Modèles bi-dimensionnels de coques linéairement élastiques: Estimations de l écart entre leurs solutions.

Dimension: px
Commencer à balayer dès la page:

Download "Modèles bi-dimensionnels de coques linéairement élastiques: Estimations de l écart entre leurs solutions."

Transcription

1 Problèmes mathématiques de la mécanique/mathematical problems in Mechanics Modèles bi-dimensionnels de coques linéairement élastiques: Estimations de l écart entre leurs solutions. Cristinel Mardare Laboratoire d Analyse Numérique, Tour n 55, Université Pierre-et-Marie-Curie, 4, place Jussieu, Paris, France. Résumé. On considère une famille de coques linéairement élastiques, ayant toutes la même surface moyenne que l on va supposer uniformément elliptique. On donne une estimation d erreur sur l écart entre la solution du modèle de Koiter et la solution du modèle membranaire de coques. La démonstration repose sur une méthode de correcteurs. Two-dimensional models of linearly elastic shells. Error estimates between their solutions. Abstract We consider a family of linearly elastic shells, all having the same middle surface which we assume to be uniformly elliptic. We give an error estimate between the solution of the Koiter s model and the solution of membrane-dominated problem of shells. The proof uses a method of correctors. 1. Le modèle de Koiter et le problème membranaire d une coque linéairement élastique A l exception de ε, les indices et exposants grecs (resp. latins) prennent leurs valeurs dans l ensemble {1,} (resp. {1,,3}). On utilise la convention de sommation sur les indices et exposants répétés. On note u v, u v et u respectivement le produit scalaire, le produit vectoriel et la norme euclidienne dans R 3. Soit un ouvert borné, connexe de R, de point courant y=(y α ) et de frontière γ lipschitzienne, étant localement d un même côté de γ. On note par ν le vecteur normal unitaire le long de γ, dirigé vers l extérieur du domaine. Posons α = / y α. Soit ϕ : R une application injective, de classe C, telle que les deux vecteurs a α = α ϕ forment une base, dite covariante, du plan tangent à la surface S=ϕ(). On note a α les vecteurs de la base contravariante correspondante, définis par a α a β = δβ α. En tout point de S, on définit le vecteur normal a 3 =a 1 a / a 1 a, les symboles de Christoffel Γ σ αβ = aσ α a β, et l élément d aire de la surface a dy, où a=dét(aαβ ). Les composantes covariantes (resp. contravariantes) du tenseur métrique sont donnés par a αβ = a α a β (resp. a αβ = a α a β ), et on définit le tenseur de courbure par ses composantes covariantes b αβ = a α β a 3, ou mixtes b β α = a βσ b σα. Pour tout ε > 0, on considère une coque élastique de surface moyenne S et d épaisseur ε, 1

2 dont la configuration de référence est Φ(Ω ε ), où Ω ε = ] ε, ε[, Φ : Ω ε R étant définie par Φ(x ε ) = ϕ(y) + x ε 3 a3 (y) pour tout x ε = (y, x ε 3 ) Ωε. On définit les vecteurs g ε i = ε i Φ, qui, pour ε suffisament petit, forment une une base (dite covariante) en chaque point de la coque. On se place en élasticité linéarisée et on étudie le problème où la coque est encastrée sur toute sa surface latérale, et est soumise à l action de forces de volume, dont la densité élémentaire est f=f i,ε g i,ε avec f i,ε L (Ω ε ). On suppose de plus qu il existe des fonctions f i L ( ] 1, 1[) tels que f i,ε (y, x ε 3 ) = f i (y, x ε 3 /ε). Les points de la coque subissent alors un déplacement de vecteur u ε i gi,ε, u ε i : Ω ε R. Les inconnues u ε i résolvent dans ce modèle un problème tri-dimensionnel posé sur Ω ε (voir Ciarlet []). On suppose que les constantes de Lamé λ > 0 et µ > 0 du matériau élastique constituant la coque sont indépendantes de ε. Puisque l épaisseur est très petite par rapport aux autres dimensions de la coque, on a besoin en pratique de modèles bi-dimensionnels dont les solutions soient de bonnes approximations du vrai déplacement u ε. Le modèle de Koiter énoncé ci-dessous est un de ceux-là: ζ(ε) V K () déf = H 1 0(Ω) H 1 0(Ω) H 0(Ω), (1) B K (ζ(ε), η) = p i η i a dy pour tout η = (ηi ) V K (), où, pour tout (ζ, η) [ H 1 () H 1 () H () ], on a: () B K (ζ, η) = a αβστ γ στ (ζ)γ αβ (η) a dy + ε a αβστ ρ στ (ζ)ρ αβ (η) a dy 3 a αβστ = 4λµ 1 λ + µ aαβ a στ + µ(a ασ a βτ + a ατ a βσ ) et p i = f i (y, x 3 ) dx 3, γ αβ (η) = 1 ( αη β + β η α ) Γ σ αβ η σ b αβ η 3 1 pour tout η V(), ρ αβ (η) = αβ η 3 Γ σ αβ ση 3 c αβ η 3 +b σ β αη σ +b σ α β η σ +( β b σ α Γ γ αβ bσ γ Γ σ αγb γ β )η σ, les γ αβ (η) représentant les composantes covariantes du tenseur linéarisé des déformations de la surface S et les ρ αβ (η) désignant les composantes covariantes du tenseur linéarisé de changement de courbure. On sait que ce problème admet une unique solution ζ(ε) V K () (voir Bernadou, Ciarlet et Miara [1]), et ce sans aucune hypothèse supplémentaire sur la surface S; toutefois, ce modèle n est justifié, c est-à-dire que ζ(ε) n approche correctement le vrai déplacement u ε que pour certaines types de surface moyennes S (voir Ciarlet et Lods [4]). Maintenant, si on suppose que la surface S est uniformément elliptique, c est-à-dire qu il existe une constante b > 0 telle que b αβ (y)ξ α ξ β b ξ pour tout y et ξ = (ξ α ) R, on trouve, par l analyse asymptotique, un autre modèle de coques linéairement élastiques, appelé problème membranaire : ζ V() déf = H 1 0() H 1 0() L (), (3) a αβστ γ στ (ζ)γ αβ (η) a dy = p i η i a dy pour tout η V(),

3 où les a αβστ, p i et γ αβ (η) sont définis comme ci-dessus. Le problème (3) est bien posé (voir Ciarlet []). On sait de plus que ζ approche le déplacement u ε une fois mis à l echelle, en norme H 1 (Ω) H 1 (Ω) L (Ω) (voir Ciarlet et Lods [3]).. L estimation d écart entre ζ(ε) et ζ Avant d ennoncer le résultat principal de cette note, on donne un Lemme général, qui est en fait une généralisation du Lemme 5-1 de J-L. Lions (voir [6]), et qui va nous servir dans la suite: Lemme 1 Soit u H m (Ω), m N, où Ω R N, N N, est un ouvert borné à frontière Γ régulière (de classe C par exemple), et a > 0. Alors, pour chaque ε > 0, il existe u(ε) H m (Ω) tel que: (4) u(ε) u H m 0 (Ω), i. e. k ν u(ε) = k ν (u) sur Γ, pour tout k = 0, 1,..., m 1, (5) u(ε) L (Ω) Cεa u L (Ω), (6) u(ε) Hk(Ω) Cε ak u Hk(Ω) pour tout k = 1,..., m, où C est une constante qui dépend uniquement de Ω. Démonstration du Lemme 1 (esquisse) On se ramène d abord au cas où Ω = R N R +. On cherche u(ε) sous la forme suivante: u(ε)(y, x N ) = m c k u(y, 1 ε k x N), y = (x 1, x,..., x N 1 ), k=1 où les coefficients c k restent à choisir afin de vérifier la condition (7). On trouve ainsi: c s = ε s(s 1) ( 1) s 1 (1 + O(ε)) pour tout s = 1,,..., m, ce qui nous permet, moyennant un changement de variables, d établir les estimations (5)-(6) en norme H k (Ω) pour tout k allant de 0 à m. On est désormais en mesure de montrer le résultat suivant, qui est le résultat principal de cette Note: Théorème 1 On suppose que la frontière γ de est de classe C, que ϕ est analytique dans un ouvert contenant, et que p α H 1 () et p 3 H (). On suppose de plus que la surface S est uniformément elliptique. Alors, pour ε suffisament petit on a l estimation suivante: (7) ζ(ε) ζ H 1 () H 1 () L () Cε 1/5, où la constante C dépend seulement de ϕ, γ, p α H 1 () et p3 H () et où ζ(ε) est la solution du modèle de Koiter (1) et ζ est la solution du problème membranaire. La démonstration est en trois étapes, que nous décrivons brièvement ci-dessous: Étape 1. Sous les hypothèses du Théorème 1, la solution du problème membranaire est en 3

4 fait dans l espace [H 3 () H 3 () H ()] [H 1 0() H 1 0() L()] (voir Genevey [5]). introduit alors un correcteur θ(ε) H 1 0() H 1 0() H () tel que { (θ(ε) ζ) V K () déf = H 1 0() H 1 0() H (8) 0(), B K (θ(ε), η) = 0 pour tout η V K (). On Étape. Afin de pouvoir estimer θ(ε) dans la norme H 1 () H 1 () L (), on écrit θ(ε) = θ(ε) + θ(ε), où θ 1 (ε) = θ (ε) = 0 et θ 3 (ε) est donné par le Lemme 1, avec θ 3 (ε) ζ 3 H 0(); de plus, les estimations (5)-(6) peuvent être obtenues pour un choix de a qui est précisé plus loin. Alors θ(ε) est la solution du problème: { θ(ε) V K (), (9) B K ( θ(ε), η) = B K ( θ(ε), η) pour tout η V K (). On trouve ainsi: (10) ( γ αβ (θ(ε)) ) 1 C(ε α ζ L () 3 L () + ε1 4α ζ 3 H () ). Étape 3. - Puisque ζ(ε) = ζ(ε) ζ + θ(ε) est un élément de V K (), on l utilise comme fonction test dans les relations (1)(3) et (8). On trouve ainsi l inégalité: (11) ( γ αβ (ζ(ε) L () ) 1 Cε ζ H 1 () H 1 () H (). La coercivité de la forme bilinéaire B M (, ) dans l espace H 1 0 () H1 0 () L () nous permet d obtenir de (10) et de (11) l inégalité annoncée dans le Théorème 1, avec le choix a = 1/5. Corollaire Sous les hypothèses du Théorème 1, pour tout s [0, /5[, on a également l estimation d erreur suivante: (1) ζ(ε) ζ H 1 () H 1 () H s () Cε 1/5 s/, où la constante C dépend de ϕ, γ, p α H 1 () et p3 H (). La démonstration utilise un argument d interpolation entre les espaces H 1 () H 1 () L () et H 1 () H 1 () H () ainsi que l inégalité suivante, valable pour tout η H 1 0 () H1 0 () H 0 () (voir Bernadou, Ciarlet et Miara [1]): (13) [ γ αβ (η) L () + ρ αβ (η) L () ] 1 C η H 1 () H 1 () H (). 3.Commentaire L inégalité (7) ne peut avoir lieu lorsque l exposant sur ε est trop grand (> 4/15), même pour des fonctions f très régulières. On montre ceci en utilisant le même argument d interpolation et le fait que ζ 3 (ε) ne peut converger vers ζ3 0 dans Hs (Ω) si s > 1/ dès que 4

5 ζ 0 3 γ 0. Ce travail fait partie du Programe Capital Humain et Mobilité Shells: Mathematical Modeling and Analysis, Scientific Computing de la Commision des Communautés Européennes(Contrat n 0 ERBCHRXCT ). Références bibliographiques [1] M. Bernadou, P.G. Ciarlet et B. Miara, Existence theorems for two-dimensional linear shell theories, Journal of Elasticity, [] P.G. Ciarlet, Mathematical Elasticity, Vol. II, (à paraître). [3] P.G. Ciarlet et V. Lods, Asymptotic analysis of linearly elastic shells. I: Justification of membrane shell equations, Arch. Rational Mech. Anal. (à paraître). [4] P.G. Ciarlet et V. Lods, Asymptotic analysis of linearly elastic shells. III: A justification of Koiter s shell equations, Arch. Rational Mech. Anal. (à paraître). [5] K. Genevey, C. R. Acad. Sci. Paris, 30, Série I, p , [6] J-L. Lions, Perturbations singulières dans les Problèmes aux Limites et en Contrôle Optimal, Springer-Verlag, Berlin,

ANALYSE ASYMPTOTIQUE ET MODELES BI-DIMENSIONNELS DES COQUES LINEAIREMENT RIGIDES. Cristinel MARDARE

ANALYSE ASYMPTOTIQUE ET MODELES BI-DIMENSIONNELS DES COQUES LINEAIREMENT RIGIDES. Cristinel MARDARE ANALYSE ASYMPTOTIQUE ET MODELES BI-DIMENSIONNELS DES COQUES LINEAIREMENT RIGIDES Cristinel MARDARE Table des matières Introduction 3 1 Asymptotic analysis of elastic shells 11 1.1 The three-dimensional

Plus en détail

Films courbés minces martensitiques

Films courbés minces martensitiques Films courbés minces martensitiques Hervé Le Dret, Hamdi Zorgati a a Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie, boîte courrier 87, 755 Paris Cedex 05, France Abstract Curved martensitic

Plus en détail

Outils d analyse fonctionnelle Cours 5 Théorie spectrale

Outils d analyse fonctionnelle Cours 5 Théorie spectrale Outils d analyse fonctionnelle Cours 5 Théorie spectrale 22 septembre 2015 Généralités Dans tout ce qui suit V désigne un espace de Hilbert réel muni d un produit scalaire x, y. Définition Soit A une application

Plus en détail

Condition inf-sup pour l Elément Fini de Taylor-Hood È ¾ -iso-è ½

Condition inf-sup pour l Elément Fini de Taylor-Hood È ¾ -iso-è ½ Condition inf-sup pour l Elément Fini de Taylor-Hood È ¾ -iso-è ½ Patrick Ciarlet et Vivette Girault ciarlet@ensta.fr & girault@ann.jussieu.fr ENSTA & Laboratoire Jacques-Louis Lions, Paris 6 Condition

Plus en détail

IV.1 Dual d un espace vectoriel... 77

IV.1 Dual d un espace vectoriel... 77 76 IV FORMES LINÉAIRES, DUALITÉ IV Formes linéaires, dualité Sommaire IV.1 Dual d un espace vectoriel.......... 77 IV.1.a Rappels sur les e.v................... 77 IV.1.b Rappels sur les applications linéaires........

Plus en détail

Cours d Analyse. Fonctions de plusieurs variables

Cours d Analyse. Fonctions de plusieurs variables Cours d Analyse Fonctions de plusieurs variables Licence 1ère année 2007/2008 Nicolas Prioux Université de Marne-la-Vallée Table des matières 1 Notions de géométrie dans l espace et fonctions à deux variables........

Plus en détail

Théorème du point fixe - Théorème de l inversion locale

Théorème du point fixe - Théorème de l inversion locale Chapitre 7 Théorème du point fixe - Théorème de l inversion locale Dans ce chapitre et le suivant, on montre deux applications importantes de la notion de différentiabilité : le théorème de l inversion

Plus en détail

Calculs approchés d un point fixe

Calculs approchés d un point fixe M11 ÉPREUVE COMMUNE DE TIPE 2013 - Partie D TITRE : Calculs approchés d un point fixe Temps de préparation :.. 2 h 15 minutes Temps de présentation devant les examinateurs :.10 minutes Dialogue avec les

Plus en détail

I Stabilité, Commandabilité et Observabilité 11. 1 Introduction 13 1.1 Un exemple emprunté à la robotique... 13 1.2 Le plan... 18 1.3 Problème...

I Stabilité, Commandabilité et Observabilité 11. 1 Introduction 13 1.1 Un exemple emprunté à la robotique... 13 1.2 Le plan... 18 1.3 Problème... TABLE DES MATIÈRES 5 Table des matières I Stabilité, Commandabilité et Observabilité 11 1 Introduction 13 1.1 Un exemple emprunté à la robotique................... 13 1.2 Le plan...................................

Plus en détail

Théorie spectrale. Stéphane Maingot & David Manceau

Théorie spectrale. Stéphane Maingot & David Manceau Théorie spectrale Stéphane Maingot & David Manceau 2 Théorie spectrale 3 Table des matières Introduction 5 1 Spectre d un opérateur 7 1.1 Inversibilité d un opérateur........................... 7 1.2 Définitions

Plus en détail

1.1.1 Composantes contravariantes, covariantes d un vecteur

1.1.1 Composantes contravariantes, covariantes d un vecteur Chapitre 1 Prérequis Ce chapitre regroupe les définitions et les résultats sur les tenseurs qui sont utilisés dans la théorie des coques et des membranes. Il comprend deux parties : 1. L algèbre tensorielle,

Plus en détail

Chapitre 5: Opérateurs dans les espaces de Hilbert. Notions d opérateur adjoint

Chapitre 5: Opérateurs dans les espaces de Hilbert. Notions d opérateur adjoint Chapitre 5: Opérateurs dans les espaces de Hilbert. Notions d opérateur adjoint 18 mars 2008 1 Généralités sur les opérateurs 1.1 Définitions Soient H et H deux espaces de Hilbert sur C. Définition 1.1

Plus en détail

3 Approximation de solutions d équations

3 Approximation de solutions d équations 3 Approximation de solutions d équations Une équation scalaire a la forme générale f(x) =0où f est une fonction de IR dans IR. Un système de n équations à n inconnues peut aussi se mettre sous une telle

Plus en détail

Chapitre 4. Adjoints Opérateurs auto-adjoints et isométries

Chapitre 4. Adjoints Opérateurs auto-adjoints et isométries Chapitre 4 Adjoints Opérateurs auto-adjoints et isométries I. Adjoint : Cas général d une forme { bilinéaire symétrique sesquilinéaire hermitienne On suppose dans tout I que E est un espace vectoriel de

Plus en détail

Cours MP. Espaces vectoriels normés

Cours MP. Espaces vectoriels normés Table des matières Espaces vectoriels normés B. Seddoug. Médiane Sup, Oujda I Norme et distance 1 I.1 Définitions..................... 1 I.2 Evn produit.................... 12 I.3 Notions topologiques

Plus en détail

À propos des matrices échelonnées

À propos des matrices échelonnées À propos des matrices échelonnées Antoine Ducros appendice au cours de Géométrie affine et euclidienne dispensé à l Université Paris 6 Année universitaire 2011-2012 Introduction Soit k un corps, soit E

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme

Plus en détail

Espaces vectoriels euclidiens. Groupe orthogonal

Espaces vectoriels euclidiens. Groupe orthogonal 19 Espaces vectoriels euclidiens. Groupe orthogonal Dans un premier temps, E est un espace vectoriel réel de dimension n 1. 19.1 Espaces vectoriels euclidiens Dénition 19.1 On dit qu'une forme bilinéaire

Plus en détail

Continuité d une fonction de plusieurs variables

Continuité d une fonction de plusieurs variables Chapitre 2 Continuité d une fonction de plusieurs variables Maintenant qu on a défini la notion de limite pour des suites dans R n, la notion de continuité s étend sans problème à des fonctions de plusieurs

Plus en détail

Probabilités. I- Expérience aléatoire, espace probabilisé : ShotGun. 1- Définitions :

Probabilités. I- Expérience aléatoire, espace probabilisé : ShotGun. 1- Définitions : Probabilités I- Expérience aléatoire, espace probabilisé : 1- Définitions : Ω : Ensemble dont les points w sont les résultats possibles de l expérience Des évènements A parties de Ω appartiennent à A une

Plus en détail

Une caractérisation des lois de Wishart en dimension finie ou infinie

Une caractérisation des lois de Wishart en dimension finie ou infinie Une caractérisation des lois de Wishart en dimension finie ou infinie Gabriel Fraisse et Sylvie Viguier-Pla Université de Perpignan, IUT, Domaine d Auriac, Carcassonne Laboratoire de Statistique et Probabilités,

Plus en détail

COURS METHODES MATHEMATIQUES POUR L INGENIEUR 2. Cours de filière MAM, ISTIL deuxième année. Ionel Sorin CIUPERCA

COURS METHODES MATHEMATIQUES POUR L INGENIEUR 2. Cours de filière MAM, ISTIL deuxième année. Ionel Sorin CIUPERCA COURS METHODES MATHEMATIQUES POUR L INGENIEUR 2 Cours de filière MAM, ISTIL deuxième année Ionel Sorin CIUPERCA Le but de ce cours est d introduire un outil très utilisé dans la modélisation mathématique

Plus en détail

Examen - septembre 2012. Question de cours Enoncer et démontrer l inégalité de Cauchy-Schwarz dans un espace euclidien. Quel est le cas d égalité?

Examen - septembre 2012. Question de cours Enoncer et démontrer l inégalité de Cauchy-Schwarz dans un espace euclidien. Quel est le cas d égalité? Université Paris Dauphine DEMIE e année Algèbre linéaire 3 Examen - septembre 01 Le sujet comporte pages. L épreuve dure heures. Les documents, calculatrices et téléphones portables sont interdits. Question

Plus en détail

Nombres premiers. Comment reconnaître un nombre premier? Mais...

Nombres premiers. Comment reconnaître un nombre premier? Mais... Introduction Nombres premiers Nombres premiers Rutger Noot IRMA Université de Strasbourg et CNRS Le 19 janvier 2011 IREM Strasbourg Definition Un nombre premier est un entier naturel p > 1 ayant exactement

Plus en détail

Introduction à l optimisation Première Partie : aspects théoriques Univ. Rennes 1, E.N.S. Rennes

Introduction à l optimisation Première Partie : aspects théoriques Univ. Rennes 1, E.N.S. Rennes Notes de cours - Préparation à l agrégation Introduction à l optimisation Première Partie : aspects théoriques Univ. Rennes 1, E.N.S. Rennes Yannick Privat ENS Cachan Bretagne, CNRS, Univ. Rennes 1, IRMAR,

Plus en détail

Calcul de structures en bureau d études ISMANS

Calcul de structures en bureau d études ISMANS 1 2 REPRESENTATION SURFACIQUE Le soufflet est suffisamment mince pour que l on puisse travailler avec une surface représentative : approximation «éléments finis». 3 REPRESENTATION SURFACIQUE Soufflet_coque.stp

Plus en détail

Chapitre I. Calcul vectoriel. Nous nous placerons dorénavant toujours dans une base orthonormée directe.

Chapitre I. Calcul vectoriel. Nous nous placerons dorénavant toujours dans une base orthonormée directe. Chapitre I INTRODUCTION ATHÉATIQUE I.A. I.A.1. Calcul vectoriel Produit vectoriel Plaçons-nous dans un espace vectoriel euclidien à trois dimensions. En faisant subir des rotations identiques aux trois

Plus en détail

I. Polynômes de Tchebychev

I. Polynômes de Tchebychev Première épreuve CCP filière MP I. Polynômes de Tchebychev ( ) 1.a) Tout réel θ vérifie cos(nθ) = Re ((cos θ + i sin θ) n ) = Re Cn k (cos θ) n k i k (sin θ) k Or i k est réel quand k est pair et imaginaire

Plus en détail

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications A. Optimisation sans contrainte.... Généralités.... Condition nécessaire et condition suffisante

Plus en détail

2 Opérateurs non bornés dans un espace de Hilbert

2 Opérateurs non bornés dans un espace de Hilbert 2 Opérateurs non bornés dans un espace de Hilbert 2. Opérateurs non bornés: définitions et propriétés élémentaires Soit H un espace de Hilbert et A un opérateur dans H, c est-à-dire, une application linéaire

Plus en détail

INTÉGRATION SUR LES SURFACES. Le but de ce texte est d expliquer comment définir et calculer des expressions du type

INTÉGRATION SUR LES SURFACES. Le but de ce texte est d expliquer comment définir et calculer des expressions du type INTÉGRATION SUR LES SURFACES Le but de ce texte est d expliquer comment définir et calculer des expressions du type φ(x)dσ(x) Σ où Σ est une surface de classe C 1 de R 3 ou plus généralement une hypersurface

Plus en détail

Agrégation interne de Mathématiques. Session 2009. Deuxième épreuve écrite. (et CAERPA)

Agrégation interne de Mathématiques. Session 2009. Deuxième épreuve écrite. (et CAERPA) Agrégation interne de Mathématiques (et CAEPA Session 2009 Deuxième épreuve écrite 2 NOTATIONS ET PÉLIMINAIES On désigne par le corps des nombres réels et par C le corps des nombres complexes. Si f est

Plus en détail

www.h-k.fr/publications/objectif-agregation

www.h-k.fr/publications/objectif-agregation «Sur C, tout est connexe!» www.h-k.fr/publications/objectif-agregation L idée de cette note est de montrer que, contrairement à ce qui se passe sur R, «sur C, tout est connexe». Cet abus de langage se

Plus en détail

Contacts et auto-contacts sans frottement

Contacts et auto-contacts sans frottement C. R. Acad. Sci. Paris, Ser. I 341 (2005) 393 398 http://france.elsevier.com/direct/crass1/ Problèmes mathématiques de la mécanique Contacts et auto-contacts sans frottement Olivier Pantz Centre de mathématiques

Plus en détail

Notes de cours L1 MATH120. Hervé Le Dret

Notes de cours L1 MATH120. Hervé Le Dret Notes de cours L1 MATH120 Hervé Le Dret 18 octobre 2004 40 Chapitre 3 Vecteurs dans R m Dans ce chapitre, nous allons nous familiariser avec la notion de vecteur du point de vue algébrique. Nous reviendrons

Plus en détail

Dédié à Ky Fan, en témoignage de notre profonde admiration

Dédié à Ky Fan, en témoignage de notre profonde admiration Topological Methods in Nonlinear Analysis Journal of the Juliusz Schauder Center Volume 5, 1995, 261 269 FAMILLES SÉLECTANTES Paul Deguire Marc Lassonde Dédié à Ky Fan, en témoignage de notre profonde

Plus en détail

Cahier de textes Page 1 sur 9. Cahier de textes

Cahier de textes Page 1 sur 9. Cahier de textes Cahier de textes Page 1 sur 9 Cahier de textes Jeudi 04/09/2014 9h-12h et 13h30-16h30 : Cours sur la logique : - Conjonction, disjonction, implication, équivalence - Quelques formules. - Quantificateurs

Plus en détail

Le corps R des nombres réels

Le corps R des nombres réels Le corps R des nombres réels. Construction de R à l aide des suites de Cauchy de nombres rationnels On explique brièvement dans ce paragraphe comment construire le corps R des nombres réels à partir du

Plus en détail

Programme de mathématiques TSI1

Programme de mathématiques TSI1 Programme de mathématiques TSI1 1. PROGRAMME DE DÉBUT D ANNÉE I. Nombres complexes et géométrie élémentaire 1. Nombres complexes 1 2. Géométrie élémentaire du plan 3 3. Géométrie élémentaire de l espace

Plus en détail

Intégration et probabilités TD1 Espaces mesurés Corrigé

Intégration et probabilités TD1 Espaces mesurés Corrigé Intégration et probabilités TD1 Espaces mesurés Corrigé 2012-2013 1 Petites questions 1 Est-ce que l ensemble des ouverts de R est une tribu? Réponse : Non, car le complémentaire de ], 0[ n est pas ouvert.

Plus en détail

Optimisation de forme de micro-mécanismes compliants par la méthode des courbes de niveau

Optimisation de forme de micro-mécanismes compliants par la méthode des courbes de niveau Optimisation de forme de micro-mécanismes compliants par la méthode des courbes de niveau Grégoire Allaire 1 Frédéric De Gournay 1 François Jouve 1 1 CMAP (UMR 7641) Ecole Polytechnique 91128 Palaiseau

Plus en détail

Approximations variationelles des EDP Notes du Cours de M2

Approximations variationelles des EDP Notes du Cours de M2 Approximations variationelles des EDP Notes du Cours de M2 Albert Cohen Dans ce cours, on s intéresse à l approximation numérique d équations aux dérivées partielles linéaires qui admettent une formulation

Plus en détail

Filtrage stochastique non linéaire par la théorie de représentation des martingales

Filtrage stochastique non linéaire par la théorie de représentation des martingales Filtrage stochastique non linéaire par la théorie de représentation des martingales Adriana Climescu-Haulica Laboratoire de Modélisation et Calcul Institut d Informatique et Mathématiques Appliquées de

Plus en détail

3. Conditionnement P (B)

3. Conditionnement P (B) Conditionnement 16 3. Conditionnement Dans cette section, nous allons rappeler un certain nombre de définitions et de propriétés liées au problème du conditionnement, c est à dire à la prise en compte

Plus en détail

Université de Nantes Année 2009-2010 Faculté des Sciences et des Techniques Département de Mathématiques. Topologie et calculs différentiel Liste n 5

Université de Nantes Année 2009-2010 Faculté des Sciences et des Techniques Département de Mathématiques. Topologie et calculs différentiel Liste n 5 Université de Nantes Année 009-010 Faculté des Sciences et des Techniques Département de Mathématiques Topologie et calculs différentiel Liste n 5 Applications Différentiables Exercice 1. Soit f : R n

Plus en détail

Jeux à somme nulle : le cas fini

Jeux à somme nulle : le cas fini CHAPITRE 2 Jeux à somme nulle : le cas fini Les jeux à somme nulle sont les jeux à deux joueurs où la somme des fonctions de paiement est nulle. Dans ce type d interaction stratégique, les intérêts des

Plus en détail

Programme de Première

Programme de Première BAC TECHNO STAV 66 I. Algèbre Programme de Première Objectif 1 - Effectuer de manière autonome des calculs numériques ou algébriques, résoudre des équations ou inéquations en vue de résoudre des problèmes

Plus en détail

Formes quadratiques. 1 Formes quadratiques et formes polaires associées. Imen BHOURI. 1.1 Définitions

Formes quadratiques. 1 Formes quadratiques et formes polaires associées. Imen BHOURI. 1.1 Définitions Formes quadratiques Imen BHOURI 1 Ce cours s adresse aux étudiants de niveau deuxième année de Licence et à ceux qui préparent le capes. Il combine d une façon indissociable l étude des concepts bilinéaires

Plus en détail

Sommaire. Chapitre 1 Variables et vecteurs aléatoires... 5. Chapitre 2 Variables aléatoires à densité... 65

Sommaire. Chapitre 1 Variables et vecteurs aléatoires... 5. Chapitre 2 Variables aléatoires à densité... 65 Sommaire Chapitre 1 Variables et vecteurs aléatoires............... 5 A. Généralités sur les variables aléatoires réelles.................... 6 B. Séries doubles..................................... 9

Plus en détail

Rappels sur les applications linéaires

Rappels sur les applications linéaires Rappels sur les applications linéaires 1 Définition d une application linéaire Définition 1 Soient E et F deux espaces vectoriels sur un même corps K et f une application de E dans F Dire que f est linéaire

Plus en détail

PROGRAMMES DE MATHÉMATIQUES EN VIGUEUR DE L ENSEIGNEMENT SECONDAIRE GÉNÉRAL TECHNIQUE ET PROFESSIONNEL

PROGRAMMES DE MATHÉMATIQUES EN VIGUEUR DE L ENSEIGNEMENT SECONDAIRE GÉNÉRAL TECHNIQUE ET PROFESSIONNEL MINISTÈRE DE L ÉDUCATION DE L ALPHABÉTISATION ET DES LANGUES NATIONALES RÉPUBLIQUE DU MALI Un Peuple Un But Une Foi PROGRAMMES DE MATHÉMATIQUES EN VIGUEUR DE L ENSEIGNEMENT SECONDAIRE GÉNÉRAL TECHNIQUE

Plus en détail

Université de Provence, C.M.I. Master de Mathématiques. T.E.R Equations Elliptiques Couplées

Université de Provence, C.M.I. Master de Mathématiques. T.E.R Equations Elliptiques Couplées Université de Provence, C.M.I. Master de Mathématiques T.E.R Equations Elliptiques Couplées Vincent BLAIN, Alain DOURDIL Mars 2005 Table des matières Introduction Outils d Analyse 3. Espaces L p ().............................

Plus en détail

Introduction à la méthode des éléments finis

Introduction à la méthode des éléments finis ÉCOLE NATIONALE SUPERIEURE DES MINES DE PARIS Introduction à la méthode des éléments finis Michel KERN 1 2004 2005 S3733 / S3735 1 Inria, Rocquencourt, BP 105, 78153 Le Chesnay, Michel.Kern@inria.fr 2

Plus en détail

Précession du périhélie de Mercure

Précession du périhélie de Mercure Préparation à l Agrégation de Sciences Physiques ENSP - Montrouge François Levrier Problème de mécanique Précession du périhélie de Mercure 1 er décembre 25 Ce problème, qui est basé en partie sur celui

Plus en détail

Calcul différentiel sur R n Première partie

Calcul différentiel sur R n Première partie Calcul différentiel sur R n Première partie Université De Metz 2006-2007 1 Définitions générales On note L(R n, R m ) l espace vectoriel des applications linéaires de R n dans R m. Définition 1.1 (différentiabilité

Plus en détail

Calcul différentiel. Chapitre 1. 1.1 Différentiabilité

Calcul différentiel. Chapitre 1. 1.1 Différentiabilité Chapitre 1 Calcul différentiel L idée du calcul différentiel est d approcher au voisinage d un point une fonction f par une fonction plus simple (ou d approcher localement le graphe de f par un espace

Plus en détail

TD2 Fonctions mesurables Corrigé

TD2 Fonctions mesurables Corrigé Intégration et probabilités 2012-2013 TD2 Fonctions mesurables Corrigé 0 Exercice qui avait été préparé chez soi Exercice 1. Soit (Ω, F, µ) un espace mesuré tel que µ (Ω) = 1. Soient A, B P (Ω) deux sousensembles

Plus en détail

Chp. 4. Minimisation d une fonction d une variable

Chp. 4. Minimisation d une fonction d une variable Chp. 4. Minimisation d une fonction d une variable Avertissement! Dans tout ce chapître, I désigne un intervalle de IR. 4.1 Fonctions convexes d une variable Définition 9 Une fonction ϕ, partout définie

Plus en détail

Image d un intervalle par une fonction continue

Image d un intervalle par une fonction continue DOCUMENT 27 Image d un intervalle par une fonction continue La continuité d une fonction en un point est une propriété locale : une fonction est continue en un point x 0 si et seulement si sa restriction

Plus en détail

CSMA 2013 11e Colloque National en Calcul des Structures 13-17 Mai 2013

CSMA 2013 11e Colloque National en Calcul des Structures 13-17 Mai 2013 CSMA 2013 11e Colloque National en Calcul des Structures 13-17 Mai 2013 La méthode CGSM pour l analyse statique des plaques avec variabilité Mahyunirsyah MAHJUDIN 1,2 *, Frédéric DRUESNE 1, Irwan KATILI

Plus en détail

Espérance conditionnelle

Espérance conditionnelle Espérance conditionnelle Samy Tindel Nancy-Université Master 1 - Nancy Samy T. (IECN) M1 - Espérance conditionnelle Nancy-Université 1 / 58 Plan 1 Définition 2 Exemples 3 Propriétés de l espérance conditionnelle

Plus en détail

L2 MIEE 2012-2013 VAR Université de Rennes 1

L2 MIEE 2012-2013 VAR Université de Rennes 1 . Sous-ensembles de R n et fonctions (suite) 1 Nappes paramétrées Si f une fonction de deux variables, son graphe est une surface incluse dans R 3 : {(x, y, f(x, y)) / (x, y) R 2 }. Une telle surface s

Plus en détail

PAD - Notes de cours. S. Rigal, D. Ruiz, et J. C. Satgé

PAD - Notes de cours. S. Rigal, D. Ruiz, et J. C. Satgé ALGÈBRE PAD - Notes de cours S. Rigal, D. Ruiz, et J. C. Satgé November 23, 2006 Table des Matières Espaces vectoriels Applications linéaires - Espaces vectoriels............................... 3 -. Approche

Plus en détail

Champs d hyperplans. En particulier son rang en un point p, qui est le double du plus grand entier k tel que

Champs d hyperplans. En particulier son rang en un point p, qui est le double du plus grand entier k tel que Champs d hyperplans Un champ d hyperplans coorientable (resp. coorienté) sur une variété V m est le noyau ξ d une 1-forme différentielle non singulière α bien définie à multiplication près par une fonction

Plus en détail

NOTE DE PRÉSENTATION. Les présents arrêtés, au nombre de huit, vous sont soumis pour visa avant présentation devant les instances consultatives.

NOTE DE PRÉSENTATION. Les présents arrêtés, au nombre de huit, vous sont soumis pour visa avant présentation devant les instances consultatives. Direction générale pour l'enseignement supérieur et l insertion professionnelle Service de la stratégie de l enseignement supérieur et de l insertion professionnelle Département de l architecture et de

Plus en détail

Programmes des classes préparatoires aux Grandes Ecoles

Programmes des classes préparatoires aux Grandes Ecoles Programmes des classes préparatoires aux Grandes Ecoles Filière : scientifique Voie : Physique et chimie (PC) Discipline : Mathématiques Seconde année Classe préparatoire PC Programme de mathématiques

Plus en détail

FICHE UNITE D ENSEIGNEMENT. Mathématiques. Analyse appliquée. Boris Andreianov. PRESENTIEL EN LIGNE x PRESENTIEL ET EN LIGNE 73 20 35,5 4,5 133

FICHE UNITE D ENSEIGNEMENT. Mathématiques. Analyse appliquée. Boris Andreianov. PRESENTIEL EN LIGNE x PRESENTIEL ET EN LIGNE 73 20 35,5 4,5 133 FICHE UNITE D ENSEIGNEMENT Responsable de l UE Section CNU de l UE Crédits Européens Mode d enseignement Analyse appliquée Boris Andreianov 26 6 PRESENTIEL EN LIGNE x PRESENTIEL ET EN LIGNE Nombre d heures

Plus en détail

Introduction à l analyse des données. Analyse des Données (1) Exemple, ville et (in)sécurité. Exemple, ville et (in)sécurité

Introduction à l analyse des données. Analyse des Données (1) Exemple, ville et (in)sécurité. Exemple, ville et (in)sécurité Introduction à l analyse des données Analyse des Données () Le but de l analyse de données est de synthétiser, structurer l information contenue dans des données multidimensionnelles Deux groupes de méthodes

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo7 Continuité (étude globale). Diverses fonctions Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr * très facile ** facile *** difficulté moyenne **** difficile *****

Plus en détail

Amphi 3: Espaces complets - Applications linéaires continues

Amphi 3: Espaces complets - Applications linéaires continues Amphi 3: Espaces complets - Applications linéaires continues Département de Mathématiques École polytechnique Remise en forme mathématique 2013 Suite de Cauchy Soit (X, d) un espace métrique. Une suite

Plus en détail

Logique informatique 2013-2014. Examen

Logique informatique 2013-2014. Examen Logique informatique 2013-2014. Examen 30 mai 2013. Durée 3h. Tous les documents sont autorisés. Seuls les résultats du cours peuvent être utilisés sans démonstration. Le barême et la longueur des solutions

Plus en détail

Les correcteurs accorderont une importance particulière à la rigueur des raisonnements et aux représentations graphiques demandées.

Les correcteurs accorderont une importance particulière à la rigueur des raisonnements et aux représentations graphiques demandées. Les correcteurs accorderont une importance particulière à la rigueur des raisonnements et aux représentations graphiques demandées. 1 Ce sujet aborde le phénomène d instabilité dans des systèmes dynamiques

Plus en détail

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures)

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures) CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE Cinquième épreuve d admissibilité STATISTIQUE (durée : cinq heures) Une composition portant sur la statistique. SUJET Cette épreuve est composée d un

Plus en détail

La méthode des éléments finis et le contrôle des calculs

La méthode des éléments finis et le contrôle des calculs Table des matières Techniques Avancées en Calcul des Structures Cours d option La méthode des éléments finis et le contrôle des calculs J.-P. Pelle ENS - Cachan Master MIS Parcours TACS Année universitaire

Plus en détail

Suites réelles. 4 Relations de comparaison des suites 9 4.1 Encore du vocabulaire... 9. 5.2 Quelques propriétés... 13

Suites réelles. 4 Relations de comparaison des suites 9 4.1 Encore du vocabulaire... 9. 5.2 Quelques propriétés... 13 Maths PCSI Cours Table des matières Suites réelles 1 Généralités 2 2 Limite d une suite 2 2.1 Convergence d une suite....................... 2 2.2 Deux premiers résultats....................... 3 2.3 Opérations

Plus en détail

Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples

Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples 45 Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples Les espaces vectoriels considérés sont réels, non réduits au vecteur nul et

Plus en détail

Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/

Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/ Recherche opérationnelle Les démonstrations et les exemples seront traités en cours Souad EL Bernoussi Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/ Table des matières 1 Programmation

Plus en détail

Estimation améliorée explicite d un degré de confiance conditionnel

Estimation améliorée explicite d un degré de confiance conditionnel Estimation améliorée explicite d un degré de confiance conditionnel Dominique Fourdrinier & Patrice Lepelletier UMR CNRS 6085, Université de Rouen, Site Colbert, 76 821 Mont-Saint-Aignan cedex, France

Plus en détail

Introduction à la Topologie

Introduction à la Topologie Introduction à la Topologie Licence de Mathématiques Université de Rennes 1 Francis Nier Dragoş Iftimie 2 3 Introduction Ce cours s adresse à des étudiants de Licence en mathématiques. Il a pour objectif

Plus en détail

THÉORIE DE LA MESURE ET INTÉGRATION

THÉORIE DE LA MESURE ET INTÉGRATION Université Pierre et Marie Curie Licence de Mathématiques Années 2004-2005-2006 LM 363 THÉORIE DE LA MESURE ET INTÉGRATION Cours de P. MAZET Edition 2004-2005-2006 Table des matières Table des matières

Plus en détail

Décomposition de domaine et préconditionnement pour un modèle 3D en milieu poreux fracturé

Décomposition de domaine et préconditionnement pour un modèle 3D en milieu poreux fracturé Décomposition de domaine et préconditionnement pour un modèle 3D en milieu poreux fracturé Laila AMIR 1, Michel KERN 2, Vincent MARTIN 3, Jean E ROBERTS 4 Résumé : Dans cet article, nous nous intéressons

Plus en détail

Notion de modèle - Processus d analyse Application à la méthode des Eléments finis

Notion de modèle - Processus d analyse Application à la méthode des Eléments finis Notion de modèle - Processus d analyse Application à la méthode des Eléments finis La présentation est animée, avancez à votre vitesse par un simple clic Chapitres 1 et 6 du polycopié de cours. Bonne lecture

Plus en détail

Recherche opérationnelle. Programmation linéaire et recherche opérationnelle. Programmation linéaire. Des problèmes de RO que vous savez résoudre

Recherche opérationnelle. Programmation linéaire et recherche opérationnelle. Programmation linéaire. Des problèmes de RO que vous savez résoudre Recherche opérationnelle Programmation linéaire et recherche opérationnelle Ioan Todinca Ioan.Todinca@univ-orleans.fr tél. 0 38 41 7 93 bureau : en bas à gauche Tentative de définition Ensemble de méthodes

Plus en détail

1.1 Définitions... 2 1.2 Opérations élémentaires... 2 1.3 Systèmes échelonnés et triangulaires... 3

1.1 Définitions... 2 1.2 Opérations élémentaires... 2 1.3 Systèmes échelonnés et triangulaires... 3 Chapitre 5 Systèmes linéaires 1 Généralités sur les systèmes linéaires 2 11 Définitions 2 12 Opérations élémentaires 2 13 Systèmes échelonnés et triangulaires 3 2 Résolution des systèmes linéaires 3 21

Plus en détail

Produit scalaire dans l Espace

Produit scalaire dans l Espace Produit scalaire dans l Espace Christophe ROSSIGNOL Année scolaire 014/015 Table des matières 1 Produit scalaire du plan 1.1 Différentes expressions du produit scalaire............................... 1.

Plus en détail

Probabilités sur un univers fini

Probabilités sur un univers fini [http://mp.cpgedupuydelome.fr] édité le 7 août 204 Enoncés Probabilités sur un univers fini Evènements et langage ensembliste A quelle condition sur (a, b, c, d) ]0, [ 4 existe-t-il une probabilité P sur

Plus en détail

5.1 Équilibre électrostatique d un conducteur

5.1 Équilibre électrostatique d un conducteur 5 CONDUCTEURS À L ÉQUILIBRE 5.1 Équilibre électrostatique d un conducteur Dans un isolant, les charges restent à l endroit où elles ont été apportées (ou enlevées). Dans un conducteur, les charges sont

Plus en détail

Nom : Paquet Luc Titre : Professeur des universités e-mail :luc.paquet@univ-valenciennes.fr

Nom : Paquet Luc Titre : Professeur des universités e-mail :luc.paquet@univ-valenciennes.fr Nom : Paquet Luc Titre : Professeur des universités e-mail :luc.paquet@univ-valenciennes.fr CURRICULUM Diplômes universitaires Expérience professionnelle PUBLICATIONS Ouvrages Ouvrages scientifiques ou

Plus en détail

Mathématiques MPSI. Pierron Théo. ENS Ker Lann

Mathématiques MPSI. Pierron Théo. ENS Ker Lann Mathématiques MPSI Pierron Théo ENS Ker Lann 2 Table des matières I Algèbre 1 1 Ensembles 3 1.1 Vocabulaire général........................ 3 1.2 Opérations sur les parties d un ensemble............ 4

Plus en détail

Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles

Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles Valentin Patilea 1 Cesar Sanchez-sellero 2 Matthieu Saumard 3 1 CREST-ENSAI et IRMAR 2 USC Espagne 3 IRMAR-INSA

Plus en détail

CHAPITRE V. de U U dans Hom(F, F ) est de classe C. b dans Hom(F,F ) est de classe C, l application b b. de U U

CHAPITRE V. de U U dans Hom(F, F ) est de classe C. b dans Hom(F,F ) est de classe C, l application b b. de U U CHAPITRE V FIBRÉS VECTORIELS 1. Fibrés vectoriels 1. Cartes et atlas vectoriels Soit B une variété différentielle. Considérons un B -ensemble, c est à-dire un ensemble M muni d une application p : M B.

Plus en détail

Solutions globales pour les équations décrivant des écoulements insaturés en milieux poreux, avec une pression capillaire dynamique

Solutions globales pour les équations décrivant des écoulements insaturés en milieux poreux, avec une pression capillaire dynamique Solutions globales pour les équations décrivant des écoulements insaturés en milieux poreux, avec une pression capillaire dynamique J. Bodin 12, T. Clopeau 2, A. Mikelić 2 1 Agence Nationale pour la gestion

Plus en détail

Applications linéaires

Applications linéaires Bibliothèque d exercices Énoncés L1 Feuille n 18 Applications linéaires 1 Définition Exercice 1 Déterminer si les applications f i suivantes (de E i dans F i ) sont linéaires : f 1 : (x, y) R (x + y, x

Plus en détail

Mathématiques appliquées à l informatique

Mathématiques appliquées à l informatique Mathématiques appliquées à l informatique Jean-Etienne Poirrier 15 décembre 2005 Table des matières 1 Matrices 3 1.1 Définition......................................... 3 1.2 Les différents types de matrices.............................

Plus en détail

UNIVERSITÉ DE CERGY Année 2012-2013 U.F.R. Économie & Gestion Licence d Économie et Mathématiques MATH104 : Mathématiques

UNIVERSITÉ DE CERGY Année 2012-2013 U.F.R. Économie & Gestion Licence d Économie et Mathématiques MATH104 : Mathématiques 1 UNIVERSITÉ DE CERGY Année 2012-201 U.F.R. Économie & Gestion Licence d Économie et Mathématiques MATH104 : Mathématiques Chapitre III : Polynômes 1 Fonctions polynômes & polynômes Définition 1. Soit

Plus en détail

COURS OPTIMISATION. Cours à l ISFA, en M1SAF. Ionel Sorin CIUPERCA

COURS OPTIMISATION. Cours à l ISFA, en M1SAF. Ionel Sorin CIUPERCA COURS OPTIMISATION Cours à l ISFA, en M1SAF Ionel Sorin CIUPERCA 1 Table des matières 1 Introduction 4 1.1 Motivation.................................... 4 1.2 Le problème général d optimisation......................

Plus en détail

COURS METHODES MATHEMATIQUES POUR L INGENIEUR. MAM 3, Polytech Lyon. Ionel Sorin CIUPERCA

COURS METHODES MATHEMATIQUES POUR L INGENIEUR. MAM 3, Polytech Lyon. Ionel Sorin CIUPERCA COURS METHODES MATHEMATIQUES POUR L INGENIEUR MAM 3, Polytech Lyon Ionel Sorin CIUPERCA Le cours s adresse en principal à des élèves des écoles d ingénieurs, filière modélisation mathématique. Une partie

Plus en détail

Cours 02 : Problème général de la programmation linéaire

Cours 02 : Problème général de la programmation linéaire Cours 02 : Problème général de la programmation linéaire Cours 02 : Problème général de la Programmation Linéaire. 5 . Introduction Un programme linéaire s'écrit sous la forme suivante. MinZ(ou maxw) =

Plus en détail

Développement décimal d un réel

Développement décimal d un réel 4 Développement décimal d un réel On rappelle que le corps R des nombres réels est archimédien, ce qui permet d y définir la fonction partie entière. En utilisant cette partie entière on verra dans ce

Plus en détail