Bureau : 238 Tel :

Dimension: px
Commencer à balayer dès la page:

Download "Bureau : 238 Tel : 04 76 82 58 90 Email : dominique.muller@upmf-grenoble.fr"

Transcription

1 Dominique Muller Laboratoire Inter-universitaire de Psychologie Bureau : 238 Tel : Supports de cours : webcom.upmf-grenoble.fr/lip/perso/dmuller/m2r/acm/

2 Test omnibus et tests de contrastes MA : Err i + β 1 C1 i + β 2 C2 i Dans R : ma<-lm(y~c1+c2,df) summary(ma) Correspond à la comparaison du modèle déclaré et du modèle simple > effet omnibus 2

3 Test omnibus et tests de contrastes MA : MC : Err i + β 1 C1 i + β 2 C2 i Err i L'anova qui nous est donnée correspond à l'effet omnibus (dans Statistica R modèle complet ) La comparaison de modèles sous-jacente, illustre la question traitée ici : Diminue-t-on l'erreur de manière intéressante lorsqu'on prend en compte l'existence des conditions? Ici la réponse est oui mais on ne peut rien dire de plus 3

4 Modèles ANOVA à un facteur (catégoriel) : k > 2 Y i + β 1 C1 i + β 2 C2 i Y i C1 i 1.11C2 i Prédiction pour FBm : Prédiction pour FBnm : Prédiction pour NoFB : Y (2) 1.11(0) Y ( 1) 1.11(1) Y ( 1) 1.11( 1) Ces prédictions sont les moyennes des trois conditions expérimentales Groupe FBm FBnm NoFB Moyenne

5 Tests des contrastes MA : Y i + β 1 C1 i + β 2 C2 i ma<-lm(y~c1+c2,df) confint(ma) 2.5 % 97.5 % (Intercept) c c

6 Tests des contrastes Y i C1 i 1.11C2 i! Interprétation de b : prédiction pour C1 et C2 0, ces deux contrastes étant centrés, cela correspond à une condition moyenne est donc la moyenne 6

7 Tests du contraste 1 Y i C1 i 1.11C2 i -6,26 (FBnm et NoFB) Contraste 1 (FBm) 7

8 Tests des contrastes Y i C1 i 1.11C2 i! Interprétation de b : prédiction pour C1 et C2 0, ces deux contrastes étant centrés, cela correspond à une condition moyenne est donc la moyenne! Interprétation de b : pour toute augmentation d'une unité, notre prédiction diminue de Il y a 3 unités de différence entre FBnm/NoFB et FBm, 6.26 correspond donc à 1/3 de la différence entre la moyenne de FBnm/NoFB et FBm.! Interprétation de b : pour toute augmentation d'une unité, notre prédiction diminue de Il y a 2 unités de différence entre FBnm et NoFB, 1.11 correspond donc à 1/2 de la différence entre la moyenne de FBnm et NoFB. 8

9 Pourquoi une famille de contrastes orthogonaux? Y a-t-il un problème avec le fait d'utiliser des contrastes non orthogonaux? FBm FBnm NoFB C C' Moyenne Y i C1i C '2 i! b 1 devrait être égal à 1/3 de la différence entre et la moyenne de et 54.48, soit Or b , soit 2/3 de la différence entre la moyenne des deux premières conditions et NoFB, soit un contraste 0.5, 0.5, -1! b 2 devrait être égale à 1/2 de la différence entre et 52.26, soit Or b , soit la différence entre FBnm et NoFB, soit un contraste 0, -0.5, 0.5 FBm FBnm NoFB C C.O. Cont. Ortho. FBm FBnm NoFB C.O. Cont. Ortho. C' Oui, il y a un problème, nous ne savons pas ce que nous testons! 9

10 Exemple de codage non orthogonaux : dummy codings FBm FBnm NoFB D D Moyenne Y i + β 1 D1 i + β 2 D2 i Avec un tel codage, la condition codée 0 sur les deux prédicteurs sera opposée à la condition codée 1. Ainsi,! D1 : la condition NoFB est opposée à la condition FBm! D2 : la condition NoFB est opposée à la condition FBnm (NB : R utilise ce type de codage si nous lui donnons une variable catégorielle non-recodée) 10

11 Un codage alternatif : test d'une tendance linéaire Imaginons qu'un chercheur ait comme hypothèse une augmentation linéaire telle que FBm < FBnm < NoFB Nous avons vu que le codage correspondant est 1, 0, 1, donc L 1, 0, 1 Il nous faut également définir un contraste orthogonal à celui-ci pour avoir une famille de contrastes orthogonaux > contraste de tendance quadratique Q -1, 2, -1 FBm FBnm NoFB L Q L teste la tendance linéaire mais c'est aussi le test de la condition FBm contre la condition NoFB Q teste la tendance quadratique mais c'est aussi le test de la condition FBnm contre la moyenne des deux autres conditions Ainsi, pour dire que les données suivent une tendance linéaire, il faudra que le contraste de linéarité soit significatif MAIS pas celui de tendance quadratique 11

12 Modèle à un facteur catégoriel k > 2 : test de linéarité Prédiction pour FBm : Y i + β 1 L i + β 2 Q i Y i L i Q i Y ( 1) ( 1) Prédiction pour FBnm : Y (0) (2) Prédiction pour NoFB : Y (1) ( 1) Ces prédictions sont, là encore, les moyennes des trois conditions expérimentales Groupe FBm FBnm NoFB Moyenne Un arrangement, un découpage, différent pour arriver à une même solution 12

13 Modèle à un facteur catégoriel k > 2 : test de linéarité Groupe FBm FBnm NoFB Moyenne L Q Y i L i Q i 13

14 Test omnibus et tests de contrastes F omnibus identique au découpage précédent Ici encore le contraste qui teste notre hypothèse, la linéarité, est significatif, mais pas celui qui teste la variance résiduelle 14

15 Découpage du SCR (SC effet) total SCR total C2 C1 L Q Y i β β 1.1 C1 i + β 1.2 C2 i Y i β β 2.1 L i + β 2.2 Q i 15

16 Plan Introduction Modèles simples (une VD) Variables continues (une VD et une VI continue) 2 conditions inter-sujets Conditions applications et sujets déviants 2 conditions intra-sujets 3 conditions inter-sujets 3 conditions intra-sujets Inter-sujets k > 3 ANCOVA et Régressions multiples Interaction variable dichotomique et continue (inter-sujets) 2 * 2 Inter-sujets 2 * 2 Intra-sujets 2 * 2 mixtes 2 (intra) * Continue

17 Modèle ANOVA intra à 3 modalités! VI : type d'items positifs (Rien, Compatible et Incompatible)! VD : temps de réaction pour dire si l'item du milieu est positif ou négatif Rien Compatible Incompatible Comme pour les VI inter, pour traiter les VI intra à 3 modalités, utilisation de familles de contrastes orthogonaux Ici deux questions orthogonales : La présence d'un «flanker» augmente-t-elle le temps de réponse? (Q1) Les temps de réponse sont-ils plus lents avec un «flanker» incompatible qu'avec un «flanker» compatible? (Q2)

18 VI intra à 3 modalités : Flanker effect (Fenske et Eastwood, 2003) Première question : La présence d'un «flanker» augmente-t-elle le temps de réponse? Rien Compatible Incompatible Là encore, utilisation d'un contraste pour opposer la première condition aux deux autres Comme nous sommes en intra le contraste renvoie à un calcul sur les trois mesures (trois colonnes) 19

19 VI intra à 3 modalités : première question, premier contraste Modèles pour Q1 : W 1 i + ε 1i Avec : W 1 i ( 2)Rien i + (1)Comp i + (1)Inc i 2Rien i + Comp i + Inc i Tester ce premier contraste revient donc encore une fois à tester la moyenne de W 1 contre 0 (test T pour échantillon unique) 20

20 VI intra à 3 modalités : première question, premier contraste Comparaison de modèles pour Q1 : MC : W 1 i 0 MA : W 1 i 120 SCE C SCE A PRE SCEC SCE SCE C A F SCR SCE ( pa pc) A ( N pa) ( 1 0) ( 6 1) 5.52 Le contraste opposant la condition rien avec les deux autres est donc tendanciel, F(1,5) 5.52, p <.07, PRE.52

21 VI intra à 3 modalités : première question, premier contraste W 1 i + ε1 i Comme pour tous modèles simples, on peut tester b 0 contre 0 en utilisant un test t pour échantillon unique : Le contraste opposant la condition rien avec les deux autres est donc tendanciel, t(5) 2.35, p <.07, PRE.52 Aparté : quand ddl effet 1 > F t PRE F 5.52 ddlerreur F + ddl effet 0.52

22 VI intra à 3 modalités : Flanker effect (Fenske et Eastwood, 2003) Seconde question : Les temps de réponse sont-ils plus lents avec un «flanker» incompatible qu'avec un «flanker» compatible? Rien Compatible Incompatible Là encore, utilisation d'un contraste mais cette fois pour opposer les deux dernières conditions. Soit : W 2 i + ε 2i Avec: W 2 i (0)Rien i + ( 1)Comp i + (1)Inc i Inc i Comp i 23

23 VI intra à 3 modalités : seconde question, second contraste Comparaison de modèles pour Q2 : MC : W 2 i 0 MA : W 2 i 57 SCE C SCE A PRE SCEC SCE SCE C A F SCR SCE ( pa pc) A ( N pa) ( 1 0) ( 6 1) 8.67 Le contraste opposant les conditions Comp et Inc est donc significatif, F(1,5) 8.67, p <.04, PRE.63

24 VI intra à 3 modalités : test omnibus Problème : la formule omnibus W i h δ h h Y hi 2 δ h devait être appliquée pour retrouver le test Recalculons les contrastes, que nous appellerons W1' et W2', mais en utilisant la formule ci-dessus. Ceci nous donne : W1' i ( 2) Rien i ( 2) + (1) Comp 2 + (1) 2 i + (1) + (1) Inc 2 i 2Rien i + Comp 6 i + Inc i W 2' i (0) Rien i + ( 1) Comp (0) 2 + ( 1) 2 i + (1) + (1) Inc 2 i Inc i Comp 2 i Pour le test de W1' : MC : MA : W1' i 0 + ε1 ' c i W1' i + ε1 ' a i SCE C SCE A Pour le test de W2' : MC : W 2' i 0 + ε 2 ' c i MA : W 2' i + ε 2 ' a i SCE C SCE A 5542

25 VI intra à 3 modalités : test omnibus Pour le test omnibus, il nous suffit d'additionner les SC et ddl des 2 contrastes :

26 VI intra à 3 modalités : une raison pour éviter de tester des effets à plus d'1 ddl en intra! " Exemple de comparaison de modèles pour un test à plus d'1 ddl en inter (k 3) MC : Y i MA : Y i + β 1 C1 i + β 2 C2 i Le terme d'erreur utilisé pour le test de l'effet omnibus sera le même que celui que nous aurions utilisé pour les tests à 1 ddl > SCE A " Exemple de test à plus d'1 ddl en intra (k 3) MA : W1' i + ε1 ' a i SCE A1' et MA : W 2' i + ε 2 ' a i SCE A2' 5542 SCE omnibus SCE A1' + SCE A2' Le terme d'erreur utilisé pour le test de l'effet omnibus d'une variable intra est (potentiellement) un composé de deux termes d'erreur totalement différents (ici l'un est plus de deux fois plus grand que l'autre) (note : pas de test vraiment efficace pour voir si cette différence est trop importante)

27 Plan Introduction Modèles simples (une VD) Variables continues (une VD et une VI continue) 2 conditions inter-sujets Conditions applications et sujets déviants 2 conditions intra-sujets 3 conditions inter-sujets 3 conditions intra-sujets Inter-sujets k > 3 ANCOVA et Régressions multiples Interaction variable dichotomique et continue (inter-sujets) 2 * 2 Inter-sujets 2 * 2 Intra-sujets 2 * 2 mixtes 2 (intra) * Continue

28 Test d'un modèle théorique avec facteurs catégoriels k > 3 Y i + β 1 C1 i + β 2 C2 i + β 3 C3 i β k Ck 1 i Nous avons parfois une hypothèse très précise sur ce que nous attendons Exemple de prédiction avec k 4 : 1) Trouver le contraste du modèle théorique 2) Trouver des contrastes pour tester ce qui n'est pas expliqué par le modèle théorique, ce que l'on appelle le résidu ou la variance résiduelle 3) Montrer que le modèle théorique est significatif MAIS pas le(s) résidu(s) 30

29 1) Contraste du modèle théorique Placer des poids correspondant aux «hauteurs» prévues pour chaque condition Prédictions Ensuite, faire de ces poids un code de contraste (centrer) : Pds T Pds TA Pds TV Pds TVA MOY Résultats observés Nous utiliserons donc un contraste appelé «Mod» du type : - 1, 0, 0, 1 31

30 2) Contrastes du résidu Trouver deux contrastes orthogonaux avec le modèle : T TA TV TVA Mod Res k k λmod. k 0 λres1. k 0 Res k λres2. k 0 Vérification de l'orthogonalité deux à deux des contrastes : Mod * Res1 : (-1 * 0) + (0 * 1) + (0 * -1) + (1 * 0) 0 Mod * Res2 : (-1 * -1) + (0 * 1) + (0 * 1) + (1 * -1) 0 Res1 * Res2 : (0 * -1) + (1 * 1) + (-1 * 1) + (0 * -1) 0 Il s'agit donc d'une famille de contrastes orthogonaux, nous pouvons tester le modèle : Chgt i + β 1 Mod i + β 2 Res1 i + β 3 Res2 i (adresse pour trouver des contrastes orthogonaux : 32

31 3a) Test du modèle Test du modèle théorique > simplement le test du contraste lui correspondant : MA : Chgt i + β 1 Mod i + β 2 Res1 i + β 3 Res2 i SCE A MC : Chgt i + β 1 Res1 i + β2res2 i! b est significatif, le changement d'attitude est donc plus fort dans la condition Texte seul (M 34.95) que dans la condition Texte + Audio + Vidéo (M 58.43), t(16) 3.8, p <.002.! Ce contraste seul ne nous en dit pas plus 33

32 3b) Test du résidu 3b) Test du résidu > nous allons mettre ensemble tout ce qui n est pas le modèle théorique : MA : MC : Chgt i + β 1 Mod i + β 2 Res1 i + β 3 Res2 i Chgt i + β 1 Mod i Pour une fois, le logiciel ne fera pas tout seul la comparaison de modèles qui nous intéresse. Comment faire? Nous allons faire les deux modèles (MA et MC), l un après l autre : > SC Erreur SCE A > SC Erreur SCE C 34

33 Trouver la SCE A Chgt i + β 1 Mod i + β 2 Res1 i + β 3 Res2 i Ici, nous faisons «tourner» ce modèle uniquement pour obtenir la SCE > SCE A Note : dans R, après avoir utilisé ma<-lm(chgt~mod+res1+res2,df) La fonction deviance(ma) nous donne directement

34 Trouver la SCE C Chgt i + β 1 Mod i Là encore, nous faisons «tourner» ce modèle uniquement pour obtenir la SCE. ATTENTION : la SCE que nous allons retenir correspond, paradoxalement, à ce que nous appelons habituellement la SCE A > SCE C Dans R, deviance(mc) nous donne directement

35 3b) Test du résidu 3b) Test du résidu > nous allons mettre ensemble tout ce qui n est pas le modèle théorique : MA : Chgt i + β 1 Mod i + β 2 Res1 i + β 3 Res2 i SCE A MC : Chgt i + β 1 Mod i SCE C Test du résidu > SCR SCE C SCE A F SCR SCE ( pa pc) A ( N pa) ( 4 2) ( 20 4) 0.31! Modèle significatif ET résidu non significatif > hypothèse vérifiée! Nous pourrions également être encore plus durs avec nous-mêmes en testant le F du résidu avec un ddl de l effet 1 > dans ce cas F(1,16)

Les variables indépendantes catégorielles

Les variables indépendantes catégorielles Les variables indépendantes catégorielles Jean-François Bickel Statistique II SP08 Jusqu à maintenant, nous avons considéré comme variables indépendantes uniquement des variables intervalles (âge) ou traitées

Plus en détail

Simulation Examen de Statistique Approfondie II **Corrigé **

Simulation Examen de Statistique Approfondie II **Corrigé ** Simulation Examen de Statistique Approfondie II **Corrigé ** Ces quatre exercices sont issus du livre d exercices de François Husson et de Jérôme Pagès intitulé Statistiques générales pour utilisateurs,

Plus en détail

Analyse de la Variance pour Plans à Mesures Répétées

Analyse de la Variance pour Plans à Mesures Répétées Analyse de la Variance pour Plans à Mesures Répétées Pr Roch Giorgi roch.giorgi@univ-amu.fr SESSTIM, Faculté de Médecine, Aix-Marseille Université, Marseille, France http://sesstim-orspaca.org http://optim-sesstim.univ-amu.fr/

Plus en détail

Analyses de Variance à un ou plusieurs facteurs Régressions Analyse de Covariance Modèles Linéaires Généralisés

Analyses de Variance à un ou plusieurs facteurs Régressions Analyse de Covariance Modèles Linéaires Généralisés Analyses de Variance à un ou plusieurs facteurs Régressions Analyse de Covariance Modèles Linéaires Généralisés Professeur Patrice Francour francour@unice.fr Une grande partie des illustrations viennent

Plus en détail

Analyse de la variance (ANOVA)

Analyse de la variance (ANOVA) Chapitre 7 Analyse de la variance (ANOVA) Introduction L analyse de la variance (ANOVA) a pour objectif d étudier l influence d un ou plusieurs facteurs sur une variable quantitative. Nous nous intéresserons

Plus en détail

Analyse de la variance

Analyse de la variance M2 Statistiques et Econométrie Fanny MEYER Morgane CADRAN Margaux GAILLARD Plan du cours I. Introduction II. Analyse de la variance à un facteur III. Analyse de la variance à deux facteurs IV. Analyse

Plus en détail

Comparaison entre un groupe expérimental et un groupe témoin (Corrigé) /30

Comparaison entre un groupe expérimental et un groupe témoin (Corrigé) /30 Comparaison entre un groupe expérimental et un groupe témoin (Corrigé) /30 I1 Connaissances préalables : Buts spécifiques : Outils nécessaires: Consignes générales : Test t de comparaison de moyennes pour

Plus en détail

RÉSOLUTION DE SYSTÈMES À DEUX INCONNUES

RÉSOLUTION DE SYSTÈMES À DEUX INCONNUES RÉSOLUTION DE SYSTÈMES À DEUX INCONNUES Sommaire 1 Méthodes de résolution... 3 1.1. Méthode de Substitution... 3 1.2. Méthode des combinaisons linéaires... 6 La rubrique d'aide qui suit s'attardera aux

Plus en détail

3. COMPARAISON DE PLUS DE DEUX GROUPES

3. COMPARAISON DE PLUS DE DEUX GROUPES 3. COMPARAISON DE PLUS DE DEUX GROUPES La comparaison de moyennes de plus de deux échantillons se fait généralement par une analyse de variance (ANOVA) L analyse de variance suppose l homogénéité des variances

Plus en détail

Analyse de la variance à deux facteurs

Analyse de la variance à deux facteurs 1 1 IRMA, Université Louis Pasteur Strasbourg, France Master 1 Psychologie du développement 06-10-2008 Contexte Nous nous proposons d analyser l influence du temps et de trois espèces ligneuses d arbre

Plus en détail

Introduction à l'analyse statistique des données

Introduction à l'analyse statistique des données INTRODUCTION À L'ANALYSE STATISTIQUE DES DONNÉES CONCEPTS DE BASE Un certain nombre de concepts, préalables indispensables à la compréhension des analyses présentées, sont définis ici. De même pour quelques

Plus en détail

Analyse de variance à un facteur Tests d hypothèses Analyse de variance à deux facteurs. Analyse de la variance ANOVA

Analyse de variance à un facteur Tests d hypothèses Analyse de variance à deux facteurs. Analyse de la variance ANOVA Analyse de la variance ANOVA Terminologie Modèles statistiques Estimation des paramètres 1 Analyse de variance à un facteur Terminologie Modèles statistiques Estimation des paramètres 2 3 Exemple. Analyse

Plus en détail

Cours 11 : Homogénéité de la variance et transformations non linéaires

Cours 11 : Homogénéité de la variance et transformations non linéaires Cours 11 : Homogénéité de la variance et transformations non linéaires Table des matières Section 1. Régularité de la nature et effets linéaires... 2 Section 2. Homogénéité des variances... 2 Section 3.

Plus en détail

L analyse de variance à deux critère de classification

L analyse de variance à deux critère de classification L analyse de variance à deux critère de classification Objectif : comparer l influence de chaque facteur sur la moyenne de plusieurs (k) groupes indépendants d observations La méthode détaillée ci-dessous

Plus en détail

FORMULAIRE DE STATISTIQUES

FORMULAIRE DE STATISTIQUES FORMULAIRE DE STATISTIQUES I. STATISTIQUES DESCRIPTIVES Moyenne arithmétique Remarque: population: m xμ; échantillon: Mx 1 Somme des carrés des écarts "# FR MOYENNE(série) MOYENNE(série) NL GEMIDDELDE(série)

Plus en détail

EXCEL Tableau croisé dynamique

EXCEL Tableau croisé dynamique Chapitre 0 EXCEL Tableau croisé dynamique Organisation des données But: Je souhaite organiser mes données brutes (recueillies). Cours réalisé par Benjamin Putois. 1 Excel recueillir les étapes 1. Quelles

Plus en détail

Cours 7 : Exemples. I- Régression linéaire simple II- Analyse de variance à 1 facteur III- Tests statistiques

Cours 7 : Exemples. I- Régression linéaire simple II- Analyse de variance à 1 facteur III- Tests statistiques Cours 7 : Exemples I- Régression linéaire simple II- Analyse de variance à 1 facteur III- Tests statistiques Exemple 1 : On cherche à expliquer les variations de y par celles d une fonction linéaire de

Plus en détail

Analyse de la variance Comparaison de plusieurs moyennes

Analyse de la variance Comparaison de plusieurs moyennes Analyse de la variance Comparaison de plusieurs moyennes Biostatistique Pr. Nicolas MEYER Laboratoire de Biostatistique et Informatique Médicale Fac. de Médecine de Strasbourg Mars 2011 Plan 1 Introduction

Plus en détail

Introduction à l expérimentation en marketing

Introduction à l expérimentation en marketing Romain Cadario romain.cadario@dauphine.fr Séminaire, Master 102 Université Paris Dauphine, Octobre 2014 1 Zlatan et le beau temps 63% des individus préfèrent un temps chaud vs. froid, alors que cette proportion

Plus en détail

Essai de répétabilité et de reproductibilité : calculs à effectuer à la main pour comprendre la démarche générale.

Essai de répétabilité et de reproductibilité : calculs à effectuer à la main pour comprendre la démarche générale. 4. EXEMPLE N 4 Essai de répétabilité et de reproductibilité : calculs à effectuer à la main pour comprendre la démarche générale. 4.1. Objectif Le calcul de la répétabilité et de la reproductibilité implique

Plus en détail

Cours (7) de statistiques à distance, élaboré par Zarrouk Fayçal, ISSEP Ksar-Said, 2011-2012 LES STATISTIQUES INFERENTIELLES

Cours (7) de statistiques à distance, élaboré par Zarrouk Fayçal, ISSEP Ksar-Said, 2011-2012 LES STATISTIQUES INFERENTIELLES LES STATISTIQUES INFERENTIELLES (test de Student) L inférence statistique est la partie des statistiques qui, contrairement à la statistique descriptive, ne se contente pas de décrire des observations,

Plus en détail

MÉTHODES STATISTIQUES D ÉVALUATION II

MÉTHODES STATISTIQUES D ÉVALUATION II PLAN DE COURS ENP7138 MÉTHODES STATISTIQUES D ÉVALUATION II Frédérick Philippe Chargé de cours Région : Montréal Session : Hiver 2011 Coordonnées HIVER 2011 Chargé de cours Frédérick Philippe Département

Plus en détail

Approche expérimentale en IHM

Approche expérimentale en IHM Plan Approche expérimentale en IHM Michel Beaudouin-Lafon, LRI Wendy Mackay, INRIA mbl@lri.fr mackay@lri.fr http://insitu.lri.fr Qu est-ce que l approche expérimentale Concevoir une expérience Un peu de

Plus en détail

Master 1 de Psychologie du Travail et des Organisations : Recueil et analyse des données - Corrigés des T.D. ( 2014/2015) -

Master 1 de Psychologie du Travail et des Organisations : Recueil et analyse des données - Corrigés des T.D. ( 2014/2015) - Dominique Ferrieux - Université Paul Valéry - Montpellier III Master de Psychologie du Travail et des Organisations : Recueil et analyse des données - Corrigés des T.D. ( /) - Deuxième partie : Plans :

Plus en détail

Cours 9 : Plans à plusieurs facteurs

Cours 9 : Plans à plusieurs facteurs Cours 9 : Plans à plusieurs facteurs Table des matières Section 1. Diviser pour regner, rassembler pour saisir... 3 Section 2. Définitions et notations... 3 2.1. Définitions... 3 2.2. Notations... 4 Section

Plus en détail

Quelques rappels concernant la méthode expérimentale

Quelques rappels concernant la méthode expérimentale Quelques rappels concernant la méthode expérimentale 1. La Méthode expérimentale : Définition. Une définition classique de la méthode expérimentale est qu elle «correspond à la méthode d investigation

Plus en détail

IBM SPSS Advanced Statistics 20

IBM SPSS Advanced Statistics 20 IBM SPSS Advanced Statistics 20 Remarque : Avant d utiliser ces informations et le produit qu elles concernent, lisez les informations générales sous Remarques sur p. 177. Cette version s applique à IBM

Plus en détail

Analyses de la variance

Analyses de la variance Analyses de la variance Frédéric Bertrand et Myriam Maumy 1 Université de Strasbourg Institut de Recherche Mathématique Avancée 19 juin 011 1. Courriel : fbertran@math.unistra.fr et mmaumy@math.unistra.fr.

Plus en détail

Nouveautés de StatView 5

Nouveautés de StatView 5 Nouveautés de StatView 5 Nouvelles fonctionnalités Régression logistique StatView propose désormais la régression logistique, une technique de construction d un modèle semblable à la régression linéaire

Plus en détail

Analyse de Variance. Groupe 1... Groupe K x 1,1... x... ... ... x... = µ + α i. + e ij. x ij

Analyse de Variance. Groupe 1... Groupe K x 1,1... x... ... ... x... = µ + α i. + e ij. x ij Analyse de Variance Analyse de Variance à 1 Facteur L'objectif de l'analyse de variance à 1 facteur est de tester l'égalité des moyennes théoriques d'une variable quantitative de différents groupes ou

Plus en détail

REGRESSION MULTIPLE: CONSOMMATION D ELECTRICITE

REGRESSION MULTIPLE: CONSOMMATION D ELECTRICITE REGRESSION MULTIPLE: CONSOMMATION D ELECTRICITE LES DONNEES OBS KW SURFACE PERS PAVILLON AGE VOL SBAINS 1 4805 130 4 1 65 410 1 2 3783 123 4 1 5 307 2 3 2689 98 3 0 18 254 1 4 5683 178 6 1 77 570 3 5 3750

Plus en détail

L'utilisation des contrastes dans l'analyse des données : Comment tester les hypothèses spécifiques dans la recherche en psychologie?

L'utilisation des contrastes dans l'analyse des données : Comment tester les hypothèses spécifiques dans la recherche en psychologie? L'année psychologique L'utilisation des contrastes dans l'analyse des données : Comment tester les hypothèses spécifiques dans la recherche en psychologie? Markus Brauer, Gary McClelland Abstract Summary

Plus en détail

Biostatistiques Biologie- Vétérinaire FUNDP Eric Depiereux, Benoît DeHertogh, Grégoire Vincke

Biostatistiques Biologie- Vétérinaire FUNDP Eric Depiereux, Benoît DeHertogh, Grégoire Vincke www.fundp.ac.be/biostats Module 140 140 ANOVA A UN CRITERE DE CLASSIFICATION FIXE...2 140.1 UTILITE...2 140.2 COMPARAISON DE VARIANCES...2 140.2.1 Calcul de la variance...2 140.2.2 Distributions de référence...3

Plus en détail

TABLE DES MATIÈRES. Bruxelles, De Boeck, 2011, 736 p.

TABLE DES MATIÈRES. Bruxelles, De Boeck, 2011, 736 p. STATISTIQUE THÉORIQUE ET APPLIQUÉE Tome 2 Inférence statistique à une et à deux dimensions Pierre Dagnelie TABLE DES MATIÈRES Bruxelles, De Boeck, 2011, 736 p. ISBN 978-2-8041-6336-5 De Boeck Services,

Plus en détail

2. Formalisation ... Or les variables sont indépendantes. Donc si

2. Formalisation ... Or les variables sont indépendantes. Donc si L'estimation 1. Concrètement... Dernièrement un quotidien affichait en première page : en 30 ans les françaises ont grandi de... je ne sais plus exactement, disons 7,1 cm. C'est peut-être un peu moins

Plus en détail

TESTS STATISTIQUES: COMPARAISON, INDÉPENDANCE ET RÉGRESSION LINÉAIRE

TESTS STATISTIQUES: COMPARAISON, INDÉPENDANCE ET RÉGRESSION LINÉAIRE TESTS STATISTIQUES: COMPARAISON, INDÉPENDANCE ET RÉGRESSION LINÉAIRE Les résultats donnés par R et SAS donnent les valeurs des tests, la valeur-p ainsi que les intervalles de confiance. TEST DE COMPARAISON

Plus en détail

La régression logistique

La régression logistique La régression logistique Présentation pour le cours SOL6210, Analyse quantitative avancée Claire Durand, 2015 1 Utilisation PQuand la variable dépendante est nominale ou ordinale < Deux types selon la

Plus en détail

Relation entre deux variables : estimation de la corrélation linéaire

Relation entre deux variables : estimation de la corrélation linéaire CHAPITRE 3 Relation entre deux variables : estimation de la corrélation linéaire Parmi les analyses statistiques descriptives, l une d entre elles est particulièrement utilisée pour mettre en évidence

Plus en détail

Fondements et étapes du processus de recherche, 3 e édition

Fondements et étapes du processus de recherche, 3 e édition Fondements et étapes du processus de recherche, 3 e édition Nouveauté Méthodes quantitatives et qualitatives Prix : 81,95 $ Auteurs : Marie-Fabienne Fortin, Johanne Gagnon ISBN13 : 9782765050063 Nombre

Plus en détail

L'APPROCHE EXPERIMENTALE EN RECHERCHE: introduction aux statistiques.

L'APPROCHE EXPERIMENTALE EN RECHERCHE: introduction aux statistiques. L'APPROCHE EXPERIMENTALE EN RECHERCHE: introduction aux statistiques 1 BUTS DU COURS : se familiariser avec le vocabulaire statistique o variable dépendante, variable indépendante o statistique descriptive,

Plus en détail

U. E. R SYSTEME DE TESTS AUTOMATIQUES AVEC UN OSCILLOSCOPE NUMERIQUE + PC M. AGERON, A. HRISOHO, C. NGUYEN, K. TRUONG. Bâtiment 200-91405 ORSAY Cedex

U. E. R SYSTEME DE TESTS AUTOMATIQUES AVEC UN OSCILLOSCOPE NUMERIQUE + PC M. AGERON, A. HRISOHO, C. NGUYEN, K. TRUONG. Bâtiment 200-91405 ORSAY Cedex 1 T P-i. oc i LAIVUTS 1 J-13 October SYSTEME DE TESTS AUTOMATIQUES AVEC UN OSCILLOSCOPE NUMERIQUE + PC M. AGERON, A. HRISOHO, C. NGUYEN, K. TRUONG U. E. R de l'université Paris-Sud Institut National de

Plus en détail

PLAIDOYER POUR LE COEFFICIENT CORRECTEUR ou POURQUOI FAUT IL CALCULER LA BASE SUR LA TETE DE COURSE

PLAIDOYER POUR LE COEFFICIENT CORRECTEUR ou POURQUOI FAUT IL CALCULER LA BASE SUR LA TETE DE COURSE PLAIDOYER POUR LE COEFFICIENT CORRECTEUR ou POURQUOI FAUT IL CALCULER LA BASE SUR LA TETE DE COURSE Le coefficient correcteur (Cc), et le systeme actuel, ont été imaginés pour fournir des résultats compara

Plus en détail

Chapitre 6 Test de comparaison de pourcentages χ². José LABARERE

Chapitre 6 Test de comparaison de pourcentages χ². José LABARERE UE4 : Biostatistiques Chapitre 6 Test de comparaison de pourcentages χ² José LABARERE Année universitaire 2010/2011 Université Joseph Fourier de Grenoble - Tous droits réservés. Plan I. Nature des variables

Plus en détail

Utilisation de. Dominique Muller (dominique.muller@upmf-grenoble.fr)

Utilisation de. Dominique Muller (dominique.muller@upmf-grenoble.fr) Utilisation de Dominique Muller (dominique.muller@upmf-grenoble.fr) Pourquoi utiliser R? Flexibilité et puissance Simplicité du langage Multiplateforme (Windows, Mac, Linux) C'est gratuit! Installation

Plus en détail

TABLE DES MATIÈRES. PRINCIPES D EXPÉRIMENTATION Planification des expériences et analyse de leurs résultats. Pierre Dagnelie

TABLE DES MATIÈRES. PRINCIPES D EXPÉRIMENTATION Planification des expériences et analyse de leurs résultats. Pierre Dagnelie PRINCIPES D EXPÉRIMENTATION Planification des expériences et analyse de leurs résultats Pierre Dagnelie TABLE DES MATIÈRES 2012 Presses agronomiques de Gembloux pressesagro.gembloux@ulg.ac.be www.pressesagro.be

Plus en détail

Analyse des données longitudinales

Analyse des données longitudinales Analyse des données longitudinales EA Sauleau SémStat 03/10/2006 Table des matières 1 Introduction 2 1.1 Généralités 2 1.2 La structure des données.. 3 1.3 Exemple.. 4 1.4 Des impasses.. 4 2 (M)ANOVA 4

Plus en détail

Analyse statistique de données qualitatives et quantitatives en sciences sociales : TP RÉGRESSION LOGISTIQUE (MODÈLES CHAPITRE 1)

Analyse statistique de données qualitatives et quantitatives en sciences sociales : TP RÉGRESSION LOGISTIQUE (MODÈLES CHAPITRE 1) Analyse statistique de données qualitatives et quantitatives en sciences sociales : TP RÉGRESSION LOGISTIQUE (MODÈLES CHAPITRE 1) Modèles de régression logistique à réaliser Une explicative catégorielle

Plus en détail

STATISTIQUES Recueil et Traitement des Données JYUCP64 - Travaux dirigés

STATISTIQUES Recueil et Traitement des Données JYUCP64 - Travaux dirigés Université de Franche-comté Année Universitaire / Licence de psychologie 3 e Année STATISTIQUES Recueil et Traitement des Données JYUCP64 - Travaux dirigés TD1 DEBUTER AVEC SPSS Objectifs - Ouvrir SPSS

Plus en détail

Données qualitatives, modèles probit et logit

Données qualitatives, modèles probit et logit Données qualitatives, modèles probit et logit I Un modèle pour données qualitatives Cette section est fortement inspirée du cours de Christophe Hurlin. On est confronté à des données qualitatives en micro-économie

Plus en détail

Principe d un test statistique

Principe d un test statistique Biostatistiques Principe d un test statistique Professeur Jean-Luc BOSSON PCEM2 - Année universitaire 2012/2013 Faculté de Médecine de Grenoble (UJF) - Tous droits réservés. Objectifs pédagogiques Comprendre

Plus en détail

Chapitre 3 RÉGRESSION ET CORRÉLATION

Chapitre 3 RÉGRESSION ET CORRÉLATION Statistique appliquée à la gestion et au marketing http://foucart.thierry.free.fr/statpc Chapitre 3 RÉGRESSION ET CORRÉLATION La corrélation est une notion couramment utilisée dans toutes les applications

Plus en détail

Régression linéaire. Nicolas Turenne INRA nicolas.turenne@jouy.inra.fr

Régression linéaire. Nicolas Turenne INRA nicolas.turenne@jouy.inra.fr Régression linéaire Nicolas Turenne INRA nicolas.turenne@jouy.inra.fr 2005 Plan Régression linéaire simple Régression multiple Compréhension de la sortie de la régression Coefficient de détermination R

Plus en détail

Séance 8 : Régression Logistique

Séance 8 : Régression Logistique Séance 8 : Régression Logistique Sommaire Proc LOGISTIC : Régression logistique... 2 Exemple commenté : Achat en (t+1) à partir du sexe et du chiffre d affaires de la période précédente. 4 La régression

Plus en détail

Correction de l épreuve de Statistiques et Informatique appliquées à la Psychologie

Correction de l épreuve de Statistiques et Informatique appliquées à la Psychologie Université de Bretagne Occidentale Année Universitaire 2013-2014 U.F.R. de Lettres et Sciences Humaines CS 93837-29238 BREST CEDEX 3 Section : Psychologie - Licence 3è année Enseignant responsable : F.-G.

Plus en détail

Cours (8) de statistiques à distance, élaboré par Zarrouk Fayçal, ISSEP Ksar-Said, 2011-2012. Test du Khi 2

Cours (8) de statistiques à distance, élaboré par Zarrouk Fayçal, ISSEP Ksar-Said, 2011-2012. Test du Khi 2 Test du Khi 2 Le test du Khi 2 (khi deux ou khi carré) fournit une méthode pour déterminer la nature d'une répartition, qui peut être continue ou discrète. Domaine d application du test : Données qualitatives

Plus en détail

TD de statistique : tests du Chi 2

TD de statistique : tests du Chi 2 TD de statistique : tests du Chi 2 Jean-Baptiste Lamy 6 octobre 2008 1 Test du Chi 2 C est l équivalent de la comparaison de moyenne, mais pour les variables qualitatives. 1.1 Cas 1 : comparer les répartitions

Plus en détail

Interprétation d une analyse de variance avec mesures répétées

Interprétation d une analyse de variance avec mesures répétées Approche quantitative Interprétation d une analyse de variance avec mesures répétées «Les faits sont têtus. Il est plus facile de s arranger avec les statistiques.» Mark Twain L objectif de ce document

Plus en détail

Travaux dirigés - Régression linéaire simple: corrigé partiel Julien Chiquet et Guillem Rigaill 1er octobre 2015

Travaux dirigés - Régression linéaire simple: corrigé partiel Julien Chiquet et Guillem Rigaill 1er octobre 2015 Travaux dirigés - Régression linéaire simple: corrigé partiel Julien Chiquet et Guillem Rigaill 1er octobre 2015 Quelques révisions de R 1. Manipulation de vecteur. On rappelle que e x = k 0 Créer dans

Plus en détail

Le matériel nécessaire au cours sera disponible sur WEBCT

Le matériel nécessaire au cours sera disponible sur WEBCT ANALYSES QUANTITATIVES EN PSYCHOLOGIE 2 Le matériel nécessaire au cours sera disponible sur WEBCT Coordonnées Hiver 2009 Professeure Geneviève A. Mageau, Ph.D. Département de psychologie Université de

Plus en détail

Les matériaux de départ

Les matériaux de départ Codage DONNER DU SENS Les matériaux de départ Notes d observation (carnet) Entretiens Focus Matériel documentaire Enregistrements personnels du chercheur (idées) Notes de terrain(chronologies) Transcrire

Plus en détail

Illustration sur un exemple de diverses procédures graphiques et quantitatives.

Illustration sur un exemple de diverses procédures graphiques et quantitatives. Au-delà de l'analyse des correspondances multiples : Illustration sur un exemple de diverses procédures graphiques et quantitatives Yannick Savina Jean-Marc Bernard Laboratoire de Psychologie Environnementale

Plus en détail

ASI (L2) : TP3 Calculs probabilistes avec Excel et Rstat

ASI (L2) : TP3 Calculs probabilistes avec Excel et Rstat ASI (L2) : TP3 Calculs probabilistes avec Excel et Rstat Objectifs du TP : Savoir utiliser Excel et Rstat pour calculer des moyennes pondérées, des variances pondérées et savoir faire des approximations

Plus en détail

La régression logistique. Par Sonia NEJI et Anne-Hélène JIGOREL

La régression logistique. Par Sonia NEJI et Anne-Hélène JIGOREL La régression logistique Par Sonia NEJI et Anne-Hélène JIGOREL Introduction La régression logistique s applique au cas où: Y est qualitative à 2 modalités Xk qualitatives ou quantitatives Le plus souvent

Plus en détail

Choisissez la formation. Qui vous intéresse! SPSS Maghreb 72,Av.des Nations Unies Rabat-Agdal-Maroc. Tél : 037-67.08.66/67 Fax : 037-67.08.

Choisissez la formation. Qui vous intéresse! SPSS Maghreb 72,Av.des Nations Unies Rabat-Agdal-Maroc. Tél : 037-67.08.66/67 Fax : 037-67.08. SPSS Maghreb 72,Av.des Nations Unies Rabat-Agdal-Maroc Tél : 037-67.08.66/67 Fax : 037-67.08.69 Choisissez la formation spssmaroc@maghrebnet.net.ma Qui vous intéresse! Site web : www.spss.com/localoffices/morocco

Plus en détail

Chapitre 06 : PROPORTIONNALITÉ ET FONCTIONS LINÉAIRES

Chapitre 06 : PROPORTIONNALITÉ ET FONCTIONS LINÉAIRES Chapitre 06 : PROPORTIONNALITÉ ET FONCTIONS LINÉAIRES 6 cm I) Synthèse sur la proportionnalité : 1) Définition : Grandeurs proportionnelles : Dire que deux grandeurs sont proportionnelles revient à dire

Plus en détail

SAS ENTERPRISE MINER POUR L'ACTUAIRE

SAS ENTERPRISE MINER POUR L'ACTUAIRE SAS ENTERPRISE MINER POUR L'ACTUAIRE Conférence de l Association des Actuaires I.A.R.D. 07 JUIN 2013 Sylvain Tremblay Spécialiste en formation statistique SAS Canada AGENDA Survol d Enterprise Miner de

Plus en détail

UNIVERSITÉ DE MONTRÉAL DÉPARTEMENT DE SOCIOLOGIE ************* Cours de niveau gradué en méthodes quantitatives *************

UNIVERSITÉ DE MONTRÉAL DÉPARTEMENT DE SOCIOLOGIE ************* Cours de niveau gradué en méthodes quantitatives ************* ************* Cours de niveau gradué en méthodes quantitatives ************* SOL 6210 - Analyse quantitative avancée Le séminaire d analyse quantitative avancée se donne en classe une fois par année. Chaque

Plus en détail

(Statistical Package for the Social Sciences)

(Statistical Package for the Social Sciences) Initiation à l utilisation de SPSS (Statistical Package for the Social Sciences) 1 SPSS 2 3 Plan de l exposé Faire une recherche (bibliographique) sur le test; Définir le test à mesurer; Expliquer les

Plus en détail

Analyse des données individuelles groupées

Analyse des données individuelles groupées Analyse des données individuelles groupées Analyse des Temps de Réponse Le modèle mixte linéaire (L2M) Y ij, j-ième observation continue de l individu i (i = 1,, N ; j =1,, n) et le vecteur des réponses

Plus en détail

TABLE DES MATIÈRES. 1. Concepts de base et ANOVA. 3. 2. L approche processus et l analyse statistique.. 8 3. STATISTICA.. 12

TABLE DES MATIÈRES. 1. Concepts de base et ANOVA. 3. 2. L approche processus et l analyse statistique.. 8 3. STATISTICA.. 12 2 TABLE DES MATIÈRES 1. Concepts de base et ANOVA. 3 2. L approche processus et l analyse statistique.. 8 3. STATISTICA.. 12 4. Modèles linéaires statistiques.... 15 5. ANOVA avec un facteur 20 6. Analyse

Plus en détail

STATISTIQUES. Cours I : Test d hypothèses. Télécom Physique Strasbourg Module 2101. Fabrice Heitz. Octobre 2014

STATISTIQUES. Cours I : Test d hypothèses. Télécom Physique Strasbourg Module 2101. Fabrice Heitz. Octobre 2014 Télécom Physique Strasbourg Module 2101 STATISTIQUES Cours I : Test d hypothèses Fabrice Heitz Octobre 2014 Fabrice Heitz (Télécom PS) Statistiques 2014 1 / 75 Cours I TESTS D HYPOTHÈSES Fabrice Heitz

Plus en détail

Chapitre 1 I:\ Soyez courageux!

Chapitre 1 I:\ Soyez courageux! Chapitre 1 I:\ Soyez courageux! Pour ne rien vous cacher, le langage d'assembleur (souvent désigné sous le terme "Assembleur", bien que ce soit un abus de langage, puisque "Assembleur" désigne le logiciel

Plus en détail

FORMULE 70S.1 EXPOSÉ INFORMATIF DE LA GESTION DE LA CAUSE (SAUF POUR UNE MOTION EN MODIFICATION D UNE ORDONNANCE DÉFINITIVE)

FORMULE 70S.1 EXPOSÉ INFORMATIF DE LA GESTION DE LA CAUSE (SAUF POUR UNE MOTION EN MODIFICATION D UNE ORDONNANCE DÉFINITIVE) ANNEXE Q: Exposé informatif de la gestion de la cause (vierge) FORMULE 70S.1 N o de dossier DF COUR DU BANC DE LA REINE (Division de la famille) Centre de ENTRE : - et - requérant(e), intimé(e). Déposé

Plus en détail

Critère du choix des variables auxiliaires à utiliser dans l'estimateur par calage

Critère du choix des variables auxiliaires à utiliser dans l'estimateur par calage des variables auxiliaires à utiliser dans l'estimateur par calage Mohammed El Haj Tirari Institut National de Statistique et d'economie Appliquée - roc Laboratoire de Statistique d'enquêtes, CREST - Ensai

Plus en détail

Applications linéaires

Applications linéaires Applications linéaires I) Applications linéaires - Généralités 1.1) Introduction L'idée d'application linéaire est intimement liée à celle d'espace vectoriel. Elle traduit la stabilité par combinaison

Plus en détail

Programmation C++ (débutant)/les tableaux statiques

Programmation C++ (débutant)/les tableaux statiques Programmation C++ (débutant)/les tableaux statiques 1 Programmation C++ (débutant)/les tableaux statiques Le cours du chapitre 6 : les tableaux statiques Les tableaux Une variable entière de type int ne

Plus en détail

Une variable binaire prédictrice (VI) et une variable binaire observée (VD) (Comparaison de pourcentages sur 2 groupes indépendants)

Une variable binaire prédictrice (VI) et une variable binaire observée (VD) (Comparaison de pourcentages sur 2 groupes indépendants) CIVILITE-SES.doc - 1 - Une variable binaire prédictrice (VI) et une variable binaire observée (VD) (Comparaison de pourcentages sur 2 groupes indépendants) 1 PRÉSENTATION DU DOSSIER CIVILITE On s intéresse

Plus en détail

Chapitre 3. Les distributions à deux variables

Chapitre 3. Les distributions à deux variables Chapitre 3. Les distributions à deux variables Jean-François Coeurjolly http://www-ljk.imag.fr/membres/jean-francois.coeurjolly/ Laboratoire Jean Kuntzmann (LJK), Grenoble University 1 Distributions conditionnelles

Plus en détail

PJE : Analyse de comportements avec Twitter Classification supervisée

PJE : Analyse de comportements avec Twitter Classification supervisée PJE : Analyse de comportements avec Twitter Classification supervisée Arnaud Liefooghe arnaud.liefooghe@univ-lille1.fr Master 1 Informatique PJE2 2015-16 B. Derbel L. Jourdan A. Liefooghe 1 2 Agenda Partie

Plus en détail

DU BINAIRE AU MICROPROCESSEUR - D ANGELIS LOGIQUE COMBINATOIRE. SIMPLIFICATION DES EQUATIONS BOOLEENNES Leçon 07

DU BINAIRE AU MICROPROCESSEUR - D ANGELIS LOGIQUE COMBINATOIRE. SIMPLIFICATION DES EQUATIONS BOOLEENNES Leçon 07 DU BINAIRE AU MICROPROCESSEUR - D ANGELIS 43 SIMPLIFICATION DES EQUATIONS BOOLEENNES Leçon 7 Le rôle de la logique combinatoire est de faciliter la simplification des circuits électriques. La simplification

Plus en détail

1 Définitions 1-1 Le tableur 1-2 La feuille de calcul Google Document 1-3 La cellule 1-4 Présentation visuelle

1 Définitions 1-1 Le tableur 1-2 La feuille de calcul Google Document 1-3 La cellule 1-4 Présentation visuelle 1 Définitions 1-1 Le tableur 1-2 La feuille de calcul Google Document 1-3 La cellule 1-4 Présentation visuelle 2 Les cellules 2-1 La cellule active 2-2 Connaître le nom d'une cellule 2-3 Interagir avec

Plus en détail

Organisation de dispositifs pour tous les apprenants : la question de l'évaluation inclusive

Organisation de dispositifs pour tous les apprenants : la question de l'évaluation inclusive Organisation de dispositifs pour tous les apprenants : la question de l'évaluation inclusive Transcription et traduction de la communication de Verity DONNELLY colloque Éducation inclusive, la question

Plus en détail

L analyse de la variance avec R commander

L analyse de la variance avec R commander L analyse de la variance avec R commander 19 mars 2014 1 Installer R Pour installer R, il vous suffit d aller sur le site http://www.r-project.org/. Choisissez un miroir pour le téléchargement. Sélectionner

Plus en détail

y i = αx i + β + u i,

y i = αx i + β + u i, I.1 ) TD1 L3 Econométrie Rappel : L estimateur ˆα (resp. ˆβ)estaussinotéa (resp. b). 160 150 consommation Y 140 130 10 (x i, ŷ i ) e i 110 100 110 10 130 140 150 160 170 180 )a). Sous forme exacte y i

Plus en détail

LES DÉTERMINANTS DE MATRICES

LES DÉTERMINANTS DE MATRICES LES DÉTERMINANTS DE MATRICES Sommaire Utilité... 1 1 Rappel Définition et composantes d'une matrice... 1 2 Le déterminant d'une matrice... 2 3 Calcul du déterminant pour une matrice... 2 4 Exercice...

Plus en détail

Rapport d'expérience final

Rapport d'expérience final Rapport d'expérience final Ricci Arnaud et Garretas Victor 1 juin 2015 Table des matières Introduction Problématique Cadre théorique et résultats précédents Hypothèses générales Méthodologie Participants

Plus en détail

Économétrie - Une Étude de la Création d Entreprise entre 1994 et 2007

Économétrie - Une Étude de la Création d Entreprise entre 1994 et 2007 LESAUX Loïc MAROT Gildas TANGUY Brewal Économétrie - Une Étude de la Création d Entreprise entre 1994 et 007 Charpentier Arthur Semestre 008 Master 1 Cadoret Isabelle 1 Plan Introduction... 3 Présentation

Plus en détail

Évaluation de la régression bornée

Évaluation de la régression bornée Thierry Foucart UMR 6086, Université de Poitiers, S P 2 M I, bd 3 téléport 2 BP 179, 86960 Futuroscope, Cedex FRANCE Résumé. le modèle linéaire est très fréquemment utilisé en statistique et particulièrement

Plus en détail

IUT de Colmar - Département RT 1ière année. Numération

IUT de Colmar - Département RT 1ière année. Numération IUT de Colmar - Département RT 1ière année. Numération 1 Laurent MURA. SOMMAIRE 1. Les différents systèmes 2. Les différentes conversions 3. Quelques systèmes de codage 4. L arithmétique binaire 2 IUT

Plus en détail

Exemple 7.7 : Modèles multiniveaux de croissance expliquant le soutien social perçu par les élèves

Exemple 7.7 : Modèles multiniveaux de croissance expliquant le soutien social perçu par les élèves Exemple 7.7 : Modèles multiniveaux de croissance expliquant le soutien social perçu par les élèves Modèle 1 (modèle vide) : GET FILE='C:\Users\Desktop\donnees stats\soutien.sav'. DATASET ACTIVATE Ensemble_de_données2.

Plus en détail

Marketing quantitatif M2-MASS

Marketing quantitatif M2-MASS Marketing quantitatif M2-MASS Francois.Kauffmann@unicaen.fr UCBN 2 décembre 2012 Francois.Kauffmann@unicaen.fr UCBN Marketing quantitatif M2-MASS 2 décembre 2012 1 / 61 Première partie I Analyse Analyse

Plus en détail

I - Introduction à La psychologie Expérimentale

I - Introduction à La psychologie Expérimentale LA METHODE EXPERIMENTALE I - Introduction à La psychologie Expérimentale I.1. Introduction I.2. Critiques concernant l utilisation de la méthode expérimentale en psychologie I.2.A. Critiques morales I.2.A.

Plus en détail

ECHELLES DE LIKERT OU METHODE DES CLASSEMENTS ADDITIONNES

ECHELLES DE LIKERT OU METHODE DES CLASSEMENTS ADDITIONNES 1. Création et utilisation pratique de l échelle ECHELLES DE LIKERT OU METHODE DES CLASSEMENTS ADDITIONNES Marc Demeuse 1 Cette méthode est sans doute la plus intuitive qui soit (Mc Iver & Carmines, 1981,

Plus en détail

Économétrie 2 : données qualitatives, probit et logit

Économétrie 2 : données qualitatives, probit et logit URCA Hugo Harari-Kermadec 2008-2009 harari@ecogest.ens-cachan.fr Économétrie 2 : données qualitatives, probit et logit I Un modèle pour données qualitatives Cette section est fortement inspirée du cours

Plus en détail

Examen de Statistique Appliquée I

Examen de Statistique Appliquée I Université de Strasbourg Master Éthologie-Écophysiologie 1ère année Examen de Statistique Appliquée I ************************************************************** Le cours, les exercices de travaux dirigés,

Plus en détail

Examen d accès - 28 Septembre 2012

Examen d accès - 28 Septembre 2012 Examen d accès - 28 Septembre 2012 Aucun document autorisé - Calculatrice fournie par le centre d examen Cet examen est un questionnaire à choix multiples constitué de 50 questions. Plusieurs réponses

Plus en détail

Déroulement d un projet en DATA MINING, préparation et analyse des données. Walid AYADI

Déroulement d un projet en DATA MINING, préparation et analyse des données. Walid AYADI 1 Déroulement d un projet en DATA MINING, préparation et analyse des données Walid AYADI 2 Les étapes d un projet Choix du sujet - Définition des objectifs Inventaire des données existantes Collecte, nettoyage

Plus en détail

SEMIN- Introduction au modèle linéaire mixte. Sébastien BALLESTEROS UMR 7625 Ecologie Evolution Equipe Eco-Evolution mathématique ENS Ulm, UPMS

SEMIN- Introduction au modèle linéaire mixte. Sébastien BALLESTEROS UMR 7625 Ecologie Evolution Equipe Eco-Evolution mathématique ENS Ulm, UPMS SEMIN- Introduction au modèle linéaire mixte Sébastien BALLESTEROS UMR 7625 Ecologie Evolution Equipe Eco-Evolution mathématique ENS Ulm, UPMS SEMIN-R du MNHN 18 Décembre 2008 Introduction au modèle linéaire

Plus en détail

Distributions bayésiennes nonparamétriques sur les matrices binaires triangulaires infinies : Applications aux modèles graphiques

Distributions bayésiennes nonparamétriques sur les matrices binaires triangulaires infinies : Applications aux modèles graphiques Distributions bayésiennes nonparamétriques sur les matrices binaires triangulaires infinies : Applications aux modèles graphiques Patrick Dallaire Université Laval Département d informatique et de génie

Plus en détail

Odax 2. Unités : 871.2 p.c. Superficie:

Odax 2. Unités : 871.2 p.c. Superficie: 101 871.2 p.c. 102 832.8 p.c. 103 667.7 p.c. 104 667.8 p.c. 105 626.4 p.c. 106 800.2 p.c. 107 1086.2 p.c. 108 1086.2 p.c. 201-301-401 871.2 p.c. 202-302-402 894.2 p.c. 203-303-403 667.7 p.c. 204-304-404

Plus en détail