particulièrement intéressant de déterminer la validité prédictive d un test. Malheureusement, les occasions

Plus en détail

Restauration d images

Restauration d images Restauration d images Plan Présentation du problème. Premières solutions naïves (moindre carrés, inverse généralisée). Méthodes de régularisation. Panorama des méthodes récentes. Problème général Un système

Plus en détail

ASI (L2) : TP3 Calculs probabilistes avec Excel et Rstat

ASI (L2) : TP3 Calculs probabilistes avec Excel et Rstat ASI (L2) : TP3 Calculs probabilistes avec Excel et Rstat Objectifs du TP : Savoir utiliser Excel et Rstat pour calculer des moyennes pondérées, des variances pondérées et savoir faire des approximations

Plus en détail

Interprétation d une analyse de variance avec mesures répétées

Interprétation d une analyse de variance avec mesures répétées Approche quantitative Interprétation d une analyse de variance avec mesures répétées «Les faits sont têtus. Il est plus facile de s arranger avec les statistiques.» Mark Twain L objectif de ce document

Plus en détail

Applications linéaires

Applications linéaires Applications linéaires I) Applications linéaires - Généralités 1.1) Introduction L'idée d'application linéaire est intimement liée à celle d'espace vectoriel. Elle traduit la stabilité par combinaison

Plus en détail

PRESENTATION ET UTILISATION COURANTE

PRESENTATION ET UTILISATION COURANTE PRESENTATION ET UTILISATION COURANTE 1- PRESENTATION Remplaçant Sertifal depuis le 1 er février 2007, Sertifup 1 est composé de deux modules principaux : - Un site web( www.sertifup.fr ) dont l accès est

Plus en détail

MÉTHODES STATISTIQUES D ÉVALUATION II

MÉTHODES STATISTIQUES D ÉVALUATION II PLAN DE COURS ENP7138 MÉTHODES STATISTIQUES D ÉVALUATION II Frédérick Philippe Chargé de cours Région : Montréal Session : Hiver 2011 Coordonnées HIVER 2011 Chargé de cours Frédérick Philippe Département

Plus en détail

Chapitre 8: Inférence, échantillonnage et estimation

Chapitre 8: Inférence, échantillonnage et estimation Chapitre 8: Inférence, échantillonnage et estimation 1. Echantillonnage aléatoire simple 2. Inférence statistique 3. Estimation 4. Evaluation graphique de l adéquation d un modèle de distribution 1 L inférence

Plus en détail

Chapitre 1 : la comptabilité de caisse

Chapitre 1 : la comptabilité de caisse La comptabilité de caisse www.comptanat.fr Chapitre 1 : la comptabilité de caisse À l'origine de la comptabilité de caisse se trouve l'idée que, pour limiter les risques de détournement, seule une personne

Plus en détail

CH.2 CODES CORRECTEURS

CH.2 CODES CORRECTEURS CH.2 CODES CORRECTEURS 2.1 Le canal bruité 2.2 La distance de Hamming 2.3 Les codes linéaires 2.4 Les codes de Reed-Muller 2.5 Les codes circulaires 2.6 Le câblage des codes circulaires 2.7 Les performances

Plus en détail

Rallye mathématique 2006/2007 des écoles de Haute-Loire Cycle 3 Première manche Eléments de solutions 1. Les œufs de Pâques (10 points)

Rallye mathématique 2006/2007 des écoles de Haute-Loire Cycle 3 Première manche Eléments de solutions 1. Les œufs de Pâques (10 points) Rallye mathématique 2006/2007 des écoles de Haute-Loire Cycle 3 Première manche Eléments de solutions 1. Les œufs de Pâques (10 points) Il s'agit d'un problème qui fait appel aux connaissances sur la numération.

Plus en détail

DU BINAIRE AU MICROPROCESSEUR - D ANGELIS LOGIQUE COMBINATOIRE. SIMPLIFICATION DES EQUATIONS BOOLEENNES Leçon 07

DU BINAIRE AU MICROPROCESSEUR - D ANGELIS LOGIQUE COMBINATOIRE. SIMPLIFICATION DES EQUATIONS BOOLEENNES Leçon 07 DU BINAIRE AU MICROPROCESSEUR - D ANGELIS 43 SIMPLIFICATION DES EQUATIONS BOOLEENNES Leçon 7 Le rôle de la logique combinatoire est de faciliter la simplification des circuits électriques. La simplification

Plus en détail

11 OSMOLARITÉ, MULTIPLES SOURCES DE VARIATION

11 OSMOLARITÉ, MULTIPLES SOURCES DE VARIATION 11 OSMOLARITÉ, MULTIPLES SOURCES DE VARIATION Dans cette étude de cas nous nous retrouvons face à des données dont la variabilité court terme est très différente de celle à long terme. Les cartes de contrôle

Plus en détail

TD de statistique : tests du Chi 2

TD de statistique : tests du Chi 2 TD de statistique : tests du Chi 2 Jean-Baptiste Lamy 6 octobre 2008 1 Test du Chi 2 C est l équivalent de la comparaison de moyenne, mais pour les variables qualitatives. 1.1 Cas 1 : comparer les répartitions

Plus en détail

La théorie des mouvements dans les formules Jean-François Nicaud Version initiale de Février 2013 jeanfrancois.nicaud@laposte.net

La théorie des mouvements dans les formules Jean-François Nicaud Version initiale de Février 2013 jeanfrancois.nicaud@laposte.net La théorie des mouvements dans les formules Jean-François Nicaud Version initiale de Février 2013 jeanfrancois.nicaud@laposte.net Article rédigé avec epsilonwriter puis copié dans Word La théorie des mouvements

Plus en détail

Chapitre 1 I:\ Soyez courageux!

Chapitre 1 I:\ Soyez courageux! Chapitre 1 I:\ Soyez courageux! Pour ne rien vous cacher, le langage d'assembleur (souvent désigné sous le terme "Assembleur", bien que ce soit un abus de langage, puisque "Assembleur" désigne le logiciel

Plus en détail

LES BACTERIES. Table des matières. Tâche complexe produite par l académie de Clermont-Ferrand. Mai 2012. Fiche professeur... 2. Fiche élève 1...

LES BACTERIES. Table des matières. Tâche complexe produite par l académie de Clermont-Ferrand. Mai 2012. Fiche professeur... 2. Fiche élève 1... LES BACTERIES Table des matières Fiche professeur... 2 Fiche élève 1... 5 Fiche élève 2... 6 Narration de séance et productions d élèves 1... 7 Narration de séance et productions d élèves 2... 10 1 Fiche

Plus en détail

Filtrage, Routage et Segmentation réseau Travaux pratiques

Filtrage, Routage et Segmentation réseau Travaux pratiques Filtrage, Routage et Segmentation réseau Travaux pratiques Le but est de faire l'étude, le test par simulateur et la réalisation d'une maquette complète d'infrastructure réseau routé et filtrant avec :

Plus en détail

TESTS STATISTIQUES: COMPARAISON, INDÉPENDANCE ET RÉGRESSION LINÉAIRE

TESTS STATISTIQUES: COMPARAISON, INDÉPENDANCE ET RÉGRESSION LINÉAIRE TESTS STATISTIQUES: COMPARAISON, INDÉPENDANCE ET RÉGRESSION LINÉAIRE Les résultats donnés par R et SAS donnent les valeurs des tests, la valeur-p ainsi que les intervalles de confiance. TEST DE COMPARAISON

Plus en détail

Faire des captures d'écran avec le logiciel Xnview.

Faire des captures d'écran avec le logiciel Xnview. Faire des captures d'écran avec le logiciel Xnview. Petit tutoriel de prise en main rapide à destination des gens pressés... et invitation à découvrir un logiciel que je considère un peu mon «couteau suisse»

Plus en détail

Pour utiliser les menus statistiques fournis par excel

Pour utiliser les menus statistiques fournis par excel Pour utiliser les menus statistiques fournis par excel Préalable: Dans Outils/Macro complémentaires, cocher si ce n'est pas déjà fait "utilitaires d'analyse": Partie 1 Analyse de variance A] Plan S n

Plus en détail

L analyse de la variance avec R commander

L analyse de la variance avec R commander L analyse de la variance avec R commander 19 mars 2014 1 Installer R Pour installer R, il vous suffit d aller sur le site http://www.r-project.org/. Choisissez un miroir pour le téléchargement. Sélectionner

Plus en détail

La régression logistique

La régression logistique La régression logistique Présentation pour le cours SOL6210, Analyse quantitative avancée Claire Durand, 2015 1 Utilisation PQuand la variable dépendante est nominale ou ordinale < Deux types selon la

Plus en détail

Fondements et étapes du processus de recherche, 3 e édition

Fondements et étapes du processus de recherche, 3 e édition Fondements et étapes du processus de recherche, 3 e édition Nouveauté Méthodes quantitatives et qualitatives Prix : 81,95 $ Auteurs : Marie-Fabienne Fortin, Johanne Gagnon ISBN13 : 9782765050063 Nombre

Plus en détail

L informatique des entrepôts de données

L informatique des entrepôts de données L informatique des entrepôts de données Daniel Lemire SEMAINE 13 L exploration des données 13.1. Présentation de la semaine L exploration de données (ou data mining) est souvent associée à l intelligence

Plus en détail

Relations entre le coefficient de. généralisabilité absolu et les indices. Rhô carré et Oméga carré

Relations entre le coefficient de. généralisabilité absolu et les indices. Rhô carré et Oméga carré Groupe Edumétrie Qualité de la mesure en éducation Relations entre le coefficient de généralisabilité absolu et les indices Rhô carré et Oméga carré Gianreto PINI Novembre 010 L'auteur remercie tout particulièrement

Plus en détail

Gestion des erreur dans Excel

Gestion des erreur dans Excel Des erreurs apparaissent parfois dans les formules de calcul ou lors de l'exécution d'une macro. Excel renvoie une valeur spécifique à l'erreur rencontrée Ces problèmes ont diverses causes: une faute de

Plus en détail

Quelques rappels concernant la méthode expérimentale

Quelques rappels concernant la méthode expérimentale Quelques rappels concernant la méthode expérimentale 1. La Méthode expérimentale : Définition. Une définition classique de la méthode expérimentale est qu elle «correspond à la méthode d investigation

Plus en détail

Mode d emploi site marchand RG Online. www.groupe-rg-online.com

Mode d emploi site marchand RG Online. www.groupe-rg-online.com Mode d emploi site marchand RG Online www.groupe-rg-online.com Le site RG online vous permet de passer vos commandes directement en ligne, à travers un site Internet. Le site présente un catalogue d articles,

Plus en détail

Correction de l épreuve de Statistiques et Informatique appliquées à la Psychologie

Correction de l épreuve de Statistiques et Informatique appliquées à la Psychologie Université de Bretagne Occidentale Année Universitaire 2013-2014 U.F.R. de Lettres et Sciences Humaines CS 93837-29238 BREST CEDEX 3 Section : Psychologie - Licence 3è année Enseignant responsable : F.-G.

Plus en détail

UNIVERSITÉ DE MONTRÉAL DÉPARTEMENT DE SOCIOLOGIE ************* Cours de niveau gradué en méthodes quantitatives *************

UNIVERSITÉ DE MONTRÉAL DÉPARTEMENT DE SOCIOLOGIE ************* Cours de niveau gradué en méthodes quantitatives ************* ************* Cours de niveau gradué en méthodes quantitatives ************* SOL 6210 - Analyse quantitative avancée Le séminaire d analyse quantitative avancée se donne en classe une fois par année. Chaque

Plus en détail

L'APPROCHE EXPERIMENTALE EN RECHERCHE: introduction aux statistiques.

L'APPROCHE EXPERIMENTALE EN RECHERCHE: introduction aux statistiques. L'APPROCHE EXPERIMENTALE EN RECHERCHE: introduction aux statistiques 1 BUTS DU COURS : se familiariser avec le vocabulaire statistique o variable dépendante, variable indépendante o statistique descriptive,

Plus en détail

Séance 12: Algorithmes de Support Vector Machines

Séance 12: Algorithmes de Support Vector Machines Séance 12: Algorithmes de Support Vector Machines Laboratoire de Statistique et Probabilités UMR 5583 CNRS-UPS www.lsp.ups-tlse.fr/gadat Douzième partie XII Algorithmes de Support Vector Machines Principe

Plus en détail

Étapes du développement et de l utilisation d un modèle de simulation

Étapes du développement et de l utilisation d un modèle de simulation Étapes du développement et de l utilisation d un modèle de simulation Étapes du développement et de l utilisation d un modèle de simulation Formulation du problème Cueillette et analyse de données Conception

Plus en détail

LE PROBLEME DU FLOT MAXIMAL

LE PROBLEME DU FLOT MAXIMAL LE PROBLEME DU FLOT MAXIMAL I Exemple d introduction Deux châteaux d'eau alimentent 3 villes à travers un réseau de canalisations au sein duquel se trouvent également des stations de pompage. Les châteaux

Plus en détail

Sylvain Archenault Yves Houpert. Projet Informatique : Langage Java : Jeu De Dames en Java

Sylvain Archenault Yves Houpert. Projet Informatique : Langage Java : Jeu De Dames en Java Sylvain Archenault Yves Houpert Projet Informatique : Langage Java : Jeu De Dames en Java Projet GM3 Mai 2005 Chapitre 1 INTRODUCTION Le projet qui nous a été confié est de réaliser un jeu de dames en

Plus en détail

(Statistical Package for the Social Sciences)

(Statistical Package for the Social Sciences) Initiation à l utilisation de SPSS (Statistical Package for the Social Sciences) 1 SPSS 2 3 Plan de l exposé Faire une recherche (bibliographique) sur le test; Définir le test à mesurer; Expliquer les

Plus en détail

Valeur cible et solveur. Les calculs effectués habituellement avec Excel utilisent des valeurs numériques qui constituent les données d'un problème.

Valeur cible et solveur. Les calculs effectués habituellement avec Excel utilisent des valeurs numériques qui constituent les données d'un problème. Valeur cible et solveur Atteindre une valeur cible Les calculs effectués habituellement avec Excel utilisent des valeurs numériques qui constituent les données d'un problème. A l'aide d'un certain nombre

Plus en détail

Christophe Fournier. Clinique de Thuys. Aunége - Christophe Fournier

Christophe Fournier. Clinique de Thuys. Aunége - Christophe Fournier Christophe Fournier Clinique de Thuys Aunége - Christophe Fournier 2 Table des matières Information sur l'échantillon 3 Structure de l'échantillon...4 Point méthodologique 6 Point méthodologique...7 Représentativité

Plus en détail

U. E. R SYSTEME DE TESTS AUTOMATIQUES AVEC UN OSCILLOSCOPE NUMERIQUE + PC M. AGERON, A. HRISOHO, C. NGUYEN, K. TRUONG. Bâtiment 200-91405 ORSAY Cedex

U. E. R SYSTEME DE TESTS AUTOMATIQUES AVEC UN OSCILLOSCOPE NUMERIQUE + PC M. AGERON, A. HRISOHO, C. NGUYEN, K. TRUONG. Bâtiment 200-91405 ORSAY Cedex 1 T P-i. oc i LAIVUTS 1 J-13 October SYSTEME DE TESTS AUTOMATIQUES AVEC UN OSCILLOSCOPE NUMERIQUE + PC M. AGERON, A. HRISOHO, C. NGUYEN, K. TRUONG U. E. R de l'université Paris-Sud Institut National de

Plus en détail

Distributions bayésiennes nonparamétriques sur les matrices binaires triangulaires infinies : Applications aux modèles graphiques

Distributions bayésiennes nonparamétriques sur les matrices binaires triangulaires infinies : Applications aux modèles graphiques Distributions bayésiennes nonparamétriques sur les matrices binaires triangulaires infinies : Applications aux modèles graphiques Patrick Dallaire Université Laval Département d informatique et de génie

Plus en détail

Etude des propriétés empiriques du lasso par simulations

Etude des propriétés empiriques du lasso par simulations Etude des propriétés empiriques du lasso par simulations L objectif de ce TP est d étudier les propriétés empiriques du LASSO et de ses variantes à partir de données simulées. Un deuxième objectif est

Plus en détail

TABLE DES MATIÈRES. Bruxelles, De Boeck, 2011, 736 p.

TABLE DES MATIÈRES. Bruxelles, De Boeck, 2011, 736 p. STATISTIQUE THÉORIQUE ET APPLIQUÉE Tome 2 Inférence statistique à une et à deux dimensions Pierre Dagnelie TABLE DES MATIÈRES Bruxelles, De Boeck, 2011, 736 p. ISBN 978-2-8041-6336-5 De Boeck Services,

Plus en détail

ORDRE DE RÉACTION : MÉTHODES DE

ORDRE DE RÉACTION : MÉTHODES DE ORDRE DE RÉACTION : MÉTHODES DE RÉSOLUTION Table des matières 1 Méthodes expérimentales 2 1.1 Position du problème..................................... 2 1.2 Dégénérescence de l ordre...................................

Plus en détail

«14_Synthese _PHP_MySQL_cours_4»

«14_Synthese _PHP_MySQL_cours_4» «14_Synthese _PHP_MySQL_cours_4» Maintenant que nous nous sommes connectés à la base de données et y avons mis des informations via un formulaire (cours 13), nous allons voir comment interroger nos tables

Plus en détail

Récupération de fichiers effacés avec Recuva 1/ 5

Récupération de fichiers effacés avec Recuva 1/ 5 Récupération de fichiers effacés avec Recuva 1/ 5 Beaucoup d'entre nous un jour avons supprimé par erreur soit des documents ou des photos et malheureusement nous les avons mis à la poubelle. Nous pensons

Plus en détail

5 ème Chapitre 4 Triangles

5 ème Chapitre 4 Triangles 5 ème Chapitre 4 Triangles 1) Médiatrices Définition : la médiatrice d'un segment est l'ensemble des points équidistants des extrémités du segment (cours de 6 ème ). Si M appartient à la médiatrice du

Plus en détail

SAS BI DASHBOARD 4.3 : POUR LE MEILLEUR ET POUR LE FILTRE

SAS BI DASHBOARD 4.3 : POUR LE MEILLEUR ET POUR LE FILTRE SAS BI DASHBOARD 4.3 : POUR LE MEILLEUR ET POUR LE FILTRE En tant qu outils d aide à la décision, les tableaux de bord doivent répondre rapidement. Pour participer à cet effort de réactivité en termes

Plus en détail

REGRESSION MULTIPLE: CONSOMMATION D ELECTRICITE

REGRESSION MULTIPLE: CONSOMMATION D ELECTRICITE REGRESSION MULTIPLE: CONSOMMATION D ELECTRICITE LES DONNEES OBS KW SURFACE PERS PAVILLON AGE VOL SBAINS 1 4805 130 4 1 65 410 1 2 3783 123 4 1 5 307 2 3 2689 98 3 0 18 254 1 4 5683 178 6 1 77 570 3 5 3750

Plus en détail

Chapitre 2. Valeur acquise par un capital

Chapitre 2. Valeur acquise par un capital MATHEMATIQUES FINANCIERES Le temps, c'est de l'argent Si un capital est placé pendant "un temps assez long", on utilise les intérêts composés. En règle générale, à moins d'être complètement étranger aux

Plus en détail

Estimateur d'erreur de ZHU-ZIENKIEWICZ

Estimateur d'erreur de ZHU-ZIENKIEWICZ Titre : Estimateur d'erreur de ZHU-ZIENKIEWICZ Date : 24/04/2012 Page : 1/12 Estimateur d'erreur de ZHU-ZIENKIEWICZ Résumé : On expose dans ce document la méthode d'estimation de l'erreur de discrétisation

Plus en détail

4N1. Nombres relatifs EST-CE QUE TU TE SOUVIENS?

4N1. Nombres relatifs EST-CE QUE TU TE SOUVIENS? 4N1 Nombres relatifs EST-CE QUE TU TE SOUVIENS? Remarque : pour pouvoir vraiment retenir comment on calcule avec les nombres relatifs, il est déconseillé d'utiliser une calculatrice ici. 1) Classe les

Plus en détail