Finance, Navier-Stokes, et la calibration

Dimension: px
Commencer à balayer dès la page:

Download "Finance, Navier-Stokes, et la calibration"

Transcription

1 Finance, Navier-Stokes, et la calibration non linéarités en finance 1 1 Avril 2013

2 Lignes directrices Non-linéarités en Finance 1 Non-linéarités en Finance Les équations de Fokker-Planck (ou Kolmogorov) La calibration Le carnet d ordre 2

3 Lignes directrices Non-linéarités en Finance Les équations de Fokker-Planck (ou Kolmogorov) La calibration Le carnet d ordre 1 Non-linéarités en Finance Les équations de Fokker-Planck (ou Kolmogorov) La calibration Le carnet d ordre 2

4 Browniens et Fokker-Planck Les hypothèses classiques en mathématiques financières. Les équations de Fokker-Planck (ou Kolmogorov) La calibration Le carnet d ordre Données de marché : taux, forex, actions, commodités, etc.. : Ω R d, d >> 1, t S t Ω suivent un mouvement brownien ds t = r(t, S t )dt + σ(t, S t ) dw t, S t := ( S i,t )i=1..d Ω σ(t, ) est la volatilitée locale. Fokker-Planck : µ(t, ) densité de proba de S t suit l équation t µ + ((r ξ)µ ) ( ) = ξ µ, ξ := 1 2 σσt ( ) avec ξ := j jξ i,j i=1..d.

5 Browniens et Fokker-Planck Les hypothèses classiques en mathématiques financières. Les équations de Fokker-Planck (ou Kolmogorov) La calibration Le carnet d ordre Données de marché : taux, forex, actions, commodités, etc.. : Ω R d, d >> 1, t S t Ω suivent un mouvement brownien ds t = r(t, S t )dt + σ(t, S t ) dw t, S t := ( S i,t )i=1..d Ω σ(t, ) est la volatilitée locale. Fokker-Planck : µ(t, ) densité de proba de S t suit l équation t µ + ((r ξ)µ ) ( ) = ξ µ, ξ := 1 2 σσt ( ) avec ξ := j jξ i,j i=1..d.

6 Fokker-Planck. Termes de convection, de diffusion et d accrétion. Les équations de Fokker-Planck (ou Kolmogorov) La calibration Le carnet d ordre Termes de convection t µ + ((r ξ)µ ) = 0. est compressif si (r ξ) est convexe. Termes de diffusion ( ) t µ = ξ µ est diffusif si ξ est positive, accrétif si ξ possède des valeurs propres négatives.

7 Fokker-Planck. Termes de convection, de diffusion et d accrétion. Les équations de Fokker-Planck (ou Kolmogorov) La calibration Le carnet d ordre Termes de convection t µ + ((r ξ)µ ) = 0. est compressif si (r ξ) est convexe. Termes de diffusion ( ) t µ = ξ µ est diffusif si ξ est positive, accrétif si ξ possède des valeurs propres négatives.

8 Les équations de Fokker-Planck (ou Kolmogorov) La calibration Le carnet d ordre Un exemple de surfaces de volatilité locale. premier signe de non-linéarité : les termes convectifs sont toujours compressifs σ(t, ) : (a) Bonnans - Cognet - Volle. INRIA Estimation de la volatilité locale... Convection : la volatilité locale est toujours smilée : la convection est toujours localement compressive. Diffusion : diffusif dans les zones positives (rouge). Accrétion : accrétif dans les zones négatives (bleues). ξ := σσ T < 0? artefact numérique??

9 Les équations de Fokker-Planck (ou Kolmogorov) La calibration Le carnet d ordre Un exemple de surfaces de volatilité locale. premier signe de non-linéarité : les termes convectifs sont toujours compressifs σ(t, ) : (a) Bonnans - Cognet - Volle. INRIA Estimation de la volatilité locale... Convection : la volatilité locale est toujours smilée : la convection est toujours localement compressive. Diffusion : diffusif dans les zones positives (rouge). Accrétion : accrétif dans les zones négatives (bleues). ξ := σσ T < 0? artefact numérique??

10 Les équations de Fokker-Planck (ou Kolmogorov) La calibration Le carnet d ordre Un exemple de surfaces de volatilité locale. premier signe de non-linéarité : les termes convectifs sont toujours compressifs σ(t, ) : (a) Bonnans - Cognet - Volle. INRIA Estimation de la volatilité locale... Convection : la volatilité locale est toujours smilée : la convection est toujours localement compressive. Diffusion : diffusif dans les zones positives (rouge). Accrétion : accrétif dans les zones négatives (bleues). ξ := σσ T < 0? artefact numérique??

11 Les équations de Fokker-Planck (ou Kolmogorov) La calibration Le carnet d ordre Un exemple de surfaces de volatilité locale. premier signe de non-linéarité : les termes convectifs sont toujours compressifs σ(t, ) : (a) Bonnans - Cognet - Volle. INRIA Estimation de la volatilité locale... Convection : la volatilité locale est toujours smilée : la convection est toujours localement compressive. Diffusion : diffusif dans les zones positives (rouge). Accrétion : accrétif dans les zones négatives (bleues). ξ := σσ T < 0? artefact numérique??

12 Lignes directrices Non-linéarités en Finance Les équations de Fokker-Planck (ou Kolmogorov) La calibration Le carnet d ordre 1 Non-linéarités en Finance Les équations de Fokker-Planck (ou Kolmogorov) La calibration Le carnet d ordre 2

13 Les méthodes de calibration.....qui marchent plus ou moins bien... Les équations de Fokker-Planck (ou Kolmogorov) La calibration Le carnet d ordre problème inverse : trouver une densité µ(t, ) qui vérifie un ensemble de contrainte 0 m < M, 0 j < J(m) Cj m := ( Pj m µ = Cj m R ) [0, ] Ω oú ( Pj m ) m sont des pay-off de dérivés "sans risque", et ( C m j j sont des prix observés. Méthodes en 1D (d = 1) : ) m j (a) Dupire (instable) (b) Tykhonov (stable, mais relaxé) FIGURE : Méthodes de calibration de la volatilié locale σ(t, ).

14 Les équations de Fokker-Planck (ou Kolmogorov) La calibration Le carnet d ordre Et la méthode d Avellaneda. Deuxième signe de non linéarité : cette méthode ne marche pas très bien! Avellaneda : minimisation avec contraintes (Cj m ) m j inf d( µ 0, µ ), d ( µ 0, µ ) := µ 0 ln µ µ P(Ω) Ω µ 0 où µ 0 C (R + Ω) est le "prior" (calibration historique), et d ( µ 0, µ 1 ) l entropie de Kullback-Leibler. Pourtant : Theorem Si µ est dominée par µ 0, alors la méthode converge.... les densités de probabilité des donnés de marché seraient singulières??

15 Les équations de Fokker-Planck (ou Kolmogorov) La calibration Le carnet d ordre Et la méthode d Avellaneda. Deuxième signe de non linéarité : cette méthode ne marche pas très bien! Avellaneda : minimisation avec contraintes (Cj m ) m j inf d( µ 0, µ ), d ( µ 0, µ ) := µ 0 ln µ µ P(Ω) Ω µ 0 où µ 0 C (R + Ω) est le "prior" (calibration historique), et d ( µ 0, µ 1 ) l entropie de Kullback-Leibler. Pourtant : Theorem Si µ est dominée par µ 0, alors la méthode converge.... les densités de probabilité des donnés de marché seraient singulières??

16 Les équations de Fokker-Planck (ou Kolmogorov) La calibration Le carnet d ordre Et la méthode d Avellaneda. Deuxième signe de non linéarité : cette méthode ne marche pas très bien! Avellaneda : minimisation avec contraintes (Cj m ) m j inf d( µ 0, µ ), d ( µ 0, µ ) := µ 0 ln µ µ P(Ω) Ω µ 0 où µ 0 C (R + Ω) est le "prior" (calibration historique), et d ( µ 0, µ 1 ) l entropie de Kullback-Leibler. Pourtant : Theorem Si µ est dominée par µ 0, alors la méthode converge.... les densités de probabilité des donnés de marché seraient singulières??

17 Lignes directrices Non-linéarités en Finance Les équations de Fokker-Planck (ou Kolmogorov) La calibration Le carnet d ordre 1 Non-linéarités en Finance Les équations de Fokker-Planck (ou Kolmogorov) La calibration Le carnet d ordre 2

18 Les équations de Fokker-Planck (ou Kolmogorov) La calibration Le carnet d ordre Profils de carnets d ordre Troisième signe de non linéarité : ce sont des profils typiques de chocs entropiques. ν(t, S) P(Ω) : proba d avoir un ordre unitaire à S = (S i ) i. On note sa "cumulative" : N 1 (t, S) : Ω Λ := [ 1, 1] d. (a) action liquide (b) action moins liquide FIGURE : N 1 (t, S S t ), statistiques de carnet d ordre. Ce sont des profils typiques en mécanique des fluides (équation de Burger).

19 Les équations de Fokker-Planck (ou Kolmogorov) La calibration Le carnet d ordre Profils de carnets d ordre Troisième signe de non linéarité : ce sont des profils typiques de chocs entropiques. ν(t, S) P(Ω) : proba d avoir un ordre unitaire à S = (S i ) i. On note sa "cumulative" : N 1 (t, S) : Ω Λ := [ 1, 1] d. (a) action liquide (b) action moins liquide FIGURE : N 1 (t, S S t ), statistiques de carnet d ordre. Ce sont des profils typiques en mécanique des fluides (équation de Burger).

20 Les équations de Fokker-Planck (ou Kolmogorov) La calibration Le carnet d ordre Profils de carnets d ordre Troisième signe de non linéarité : ce sont des profils typiques de chocs entropiques. ν(t, S) P(Ω) : proba d avoir un ordre unitaire à S = (S i ) i. On note sa "cumulative" : N 1 (t, S) : Ω Λ := [ 1, 1] d. (a) action liquide (b) action moins liquide FIGURE : N 1 (t, S S t ), statistiques de carnet d ordre. Ce sont des profils typiques en mécanique des fluides (équation de Burger).

21 Les équations de Fokker-Planck (ou Kolmogorov) La calibration Le carnet d ordre Profils de carnets d ordre Troisième signe de non linéarité : ce sont des profils typiques de chocs entropiques. ν(t, S) P(Ω) : proba d avoir un ordre unitaire à S = (S i ) i. On note sa "cumulative" : N 1 (t, S) : Ω Λ := [ 1, 1] d. (a) action liquide (b) action moins liquide FIGURE : N 1 (t, S S t ), statistiques de carnet d ordre. Ce sont des profils typiques en mécanique des fluides (équation de Burger).

22 Lignes directrices Non-linéarités en Finance 1 Non-linéarités en Finance Les équations de Fokker-Planck (ou Kolmogorov) La calibration Le carnet d ordre 2

23 Un modèle de marché naif. où le prix S t n est pas une variable stochastique! On note le "quantile" de ν : N(t, ) : [ 1, 1] d Ω. Alors S t = N(t, 0), pour un marché infiniment liquide On note la "cumulative" de ν : N 1 (t, ) : Ω [ 1, 1] d. d dt S t = N 1 (t, S t ), dynamique pour un marché non liquide On suppose l invariance des carnets d ordre N 1 (t, ) S(t, ) N 1 (0, S 0 ) + ɛ(t), oú ɛ ɛ(1/n) est la liquidité (N est le volume d échange).

24 Un modèle de marché naif. où le prix S t n est pas une variable stochastique! On note le "quantile" de ν : N(t, ) : [ 1, 1] d Ω. Alors S t = N(t, 0), pour un marché infiniment liquide On note la "cumulative" de ν : N 1 (t, ) : Ω [ 1, 1] d. d dt S t = N 1 (t, S t ), dynamique pour un marché non liquide On suppose l invariance des carnets d ordre N 1 (t, ) S(t, ) N 1 (0, S 0 ) + ɛ(t), oú ɛ ɛ(1/n) est la liquidité (N est le volume d échange).

25 Un modèle de marché naif. où le prix S t n est pas une variable stochastique! On note le "quantile" de ν : N(t, ) : [ 1, 1] d Ω. Alors S t = N(t, 0), pour un marché infiniment liquide On note la "cumulative" de ν : N 1 (t, ) : Ω [ 1, 1] d. d dt S t = N 1 (t, S t ), dynamique pour un marché non liquide On suppose l invariance des carnets d ordre N 1 (t, ) S(t, ) N 1 (0, S 0 ) + ɛ(t), oú ɛ ɛ(1/n) est la liquidité (N est le volume d échange).

26 On obtient un modèle de la mécanique des fluides. (équation de Navier-Stokes, partie irrotationnellle) Proposition ν and N 1 vérifient le système suivant t ν (N 1 ν ) = ɛ ν, Conservation de la masse t N N = ɛ N 1, Conservation du moment. (1) Un observateur extérieur calibrant ce système verrait : Volatilité locale smilée, corrélation des tics!! Dans ce modèle, les prix sont homogènes à une vitesse. Ajoutez la partie rotationnelle, et vous obtiendrez des turbulences (de marché)!.

27 On obtient un modèle de la mécanique des fluides. (équation de Navier-Stokes, partie irrotationnellle) Proposition ν and N 1 vérifient le système suivant t ν (N 1 ν ) = ɛ ν, Conservation de la masse t N N = ɛ N 1, Conservation du moment. (1) Un observateur extérieur calibrant ce système verrait : Volatilité locale smilée, corrélation des tics!! Dans ce modèle, les prix sont homogènes à une vitesse. Ajoutez la partie rotationnelle, et vous obtiendrez des turbulences (de marché)!.

28 On obtient un modèle de la mécanique des fluides. (équation de Navier-Stokes, partie irrotationnellle) Proposition ν and N 1 vérifient le système suivant t ν (N 1 ν ) = ɛ ν, Conservation de la masse t N N = ɛ N 1, Conservation du moment. (1) Un observateur extérieur calibrant ce système verrait : Volatilité locale smilée, corrélation des tics!! Dans ce modèle, les prix sont homogènes à une vitesse. Ajoutez la partie rotationnelle, et vous obtiendrez des turbulences (de marché)!.

29 Cas non visqueux ɛ = 0 : Equations d Euler Solutions conservatives, Solutions entropiques, Modèle de retour à l équilibre. N(t, ) := N(0, y) ty (méthode des caractéristiques). Le système (1) (ɛ = 0) admet une infinité de solutions. Une solution est conservative : ν = ( h) + # m, avec N := ( h) + T factorisation polaire de Y. Brennier solution "non physique". Une solution est entropique : ν = ( h) # m, avec ( h) enveloppe convexe de N(t, ) solution "physique". La solution entropique converge vers un Dirac ν(t, ) := N(t, ) # m δ N0 (0), quand t.

30 Cas non visqueux ɛ = 0 : Equations d Euler Solutions conservatives, Solutions entropiques, Modèle de retour à l équilibre. N(t, ) := N(0, y) ty (méthode des caractéristiques). Le système (1) (ɛ = 0) admet une infinité de solutions. Une solution est conservative : ν = ( h) + # m, avec N := ( h) + T factorisation polaire de Y. Brennier solution "non physique". Une solution est entropique : ν = ( h) # m, avec ( h) enveloppe convexe de N(t, ) solution "physique". La solution entropique converge vers un Dirac ν(t, ) := N(t, ) # m δ N0 (0), quand t.

31 Cas non visqueux ɛ = 0 : Equations d Euler Solutions conservatives, Solutions entropiques, Modèle de retour à l équilibre. N(t, ) := N(0, y) ty (méthode des caractéristiques). Le système (1) (ɛ = 0) admet une infinité de solutions. Une solution est conservative : ν = ( h) + # m, avec N := ( h) + T factorisation polaire de Y. Brennier solution "non physique". Une solution est entropique : ν = ( h) # m, avec ( h) enveloppe convexe de N(t, ) solution "physique". La solution entropique converge vers un Dirac ν(t, ) := N(t, ) # m δ N0 (0), quand t.

32 Cas non visqueux ɛ = 0 : Equations d Euler Solutions conservatives, Solutions entropiques, Modèle de retour à l équilibre. N(t, ) := N(0, y) ty (méthode des caractéristiques). Le système (1) (ɛ = 0) admet une infinité de solutions. Une solution est conservative : ν = ( h) + # m, avec N := ( h) + T factorisation polaire de Y. Brennier solution "non physique". Une solution est entropique : ν = ( h) # m, avec ( h) enveloppe convexe de N(t, ) solution "physique". La solution entropique converge vers un Dirac ν(t, ) := N(t, ) # m δ N0 (0), quand t.

33 Lignes directrices Non-linéarités en Finance 1 Non-linéarités en Finance Les équations de Fokker-Planck (ou Kolmogorov) La calibration Le carnet d ordre 2

34 Calibration avec Wasserstein Solutions conservative, solution entropique, formations de singularités minimisation avec contraintes : µ 0 est le "prior" historique inf W 2(µ 0, µ ), contr. Pj m µ = Cj m µ P(Ω) W 2 (µ 0, µ ) Wasserstein (efficacité des marchés?). Il existe une infinité de solutions de ce problème : on note S 1 := x λ i ( P i ), Ω λ multiplicateurs Lagrange. Une solution est conservative : µ = ( h + ) # µ 0, S := ( h) + T factorisation polaire de Y. Brennier Une solution est entropique : µ = ( h) # µ 0, avec ( h) enveloppe convexe de S(t, )

35 Calibration avec Wasserstein Solutions conservative, solution entropique, formations de singularités minimisation avec contraintes : µ 0 est le "prior" historique inf W 2(µ 0, µ ), contr. Pj m µ = Cj m µ P(Ω) W 2 (µ 0, µ ) Wasserstein (efficacité des marchés?). Il existe une infinité de solutions de ce problème : on note S 1 := x λ i ( P i ), Ω λ multiplicateurs Lagrange. Une solution est conservative : µ = ( h + ) # µ 0, S := ( h) + T factorisation polaire de Y. Brennier Une solution est entropique : µ = ( h) # µ 0, avec ( h) enveloppe convexe de S(t, )

36 Calibration avec Wasserstein Solutions conservative, solution entropique, formations de singularités minimisation avec contraintes : µ 0 est le "prior" historique inf W 2(µ 0, µ ), contr. Pj m µ = Cj m µ P(Ω) W 2 (µ 0, µ ) Wasserstein (efficacité des marchés?). Il existe une infinité de solutions de ce problème : on note S 1 := x λ i ( P i ), Ω λ multiplicateurs Lagrange. Une solution est conservative : µ = ( h + ) # µ 0, S := ( h) + T factorisation polaire de Y. Brennier Une solution est entropique : µ = ( h) # µ 0, avec ( h) enveloppe convexe de S(t, )

37 Calibration avec Wasserstein Solutions conservative, solution entropique, formations de singularités minimisation avec contraintes : µ 0 est le "prior" historique inf W 2(µ 0, µ ), contr. Pj m µ = Cj m µ P(Ω) W 2 (µ 0, µ ) Wasserstein (efficacité des marchés?). Il existe une infinité de solutions de ce problème : on note S 1 := x λ i ( P i ), Ω λ multiplicateurs Lagrange. Une solution est conservative : µ = ( h + ) # µ 0, S := ( h) + T factorisation polaire de Y. Brennier Une solution est entropique : µ = ( h) # µ 0, avec ( h) enveloppe convexe de S(t, )

38 Calibration Monte-Carlo par Wasserstein Une calibration rapide, equi-probable, multi-dimensionnelle? minimisation discrète : (Si 0 ) i "quantile" historique. 1 inf S i Si 0 2, contr. 1 P j S i = C j S i N N i Illustration sur une liste de put / call i (a) quantile historique (b) conservatif (c) entropique FIGURE : Calibration Monte-Carlo sur BoA. Question : la solution entropique est-elle martingale?

39 Calibration Monte-Carlo par Wasserstein Une calibration rapide, equi-probable, multi-dimensionnelle? minimisation discrète : (Si 0 ) i "quantile" historique. 1 inf S i Si 0 2, contr. 1 P j S i = C j S i N N i Illustration sur une liste de put / call i (a) quantile historique (b) conservatif (c) entropique FIGURE : Calibration Monte-Carlo sur BoA. Question : la solution entropique est-elle martingale?

40 Calibration Monte-Carlo par Wasserstein Une calibration rapide, equi-probable, multi-dimensionnelle? minimisation discrète : (Si 0 ) i "quantile" historique. 1 inf S i Si 0 2, contr. 1 P j S i = C j S i N N i Illustration sur une liste de put / call i (a) quantile historique (b) conservatif (c) entropique FIGURE : Calibration Monte-Carlo sur BoA. Question : la solution entropique est-elle martingale?

41 Applications. Arbitrage, Hedging, et risque de contrepartie? Risque de contrepartie. Il y a deux économétries : l économétrie historique diffusée S 0 (t, ) et l économétrie de marchée, S(t, ) donnée par le Front-Office. Idée : utiliser une seule économétrie calibrée S(t, ) "proche" de S 0, mais répliquant les prix d instruments de mesure de risque bien choisis, i.e. "proche" de S(t, ). Avantages : Prix de marché du risque de contrepartie. Performance et simplicité de la librairie de pricing. Calibration crédit / action : WWR? Et surtout, plus juste! le calcul du risque de contrepartie est une équation backward, de type exercice américain (on se couvre sachant l exposition future).

42 Applications. Arbitrage, Hedging, et risque de contrepartie? Risque de contrepartie. Il y a deux économétries : l économétrie historique diffusée S 0 (t, ) et l économétrie de marchée, S(t, ) donnée par le Front-Office. Idée : utiliser une seule économétrie calibrée S(t, ) "proche" de S 0, mais répliquant les prix d instruments de mesure de risque bien choisis, i.e. "proche" de S(t, ). Avantages : Prix de marché du risque de contrepartie. Performance et simplicité de la librairie de pricing. Calibration crédit / action : WWR? Et surtout, plus juste! le calcul du risque de contrepartie est une équation backward, de type exercice américain (on se couvre sachant l exposition future).

43 Applications. Arbitrage, Hedging, et risque de contrepartie? Risque de contrepartie. Il y a deux économétries : l économétrie historique diffusée S 0 (t, ) et l économétrie de marchée, S(t, ) donnée par le Front-Office. Idée : utiliser une seule économétrie calibrée S(t, ) "proche" de S 0, mais répliquant les prix d instruments de mesure de risque bien choisis, i.e. "proche" de S(t, ). Avantages : Prix de marché du risque de contrepartie. Performance et simplicité de la librairie de pricing. Calibration crédit / action : WWR? Et surtout, plus juste! le calcul du risque de contrepartie est une équation backward, de type exercice américain (on se couvre sachant l exposition future).

44 Applications. Arbitrage, Hedging, et risque de contrepartie? Risque de contrepartie. Il y a deux économétries : l économétrie historique diffusée S 0 (t, ) et l économétrie de marchée, S(t, ) donnée par le Front-Office. Idée : utiliser une seule économétrie calibrée S(t, ) "proche" de S 0, mais répliquant les prix d instruments de mesure de risque bien choisis, i.e. "proche" de S(t, ). Avantages : Prix de marché du risque de contrepartie. Performance et simplicité de la librairie de pricing. Calibration crédit / action : WWR? Et surtout, plus juste! le calcul du risque de contrepartie est une équation backward, de type exercice américain (on se couvre sachant l exposition future).

45 Applications. Arbitrage, Hedging, et risque de contrepartie? Risque de contrepartie. Il y a deux économétries : l économétrie historique diffusée S 0 (t, ) et l économétrie de marchée, S(t, ) donnée par le Front-Office. Idée : utiliser une seule économétrie calibrée S(t, ) "proche" de S 0, mais répliquant les prix d instruments de mesure de risque bien choisis, i.e. "proche" de S(t, ). Avantages : Prix de marché du risque de contrepartie. Performance et simplicité de la librairie de pricing. Calibration crédit / action : WWR? Et surtout, plus juste! le calcul du risque de contrepartie est une équation backward, de type exercice américain (on se couvre sachant l exposition future).

46 Applications. Arbitrage, Hedging, et risque de contrepartie? Risque de contrepartie. Il y a deux économétries : l économétrie historique diffusée S 0 (t, ) et l économétrie de marchée, S(t, ) donnée par le Front-Office. Idée : utiliser une seule économétrie calibrée S(t, ) "proche" de S 0, mais répliquant les prix d instruments de mesure de risque bien choisis, i.e. "proche" de S(t, ). Avantages : Prix de marché du risque de contrepartie. Performance et simplicité de la librairie de pricing. Calibration crédit / action : WWR? Et surtout, plus juste! le calcul du risque de contrepartie est une équation backward, de type exercice américain (on se couvre sachant l exposition future).

47 Non-linéarités en Finance Modèle non-linéaires. Perspectives : Introduction de singularités dans les données de marché. On sort de l analyse classique en Finance de marché. Avis personnel : peu d existant sur le sujet à ma connaissance. Ligne de pensée potentiellement très riche en applications et profonde pour la recherche.

48 Non-linéarités en Finance Modèle non-linéaires. Perspectives : Introduction de singularités dans les données de marché. On sort de l analyse classique en Finance de marché. Avis personnel : peu d existant sur le sujet à ma connaissance. Ligne de pensée potentiellement très riche en applications et profonde pour la recherche.

49 Non-linéarités en Finance Modèle non-linéaires. Perspectives : Introduction de singularités dans les données de marché. On sort de l analyse classique en Finance de marché. Avis personnel : peu d existant sur le sujet à ma connaissance. Ligne de pensée potentiellement très riche en applications et profonde pour la recherche.

50 Non-linéarités en Finance Modèle non-linéaires. Perspectives : Introduction de singularités dans les données de marché. On sort de l analyse classique en Finance de marché. Avis personnel : peu d existant sur le sujet à ma connaissance. Ligne de pensée potentiellement très riche en applications et profonde pour la recherche.

51 Annexe Lectures complementaires Lectures complementaires I Peter Tankov. Surface de volatilié, Calibration de Modèles et Couverture de Produits Dérivés M Avellaneda. Minimum-relative-entropy calibration of asset pricing models, International Journal of Theoretical and Applied Finance, (1998).

Finance, Navier-Stokes, et la calibration

Finance, Navier-Stokes, et la calibration Finance, Navier-Stokes, et la calibration non linéarités en finance 1 1 www.crimere.com/blog Juin 2013 Lignes directrices Transport Optimal - Rappels 1 Transport Optimal - Rappels 2 3 4 Transport Optimal

Plus en détail

La Volatilité Locale

La Volatilité Locale La Volatilité Locale Bertrand TAVIN Université Paris 1 - Panthéon Sorbonne 26 mai 2010 Résumé Dans cette courte note nous introduisons le concept de volatilité locale et les modèles de pricing basés sur

Plus en détail

Le Modèle de Black-Scholes. DeriveXperts. 27 octobre 2010

Le Modèle de Black-Scholes. DeriveXperts. 27 octobre 2010 27 octobre 2010 Outline 1 Définitions Le modèle de diffusion de Black-Scholes Portefeuille auto-finançant Objectif de BS 2 Portefeuille auto-finançant et formule de Black-Scholes Formulation mathématique

Plus en détail

Master IMEA 1 Calcul Stochastique et Finance Feuille de T.D. n o 1

Master IMEA 1 Calcul Stochastique et Finance Feuille de T.D. n o 1 Master IMEA 1 Calcul Stochastique et Finance Feuille de T.D. n o 1 1. a. On considère un modèle de marché (B, S) à une étape. On suppose que S = 5 C et qu à la date t = 1 on a (S u 1 = 51, S d 1 = 48).

Plus en détail

Calcul stochastique appliqué à la finance. Volatilités stochastique, locale et implicite

Calcul stochastique appliqué à la finance. Volatilités stochastique, locale et implicite Calcul stochastique appliqué à la finance Ioane Muni Toke Draft version Ce document rassemble de brèves notes de cours. Les résultats sont proposés sans démonstration, les preuves ayant été données en

Plus en détail

INTRODUCTION : EDP ET FINANCE.

INTRODUCTION : EDP ET FINANCE. INTRODUCTION : EDP ET FINANCE. Alexandre Popier Université du Maine, Le Mans A. Popier (Le Mans) EDP et finance. 1 / 16 PLAN DU COURS 1 MODÈLE ET ÉQUATION DE BLACK SCHOLES 2 QUELQUES EXTENSIONS A. Popier

Plus en détail

Les mathématiques de la finance Université d été de Sourdun Olivier Bardou olivier.bardou@gdfsuez.com 28 août 2012 De quoi allons nous parler? des principales hypothèses de modélisation des marchés, des

Plus en détail

1 La formule de Black et Scholes en t discret

1 La formule de Black et Scholes en t discret Université de Provence Préparation Agrégation Epreuve de Modélisation, Option Proba. Texte : La formule de Black Scholes en Finance Étienne Pardoux 1 La formule de Black et Scholes en t discret On suppose

Plus en détail

MATHS FINANCIERES. Mireille.Bossy@sophia.inria.fr. Projet OMEGA

MATHS FINANCIERES. Mireille.Bossy@sophia.inria.fr. Projet OMEGA MATHS FINANCIERES Mireille.Bossy@sophia.inria.fr Projet OMEGA Sophia Antipolis, septembre 2004 1. Introduction : la valorisation de contrats optionnels Options d achat et de vente : Call et Put Une option

Plus en détail

Probabilités III Introduction à l évaluation d options

Probabilités III Introduction à l évaluation d options Probabilités III Introduction à l évaluation d options Jacques Printems Promotion 2012 2013 1 Modèle à temps discret 2 Introduction aux modèles en temps continu Limite du modèle binomial lorsque N + Un

Plus en détail

Master Modélisation Statistique M2 Finance - chapitre 3 Modèles financiers discrets

Master Modélisation Statistique M2 Finance - chapitre 3 Modèles financiers discrets Master Modélisation Statistique M2 Finance - chapitre 3 Modèles financiers discrets Clément Dombry, Laboratoire de Mathématiques de Besançon, Université de Franche-Comté. C.Dombry (Université de Franche-Comté)

Plus en détail

Modèles en temps continu pour la Finance

Modèles en temps continu pour la Finance Modèles en temps continu pour la Finance ENSTA ParisTech/Laboratoire de Mathématiques Appliquées 23 avril 2014 Evaluation et couverture pour les options européennes de la forme H = h(s 1 T ) Proposition

Plus en détail

Master Modélisation Statistique M2 Finance - chapitre 4 Mouvement Brownien et modèle de Black-Scholes

Master Modélisation Statistique M2 Finance - chapitre 4 Mouvement Brownien et modèle de Black-Scholes Master Modélisation Statistique M2 Finance - chapitre 4 Mouvement Brownien et modèle de Black-Scholes Clément Dombry, Laboratoire de Mathématiques de Besançon, Université de Franche-Comté. C.Dombry (Université

Plus en détail

Le modèle de Black et Scholes

Le modèle de Black et Scholes Le modèle de Black et Scholes Alexandre Popier février 21 1 Introduction : exemple très simple de modèle financier On considère un marché avec une seule action cotée, sur une période donnée T. Dans un

Plus en détail

Modélisation des marchés de matières premières

Modélisation des marchés de matières premières Modélisation des marchés de matières premières Louis MARGUERITTE Jean-Baptiste NESSI Institut des Actuaires Auditorium CNP Vendredi 10 Avril 2009 L. MARGUERITTE JB. NESSI Modélisation des marchés de matières

Plus en détail

Etude de Cas de Structuration Magistère d Economie et de Statistiques

Etude de Cas de Structuration Magistère d Economie et de Statistiques Etude de Cas de Structuration Magistère d Economie et de Statistiques David DUMONT - TEAM CALYON 22 avril 2008 Dans 2 ans, si l EURODOL est inférieur à 1,40 touchez 116% du nominal investi en euros, sinon

Plus en détail

1.1 Prime d une option d achat dans le modèle de Cox, Ross et Rubinstein

1.1 Prime d une option d achat dans le modèle de Cox, Ross et Rubinstein 1 Examen 1.1 Prime d une option d achat dans le modèle de Cox, Ross et Rubinstein On considère une option à 90 jours sur un actif ne distribuant pas de dividende de nominal 100 francs, et dont le prix

Plus en détail

Utilisation des arbres binomiaux pour le pricing des options américaines

Utilisation des arbres binomiaux pour le pricing des options américaines Utilisation des arbres binomiaux pour le pricing des options américaines Anne-Victoire Auriault Plan de la présentation Introduction. Le problème des options 2. Le modèle de Cox-Ross-Rubinstein 3. Les

Plus en détail

Principes de Finance

Principes de Finance Principes de Finance 13. Théorie des options II Daniel Andrei Semestre de printemps 2011 Principes de Finance 13. Théorie des options II Printemps 2011 1 / 34 Plan I Stratégie de réplication dynamique

Plus en détail

IAE Master 2 Gestion de Portefeuille Année 2011 2012. Feuille 3 Pricing et couverture Modèles discret

IAE Master 2 Gestion de Portefeuille Année 2011 2012. Feuille 3 Pricing et couverture Modèles discret Université de Paris Est Créteil Mathématiques financières IAE Master 2 Gestion de Portefeuille Année 2011 2012 1. Le problème des partis 1 Feuille 3 Pricing et couverture Modèles discret Le chevalier de

Plus en détail

Prix d options européennes

Prix d options européennes Page n 1. Prix d options européennes Une société française tient sa comptabilité en euros et signe un contrat avec une entreprise américaine qu elle devra payer en dollars à la livraison. Entre aujourd

Plus en détail

Couverture dynamique des produits dérivés de crédit dans les modèles à copules

Couverture dynamique des produits dérivés de crédit dans les modèles à copules Couverture dynamique des produits dérivés de crédit dans les modèles à copules David Kurtz, Groupe de Recherche Opérationnelle Workshop Copula in Finance, 14 mai 2004, ENS Cachan Sommaire 1 Le marché des

Plus en détail

Asymétrie des rendements et volatilité multifractale

Asymétrie des rendements et volatilité multifractale Asymétrie des rendements et volatilité multifractale Emmanuel Bacry 1, Laurent Duvernet 2, Jean-François Muzy 3 Séminaire du Labex MME-DII 26 février 2013 1. CNRS École Polytechnique 2. Univ. Paris-Ouest

Plus en détail

Obtention de la formule de Black-Scholes par passage à la limite dans le modèle de Cox-Ross-Rubinstein

Obtention de la formule de Black-Scholes par passage à la limite dans le modèle de Cox-Ross-Rubinstein Obtention de la formule de Black-Scholes par passage à la limite dans le modèle de Cox-Ross-Rubinstein Introduction Christophe Chorro, Alexandre Marino Ce document constitue, dans sa forme actuelle, un

Plus en détail

Chapitre 2 : Méthode de Monte-Carlo avec tirages indépendants, pour le calcul approché d une intégrale.

Chapitre 2 : Méthode de Monte-Carlo avec tirages indépendants, pour le calcul approché d une intégrale. Aix Marseille Université. Algorithmes Stochastiques. M MIS. Fabienne Castell... Chapitre : Méthode de Monte-Carlo avec tirages indépendants, pour le calcul approché d une intégrale. Le but de ce chapitre

Plus en détail

Modélisation mathématique et finance des produits dérivés

Modélisation mathématique et finance des produits dérivés Modélisation mathématique et finance des produits dérivés Ecole Polytechnique Paris Académie Européenne Interdisciplinaire des Sciences Paris, 28 novembre 2011 Outline Introduction 1 Introduction 2 3 Qu

Plus en détail

Modèles structurels. Chapitre 4. 4.1 Modèle de Merton

Modèles structurels. Chapitre 4. 4.1 Modèle de Merton Chapitre 4 Modèles structurels 4.1 Modèle de Merton L idée principale de modèles structurels est basée sur l article fondateur de Merton [?], où un défaut est provoqué quand une entreprise n arrive pas

Plus en détail

Cours de Méthodes Déterministes en Finance (ENPC) Benoît Humez Société Générale Recherche Quantitative benoit.humez@sgcib.com

Cours de Méthodes Déterministes en Finance (ENPC) Benoît Humez Société Générale Recherche Quantitative benoit.humez@sgcib.com Cours de Méthodes Déterministes en Finance (ENPC) Benoît Humez Société Générale Recherche Quantitative benoit.humez@sgcib.com Points abordés Méthodes numériques employées en finance Approximations de prix

Plus en détail

Mathématiques pour la finance Définition, Evaluation et Couverture des Options vanilles Version 2012

Mathématiques pour la finance Définition, Evaluation et Couverture des Options vanilles Version 2012 Mathématiques pour la finance Définition, Evaluation et Couverture des Options vanilles Version 2012 Pierre Andreoletti pierre.andreoletti@univ-orleans.fr Bureau E15 1 / 20 Objectifs du cours Définition

Plus en détail

Utilisation des éléments finis pour le pricing d'options

Utilisation des éléments finis pour le pricing d'options 1 Utilisation des éléments finis pour le pricing d'options Semaine «éléments finis», ENSMP 29 novembre 2006 Jean-Didier Garaud (ONERA, DMSE/LCME) 2 Plan Actions et produits dérivés Modèle de Black-Scholes

Plus en détail

3. Evaluer la valeur d une option. 1. Arbres binomiaux 2. Modèle de Black, Scholes et Merton

3. Evaluer la valeur d une option. 1. Arbres binomiaux 2. Modèle de Black, Scholes et Merton 3. Evaluer la valeur d une option 1. Arbres binomiaux. Modèle de Black, choles et Merton 1 Les arbres binomiaux ; évaluation des options sur actions Cox, Ross, Rubinstein 1979 Hypothèse absence opportunité

Plus en détail

Simulations de Monte Carlo

Simulations de Monte Carlo Simulations de Monte Carlo 2 février 261 CNAM GFN 26 Gestion d actifs et des risques Gréory Taillard GFN 26 Gestion d actifs et des risques 2 Biblioraphie Hayat, Sere, Patrice Poncet et Roland Portait,

Plus en détail

Relations fondamentales de la dynamique des milieux continus déformables

Relations fondamentales de la dynamique des milieux continus déformables Relations fondamentales de la dynamique des milieux continus déformables Lois universelles de la physique des milieux continus conservation de la masse bilan de quantité de mouvement bilan de moment cinétique

Plus en détail

Chapitre IV : Couples de variables aléatoires discrètes

Chapitre IV : Couples de variables aléatoires discrètes UNIVERSITÉ DE CERG Année 0-03 UFR Économie & Gestion Licence d Économie et Gestion MATH0 : Probabilités Chapitre IV : Couples de variables aléatoires discrètes Généralités Définition Soit (Ω, P(Ω), P)

Plus en détail

Jeux à somme nulle : le cas fini

Jeux à somme nulle : le cas fini CHAPITRE 2 Jeux à somme nulle : le cas fini Les jeux à somme nulle sont les jeux à deux joueurs où la somme des fonctions de paiement est nulle. Dans ce type d interaction stratégique, les intérêts des

Plus en détail

Intégrale stochastique

Intégrale stochastique Intégrale stochastique Plan L intégrale stochastique générale Intégrale de Wiener Exemples Processus d Itô Formule d Itô Formule de Black & Scholes Le processus B est un mouvement Brownien et { Ft B,t

Plus en détail

Master Modélisation Statistique M2 Finance - chapitre 0. Introduction au cours de finance

Master Modélisation Statistique M2 Finance - chapitre 0. Introduction au cours de finance Master Modélisation Statistique M2 Finance - chapitre 0 Introduction au cours de finance Clément Dombry, Laboratoire de Mathématiques de Besançon, Université de Franche-Comté. C.Dombry (Université de Franche-Comté)

Plus en détail

Simulations des Grecques : Malliavin vs Différences finies

Simulations des Grecques : Malliavin vs Différences finies 0.1. LES GRECQUES 1 Simulations des Grecques : iavin vs Différences finies Christophe Chorro Ce petit document vise à illustrer de manière numérique les techniques présentées lors du mini cours sur le

Plus en détail

Production de données et échelles temporelles de l évaluation du risque en finance. Deuxième partie (séance 2)

Production de données et échelles temporelles de l évaluation du risque en finance. Deuxième partie (séance 2) Séminaire d enseignement M2 Production de données et échelles temporelles de l évaluation du risque en finance Deuxième partie (séance 2) Séminaire M2 2015-2016 page 1 Plan 1. Les échelles de temps 2.

Plus en détail

Analyse du Risque et Couverture des Tranches de CDO Synthétique

Analyse du Risque et Couverture des Tranches de CDO Synthétique Analyse du Risque et Couverture des Tranches de CDO Synthétique Areski Cousin Laboratoire de Sciences Actuarielle et Financière ISFA, Université Lyon 1 Soutenance de Thèse, Lyon, 17 Octobre 2008 Directeur

Plus en détail

BNP Paribas, CIB, Global Equity and Commodity Derivatives Research.

BNP Paribas, CIB, Global Equity and Commodity Derivatives Research. BNP Paribas, CIB, Global Equity and Commodity Derivatives Research. BNP PARIBAS jouit d une dimension internationale sur le marché des produits dérivés sur actions. Notre équipe de Recherche et Développement

Plus en détail

Introduction aux Mathématiques et Modèles Stochastiques des Marchés Financiers

Introduction aux Mathématiques et Modèles Stochastiques des Marchés Financiers Introduction aux Mathématiques et Modèles Stochastiques des Marchés Financiers Huyên PHAM Université Paris 7 Laboratoire de Probabilités et Modèles Aléatoires, CNRS UMR 7599 pham@math.jussieu.fr Version

Plus en détail

Volatilité stochastique : étude d un modèle ergodique.

Volatilité stochastique : étude d un modèle ergodique. Volatilité stochastique : étude d un modèle ergodique. Julien Guyon julien.guyon@polytechnique.fr novembre Table des matières 1 Introduction 5 1.1 Notations............................. 5 1. Interprétation...........................

Plus en détail

Introduction aux produits de taux d intérêts

Introduction aux produits de taux d intérêts Introduction aux produits de taux d intérêts R&D Banque CPR 8 avril 2002 Plan 1. Notations et préliminaires 2. Euribor, caplets, caps 3. Swaps, swaptions 4. Constant Maturity Swap (CMS) 5. Quelques produits

Plus en détail

Master IMEA 1 Calcul Stochastique et Finance Feuille de T.D. n o 1

Master IMEA 1 Calcul Stochastique et Finance Feuille de T.D. n o 1 Master IMEA Calcul Stochastique et Finance Feuille de T.D. n o Corrigé exercices8et9 8. On considère un modèle Cox-Ross-Rubinstein de marché (B,S) à trois étapes. On suppose que S = C et que les facteurs

Plus en détail

Calibration de Modèles et Couverture de. Peter TANKOV Université Paris VII tankov@math.jussieu.fr

Calibration de Modèles et Couverture de. Peter TANKOV Université Paris VII tankov@math.jussieu.fr Calibration de Modèles et Couverture de Produits Dérivés Peter TANKOV Université Paris VII tankov@math.jussieu.fr 2 Table de matières 1 Les marchés de produits dérivés 7 1.1 Historique...............................

Plus en détail

Année 2009/2010. Rapport de projet de dernière année ISIMA F4

Année 2009/2010. Rapport de projet de dernière année ISIMA F4 Année 2009/2010 Rapport de projet de dernière année ISIMA F4 «Evaluation d options Européenne Vanille, Américaine Vanille et Asiatique» Elaboré par : Encadré par : Monsieur Mehdi Fhima Résumé Les options

Plus en détail

Mathématiques financières

Mathématiques financières Mathématiques financières Arnaud Triay Table des matières 1 Introduction Position du problème.1 Pricing des options........................................... Formalisme..............................................

Plus en détail

de calibration Master 2: Calibration de modèles: présentation et simulation d

de calibration Master 2: Calibration de modèles: présentation et simulation d Master 2: Calibration de modèles: présentation et simulation de quelques problèmes de calibration Plan de la présentation 1. Présentation de quelques modèles à calibrer 1a. Reconstruction d une courbe

Plus en détail

Projets scilab. L3 Maths Appliquées lagache@biologie.ens.fr 02 Avril 2009

Projets scilab. L3 Maths Appliquées lagache@biologie.ens.fr 02 Avril 2009 Projets scilab L3 Maths Appliquées lagache@biologie.ens.fr 2 Avril 29 REMARQUE: quelques résultats importants concernant le théorème central limite et les intervalles de confiance sont rappelés dans la

Plus en détail

Spécialistes de pricing des dérivées actions et crédit complexes et de l obligation convertible.

Spécialistes de pricing des dérivées actions et crédit complexes et de l obligation convertible. Spécialistes de pricing des dérivées actions et crédit complexes et de l obligation convertible. Pedro Ferreira : Présentation de ITO33 27 novembre 2007 1 La société 2 Equity to Credit 3 Le problème de

Plus en détail

Les options : Lien entre les paramètres de pricing et les grecs

Les options : Lien entre les paramètres de pricing et les grecs Cette page est soutenue par ALGOFI Cabinet de conseil, d ingénierie financière et dépositaire de systèmes d information financiers. Par Ingefi, le Pôle Métier Ingénierie Financière d Algofi. ---------------------------------------------------------------------------------------------------------------------

Plus en détail

EVALUATION DES CDS ET CDO

EVALUATION DES CDS ET CDO EVALUATION DES CDS ET CDO ARMAND NGOUPEYOU 15 novembre 2007 Credit Default Swap Le Credit Default Swap de maturité T est un contrat de protection qui porte sur le défaut d un emprunteur("single Name").L

Plus en détail

Mathématiques Financières

Mathématiques Financières Mathématiques Financières 3 ème partie Marchés financiers en temps discret & instruments financiers dérivés Université de Picardie Jules Verne Amiens Par Jean-Paul FELIX Cours du vendredi 19 février 2010-1

Plus en détail

Options exotiques. April 18, 2000

Options exotiques. April 18, 2000 Options exotiques Nicole El Karoui, Monique Jeanblanc April 18, 2000 1 Introduction Les options exotiques sont des produits complexes, qui constituent un marché d une réelle importance depuis les années

Plus en détail

Master Modélisation Statistique M2 Finance - chapitre 1. Gestion optimale de portefeuille, l approche de Markowitz

Master Modélisation Statistique M2 Finance - chapitre 1. Gestion optimale de portefeuille, l approche de Markowitz Master Modélisation Statistique M2 Finance - chapitre 1 Gestion optimale de portefeuille, l approche de Markowitz Clément Dombry, Laboratoire de Mathématiques de Besançon, Université de Franche-Comté.

Plus en détail

Tutorat 3 de Mathématiques (2ème année)

Tutorat 3 de Mathématiques (2ème année) Tutorat 3 de Mathématiques (2ème année) Marches aléatoires et marchés financiers Groupe 4 tuteur : J. Bouttier 8 février 2010 Résumé Depuis la thèse de Bachelier, les marchés nanciers ont constitué un

Plus en détail

Probabilités. I- Expérience aléatoire, espace probabilisé : ShotGun. 1- Définitions :

Probabilités. I- Expérience aléatoire, espace probabilisé : ShotGun. 1- Définitions : Probabilités I- Expérience aléatoire, espace probabilisé : 1- Définitions : Ω : Ensemble dont les points w sont les résultats possibles de l expérience Des évènements A parties de Ω appartiennent à A une

Plus en détail

Master ISIFAR 2ème année Exercices pour le cours Mathématiques Financières

Master ISIFAR 2ème année Exercices pour le cours Mathématiques Financières Master ISIFAR 2ème année Exercices pour le cours Mathématiques Financières Chapitre 1 Exercice 1. * Calculer le prix à terme d échéance T d une obligation de nominal N, qui verse un coupon C à la date

Plus en détail

Commun à tous les candidats

Commun à tous les candidats EXERCICE 3 (9 points ) Commun à tous les candidats On s intéresse à des courbes servant de modèle à la distribution de la masse salariale d une entreprise. Les fonctions f associées définies sur l intervalle

Plus en détail

Evaluation d options avec incertitude sur la volatilité

Evaluation d options avec incertitude sur la volatilité Evaluation d options avec incertitude sur la volatilité Andrea Odetti, Rémy Ripoll 5 octobre 000 Table des matières 1 Introduction 1 La formule de Black et Scholes 3 Incertitude sur la volatilité 3.1 Modèles

Plus en détail

Solutions globales pour les équations décrivant des écoulements insaturés en milieux poreux, avec une pression capillaire dynamique

Solutions globales pour les équations décrivant des écoulements insaturés en milieux poreux, avec une pression capillaire dynamique Solutions globales pour les équations décrivant des écoulements insaturés en milieux poreux, avec une pression capillaire dynamique J. Bodin 12, T. Clopeau 2, A. Mikelić 2 1 Agence Nationale pour la gestion

Plus en détail

Modélisation du risque de crédit et asymétrie d information

Modélisation du risque de crédit et asymétrie d information Modélisation du risque de crédit et asymétrie d information David Kurtz, Groupe de Recherche Opérationnelle 10 juin 2004, Université de Poitiers Introduction [1] (1) Le risque de crédit (2) Modèles structurels

Plus en détail

B&S Pratique et limites

B&S Pratique et limites B&S Pratique et limites Christophe Chorro (christophe.chorro@univ-paris1.fr) Université Paris 1 Décembre 2008 hristophe Chorro (christophe.chorro@univ-paris1.fr) (Université Paris BS 1) Pratique et limites

Plus en détail

Quelques modèles financiers utilisant les EDSR et EDSPR avec grossissement de filtration

Quelques modèles financiers utilisant les EDSR et EDSPR avec grossissement de filtration Quelques modèles financiers utilisant les EDSR et EDSPR avec grossissement de filtration Anne EYRAUD-LOISEL ISFA, Université Lyon 1 Séminaire Lyon - Le Mans 3 Mai 2012, Le Mans 1 / 40 Outline 1 Problèmes

Plus en détail

Processus aléatoires avec application en finance

Processus aléatoires avec application en finance Genève, le 16 juin 2007. Processus aléatoires avec application en finance La durée de l examen est de deux heures. N oubliez pas d indiquer votre nom et prénom sur chaque feuille. Toute documentation et

Plus en détail

Valorisation d es des options Novembre 2007

Valorisation d es des options Novembre 2007 Valorisation des options Novembre 2007 Plan Rappels Relations de prix Le modèle binomial Le modèle de Black-Scholes Les grecques Page 2 Rappels (1) Définition Une option est un contrat financier qui confère

Plus en détail

Modélisation de la dépendance et simulation de processus en finance. Mohamed Sbai. 25 novembre 2009. Université Paris-Est, CERMICS

Modélisation de la dépendance et simulation de processus en finance. Mohamed Sbai. 25 novembre 2009. Université Paris-Est, CERMICS Modélisation de la dépendance et simulation de processus en finance Mohamed Sbai Université Paris-Est, CERMICS 25 novembre 2009 Mohamed Sbai (UPE-CERMICS) Modèle d indice & schémas 25 novembre 2009 1 /

Plus en détail

Transition de phase et métastabilité

Transition de phase et métastabilité Transition de phase et métastabilité F. James, H. Mathis Laboratoire de Mathématiques Jean Leray, Université de Nantes 8-9 septembre 2014 MODTERCOM Hélène Mathis (LMJL, Université de Nantes) Transition

Plus en détail

Problèmes de simulation pour des options path-dependent : le rôle des grandes déviations

Problèmes de simulation pour des options path-dependent : le rôle des grandes déviations Problèmes de simulation pour des options path-dependent : le rôle des grandes déviations Paolo Baldi Université de Roma - Tor Vergata 1 Le problème Les options barrière sont devenues assez populaires das

Plus en détail

Incertain, Marché financier, M1 - Arnold Chassagnon, Université de Tours, PSE - Automne 2015

Incertain, Marché financier, M1 - Arnold Chassagnon, Université de Tours, PSE - Automne 2015 Incertain, Marché financier, - M1 - Arnold Chassagnon, Université de Tours, PSE - Automne 2015 Plan du cours 1. Incertain, actifs financiers et marché financier 2. Les conditions d un marché sans arbitrage

Plus en détail

Filtrage stochastique non linéaire par la théorie de représentation des martingales

Filtrage stochastique non linéaire par la théorie de représentation des martingales Filtrage stochastique non linéaire par la théorie de représentation des martingales Adriana Climescu-Haulica Laboratoire de Modélisation et Calcul Institut d Informatique et Mathématiques Appliquées de

Plus en détail

Prise en compte de la liquidité dans les algorithmes de trading

Prise en compte de la liquidité dans les algorithmes de trading Prise en compte de la liquidité dans les algorithmes de trading clehalle@cheuvreux.com Resp. de la Recherche Quant., Atelier Trading & Micro Structure 10 décembre 2008 Contenu La liquidité en Europe Les

Plus en détail

Estimation ultra haute fréquence de la volatilité et de la co-volatilité

Estimation ultra haute fréquence de la volatilité et de la co-volatilité Estimation ultra haute fréquence de la volatilité et de la co-volatilité Christian Y. Robert 1 et Mathieu Rosenbaum 2 1 CREST-ENSAE Paris Tech, 2 CMAP-École Polytechnique Paris Christian Y. Robert et Mathieu

Plus en détail

EXAMEN 14 janvier 2009 Finance 1

EXAMEN 14 janvier 2009 Finance 1 EXAMEN 14 janvier 2009 Durée 2h30 heures Exercice 1 On considère un modèle de marché de type arbre binomial à trois étapes avec un actif risqué S et un actif non risqué. On suppose S 0 = 1000$ et à chaque

Plus en détail

Le risque de crédit. DeriveXperts. 23 juillet 2010

Le risque de crédit. DeriveXperts. 23 juillet 2010 23 juillet 2010 Définitions Exemples - Interactions Obligations Credit Default Swap (CDS) First To Default Collateralized Debt Obligation (CDO) Probabilité de défaut Le modèle exponentiel dynamique - Introduction

Plus en détail

Modélisation des lois multidimensionnelles par la théorie des copules

Modélisation des lois multidimensionnelles par la théorie des copules Modélisation des lois multidimensionnelles par la théorie des copules Grégoire Mercier jeudi 9 novembre 26 Contenu 2 Mesure de dépendance Lien avec les copules 3 Estimation de l information mutuelle Estimation

Plus en détail

Méthodes de Monte Carlo pour le pricing d options

Méthodes de Monte Carlo pour le pricing d options Méthodes de Monte Carlo pour le pricing d options Mohamed Ben Alaya 14 février 2013 Nous allons tester les différentes méthodes probabilistes vu dans le cours en l appliquant au calcul du call ou le put

Plus en détail

Évaluation des options américaines par méthodes de Monte-Carlo. Jacky Mochel

Évaluation des options américaines par méthodes de Monte-Carlo. Jacky Mochel Évaluation des options américaines par méthodes de Monte-Carlo Jacky Mochel 3 décembre 2002 1 2 TABLE DES MATIÈRES Table des matières 1 Introduction 3 1.1 Définitions et notations..............................

Plus en détail

Simulations de Monte Carlo en finance : Pricer d option

Simulations de Monte Carlo en finance : Pricer d option Emma Alfonsi, Xavier Milhaud - M2R SAF Simulations de Monte Carlo en finance : Pricer d option Sous la direction de M. Pierre Alain Patard ISFA - Mars 2008 . 1 Table des matières 1 Introduction 4 2 Un

Plus en détail

Chapitre 17 Le modèle de Black et Scholes

Chapitre 17 Le modèle de Black et Scholes Chapitre 17 Le modèle de Black et Scholes Introduction Au début des 70 s, Black, Scholes et Merton ont opéré une avancée majeure en matière d évaluation d options Ces contributions et leurs développements

Plus en détail

Modèle de Heston. Pricing d options européennes et calibration. G. BLANCHET, M. ELACHECHE, E. JEANGIRARD, K. SALEH Tuteur : Adel Ben Haj Yedder

Modèle de Heston. Pricing d options européennes et calibration. G. BLANCHET, M. ELACHECHE, E. JEANGIRARD, K. SALEH Tuteur : Adel Ben Haj Yedder Modèle de Heston Pricing d options européennes et calibration G. BLANCHET, M. ELACHECHE, E. JEANGIRARD, K. SALEH Tuteur : Adel Ben Haj Yedder Projet de département IMI En partenariat avec Natexis 21 juin

Plus en détail

Majeure d informatique

Majeure d informatique Nicolas Sendrier Majeure d informatique Introduction la théorie de l information Cours n 1 Une mesure de l information Espace probabilisé discret L alphabet est X (fini en pratique) Variable aléatoire

Plus en détail

Travaux dirigés. Résolution numérique des équations diérentielles ordinaires. Département MIDO année 2013/2014 Master MMDMA

Travaux dirigés. Résolution numérique des équations diérentielles ordinaires. Département MIDO année 2013/2014 Master MMDMA Université Paris-Dauphine Méthodes numériques Département MIDO année 03/04 Master MMDMA Travaux dirigés Résolution numérique des équations diérentielles ordinaires Exercice. Pour α > 0, on considère le

Plus en détail

Surface de volatilité

Surface de volatilité Surface de volatilité Peter TANKOV Université Paris-Diderot(ParisVII) tankov@math.univ-paris-diderot.fr Dernière m.à.j. February 15, 15 Ce document est mis à disposition sous un contrat Creative Commons

Plus en détail

Probabilités II Étude de quelques lois. Master Gestion de Portefeuille IAE Gustave Eiffel Jacques Printems printems@u-pec.

Probabilités II Étude de quelques lois. Master Gestion de Portefeuille IAE Gustave Eiffel Jacques Printems printems@u-pec. Probabilités II Étude de quelques lois Master Gestion de Portefeuille IAE Gustave Eiffel Jacques Printems printems@u-pec.fr 2012 2013 1 1 Lois discrètes. On considère des v.a. ne prenant que des valeurs

Plus en détail

Méthodes numériques pour le pricing d options

Méthodes numériques pour le pricing d options Méthodes numériques pour le pricing d options Mohamed Ben Alaya 6 février 013 Nous allons tester les différentes méthodes de différence finies vu dans le cours en l appliquant au calcul du call ou le put

Plus en détail

Cascades infiniment divisibles : vers une physique statistique de la turbulence?

Cascades infiniment divisibles : vers une physique statistique de la turbulence? Cascades infiniment divisibles : vers une physique statistique de la turbulence? LIMOS UMR 658 ISIMA - Univ. Clermont II Clermont-Ferrand Séminaire des élèves ENS Paris - 27 avril 24 Mécanique des fluides

Plus en détail

Value at Risk. CNAM GFN 206 Gestion d actifs et des risques. Grégory Taillard. 27 février & 13 mars 20061

Value at Risk. CNAM GFN 206 Gestion d actifs et des risques. Grégory Taillard. 27 février & 13 mars 20061 Value at Risk 27 février & 13 mars 20061 CNAM Gréory Taillard CNAM Master Finance de marché et estion de capitaux 2 Value at Risk Biblioraphie Jorion, Philippe, «Value at Risk: The New Benchmark for Manain

Plus en détail

Document d implémentation - Logiciel ModAFi. Jonathan ANJOU - Maud EYZAT - Kévin NAVARRO

Document d implémentation - Logiciel ModAFi. Jonathan ANJOU - Maud EYZAT - Kévin NAVARRO - Jonathan ANJOU - Maud EYZAT - Kévin NAVARRO Grenoble, 11 juin 2012 Table des matières 1 Avant-propos 3 2 Présentation de l architecture du logiciel 3 2.1 Core..........................................

Plus en détail

Théorie Financière 8 P. rod i u t its dé dérivés

Théorie Financière 8 P. rod i u t its dé dérivés Théorie Financière 8P 8. Produits dit dérivés déié Objectifsdelasession session 1. Définir les produits dérivés (forward, futures et options (calls et puts) 2. Analyser les flux financiers terminaux 3.

Plus en détail

Examen de Gestion des Risques Financiers

Examen de Gestion des Risques Financiers Examen de Gestion des Risques Financiers Thierry Roncalli 4 janvier 2012 Merci de rédiger entièrement vos réponses. 1 Les réglementations Bâle II et Bâle III 1. Quelles sont les principales différences

Plus en détail

COMPORTEMENT ASYMPTOTIQUE D UNE FILE D ATTENTE À UN SERVEUR

COMPORTEMENT ASYMPTOTIQUE D UNE FILE D ATTENTE À UN SERVEUR Université Paris VII. Préparation à l Agrégation. (François Delarue) COMPORTEMENT ASYMPTOTIQUE D UNE FILE D ATTENTE À UN SERVEUR Ce texte vise à l étude du temps d attente d un client à la caisse d un

Plus en détail

Plan de la présentation. La simulation de Monte Carlo des processus de diffusion. La simulation de Monte Carlo. La simulation de Monte Carlo

Plan de la présentation. La simulation de Monte Carlo des processus de diffusion. La simulation de Monte Carlo. La simulation de Monte Carlo La simulation de Monte Carlo des processus de diffusion Les méthodes stochastiques dans les sciences de la gestion 6-640-93 Geneviève Gauthier Plan de la présentation La simulation de Monte Carlo La simulation

Plus en détail

I. Introduction. 1. Objectifs. 2. Les options. a. Présentation du problème.

I. Introduction. 1. Objectifs. 2. Les options. a. Présentation du problème. I. Introduction. 1. Objectifs. Le but de ces quelques séances est d introduire les outils mathématiques, plus précisément ceux de nature probabiliste, qui interviennent dans les modèles financiers ; nous

Plus en détail

Calcul Stochastique et Applications Financières

Calcul Stochastique et Applications Financières 0 Calcul Stochastique et Applications Financières Aurélia Istratii Luis Macavilca Taylan Kunal M I.E.F. SOMMAIRE I. MODELE DE COX-ROSS-RUBINSTEIN II. III. INTRODUCTION AUX METHODES DE MONTE CARLO EQUATION

Plus en détail

Les mathématiques appliquées de la finance

Les mathématiques appliquées de la finance Les mathématiques appliquées de la finance Utiliser le hasard pour annuler le risque Emmanuel Temam Université Paris 7 19 mars 2007 Emmanuel Temam (Université Paris 7) Les mathématiques appliquées de la

Plus en détail

Le Modèle de taux de Ho-Lee - Pricing d obligation

Le Modèle de taux de Ho-Lee - Pricing d obligation Le Modèle de taux de Ho-Lee - Pricing d obligation Le modèle de Thomas S. Y. Ho et Sang-bin Lee [1] est un modèle simple de fluctuation de taux d intérêts. Il est utilisé sous l hypothèse d absence d opportunité

Plus en détail

Lois de probabilité à densité Loi normale

Lois de probabilité à densité Loi normale DERNIÈRE IMPRESSIN LE 31 mars 2015 à 14:11 Lois de probabilité à densité Loi normale Table des matières 1 Lois à densité 2 1.1 Introduction................................ 2 1.2 Densité de probabilité

Plus en détail