Finance, Navier-Stokes, et la calibration

Dimension: px
Commencer à balayer dès la page:

Download "Finance, Navier-Stokes, et la calibration"

Transcription

1 Finance, Navier-Stokes, et la calibration non linéarités en finance 1 1 Avril 2013

2 Lignes directrices Non-linéarités en Finance 1 Non-linéarités en Finance Les équations de Fokker-Planck (ou Kolmogorov) La calibration Le carnet d ordre 2

3 Lignes directrices Non-linéarités en Finance Les équations de Fokker-Planck (ou Kolmogorov) La calibration Le carnet d ordre 1 Non-linéarités en Finance Les équations de Fokker-Planck (ou Kolmogorov) La calibration Le carnet d ordre 2

4 Browniens et Fokker-Planck Les hypothèses classiques en mathématiques financières. Les équations de Fokker-Planck (ou Kolmogorov) La calibration Le carnet d ordre Données de marché : taux, forex, actions, commodités, etc.. : Ω R d, d >> 1, t S t Ω suivent un mouvement brownien ds t = r(t, S t )dt + σ(t, S t ) dw t, S t := ( S i,t )i=1..d Ω σ(t, ) est la volatilitée locale. Fokker-Planck : µ(t, ) densité de proba de S t suit l équation t µ + ((r ξ)µ ) ( ) = ξ µ, ξ := 1 2 σσt ( ) avec ξ := j jξ i,j i=1..d.

5 Browniens et Fokker-Planck Les hypothèses classiques en mathématiques financières. Les équations de Fokker-Planck (ou Kolmogorov) La calibration Le carnet d ordre Données de marché : taux, forex, actions, commodités, etc.. : Ω R d, d >> 1, t S t Ω suivent un mouvement brownien ds t = r(t, S t )dt + σ(t, S t ) dw t, S t := ( S i,t )i=1..d Ω σ(t, ) est la volatilitée locale. Fokker-Planck : µ(t, ) densité de proba de S t suit l équation t µ + ((r ξ)µ ) ( ) = ξ µ, ξ := 1 2 σσt ( ) avec ξ := j jξ i,j i=1..d.

6 Fokker-Planck. Termes de convection, de diffusion et d accrétion. Les équations de Fokker-Planck (ou Kolmogorov) La calibration Le carnet d ordre Termes de convection t µ + ((r ξ)µ ) = 0. est compressif si (r ξ) est convexe. Termes de diffusion ( ) t µ = ξ µ est diffusif si ξ est positive, accrétif si ξ possède des valeurs propres négatives.

7 Fokker-Planck. Termes de convection, de diffusion et d accrétion. Les équations de Fokker-Planck (ou Kolmogorov) La calibration Le carnet d ordre Termes de convection t µ + ((r ξ)µ ) = 0. est compressif si (r ξ) est convexe. Termes de diffusion ( ) t µ = ξ µ est diffusif si ξ est positive, accrétif si ξ possède des valeurs propres négatives.

8 Les équations de Fokker-Planck (ou Kolmogorov) La calibration Le carnet d ordre Un exemple de surfaces de volatilité locale. premier signe de non-linéarité : les termes convectifs sont toujours compressifs σ(t, ) : (a) Bonnans - Cognet - Volle. INRIA Estimation de la volatilité locale... Convection : la volatilité locale est toujours smilée : la convection est toujours localement compressive. Diffusion : diffusif dans les zones positives (rouge). Accrétion : accrétif dans les zones négatives (bleues). ξ := σσ T < 0? artefact numérique??

9 Les équations de Fokker-Planck (ou Kolmogorov) La calibration Le carnet d ordre Un exemple de surfaces de volatilité locale. premier signe de non-linéarité : les termes convectifs sont toujours compressifs σ(t, ) : (a) Bonnans - Cognet - Volle. INRIA Estimation de la volatilité locale... Convection : la volatilité locale est toujours smilée : la convection est toujours localement compressive. Diffusion : diffusif dans les zones positives (rouge). Accrétion : accrétif dans les zones négatives (bleues). ξ := σσ T < 0? artefact numérique??

10 Les équations de Fokker-Planck (ou Kolmogorov) La calibration Le carnet d ordre Un exemple de surfaces de volatilité locale. premier signe de non-linéarité : les termes convectifs sont toujours compressifs σ(t, ) : (a) Bonnans - Cognet - Volle. INRIA Estimation de la volatilité locale... Convection : la volatilité locale est toujours smilée : la convection est toujours localement compressive. Diffusion : diffusif dans les zones positives (rouge). Accrétion : accrétif dans les zones négatives (bleues). ξ := σσ T < 0? artefact numérique??

11 Les équations de Fokker-Planck (ou Kolmogorov) La calibration Le carnet d ordre Un exemple de surfaces de volatilité locale. premier signe de non-linéarité : les termes convectifs sont toujours compressifs σ(t, ) : (a) Bonnans - Cognet - Volle. INRIA Estimation de la volatilité locale... Convection : la volatilité locale est toujours smilée : la convection est toujours localement compressive. Diffusion : diffusif dans les zones positives (rouge). Accrétion : accrétif dans les zones négatives (bleues). ξ := σσ T < 0? artefact numérique??

12 Lignes directrices Non-linéarités en Finance Les équations de Fokker-Planck (ou Kolmogorov) La calibration Le carnet d ordre 1 Non-linéarités en Finance Les équations de Fokker-Planck (ou Kolmogorov) La calibration Le carnet d ordre 2

13 Les méthodes de calibration.....qui marchent plus ou moins bien... Les équations de Fokker-Planck (ou Kolmogorov) La calibration Le carnet d ordre problème inverse : trouver une densité µ(t, ) qui vérifie un ensemble de contrainte 0 m < M, 0 j < J(m) Cj m := ( Pj m µ = Cj m R ) [0, ] Ω oú ( Pj m ) m sont des pay-off de dérivés "sans risque", et ( C m j j sont des prix observés. Méthodes en 1D (d = 1) : ) m j (a) Dupire (instable) (b) Tykhonov (stable, mais relaxé) FIGURE : Méthodes de calibration de la volatilié locale σ(t, ).

14 Les équations de Fokker-Planck (ou Kolmogorov) La calibration Le carnet d ordre Et la méthode d Avellaneda. Deuxième signe de non linéarité : cette méthode ne marche pas très bien! Avellaneda : minimisation avec contraintes (Cj m ) m j inf d( µ 0, µ ), d ( µ 0, µ ) := µ 0 ln µ µ P(Ω) Ω µ 0 où µ 0 C (R + Ω) est le "prior" (calibration historique), et d ( µ 0, µ 1 ) l entropie de Kullback-Leibler. Pourtant : Theorem Si µ est dominée par µ 0, alors la méthode converge.... les densités de probabilité des donnés de marché seraient singulières??

15 Les équations de Fokker-Planck (ou Kolmogorov) La calibration Le carnet d ordre Et la méthode d Avellaneda. Deuxième signe de non linéarité : cette méthode ne marche pas très bien! Avellaneda : minimisation avec contraintes (Cj m ) m j inf d( µ 0, µ ), d ( µ 0, µ ) := µ 0 ln µ µ P(Ω) Ω µ 0 où µ 0 C (R + Ω) est le "prior" (calibration historique), et d ( µ 0, µ 1 ) l entropie de Kullback-Leibler. Pourtant : Theorem Si µ est dominée par µ 0, alors la méthode converge.... les densités de probabilité des donnés de marché seraient singulières??

16 Les équations de Fokker-Planck (ou Kolmogorov) La calibration Le carnet d ordre Et la méthode d Avellaneda. Deuxième signe de non linéarité : cette méthode ne marche pas très bien! Avellaneda : minimisation avec contraintes (Cj m ) m j inf d( µ 0, µ ), d ( µ 0, µ ) := µ 0 ln µ µ P(Ω) Ω µ 0 où µ 0 C (R + Ω) est le "prior" (calibration historique), et d ( µ 0, µ 1 ) l entropie de Kullback-Leibler. Pourtant : Theorem Si µ est dominée par µ 0, alors la méthode converge.... les densités de probabilité des donnés de marché seraient singulières??

17 Lignes directrices Non-linéarités en Finance Les équations de Fokker-Planck (ou Kolmogorov) La calibration Le carnet d ordre 1 Non-linéarités en Finance Les équations de Fokker-Planck (ou Kolmogorov) La calibration Le carnet d ordre 2

18 Les équations de Fokker-Planck (ou Kolmogorov) La calibration Le carnet d ordre Profils de carnets d ordre Troisième signe de non linéarité : ce sont des profils typiques de chocs entropiques. ν(t, S) P(Ω) : proba d avoir un ordre unitaire à S = (S i ) i. On note sa "cumulative" : N 1 (t, S) : Ω Λ := [ 1, 1] d. (a) action liquide (b) action moins liquide FIGURE : N 1 (t, S S t ), statistiques de carnet d ordre. Ce sont des profils typiques en mécanique des fluides (équation de Burger).

19 Les équations de Fokker-Planck (ou Kolmogorov) La calibration Le carnet d ordre Profils de carnets d ordre Troisième signe de non linéarité : ce sont des profils typiques de chocs entropiques. ν(t, S) P(Ω) : proba d avoir un ordre unitaire à S = (S i ) i. On note sa "cumulative" : N 1 (t, S) : Ω Λ := [ 1, 1] d. (a) action liquide (b) action moins liquide FIGURE : N 1 (t, S S t ), statistiques de carnet d ordre. Ce sont des profils typiques en mécanique des fluides (équation de Burger).

20 Les équations de Fokker-Planck (ou Kolmogorov) La calibration Le carnet d ordre Profils de carnets d ordre Troisième signe de non linéarité : ce sont des profils typiques de chocs entropiques. ν(t, S) P(Ω) : proba d avoir un ordre unitaire à S = (S i ) i. On note sa "cumulative" : N 1 (t, S) : Ω Λ := [ 1, 1] d. (a) action liquide (b) action moins liquide FIGURE : N 1 (t, S S t ), statistiques de carnet d ordre. Ce sont des profils typiques en mécanique des fluides (équation de Burger).

21 Les équations de Fokker-Planck (ou Kolmogorov) La calibration Le carnet d ordre Profils de carnets d ordre Troisième signe de non linéarité : ce sont des profils typiques de chocs entropiques. ν(t, S) P(Ω) : proba d avoir un ordre unitaire à S = (S i ) i. On note sa "cumulative" : N 1 (t, S) : Ω Λ := [ 1, 1] d. (a) action liquide (b) action moins liquide FIGURE : N 1 (t, S S t ), statistiques de carnet d ordre. Ce sont des profils typiques en mécanique des fluides (équation de Burger).

22 Lignes directrices Non-linéarités en Finance 1 Non-linéarités en Finance Les équations de Fokker-Planck (ou Kolmogorov) La calibration Le carnet d ordre 2

23 Un modèle de marché naif. où le prix S t n est pas une variable stochastique! On note le "quantile" de ν : N(t, ) : [ 1, 1] d Ω. Alors S t = N(t, 0), pour un marché infiniment liquide On note la "cumulative" de ν : N 1 (t, ) : Ω [ 1, 1] d. d dt S t = N 1 (t, S t ), dynamique pour un marché non liquide On suppose l invariance des carnets d ordre N 1 (t, ) S(t, ) N 1 (0, S 0 ) + ɛ(t), oú ɛ ɛ(1/n) est la liquidité (N est le volume d échange).

24 Un modèle de marché naif. où le prix S t n est pas une variable stochastique! On note le "quantile" de ν : N(t, ) : [ 1, 1] d Ω. Alors S t = N(t, 0), pour un marché infiniment liquide On note la "cumulative" de ν : N 1 (t, ) : Ω [ 1, 1] d. d dt S t = N 1 (t, S t ), dynamique pour un marché non liquide On suppose l invariance des carnets d ordre N 1 (t, ) S(t, ) N 1 (0, S 0 ) + ɛ(t), oú ɛ ɛ(1/n) est la liquidité (N est le volume d échange).

25 Un modèle de marché naif. où le prix S t n est pas une variable stochastique! On note le "quantile" de ν : N(t, ) : [ 1, 1] d Ω. Alors S t = N(t, 0), pour un marché infiniment liquide On note la "cumulative" de ν : N 1 (t, ) : Ω [ 1, 1] d. d dt S t = N 1 (t, S t ), dynamique pour un marché non liquide On suppose l invariance des carnets d ordre N 1 (t, ) S(t, ) N 1 (0, S 0 ) + ɛ(t), oú ɛ ɛ(1/n) est la liquidité (N est le volume d échange).

26 On obtient un modèle de la mécanique des fluides. (équation de Navier-Stokes, partie irrotationnellle) Proposition ν and N 1 vérifient le système suivant t ν (N 1 ν ) = ɛ ν, Conservation de la masse t N N = ɛ N 1, Conservation du moment. (1) Un observateur extérieur calibrant ce système verrait : Volatilité locale smilée, corrélation des tics!! Dans ce modèle, les prix sont homogènes à une vitesse. Ajoutez la partie rotationnelle, et vous obtiendrez des turbulences (de marché)!.

27 On obtient un modèle de la mécanique des fluides. (équation de Navier-Stokes, partie irrotationnellle) Proposition ν and N 1 vérifient le système suivant t ν (N 1 ν ) = ɛ ν, Conservation de la masse t N N = ɛ N 1, Conservation du moment. (1) Un observateur extérieur calibrant ce système verrait : Volatilité locale smilée, corrélation des tics!! Dans ce modèle, les prix sont homogènes à une vitesse. Ajoutez la partie rotationnelle, et vous obtiendrez des turbulences (de marché)!.

28 On obtient un modèle de la mécanique des fluides. (équation de Navier-Stokes, partie irrotationnellle) Proposition ν and N 1 vérifient le système suivant t ν (N 1 ν ) = ɛ ν, Conservation de la masse t N N = ɛ N 1, Conservation du moment. (1) Un observateur extérieur calibrant ce système verrait : Volatilité locale smilée, corrélation des tics!! Dans ce modèle, les prix sont homogènes à une vitesse. Ajoutez la partie rotationnelle, et vous obtiendrez des turbulences (de marché)!.

29 Cas non visqueux ɛ = 0 : Equations d Euler Solutions conservatives, Solutions entropiques, Modèle de retour à l équilibre. N(t, ) := N(0, y) ty (méthode des caractéristiques). Le système (1) (ɛ = 0) admet une infinité de solutions. Une solution est conservative : ν = ( h) + # m, avec N := ( h) + T factorisation polaire de Y. Brennier solution "non physique". Une solution est entropique : ν = ( h) # m, avec ( h) enveloppe convexe de N(t, ) solution "physique". La solution entropique converge vers un Dirac ν(t, ) := N(t, ) # m δ N0 (0), quand t.

30 Cas non visqueux ɛ = 0 : Equations d Euler Solutions conservatives, Solutions entropiques, Modèle de retour à l équilibre. N(t, ) := N(0, y) ty (méthode des caractéristiques). Le système (1) (ɛ = 0) admet une infinité de solutions. Une solution est conservative : ν = ( h) + # m, avec N := ( h) + T factorisation polaire de Y. Brennier solution "non physique". Une solution est entropique : ν = ( h) # m, avec ( h) enveloppe convexe de N(t, ) solution "physique". La solution entropique converge vers un Dirac ν(t, ) := N(t, ) # m δ N0 (0), quand t.

31 Cas non visqueux ɛ = 0 : Equations d Euler Solutions conservatives, Solutions entropiques, Modèle de retour à l équilibre. N(t, ) := N(0, y) ty (méthode des caractéristiques). Le système (1) (ɛ = 0) admet une infinité de solutions. Une solution est conservative : ν = ( h) + # m, avec N := ( h) + T factorisation polaire de Y. Brennier solution "non physique". Une solution est entropique : ν = ( h) # m, avec ( h) enveloppe convexe de N(t, ) solution "physique". La solution entropique converge vers un Dirac ν(t, ) := N(t, ) # m δ N0 (0), quand t.

32 Cas non visqueux ɛ = 0 : Equations d Euler Solutions conservatives, Solutions entropiques, Modèle de retour à l équilibre. N(t, ) := N(0, y) ty (méthode des caractéristiques). Le système (1) (ɛ = 0) admet une infinité de solutions. Une solution est conservative : ν = ( h) + # m, avec N := ( h) + T factorisation polaire de Y. Brennier solution "non physique". Une solution est entropique : ν = ( h) # m, avec ( h) enveloppe convexe de N(t, ) solution "physique". La solution entropique converge vers un Dirac ν(t, ) := N(t, ) # m δ N0 (0), quand t.

33 Lignes directrices Non-linéarités en Finance 1 Non-linéarités en Finance Les équations de Fokker-Planck (ou Kolmogorov) La calibration Le carnet d ordre 2

34 Calibration avec Wasserstein Solutions conservative, solution entropique, formations de singularités minimisation avec contraintes : µ 0 est le "prior" historique inf W 2(µ 0, µ ), contr. Pj m µ = Cj m µ P(Ω) W 2 (µ 0, µ ) Wasserstein (efficacité des marchés?). Il existe une infinité de solutions de ce problème : on note S 1 := x λ i ( P i ), Ω λ multiplicateurs Lagrange. Une solution est conservative : µ = ( h + ) # µ 0, S := ( h) + T factorisation polaire de Y. Brennier Une solution est entropique : µ = ( h) # µ 0, avec ( h) enveloppe convexe de S(t, )

35 Calibration avec Wasserstein Solutions conservative, solution entropique, formations de singularités minimisation avec contraintes : µ 0 est le "prior" historique inf W 2(µ 0, µ ), contr. Pj m µ = Cj m µ P(Ω) W 2 (µ 0, µ ) Wasserstein (efficacité des marchés?). Il existe une infinité de solutions de ce problème : on note S 1 := x λ i ( P i ), Ω λ multiplicateurs Lagrange. Une solution est conservative : µ = ( h + ) # µ 0, S := ( h) + T factorisation polaire de Y. Brennier Une solution est entropique : µ = ( h) # µ 0, avec ( h) enveloppe convexe de S(t, )

36 Calibration avec Wasserstein Solutions conservative, solution entropique, formations de singularités minimisation avec contraintes : µ 0 est le "prior" historique inf W 2(µ 0, µ ), contr. Pj m µ = Cj m µ P(Ω) W 2 (µ 0, µ ) Wasserstein (efficacité des marchés?). Il existe une infinité de solutions de ce problème : on note S 1 := x λ i ( P i ), Ω λ multiplicateurs Lagrange. Une solution est conservative : µ = ( h + ) # µ 0, S := ( h) + T factorisation polaire de Y. Brennier Une solution est entropique : µ = ( h) # µ 0, avec ( h) enveloppe convexe de S(t, )

37 Calibration avec Wasserstein Solutions conservative, solution entropique, formations de singularités minimisation avec contraintes : µ 0 est le "prior" historique inf W 2(µ 0, µ ), contr. Pj m µ = Cj m µ P(Ω) W 2 (µ 0, µ ) Wasserstein (efficacité des marchés?). Il existe une infinité de solutions de ce problème : on note S 1 := x λ i ( P i ), Ω λ multiplicateurs Lagrange. Une solution est conservative : µ = ( h + ) # µ 0, S := ( h) + T factorisation polaire de Y. Brennier Une solution est entropique : µ = ( h) # µ 0, avec ( h) enveloppe convexe de S(t, )

38 Calibration Monte-Carlo par Wasserstein Une calibration rapide, equi-probable, multi-dimensionnelle? minimisation discrète : (Si 0 ) i "quantile" historique. 1 inf S i Si 0 2, contr. 1 P j S i = C j S i N N i Illustration sur une liste de put / call i (a) quantile historique (b) conservatif (c) entropique FIGURE : Calibration Monte-Carlo sur BoA. Question : la solution entropique est-elle martingale?

39 Calibration Monte-Carlo par Wasserstein Une calibration rapide, equi-probable, multi-dimensionnelle? minimisation discrète : (Si 0 ) i "quantile" historique. 1 inf S i Si 0 2, contr. 1 P j S i = C j S i N N i Illustration sur une liste de put / call i (a) quantile historique (b) conservatif (c) entropique FIGURE : Calibration Monte-Carlo sur BoA. Question : la solution entropique est-elle martingale?

40 Calibration Monte-Carlo par Wasserstein Une calibration rapide, equi-probable, multi-dimensionnelle? minimisation discrète : (Si 0 ) i "quantile" historique. 1 inf S i Si 0 2, contr. 1 P j S i = C j S i N N i Illustration sur une liste de put / call i (a) quantile historique (b) conservatif (c) entropique FIGURE : Calibration Monte-Carlo sur BoA. Question : la solution entropique est-elle martingale?

41 Applications. Arbitrage, Hedging, et risque de contrepartie? Risque de contrepartie. Il y a deux économétries : l économétrie historique diffusée S 0 (t, ) et l économétrie de marchée, S(t, ) donnée par le Front-Office. Idée : utiliser une seule économétrie calibrée S(t, ) "proche" de S 0, mais répliquant les prix d instruments de mesure de risque bien choisis, i.e. "proche" de S(t, ). Avantages : Prix de marché du risque de contrepartie. Performance et simplicité de la librairie de pricing. Calibration crédit / action : WWR? Et surtout, plus juste! le calcul du risque de contrepartie est une équation backward, de type exercice américain (on se couvre sachant l exposition future).

42 Applications. Arbitrage, Hedging, et risque de contrepartie? Risque de contrepartie. Il y a deux économétries : l économétrie historique diffusée S 0 (t, ) et l économétrie de marchée, S(t, ) donnée par le Front-Office. Idée : utiliser une seule économétrie calibrée S(t, ) "proche" de S 0, mais répliquant les prix d instruments de mesure de risque bien choisis, i.e. "proche" de S(t, ). Avantages : Prix de marché du risque de contrepartie. Performance et simplicité de la librairie de pricing. Calibration crédit / action : WWR? Et surtout, plus juste! le calcul du risque de contrepartie est une équation backward, de type exercice américain (on se couvre sachant l exposition future).

43 Applications. Arbitrage, Hedging, et risque de contrepartie? Risque de contrepartie. Il y a deux économétries : l économétrie historique diffusée S 0 (t, ) et l économétrie de marchée, S(t, ) donnée par le Front-Office. Idée : utiliser une seule économétrie calibrée S(t, ) "proche" de S 0, mais répliquant les prix d instruments de mesure de risque bien choisis, i.e. "proche" de S(t, ). Avantages : Prix de marché du risque de contrepartie. Performance et simplicité de la librairie de pricing. Calibration crédit / action : WWR? Et surtout, plus juste! le calcul du risque de contrepartie est une équation backward, de type exercice américain (on se couvre sachant l exposition future).

44 Applications. Arbitrage, Hedging, et risque de contrepartie? Risque de contrepartie. Il y a deux économétries : l économétrie historique diffusée S 0 (t, ) et l économétrie de marchée, S(t, ) donnée par le Front-Office. Idée : utiliser une seule économétrie calibrée S(t, ) "proche" de S 0, mais répliquant les prix d instruments de mesure de risque bien choisis, i.e. "proche" de S(t, ). Avantages : Prix de marché du risque de contrepartie. Performance et simplicité de la librairie de pricing. Calibration crédit / action : WWR? Et surtout, plus juste! le calcul du risque de contrepartie est une équation backward, de type exercice américain (on se couvre sachant l exposition future).

45 Applications. Arbitrage, Hedging, et risque de contrepartie? Risque de contrepartie. Il y a deux économétries : l économétrie historique diffusée S 0 (t, ) et l économétrie de marchée, S(t, ) donnée par le Front-Office. Idée : utiliser une seule économétrie calibrée S(t, ) "proche" de S 0, mais répliquant les prix d instruments de mesure de risque bien choisis, i.e. "proche" de S(t, ). Avantages : Prix de marché du risque de contrepartie. Performance et simplicité de la librairie de pricing. Calibration crédit / action : WWR? Et surtout, plus juste! le calcul du risque de contrepartie est une équation backward, de type exercice américain (on se couvre sachant l exposition future).

46 Applications. Arbitrage, Hedging, et risque de contrepartie? Risque de contrepartie. Il y a deux économétries : l économétrie historique diffusée S 0 (t, ) et l économétrie de marchée, S(t, ) donnée par le Front-Office. Idée : utiliser une seule économétrie calibrée S(t, ) "proche" de S 0, mais répliquant les prix d instruments de mesure de risque bien choisis, i.e. "proche" de S(t, ). Avantages : Prix de marché du risque de contrepartie. Performance et simplicité de la librairie de pricing. Calibration crédit / action : WWR? Et surtout, plus juste! le calcul du risque de contrepartie est une équation backward, de type exercice américain (on se couvre sachant l exposition future).

47 Non-linéarités en Finance Modèle non-linéaires. Perspectives : Introduction de singularités dans les données de marché. On sort de l analyse classique en Finance de marché. Avis personnel : peu d existant sur le sujet à ma connaissance. Ligne de pensée potentiellement très riche en applications et profonde pour la recherche.

48 Non-linéarités en Finance Modèle non-linéaires. Perspectives : Introduction de singularités dans les données de marché. On sort de l analyse classique en Finance de marché. Avis personnel : peu d existant sur le sujet à ma connaissance. Ligne de pensée potentiellement très riche en applications et profonde pour la recherche.

49 Non-linéarités en Finance Modèle non-linéaires. Perspectives : Introduction de singularités dans les données de marché. On sort de l analyse classique en Finance de marché. Avis personnel : peu d existant sur le sujet à ma connaissance. Ligne de pensée potentiellement très riche en applications et profonde pour la recherche.

50 Non-linéarités en Finance Modèle non-linéaires. Perspectives : Introduction de singularités dans les données de marché. On sort de l analyse classique en Finance de marché. Avis personnel : peu d existant sur le sujet à ma connaissance. Ligne de pensée potentiellement très riche en applications et profonde pour la recherche.

51 Annexe Lectures complementaires Lectures complementaires I Peter Tankov. Surface de volatilié, Calibration de Modèles et Couverture de Produits Dérivés M Avellaneda. Minimum-relative-entropy calibration of asset pricing models, International Journal of Theoretical and Applied Finance, (1998).

Master IMEA 1 Calcul Stochastique et Finance Feuille de T.D. n o 1

Master IMEA 1 Calcul Stochastique et Finance Feuille de T.D. n o 1 Master IMEA 1 Calcul Stochastique et Finance Feuille de T.D. n o 1 1. a. On considère un modèle de marché (B, S) à une étape. On suppose que S = 5 C et qu à la date t = 1 on a (S u 1 = 51, S d 1 = 48).

Plus en détail

Les mathématiques de la finance Université d été de Sourdun Olivier Bardou olivier.bardou@gdfsuez.com 28 août 2012 De quoi allons nous parler? des principales hypothèses de modélisation des marchés, des

Plus en détail

1 La formule de Black et Scholes en t discret

1 La formule de Black et Scholes en t discret Université de Provence Préparation Agrégation Epreuve de Modélisation, Option Proba. Texte : La formule de Black Scholes en Finance Étienne Pardoux 1 La formule de Black et Scholes en t discret On suppose

Plus en détail

MATHS FINANCIERES. Mireille.Bossy@sophia.inria.fr. Projet OMEGA

MATHS FINANCIERES. Mireille.Bossy@sophia.inria.fr. Projet OMEGA MATHS FINANCIERES Mireille.Bossy@sophia.inria.fr Projet OMEGA Sophia Antipolis, septembre 2004 1. Introduction : la valorisation de contrats optionnels Options d achat et de vente : Call et Put Une option

Plus en détail

Le modèle de Black et Scholes

Le modèle de Black et Scholes Le modèle de Black et Scholes Alexandre Popier février 21 1 Introduction : exemple très simple de modèle financier On considère un marché avec une seule action cotée, sur une période donnée T. Dans un

Plus en détail

Master Modélisation Statistique M2 Finance - chapitre 4 Mouvement Brownien et modèle de Black-Scholes

Master Modélisation Statistique M2 Finance - chapitre 4 Mouvement Brownien et modèle de Black-Scholes Master Modélisation Statistique M2 Finance - chapitre 4 Mouvement Brownien et modèle de Black-Scholes Clément Dombry, Laboratoire de Mathématiques de Besançon, Université de Franche-Comté. C.Dombry (Université

Plus en détail

Probabilités III Introduction à l évaluation d options

Probabilités III Introduction à l évaluation d options Probabilités III Introduction à l évaluation d options Jacques Printems Promotion 2012 2013 1 Modèle à temps discret 2 Introduction aux modèles en temps continu Limite du modèle binomial lorsque N + Un

Plus en détail

Modélisation des marchés de matières premières

Modélisation des marchés de matières premières Modélisation des marchés de matières premières Louis MARGUERITTE Jean-Baptiste NESSI Institut des Actuaires Auditorium CNP Vendredi 10 Avril 2009 L. MARGUERITTE JB. NESSI Modélisation des marchés de matières

Plus en détail

Etude de Cas de Structuration Magistère d Economie et de Statistiques

Etude de Cas de Structuration Magistère d Economie et de Statistiques Etude de Cas de Structuration Magistère d Economie et de Statistiques David DUMONT - TEAM CALYON 22 avril 2008 Dans 2 ans, si l EURODOL est inférieur à 1,40 touchez 116% du nominal investi en euros, sinon

Plus en détail

Utilisation des éléments finis pour le pricing d'options

Utilisation des éléments finis pour le pricing d'options 1 Utilisation des éléments finis pour le pricing d'options Semaine «éléments finis», ENSMP 29 novembre 2006 Jean-Didier Garaud (ONERA, DMSE/LCME) 2 Plan Actions et produits dérivés Modèle de Black-Scholes

Plus en détail

Modélisation mathématique et finance des produits dérivés

Modélisation mathématique et finance des produits dérivés Modélisation mathématique et finance des produits dérivés Ecole Polytechnique Paris Académie Européenne Interdisciplinaire des Sciences Paris, 28 novembre 2011 Outline Introduction 1 Introduction 2 3 Qu

Plus en détail

Modèles structurels. Chapitre 4. 4.1 Modèle de Merton

Modèles structurels. Chapitre 4. 4.1 Modèle de Merton Chapitre 4 Modèles structurels 4.1 Modèle de Merton L idée principale de modèles structurels est basée sur l article fondateur de Merton [?], où un défaut est provoqué quand une entreprise n arrive pas

Plus en détail

Cours de Méthodes Déterministes en Finance (ENPC) Benoît Humez Société Générale Recherche Quantitative benoit.humez@sgcib.com

Cours de Méthodes Déterministes en Finance (ENPC) Benoît Humez Société Générale Recherche Quantitative benoit.humez@sgcib.com Cours de Méthodes Déterministes en Finance (ENPC) Benoît Humez Société Générale Recherche Quantitative benoit.humez@sgcib.com Points abordés Méthodes numériques employées en finance Approximations de prix

Plus en détail

Mathématiques pour la finance Définition, Evaluation et Couverture des Options vanilles Version 2012

Mathématiques pour la finance Définition, Evaluation et Couverture des Options vanilles Version 2012 Mathématiques pour la finance Définition, Evaluation et Couverture des Options vanilles Version 2012 Pierre Andreoletti pierre.andreoletti@univ-orleans.fr Bureau E15 1 / 20 Objectifs du cours Définition

Plus en détail

Jeux à somme nulle : le cas fini

Jeux à somme nulle : le cas fini CHAPITRE 2 Jeux à somme nulle : le cas fini Les jeux à somme nulle sont les jeux à deux joueurs où la somme des fonctions de paiement est nulle. Dans ce type d interaction stratégique, les intérêts des

Plus en détail

Introduction aux Mathématiques et Modèles Stochastiques des Marchés Financiers

Introduction aux Mathématiques et Modèles Stochastiques des Marchés Financiers Introduction aux Mathématiques et Modèles Stochastiques des Marchés Financiers Huyên PHAM Université Paris 7 Laboratoire de Probabilités et Modèles Aléatoires, CNRS UMR 7599 pham@math.jussieu.fr Version

Plus en détail

Options exotiques. April 18, 2000

Options exotiques. April 18, 2000 Options exotiques Nicole El Karoui, Monique Jeanblanc April 18, 2000 1 Introduction Les options exotiques sont des produits complexes, qui constituent un marché d une réelle importance depuis les années

Plus en détail

Commun à tous les candidats

Commun à tous les candidats EXERCICE 3 (9 points ) Commun à tous les candidats On s intéresse à des courbes servant de modèle à la distribution de la masse salariale d une entreprise. Les fonctions f associées définies sur l intervalle

Plus en détail

Evaluation d options avec incertitude sur la volatilité

Evaluation d options avec incertitude sur la volatilité Evaluation d options avec incertitude sur la volatilité Andrea Odetti, Rémy Ripoll 5 octobre 000 Table des matières 1 Introduction 1 La formule de Black et Scholes 3 Incertitude sur la volatilité 3.1 Modèles

Plus en détail

Calibration de Modèles et Couverture de. Peter TANKOV Université Paris VII tankov@math.jussieu.fr

Calibration de Modèles et Couverture de. Peter TANKOV Université Paris VII tankov@math.jussieu.fr Calibration de Modèles et Couverture de Produits Dérivés Peter TANKOV Université Paris VII tankov@math.jussieu.fr 2 Table de matières 1 Les marchés de produits dérivés 7 1.1 Historique...............................

Plus en détail

Mathématiques financières

Mathématiques financières Mathématiques financières Arnaud Triay Table des matières 1 Introduction Position du problème.1 Pricing des options........................................... Formalisme..............................................

Plus en détail

de calibration Master 2: Calibration de modèles: présentation et simulation d

de calibration Master 2: Calibration de modèles: présentation et simulation d Master 2: Calibration de modèles: présentation et simulation de quelques problèmes de calibration Plan de la présentation 1. Présentation de quelques modèles à calibrer 1a. Reconstruction d une courbe

Plus en détail

Simulations de Monte Carlo en finance : Pricer d option

Simulations de Monte Carlo en finance : Pricer d option Emma Alfonsi, Xavier Milhaud - M2R SAF Simulations de Monte Carlo en finance : Pricer d option Sous la direction de M. Pierre Alain Patard ISFA - Mars 2008 . 1 Table des matières 1 Introduction 4 2 Un

Plus en détail

Probabilités. I- Expérience aléatoire, espace probabilisé : ShotGun. 1- Définitions :

Probabilités. I- Expérience aléatoire, espace probabilisé : ShotGun. 1- Définitions : Probabilités I- Expérience aléatoire, espace probabilisé : 1- Définitions : Ω : Ensemble dont les points w sont les résultats possibles de l expérience Des évènements A parties de Ω appartiennent à A une

Plus en détail

Surface de volatilité

Surface de volatilité Surface de volatilité Peter TANKOV Université Paris-Diderot(ParisVII) tankov@math.univ-paris-diderot.fr Dernière m.à.j. February 15, 15 Ce document est mis à disposition sous un contrat Creative Commons

Plus en détail

Processus aléatoires avec application en finance

Processus aléatoires avec application en finance Genève, le 16 juin 2007. Processus aléatoires avec application en finance La durée de l examen est de deux heures. N oubliez pas d indiquer votre nom et prénom sur chaque feuille. Toute documentation et

Plus en détail

Probabilités II Étude de quelques lois. Master Gestion de Portefeuille IAE Gustave Eiffel Jacques Printems printems@u-pec.

Probabilités II Étude de quelques lois. Master Gestion de Portefeuille IAE Gustave Eiffel Jacques Printems printems@u-pec. Probabilités II Étude de quelques lois Master Gestion de Portefeuille IAE Gustave Eiffel Jacques Printems printems@u-pec.fr 2012 2013 1 1 Lois discrètes. On considère des v.a. ne prenant que des valeurs

Plus en détail

Master IMEA 1 Calcul Stochastique et Finance Feuille de T.D. n o 1

Master IMEA 1 Calcul Stochastique et Finance Feuille de T.D. n o 1 Master IMEA Calcul Stochastique et Finance Feuille de T.D. n o Corrigé exercices8et9 8. On considère un modèle Cox-Ross-Rubinstein de marché (B,S) à trois étapes. On suppose que S = C et que les facteurs

Plus en détail

BNP Paribas, CIB, Global Equity and Commodity Derivatives Research.

BNP Paribas, CIB, Global Equity and Commodity Derivatives Research. BNP Paribas, CIB, Global Equity and Commodity Derivatives Research. BNP PARIBAS jouit d une dimension internationale sur le marché des produits dérivés sur actions. Notre équipe de Recherche et Développement

Plus en détail

Valorisation d es des options Novembre 2007

Valorisation d es des options Novembre 2007 Valorisation des options Novembre 2007 Plan Rappels Relations de prix Le modèle binomial Le modèle de Black-Scholes Les grecques Page 2 Rappels (1) Définition Une option est un contrat financier qui confère

Plus en détail

I. Introduction. 1. Objectifs. 2. Les options. a. Présentation du problème.

I. Introduction. 1. Objectifs. 2. Les options. a. Présentation du problème. I. Introduction. 1. Objectifs. Le but de ces quelques séances est d introduire les outils mathématiques, plus précisément ceux de nature probabiliste, qui interviennent dans les modèles financiers ; nous

Plus en détail

Calibration de Modèles et Couverture de Produits Dérivés

Calibration de Modèles et Couverture de Produits Dérivés Calibration de Modèles et Couverture de Produits Dérivés Peter TANKOV Université Paris VII tankov@math.jussieu.fr Edition 28, dernière m.à.j. le 1 mars 28 La dernière version de ce document est disponible

Plus en détail

POLY-PREPAS ANNEE 2009/2010 Centre de Préparation aux Concours Paramédicaux

POLY-PREPAS ANNEE 2009/2010 Centre de Préparation aux Concours Paramédicaux POLY-PREPAS ANNEE 2009/2010 Centre de Préparation aux Concours Paramédicaux - Section : i-prépa Audioprothésiste (annuel) - MATHEMATIQUES 8 : EQUATIONS DIFFERENTIELLES - COURS + ENONCE EXERCICE - Olivier

Plus en détail

Filtrage stochastique non linéaire par la théorie de représentation des martingales

Filtrage stochastique non linéaire par la théorie de représentation des martingales Filtrage stochastique non linéaire par la théorie de représentation des martingales Adriana Climescu-Haulica Laboratoire de Modélisation et Calcul Institut d Informatique et Mathématiques Appliquées de

Plus en détail

Quelques modèles financiers utilisant les EDSR et EDSPR avec grossissement de filtration

Quelques modèles financiers utilisant les EDSR et EDSPR avec grossissement de filtration Quelques modèles financiers utilisant les EDSR et EDSPR avec grossissement de filtration Anne EYRAUD-LOISEL ISFA, Université Lyon 1 Séminaire Lyon - Le Mans 3 Mai 2012, Le Mans 1 / 40 Outline 1 Problèmes

Plus en détail

Modélisation des lois multidimensionnelles par la théorie des copules

Modélisation des lois multidimensionnelles par la théorie des copules Modélisation des lois multidimensionnelles par la théorie des copules Grégoire Mercier jeudi 9 novembre 26 Contenu 2 Mesure de dépendance Lien avec les copules 3 Estimation de l information mutuelle Estimation

Plus en détail

Annexe Simulations de Monte Carlo

Annexe Simulations de Monte Carlo Annexe Simulations de Monte Carlo Cette annexe présente, de façon pratique, les principales techniques opératoires des simulations de Monte Carlo. Le lecteur souhaitant une présentation plus rigoureuse

Plus en détail

Incertain, Marché financier, M1 - Arnold Chassagnon, Université de Tours, PSE - Automne 2015

Incertain, Marché financier, M1 - Arnold Chassagnon, Université de Tours, PSE - Automne 2015 Incertain, Marché financier, - M1 - Arnold Chassagnon, Université de Tours, PSE - Automne 2015 Plan du cours 1. Incertain, actifs financiers et marché financier 2. Les conditions d un marché sans arbitrage

Plus en détail

QUESTIONS D ENTRETIENS EN FINANCE DE MARCHE

QUESTIONS D ENTRETIENS EN FINANCE DE MARCHE QUESTIONS D ENTRETIENS EN FINANCE DE MARCHE Le présent document est un recueil de questions, la plupart techniques, posées à des candidats généralement jeunes diplômés, issus d école d ingénieurs, de commerce

Plus en détail

Value at Risk. CNAM GFN 206 Gestion d actifs et des risques. Grégory Taillard. 27 février & 13 mars 20061

Value at Risk. CNAM GFN 206 Gestion d actifs et des risques. Grégory Taillard. 27 février & 13 mars 20061 Value at Risk 27 février & 13 mars 20061 CNAM Gréory Taillard CNAM Master Finance de marché et estion de capitaux 2 Value at Risk Biblioraphie Jorion, Philippe, «Value at Risk: The New Benchmark for Manain

Plus en détail

Lois de probabilité à densité Loi normale

Lois de probabilité à densité Loi normale DERNIÈRE IMPRESSIN LE 31 mars 2015 à 14:11 Lois de probabilité à densité Loi normale Table des matières 1 Lois à densité 2 1.1 Introduction................................ 2 1.2 Densité de probabilité

Plus en détail

VALORISATION DES PRODUITS DE CHANGE :

VALORISATION DES PRODUITS DE CHANGE : VALORISATION DES PRODUITS DE CHANGE : TERMES, SWAPS & OPTIONS LIVRE BLANC I 2 Table des Matières Introduction... 3 Les produits non optionnels... 3 La méthode des flux projetés... 3 Les options de change

Plus en détail

MEMOIRE Présenté pour l obtention du diplôme de : MAGISTER EN MATHEMATIQUES

MEMOIRE Présenté pour l obtention du diplôme de : MAGISTER EN MATHEMATIQUES REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE MINISTERE DE L ENSEIGNEMENT SUPERIEURE ET DE LA RECHERCHE SCIENTIFIQUE UNIVERSITE DE MENTOURI - CONSTANTINE FACULTE DES SCIENCES DEPARTEMENT DE MATHEMATIQUES

Plus en détail

1 Introduction et modèle mathématique

1 Introduction et modèle mathématique Optimisation parallèle et mathématiques financières Optimisation parallèle et mathématiques financières Pierre Spiteri 1 IRIT ENSEEIHT, UMR CNRS 5505 2 rue Charles Camichel, B.P. 7122 F-31 071 Toulouse,

Plus en détail

CADEXTAN. Arnaud Nauwynck. Modélisation Objet de Librairie de Pricing. Partie 1 : Mathématique Modèles de Diffusion, Equation de Pricing

CADEXTAN. Arnaud Nauwynck. Modélisation Objet de Librairie de Pricing. Partie 1 : Mathématique Modèles de Diffusion, Equation de Pricing CADEXTAN Arnaud Nauwynck Modélisation Objet de Librairie de Pricing Partie 1 : Mathématique Modèles de Diffusion, Equation de Pricing L informatique qui réinvente la finance Plan Général Partie 1 : Mathématique

Plus en détail

Tarification de la Timer Option à Horizon Fini

Tarification de la Timer Option à Horizon Fini L Institut bénéficie du soutien financier de l Autorité des marchés financiers ainsi que du ministère des Finances du Québec Note technique NT 14-03 Tarification de la Timer Option à Horizon Fini Avril

Plus en détail

TRAVAIL D ETUDE ET DE RECHERCHE. Utilisation des arbres binomiaux pour le pricing des options américaines

TRAVAIL D ETUDE ET DE RECHERCHE. Utilisation des arbres binomiaux pour le pricing des options américaines Ensimag - 2éme année Mai 2010 TRAVAIL D ETUDE ET DE RECHERCHE Utilisation des arbres binomiaux pour le pricing des options américaines Anne-Victoire AURIAULT 1/48 2/48 Cadre de l Étude Cette étude a été

Plus en détail

Théorie Financière 8 P. rod i u t its dé dérivés

Théorie Financière 8 P. rod i u t its dé dérivés Théorie Financière 8P 8. Produits dit dérivés déié Objectifsdelasession session 1. Définir les produits dérivés (forward, futures et options (calls et puts) 2. Analyser les flux financiers terminaux 3.

Plus en détail

Prise en compte de la liquidité dans les algorithmes de trading

Prise en compte de la liquidité dans les algorithmes de trading Prise en compte de la liquidité dans les algorithmes de trading clehalle@cheuvreux.com Resp. de la Recherche Quant., Atelier Trading & Micro Structure 10 décembre 2008 Contenu La liquidité en Europe Les

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)

Plus en détail

CHAMPION Matthieu Modèles de Marché en Visual Basic ESILV S04 S6. Sommaire... 1. Introduction... 2

CHAMPION Matthieu Modèles de Marché en Visual Basic ESILV S04 S6. Sommaire... 1. Introduction... 2 Sommaire Sommaire... 1 Introduction... 2 1 Trois différentes techniques de pricing... 3 1.1 Le modèle de Cox Ross Rubinstein... 3 1.2 Le modèle de Black & Scholes... 8 1.3 Méthode de Monte Carlo.... 1

Plus en détail

ANALYSE NUMERIQUE ET OPTIMISATION. Une introduction à la modélisation mathématique et à la simulation numérique

ANALYSE NUMERIQUE ET OPTIMISATION. Une introduction à la modélisation mathématique et à la simulation numérique 1 ANALYSE NUMERIQUE ET OPTIMISATION Une introduction à la modélisation mathématique et à la simulation numérique G. ALLAIRE 28 Janvier 2014 CHAPITRE I Analyse numérique: amphis 1 à 12. Optimisation: amphis

Plus en détail

Les changements de numéraire dans la tarification de produits financiers

Les changements de numéraire dans la tarification de produits financiers INMA 2990 - Travail de fin d études Les changements de numéraire dans la tarification de produits financiers Pajot Benjamin Promoteur Devolder Pierre Juin 2010 Table des matières Introduction 1 1 Mesures

Plus en détail

Exercice : la frontière des portefeuilles optimaux sans actif certain

Exercice : la frontière des portefeuilles optimaux sans actif certain Exercice : la frontière des portefeuilles optimaux sans actif certain Philippe Bernard Ingénierie Economique & Financière Université Paris-Dauphine Février 0 On considère un univers de titres constitué

Plus en détail

Introduction au pricing d option en finance

Introduction au pricing d option en finance Introduction au pricing d option en finance Olivier Pironneau Cours d informatique Scientifique 1 Modélisation du prix d un actif financier Les actions, obligations et autres produits financiers cotés

Plus en détail

Calibration de modèles et couverture de produits dérivés

Calibration de modèles et couverture de produits dérivés Calibration de modèles et couverture de produits dérivés Peter Tankov To cite this version: Peter Tankov. Calibration de modèles et couverture de produits dérivés. DEA. Calibration de modèles et couverture

Plus en détail

Modèle classique Extensions Modèle multi-branches. Théorie de la ruine. Esterina Masiello (ISFA)

Modèle classique Extensions Modèle multi-branches. Théorie de la ruine. Esterina Masiello (ISFA) Esterina Masiello Institut de Science Financière et d Assurances Université Lyon 1 Premières Journées Actuarielles de Strasbourg 6-7 octobre 2010 En résumé... Modèle classique de la théorie de la ruine

Plus en détail

FLUIDES EN ÉCOULEMENT Méthodes et modèles

FLUIDES EN ÉCOULEMENT Méthodes et modèles FLUIDES EN ÉCOULEMENT Méthodes et modèles Jacques PADET Professeur Émérite à l Université de Reims Seconde édition revue et augmentée TABLE DES MATIÈRES PRÉSENTATION Préface de la 1 ère édition Prologue

Plus en détail

Limites finies en un point

Limites finies en un point 8 Limites finies en un point Pour ce chapitre, sauf précision contraire, I désigne une partie non vide de R et f une fonction définie sur I et à valeurs réelles ou complees. Là encore, les fonctions usuelles,

Plus en détail

Objectifs. Calcul scientifique. Champ d applications. Pourquoi la simulation numérique?

Objectifs. Calcul scientifique. Champ d applications. Pourquoi la simulation numérique? Objectifs Calcul scientifique Alexandre Ern ern@cermics.enpc.fr (CERMICS, Ecole des Ponts ParisTech) Le Calcul scientifique permet par la simulation numérique de prédire, optimiser, contrôler... le comportement

Plus en détail

Outils mathématiques pour le datamining. http://www.elseware.fr/univevry

Outils mathématiques pour le datamining. http://www.elseware.fr/univevry Outils mathématiques pour le datamining http://wwwelsewarefr/univevry Géométrie Distance Distance entre parties Matrice de variance/covariance Inertie Minimisation Probabilités Définition Théorème de Bayes

Plus en détail

Dualité dans les espaces de Lebesgue et mesures de Radon finies

Dualité dans les espaces de Lebesgue et mesures de Radon finies Chapitre 6 Dualité dans les espaces de Lebesgue et mesures de Radon finies Nous allons maintenant revenir sur les espaces L p du Chapitre 4, à la lumière de certains résultats du Chapitre 5. Sauf mention

Plus en détail

Manuel d Utilisateur - Logiciel ModAFi. Jonathan ANJOU - Maud EYZAT - Kévin NAVARRO

Manuel d Utilisateur - Logiciel ModAFi. Jonathan ANJOU - Maud EYZAT - Kévin NAVARRO Manuel d Utilisateur - Logiciel ModAFi Jonathan ANJOU - Maud EYZAT - Kévin NAVARRO Grenoble, 12 juin 2012 Table des matières 1 Introduction 3 2 Modèles supportés 3 2.1 Les diérents modèles supportés pour

Plus en détail

Université de Nantes Année 2009-2010 Faculté des Sciences et des Techniques Département de Mathématiques. Topologie et calculs différentiel Liste n 5

Université de Nantes Année 2009-2010 Faculté des Sciences et des Techniques Département de Mathématiques. Topologie et calculs différentiel Liste n 5 Université de Nantes Année 009-010 Faculté des Sciences et des Techniques Département de Mathématiques Topologie et calculs différentiel Liste n 5 Applications Différentiables Exercice 1. Soit f : R n

Plus en détail

Calibration des modèles

Calibration des modèles Calibration des modèles Rapport de projet de fin d études Auteur : Professeurs responsables : LEFEVERE Laurent FINTZ Nesim LONGEVIALLE Antoine TAFLIN Erik MANOLESSOU Marietta Table des matières Introduction

Plus en détail

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES Théorème - Définition Soit un cercle (O,R) et un point. Une droite passant par coupe le cercle en deux points A et

Plus en détail

COURS ÉCRIT. Introduction. 1 Modèles prototype 1D

COURS ÉCRIT. Introduction. 1 Modèles prototype 1D COURS ÉCRIT Modèles prototype D....................... 2 L instabilité roll waves d un écoulement incliné........ 5 3 Instabilité de Kelvin Helmoltz................... 4 Stabilité des écoulements parallèles................

Plus en détail

Optimisation. 1 Petite taxinomie des problèmes d optimisation 2

Optimisation. 1 Petite taxinomie des problèmes d optimisation 2 Table des matières Optimisation 1 Petite taxinomie des problèmes d optimisation 2 2 Optimisation sans contraintes 3 2.1 Optimisation sans contrainte unidimensionnelle........ 3 2.1.1 Une approche sans

Plus en détail

Image d un intervalle par une fonction continue

Image d un intervalle par une fonction continue DOCUMENT 27 Image d un intervalle par une fonction continue La continuité d une fonction en un point est une propriété locale : une fonction est continue en un point x 0 si et seulement si sa restriction

Plus en détail

ALEATOIRE - Les enjeux du cours de Probabilités en première année de l Ecole Polytechnique

ALEATOIRE - Les enjeux du cours de Probabilités en première année de l Ecole Polytechnique ALEATOIRE - Les enjeux du cours de Probabilités en première année de l Ecole Polytechnique Télécom ParisTech, 09 mai 2012 http://www.mathematiquesappliquees.polytechnique.edu/ accueil/programmes/cycle-polytechnicien/annee-1/

Plus en détail

Problématiques dans trading à haute fréquence

Problématiques dans trading à haute fréquence Extrait de la présentation de Charles-Albert Lehalle, Atelier Trading & Micro-structure, Collège de France, 10 Décembre 2008. mdang@cheuvreux.com Recherche Quantitative, Séminaire de la finance, VNFinance

Plus en détail

Options et Volatilité (introduction)

Options et Volatilité (introduction) SECONDE PARTIE Options et Volatilité (introduction) Avril 2013 Licence Paris Dauphine 2013 SECONDE PARTIE Philippe GIORDAN Head of Investment Consulting +377 92 16 55 65 philippe.giordan@kblmonaco.com

Plus en détail

Texte Agrégation limitée par diffusion interne

Texte Agrégation limitée par diffusion interne Page n 1. Texte Agrégation limitée par diffusion interne 1 Le phénomène observé Un fût de déchets radioactifs est enterré secrètement dans le Cantal. Au bout de quelques années, il devient poreux et laisse

Plus en détail

INTRODUCTION À LA THÉORIE DE STABILITÉ DES SYSTÈMES CONSERVATIFS

INTRODUCTION À LA THÉORIE DE STABILITÉ DES SYSTÈMES CONSERVATIFS INTRODUCTION À LA THÉORIE DE STABILITÉ DES SYSTÈMES CONSERVATIFS David Ryckelynck Centre des Matériaux, Mines ParisTech David.Ryckelynck@mines-paristech.fr Bibliographie : Stabilité et mécanique non linéaire,

Plus en détail

MATHEMATIQUES FINANCIERES SANS LARMES Nicolas Bouleau octobre 2005

MATHEMATIQUES FINANCIERES SANS LARMES Nicolas Bouleau octobre 2005 MATHEMATIQUES FINANCIERES SANS LARMES Nicolas Bouleau octobre 2005 L'engouement parmi les chercheurs et les jeunes scientifiques pour les mathématiques financières très excessif est-il un comportement

Plus en détail

Introduction aux modèles financiers

Introduction aux modèles financiers Notes pour le module spécifique Introduction aux modèles financiers Ecole Centrale de Lyon Option Mathématiques 1 2 Introduction Quelques références Pour comprendre les marchés financiers, avoir un apreçu

Plus en détail

Théorie et codage de l information

Théorie et codage de l information Théorie et codage de l information Mesure quantitative de l information - Chapitre 2 - Information propre et mutuelle Quantité d information propre d un événement Soit A un événement de probabilité P (A)

Plus en détail

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre IUFM du Limousin 2009-10 PLC1 Mathématiques S. Vinatier Rappels de cours Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre 1 Fonctions de plusieurs variables

Plus en détail

Introduction aux Mathématiques Financières. Notes de cours. Ioane Muni Toke

Introduction aux Mathématiques Financières. Notes de cours. Ioane Muni Toke Introduction aux Mathématiques Financières Notes de cours Ioane Muni Toke Ecole Centrale Pékin 28 mars 2011-1er avril 2011 Version du 17 mars 2011 Introduction aux mathématiques financières 2 Table des

Plus en détail

Chapitre 7 : Intégration sur un intervalle quelconque

Chapitre 7 : Intégration sur un intervalle quelconque Universités Paris 6 et Paris 7 M1 MEEF Analyse (UE 3) 2013-2014 Chapitre 7 : Intégration sur un intervalle quelconque 1 Fonctions intégrables Définition 1 Soit I R un intervalle et soit f : I R + une fonction

Plus en détail

Typologie des risques Mesure de risques Aspects statistiques; risques multivariés. Bauer & Isidor Shteto, CACIB, séances 6 8)

Typologie des risques Mesure de risques Aspects statistiques; risques multivariés. Bauer & Isidor Shteto, CACIB, séances 6 8) Plan du cours 1 Introduction, mesure de risques (P. Tankov, UPD, séances 1 3) Typologie des risques Mesure de risques Aspects statistiques; risques multivariés 2 Réglementation (M. Benlaribi, Deloitte,

Plus en détail

TP1 Méthodes de Monte Carlo et techniques de réduction de variance, application au pricing d options

TP1 Méthodes de Monte Carlo et techniques de réduction de variance, application au pricing d options Université de Lorraine Modélisation Stochastique Master 2 IMOI 2014-2015 TP1 Méthodes de Monte Carlo et techniques de réduction de variance, application au pricing d options 1 Les options Le but de ce

Plus en détail

Dérivés Financiers Evaluation des options sur action

Dérivés Financiers Evaluation des options sur action Dérivés Financiers Evaluation des options sur action Owen Williams Grenoble Ecole de Management > 2 Définitions : options sur actions Option : un contrat négociable donnant le droit d acheter ou vendre

Plus en détail

Résolution d équations non linéaires

Résolution d équations non linéaires Analyse Numérique Résolution d équations non linéaires Said EL HAJJI et Touria GHEMIRES Université Mohammed V - Agdal. Faculté des Sciences Département de Mathématiques. Laboratoire de Mathématiques, Informatique

Plus en détail

Introduction à la finance quantitative présenté par N. Champagnat IECL et INRIA

Introduction à la finance quantitative présenté par N. Champagnat IECL et INRIA Introduction à la finance quantitative présenté par N. Champagnat IECL et INRIA Contents 1 Introduction aux marchés financiers 2 1.1 Rôle des marchés financiers......................... 2 1.2 Les différents

Plus en détail

Opérateurs non-bornés

Opérateurs non-bornés Master Mathématiques Analyse spectrale Chapitre 4. Opérateurs non-bornés 1 Domaine, graphe et fermeture Soit H un espace de Hilbert. On rappelle que H H est l espace de Hilbert H H muni du produit scalaire

Plus en détail

Les produits dérivés. Chapitre 2. 2.1 Forwards et futures

Les produits dérivés. Chapitre 2. 2.1 Forwards et futures Chapitre 2 Les produits dérivés Di érents types des taux d intérêt. Formule de valorisation d un forward sur un actif financier (action, obligation). Classification des options et terminologie associée,

Plus en détail

Évaluation des risques de la réplique d une option asiatique en temps discret

Évaluation des risques de la réplique d une option asiatique en temps discret COLLECTION FEUILLE D ARGENT TRAVAUX DE RECHERCHE 2004-001 Évaluation des risques de la réplique d une option asiatique en temps discret Olivier Lussier Jean-Pierre Paré ÉVALUATION DES RISQUES DE LA RÉPLIQUE

Plus en détail

Ge ne rateurs de Sce narios Economiques et Portefeuilles Re pliquants : Techniques de calibration

Ge ne rateurs de Sce narios Economiques et Portefeuilles Re pliquants : Techniques de calibration Ge ne rateurs de Sce narios Economiques et Portefeuilles Re pliquants : Techniques de calibration Auteurs : Nordine Choukar, Xavier Larrieu, Christophe Bonnefoy, Walid Hachicha Mazars Actuariat Résumé

Plus en détail

Les Variable Annuities sous la directive Solvabilité II

Les Variable Annuities sous la directive Solvabilité II Les Variable Annuities sous la directive Solvabilité II Mémoire présenté le vendredi 10 juin 2011 par Clément Schmitt clement.schmitt@fixage.com Introduction Solvabilité II impose des fonds propres réglementaires

Plus en détail

L usage de la calculatrice n est pas autorisé.

L usage de la calculatrice n est pas autorisé. e3a Concours ENSAM - ESTP - EUCLIDE - ARCHIMÈDE Épreuve de Mathématiques A durée 4 heures MP L usage de la calculatrice n est pas autorisé. Si, au cours de l épreuve, un candidat repère ce qui lui semble

Plus en détail

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures)

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures) CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE Cinquième épreuve d admissibilité STATISTIQUE (durée : cinq heures) Une composition portant sur la statistique. SUJET Cette épreuve est composée d un

Plus en détail

Dérivés Financiers Options

Dérivés Financiers Options Stratégies à base d options Dérivés Financiers Options 1) Supposons que vous vendiez un put avec un prix d exercice de 40 et une date d expiration dans 3 mois. Le prix actuel de l action est 41 et le contrat

Plus en détail

Méthodes numériques pour la finance

Méthodes numériques pour la finance Méthodes numériques pour la finance Olivier Guibé 1 mars 010 Table des matières 1 Les outils de modélisation pour les options 1.1 Options............................................... 1. Modèle du marché

Plus en détail

INTRODUCTION INTRODUCTION

INTRODUCTION INTRODUCTION INTRODUCTION INTRODUCTION Les options sont des actifs financiers conditionnels qui donnent le droit mais pas l'obligation d'effectuer des transactions sur des actifs supports. Leur intérêt réside dans

Plus en détail

INSTRUMENTS FINANCIERS ET RISQUES ENCOURUS

INSTRUMENTS FINANCIERS ET RISQUES ENCOURUS INSTRUMENTS FINANCIERS ET RISQUES ENCOURUS L objet de ce document est de vous présenter un panorama des principaux instruments financiers utilisés par CPR AM dans le cadre de la fourniture d un service

Plus en détail

Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles

Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles Valentin Patilea 1 Cesar Sanchez-sellero 2 Matthieu Saumard 3 1 CREST-ENSAI et IRMAR 2 USC Espagne 3 IRMAR-INSA

Plus en détail

Principes de Finance

Principes de Finance Principes de Finance 12. Théorie des options I Daniel Andrei Semestre de printemps 211 Principes de Finance 12. Théorie des options I Printemps 211 1 / 43 Plan I Introduction II Comprendre les options

Plus en détail

TD n 1 : la Balance des Paiements

TD n 1 : la Balance des Paiements TD n 1 : la Balance des Paiements 1 - Principes d enregistrement L objet de la Balance des Paiements est de comptabiliser les différentes transactions entre résidents et non-résidents au cours d une année.

Plus en détail

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications A. Optimisation sans contrainte.... Généralités.... Condition nécessaire et condition suffisante

Plus en détail