Keywords: Probability of catastrophic events, Bivariate extreme value theory, Heavy tailed distributions, ALS methods.

Dimension: px
Commencer à balayer dès la page:

Download "Keywords: Probability of catastrophic events, Bivariate extreme value theory, Heavy tailed distributions, ALS methods."

Transcription

1 E Laurence Lescourret & Christian Y. Robert Centre de Recherche en Economie et Statistique LaboratoiredeFinanceetd Assurance 5 Boulevard Gabriel Peri, Malakoff Résumé: De par leur nature, les événements catastrophiques sont peu observés. Il est donc très délicat de les prévoir. Ce papier utilise la théorie des valeurs extrêmes pour estimer la probabilité de survenance de deux événements catastrophiques. Les distributions extrêmales bivariées sont utilisées pour décrire les distributions limites des maxima de deux composantes, mais elles permettent aussi de caractériser les quantiles extrêmaux. Il n existe pas de familles paramétriques générales, comme dans le cas univarié, pour décrire la forme de ces distributions, mais il y a cependant de nombreuses restrictions sur la forme de la dépendance entre les marginales. Nous considérons divers familles paramétriques que nous estimons à l aide d une méthode de type moindres carrés asymptotiques. Des tests d indépendance asymptotique, de spécification et de discrimination entre modèles sont aussi donnés. Enfin, nous proposons des estimateurs pour les quantiles extrêmaux bivariés et nous appliquons notre méthodologie pour l estimation du montant des dommages en assurance habitation et automobile occasionés lors des tempêtes. Mots clés: Probabilité de survenance de deux évènements catastrophiques, Théorie des valeurs extrêmes bivariées, Distributions à queues épaisses, Moindres carrés asymptotiques Abstract: The paper deals with the estimation of the probability that two dependent catastrophic events occur. Because of their nature such events are not often observed. In a twodimensional space as in a one-dimensional space, the extreme value theory is a powerful tool to do inference in the tail of a distribution outside the range of the observations. This paper considers parametric bivariate extreme value distributions which arise as the limiting distribution of two normalized maxima to estimate the probability of exceedances over high thresholds. The parameter of the extreme value distribution is estimated by using Asymptotic Least Squares (ALS) methods. In case the parameter is a scalar, we derive a new and very simple estimator. Tests for asymptotic independence and overidentifying restrictions are also given. The theory is applied to the problem of storm damages assessment (motor claim amounts and household claim amounts). Keywords: Probability of catastrophic events, Bivariate extreme value theory, Heavy tailed distributions, ALS methods.

2 Depuis quelques années, la théorie des valeurs extrêmes pour les distributions bivariées et multivariées a reçu beaucoup d attention aussi bien sur le plan théorique (Resnick [987], Galambos [987], Joe [997], par exemple) que sur le plan pratique (Ledford et Tawn [996] [997], Coles et Tawn [994], de Haan et de Ronde [998], parmi d autres). Les domaines d applications sont en effet très variés : hydrologie, météorologie, biologie, ingénierie mécanique, gestion de l environnement, finance, assurance, etc; car la gestion des risques est devenue aujourd hui fondamentale dans tous ces domaines. La théorie des valeurs extrêmes s intéresse à la loi multivariée limite, non-dégénérée, des maxima, correctement normalisés, de chaque composante du vecteur initial. Considérons (X,Y ),..., (X n,y n ) une suite de vecteurs aléatoires dans R 2 indépendants et identiquement distribués de loi F. On dit qu il y a convergence des maxima s il existe des suites réelles a n > 0, c n > 0, b n et d n, et une fonction de distribution G avec des marginales non dégénérées telle que : lim P max(x,..., X n ) b n a n = lim F n (a n x + b n,c n y + d n )=G(x, y) x, max(y,..., Y n ) d n c n y Naturellement, cette fonction G est définie à des paramètres d échelle et de position près. Par ailleurs, la relation précédente implique la convergence des marginales et G(x, ) et G(,y) sont des distributions extrêmales univariées qui sont définies à l aide de trois familles de lois paramétriques. Contrairement au cas univarié, il n existe pas de familles générales paramétriques pour la loi G, mais il est possible de les caractériser à l aide d une fonction. Pour décrire leur forme, nous effectuons une transformation de manière à ce que les marginales de la distribution extrêmale soient de la forme Φ (x) = exp { x } (loi de Fréchet de paramètre ). On définit pour cela : F (x, y) =F (U X (x),u Y (y)), avec : U X (t) = (t), U Y (t) = (t). F X F Y Nous obtenons alors la relation asymptotique suivante : lim P max ( F X(X i )) nx, max ( F Y (Y i )) ny,...,n,...,n = lim F n (nx, ny) =G (x, y). G peut être caractérisée de la manière suivante : G (x, y) =exp x y + y y x χ, 2

3 où χ est une fonction continue et concave qui satisfait 0 χ(t) min(,t). Pour une étude des formes de ces fonctions χ et d autres théorèmes de représentation, nous proposons aux lecteurs de se référer à Joe [993] et [997] et Klüppelberg et May [998]. L estimation des distributions bivariées G est apparue comme une nécessité pour évaluer les risques extrêmes, mais aussi pour quantifier l erreur de cette évaluation. Dans la littérature, deux approches classiques d estimation ont été utilisées. La première consiste à modéliser la structure de dépendance à l aide de modèles paramétriques et a été initiée par Tawn [988] [990]. Diverses méthodes ont été proposées : estimation par maximum de vraisemblance (Tawn [988]), méthodes à seuils (Joe, Smith et Weissman [992], Coles et Tawn [99]), ou des méthodes plus spécifiques à chaque modélisation (Csörgo et Welch [989]). La seconde approche consiste à estimer la fonction de dépendance de manière non paramétrique (Einhmal, de Haan et Huang [993], de Haan et Resnick [993], Einhmal, de Haan et Sinha [997], Einhmal, de Haan et Piterbag [998], Abdous, Ghoudi et Khoudraji [998]). Nous faisons l hypothèse supplémentaire (mais peu restrictive) que la loi marginale de X, F X, est de type Weibull et que celle de Y, F Y, est de type Pareto, c est-à-dire : ln( F X (x)) = x τ l X (x), F Y (y) =y α l Y (y), où l X et l Y sont des fonctions à variations lentes et τ > 0, α > 0. Ceci nous conduit aux lois extrêmales univariées et aux choix des suites de normalisation suivants : G(x, ) = exp{ exp { x}}, a n = U X (n)/(τ log(n)), b n = U X (n), G(,y) = exp y α, c n = U Y (n), d n =0, Dans ce papier, nous nous intéressons à l estimation statistique des distributions extrêmales bivariées dans un cadre paramétrique (χ θ sera indicée par le paramètre θ). Nous recourons à une méthode d estimation du type moindres carrés asymptotiques. Pour cela, nous utilisons la théorie des processus ponctuels qui a été introduite par de Haan et Resnick [993]. Il existe des mesures ν et ν sur [, ] [0, ]\{0, 0} et sur [0, ] [0, ]\{0, 0} telles que : lim nx + b n,c n y + d n )) = log G(x, y) =:ν (([,x] [0,y]) c ), log G(log x, y α ) = log G (x, y) =:ν (([0,x] [0,y]) c ). Nous introduisons de plus la mesure de liaison sur [0, ] [0, ]\{0, 0} suivante : µ ((x, ] (y, ]) := y y χ θ. x 3

4 Nous avons alors que la condition de convergence des maxima est équivalente à la convergencevaguedesmesuressur[0, ] [0, ]\{0, 0} : np {(X b n )/a n log x} (Y d n )/c n y v α ν (([0,x] [0,y]) c ), np {(X b n )/a n log x} (Y d n )/c n y v α µ ((x, ] (y, ]). Estimer G est donc équivalent à estimer ν ou µ. Des estimateurs naturels sont les mesures empiriques. Pour (x, y) [0, ] [0, ]\{0, 0} et A [0, ] [0, ]\{0, 0}, on définit : si (x, y) A, (x,y) (A) = 0 si (x, y) A c. La mesure empirique de queue non normalisée peut être estimée par: ˆν n (([0,x] [0,y]) c ):= k n X i Û X (n/k), Y i Û X (n/k)/ log(n/k) Û X (n/k) ([0,x] [0,y]) c, où : Û X (n/k) =X (k), Û Y (n/k) =Y (k). Enfin, on peut donner des estimateurs des mesures de queue normalisées : ˆν n(([0,x] [0,y]) c ) : = k ˆµ n((x, ] (y, ]) : = k n n exp ˆτ exp ˆτ X i Û X (n/k) Û X (n/k)/ log(n/k) X i ÛX (n/k) Û X (n/k)/ log(n/k),, Y i Û X (n/k) Y i Û X (n/k) ˆα([0,x] [0,y]) c, ˆα(x, ] (y, ]. On utilisera les estimateurs de Beirlant et al. l estimateur de Hill pour l indice de Pareto : [995] pour l indice de Weibull et ˆτ = log(n/k) X (k) k k X(i) X (k+), ˆα = k k log Y(i) log Y (k+). Dans le papier, nous montrons les convergences des mesures de queue normalisées et nous donnons leur loi asymptotique. Le paramètre θ est estimé par une technique de moindres carrés asymptotiques. Etant donnée une matrice symétrique définie positive S n de dimension (H,H) dépendant éventuellement des observations, on appelle estimateur de moindres carrés asympotiques associé à S n une solution θ n (S n ) du problème : min θ ˆµ n((x, ] (y, ]) y y χ θ x S n ˆµ n((x, ] (y, ]) y y χ θ. x 4

5 Nous caractérisons alors la convergence de l estimateur et spécifions le choix optimal de la matrice S n. Des tests d indépendance asymptotique, de spécification et de discrimination entre modèles sont aussi donnés. Enfin, nous proposons des estimateurs pour les quantiles extrêmaux bivariées et nous appliquons notre méthodologie pour l estimation du montant des dommages en assurance habitation et automobile occasionnés lors des tempêtes. Bibliographie [] ABDOUS, B.,GHOUDI, K.etKHOUDRAJI, A. (998). Nonparametric estimation of the limit dependence function of multivariate extremes. Extremes 2, [2] BEIRLANT, J., BRONIATOWSKI, M., TEUGELS, J.L., et VYNCKIER, P. (995). The mean residual life function at great age : Applications to tails estimation. J. Stat. Plann. Inf. 45 : [3] COLES, S.G. et TAWN, J.A. (99). Modelling extreme multivariate events. J. R. Statist. Soc. B. 53 : [4] COLES, S.G. et TAWN, J.A. (99). Statistical methods formultivariate extremes : an application to structural design. Appli. Statist. 43 : -48. [5] CSÖRGO, S. et WELSH, A.H. (989). Testing for exponential and Marshall-Olkin distributions. J Statist. Plan. Inference. 23 : [6] DEHEUVELS, P.,HAEUSLER, E.deetMASSON, M.D. (988). Almost sure convergence of the Hill estimator. Math.Camb.Phil.Soc. 04 : [7] EINMAHL, J.H.J., HAAN, L. de et HUANG, X. (993). Estimating a multidimensional extreme value distribution. J. Mult. Analysis. 47 : [8] EINMAHL, J.H.J., HAAN, L. de et PITERBARG, V.I. (998). Nonparametric estimation of the spectral measure of an extreme value distribution. Document de travail, Erasmus University. [9] EINMAHL, J.H.J., HAAN, L.deetSINHA, A.K. (997). Estimating the spectral mesure of an extreme value distribution. Stoch. Porc. Models. 70 : [0] GALAMBOS, J. (987). The Asymptotic Theory of Extreme Order Statistic. 2nd ed. Melbourne : Krieger. [] GEFFROY, J. (958). Contribution à la théorie des valeurs extrêmes, Publication de l ISUP. 7:37-2, 8: [2] HAAN, L. de et RESNICK, S. (977). Limit theory for multivariate samples extremes. Z. Wahrscheinlichkeitstheorie verw. Gebiete. 40 : [3] HAAN, L. de et RESNICK, S. (993). Estimating the limiting distribution of multivariate extremes. Comm.Statist.Stoch.Models.9: [4] HAAN, L. de et RESNICK, S. (996). On asymptotic normality of the Hill estimator. Document de travail, Cornell University. 5

6 [5] HAAN, L. de et RONDE, J. (998). Sea and Wind : multivariate extremes at work. Extremes. :7-45. [6] HAAN, L. de et STADTMÜLLER, U. (994). Generalized regular variation of second order. J. Australian Math. Soc. [6] JOE, H. (993). Parametric Families of multivariate distributions with given margin. J. Mult. Analysis. 46 : [7] JOE, H. (997). Multivariate Models and Dependece Concepts. Monographs on Statistics an Applied Probability 73, Chapman & Hall. [8] JOE, H., SMITH, R.L. et WEISSMAN, I. (992). Bivariate threshold methods for extremes. J. R. Statist. Soc. B. 59 : [9] KLÜPPELBERG, C., et MAY, A. (998). The dependence function for bivariate extreme value distributions. Document de travail, Muenchen University. [20] LEDFORD, A.W. et TAWN, J.A. (996). Statistics for near independence in multivariate extreme values. Biometrika. 83 : [2] LEDFORD, A.W. et TAWN, J.A. (997). Modelling Dependence within joint tail regions. J. R. Statist. Soc. B. 59 : [22] RESNICK, S. (986). Point processes, regular variation and weak convergence. Adv. Appl. Probab. 8 : [23] RESNICK, S. (987). Extreme Values, Regular Variation, and Point Processes. Springer, New-York. [24] RESNICK, S.etSTARICA, C. (999). Smoothing the moment estimator of the extreme value parameter. Extremes. : [25] TAWN, J.A. (988). Bivariate extreme value theory: Models and estimation. Biometrika. 75 : [26] TAWN, J.A. (988). Modelling multivariate extreme value distributions. Biometrika. 77 : [27] SIBUYA, M. (960). Bivariate extreme statistics. I, Annals of the Institute of Statistical Mathematics, Tokyo. 9 :

Modèle de troncature gauche : Comparaison par simulation sur données indépendantes et dépendantes

Modèle de troncature gauche : Comparaison par simulation sur données indépendantes et dépendantes de troncature gauche : Comparaison par simulation sur données indépendantes et dépendantes Zohra Guessoum 1 & Farida Hamrani 2 1 Lab. MSTD, Faculté de mathématique, USTHB, BP n 32, El Alia, Alger, Algérie,zguessoum@usthb.dz

Plus en détail

Modélisation des lois multidimensionnelles par la théorie des copules

Modélisation des lois multidimensionnelles par la théorie des copules Modélisation des lois multidimensionnelles par la théorie des copules Grégoire Mercier jeudi 9 novembre 26 Contenu 2 Mesure de dépendance Lien avec les copules 3 Estimation de l information mutuelle Estimation

Plus en détail

Estimation de quantiles extrêmes pour les lois à queue de type Weibull : une synthèse bibliographique

Estimation de quantiles extrêmes pour les lois à queue de type Weibull : une synthèse bibliographique Estimation de quantiles extrêmes pour les lois à queue de type Weibull : une synthèse bibliographique Laurent Gardes, Stephane Girard To cite this version: Laurent Gardes, Stephane Girard. Estimation de

Plus en détail

Principe de symétrisation pour la construction d un test adaptatif

Principe de symétrisation pour la construction d un test adaptatif Principe de symétrisation pour la construction d un test adaptatif Cécile Durot 1 & Yves Rozenholc 2 1 UFR SEGMI, Université Paris Ouest Nanterre La Défense, France, cecile.durot@gmail.com 2 Université

Plus en détail

Introduction à la Théorie des Valeurs Extrêmes Applications en actuariat

Introduction à la Théorie des Valeurs Extrêmes Applications en actuariat JJ Mois Année Introduction à la Théorie des Valeurs Extrêmes Applications en actuariat Armelle Guillou (Université de Strasbourg ) & Alexandre You (Société Générale Insurance) 1. Calibrage de la sinistralité

Plus en détail

Estimation du Quantile conditionnel par les Réseaux de neurones à fonction radiale de base

Estimation du Quantile conditionnel par les Réseaux de neurones à fonction radiale de base Estimation du Quantile conditionnel par les Réseaux de neurones à fonction radiale de base M.A. Knefati 1 & A. Oulidi 2 & P.Chauvet 1 & M. Delecroix 3 1 LUNAM Université, Université Catholique de l Ouest,

Plus en détail

Sélection de variables groupées avec les forêts aléatoires. Application à l analyse des données fonctionnelles multivariées.

Sélection de variables groupées avec les forêts aléatoires. Application à l analyse des données fonctionnelles multivariées. Sélection de variables groupées avec les forêts aléatoires. Application à l analyse des données fonctionnelles multivariées. Baptiste Gregorutti 12, Bertrand Michel 2 & Philippe Saint Pierre 2 1 Safety

Plus en détail

Clustering par quantification en présence de censure

Clustering par quantification en présence de censure Clustering par quantification en présence de censure Svetlana Gribkova 1 Laboratoire de Statistique Théorique et Appliquée, Université Pierre et Marie Curie Paris 6, 4 place Jussieu, 75005 Paris Résumé.

Plus en détail

CARACTÉRISATION DES DISTRIBUTIONS À QUEUE LOURDE POUR L ANALYSE DES CRUES

CARACTÉRISATION DES DISTRIBUTIONS À QUEUE LOURDE POUR L ANALYSE DES CRUES CARACTÉRISATION DES DISTRIBUTIONS À QUEUE LOURDE POUR L ANALYSE DES CRUES Rapport de recherche No R-929 Mars 27 CARACTÉRISATION DES DISTRIBUTIONS À QUEUE LOURDE POUR L ANALYSE DES CRUES Par Salaheddine

Plus en détail

Détection de ruptures offline et online pour des processus causaux

Détection de ruptures offline et online pour des processus causaux Détection de ruptures offline et online pour des processus causaux Travaux avec W. Kengne (Paris 1, Yaoundé) et O. Wintenberger (Paris IX) Jean-Marc Bardet bardet@univ-paris1.fr Trimestre du Laboratoire

Plus en détail

REVUE DE STATISTIQUE APPLIQUÉE

REVUE DE STATISTIQUE APPLIQUÉE REVUE DE STATISTIQUE APPLIQUÉE DARIUSH GHORBANZADEH Un test de détection de rupture de la moyenne dans un modèle gaussien Revue de statistique appliquée, tome 43, n o 2 (1995), p. 67-76.

Plus en détail

Estimation améliorée explicite d un degré de confiance conditionnel

Estimation améliorée explicite d un degré de confiance conditionnel Estimation améliorée explicite d un degré de confiance conditionnel Dominique Fourdrinier & Patrice Lepelletier UMR CNRS 6085, Université de Rouen, Site Colbert, 76 821 Mont-Saint-Aignan cedex, France

Plus en détail

10/04/2001 1- INTRODUCTION. Vivien BRUNEL

10/04/2001 1- INTRODUCTION. Vivien BRUNEL Vivien BRUNEL LE RISQUE OPERATIONNEL - INTRODUCTION Le risque opérationnel est un concept mal défini ; dans le cas d une institution financière, il est même défini par une non-définition : il se réfère

Plus en détail

COPULE DE GUMBEL. Caillat Anne-lise, Dutang Christophe, Larrieu Marie Véronique et NGuyen Triet. Groupe de travail ISFA 3

COPULE DE GUMBEL. Caillat Anne-lise, Dutang Christophe, Larrieu Marie Véronique et NGuyen Triet. Groupe de travail ISFA 3 COPULE DE GUMBEL Caillat Anne-lise, Dutang Christophe, Larrieu Marie Véronique et NGuyen Triet Groupe de travail ISFA 3 sous la direction de Stéphane Loisel Année Universitaire 2007-2008 TABLE DES MATIÈRES

Plus en détail

TEST DE MONTE CARLO DE DETECTION DE MODIFICATIONS CLIMATIQUES

TEST DE MONTE CARLO DE DETECTION DE MODIFICATIONS CLIMATIQUES TEST DE MONTE CARLO DE DETECTION DE MODIFICATIONS CLIMATIQUES Jean-Cléophas ONDO (*) (*) Institut Sous-régional de Statistique et d Economie Appliquée (ISSEA) Résumé Les procédures couramment utilisées

Plus en détail

Filtrage stochastique non linéaire par la théorie de représentation des martingales

Filtrage stochastique non linéaire par la théorie de représentation des martingales Filtrage stochastique non linéaire par la théorie de représentation des martingales Adriana Climescu-Haulica Laboratoire de Modélisation et Calcul Institut d Informatique et Mathématiques Appliquées de

Plus en détail

Analyse de survie appliquée à la modélisation de la transmission des maladies infectieuses : mesurer l impact des interventions

Analyse de survie appliquée à la modélisation de la transmission des maladies infectieuses : mesurer l impact des interventions Analyse de survie appliquée à la modélisation de la transmission des maladies infectieuses : mesurer l impact des interventions Génia Babykina 1 & Simon Cauchemez 2 1 Université de Lille, Faculté Ingénierie

Plus en détail

Estimation consistante des paramètres d un. modèle non linéaire pour des données. fonctionnelles discrétisées aléatoirement

Estimation consistante des paramètres d un. modèle non linéaire pour des données. fonctionnelles discrétisées aléatoirement Estimation consistante des paramètres d un modèle non linéaire pour des données fonctionnelles discrétisées aléatoirement Consistent estimation of parameters in a nonlinear model for functional data with

Plus en détail

Introduction au cours STA 102 Analyse des données : Méthodes explicatives

Introduction au cours STA 102 Analyse des données : Méthodes explicatives Analyse des données - Méthodes explicatives (STA102) Introduction au cours STA 102 Analyse des données : Méthodes explicatives Giorgio Russolillo giorgio.russolillo@cnam.fr Infos et support du cours Slide

Plus en détail

Essais de modélisation de l épilepsie en Tunisie: Théorie et application basées sur des modèles de régression logistique

Essais de modélisation de l épilepsie en Tunisie: Théorie et application basées sur des modèles de régression logistique Essais de modélisation de l épilepsie en Tunisie: Théorie et application basées sur des modèles de régression logistique Abdelwaheb Daouthi, Mohamed Dogui, Abdeljelil Farhat To cite this version: Abdelwaheb

Plus en détail

Estimation et modélisation de dépendance dans des modèles de survie bivariés en présence de censure

Estimation et modélisation de dépendance dans des modèles de survie bivariés en présence de censure Estimation et modélisation de dépendance dans des modèles de survie bivariés en présence de censure Svetlana Gribkova, Olivier Lopez Laboratoire de Statistique Théorique et Appliquée, Paris 6 4 Mars 2014

Plus en détail

Dépendance entre risques extrêmes : Application aux Hedge Funds

Dépendance entre risques extrêmes : Application aux Hedge Funds Dépendance entre risques extrêmes : Application aux Hedge Funds Ranoua Bouchouicha To cite this version: Ranoua Bouchouicha. Dépendance entre risques extrêmes : Application aux Hedge Funds. Working Paper

Plus en détail

Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles

Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles Valentin Patilea 1 Cesar Sanchez-sellero 2 Matthieu Saumard 3 1 CREST-ENSAI et IRMAR 2 USC Espagne 3 IRMAR-INSA

Plus en détail

Imputation multiple pour variables qualitatives par analyse des correspondances multiples

Imputation multiple pour variables qualitatives par analyse des correspondances multiples Imputation multiple pour variables qualitatives par analyse des correspondances multiples Vincent Audigier & François Husson & Julie Josse Laboratoire de mathématiques appliquées, Agrocampus Ouest 65 rue

Plus en détail

Modélisation prédictive et incertitudes. P. Pernot. Laboratoire de Chimie Physique, CNRS/U-PSUD, Orsay

Modélisation prédictive et incertitudes. P. Pernot. Laboratoire de Chimie Physique, CNRS/U-PSUD, Orsay Modélisation prédictive et incertitudes P. Pernot Laboratoire de Chimie Physique, CNRS/U-PSUD, Orsay Plan 1 Incertitudes des modèles empiriques 2 Identification et caractérisation des paramètres incertains

Plus en détail

Le pire des cas dans le choix de la copule

Le pire des cas dans le choix de la copule Comment éviter le pire Département de Mathématique Université de Bretagne Occidentale 29200 Brest Solvency 2 impose aux assureurs une analyse des risques accumulés sur plusieurs produits d assurances.

Plus en détail

Approche bayésienne des modèles à équations structurelles

Approche bayésienne des modèles à équations structurelles Manuscrit auteur, publié dans "42èmes Journées de Statistique (2010)" Approche bayésienne des modèles à équations structurelles Séverine Demeyer 1,2 & Nicolas Fischer 1 & Gilbert Saporta 2 1 LNE, Laboratoire

Plus en détail

Tavakoli, Shahin Fourier analysis of functional time series, with applications to DNA... 2014

Tavakoli, Shahin Fourier analysis of functional time series, with applications to DNA... 2014 resultats sont ensuite utilises pour construire des estimateurs des operateurs de densite spectrale bases sur des versions lissees du periodogramme, le generalisation fonctionnelle de la matrice de periodogramme.

Plus en détail

Cours STAT 2150. "Statistique non paramétrique: Méthodes de lissage"

Cours STAT 2150. Statistique non paramétrique: Méthodes de lissage Cours STAT 2150 "Statistique non paramétrique: Méthodes de lissage" Année académique 2008-2009 Séance 1 1 Table de matière du cours 1. Introduction (Fonction de répartition, histogramme, propriétés d un

Plus en détail

LOAD PROFILING : ESTIMATION D UNE COURBE DE CONSOMMATION ET PRECISION D ESTIMATION

LOAD PROFILING : ESTIMATION D UNE COURBE DE CONSOMMATION ET PRECISION D ESTIMATION LOAD PROFILING : ESTIMATION D UNE COURBE DE CONSOMMATION ET PRECISION D ESTIMATION Olivier Chaouy EDF R&D 1, avenue du Général de Gaulle - 92141 Clamart Cedex - France olivier.chaouy@edf.fr Résumé : Le

Plus en détail

L évaluation des garanties requises pour se couvrir contre le risque d événements extrêmes sur les marchés

L évaluation des garanties requises pour se couvrir contre le risque d événements extrêmes sur les marchés L évaluation des garanties requises pour se couvrir contre le risque d événements extrêmes sur les marchés Alejandro García et Ramazan Gençay* L es systèmes de compensation et de règlement occupent une

Plus en détail

Régression ridge à noyau pour des variables explicatives et d intérêts fonctionnelles

Régression ridge à noyau pour des variables explicatives et d intérêts fonctionnelles Régression ridge à noyau pour des variables explicatives et d intérêts fonctionnelles Hachem Kadri 1, Philippe Preux 1,2 & Emmanuel Duflos 1,3 1 Equipe-projet SequeL, INRIA Lille - Nord Europe, Villeneuve

Plus en détail

Sélection de modèles avec l AIC et critères d information dérivés

Sélection de modèles avec l AIC et critères d information dérivés Sélection de modèles avec l AIC et critères d information dérivés Renaud LANCELOT et Matthieu LESNOFF Version 3, Novembre 2005 Ceci n est pas une revue exhaustive mais une courte introduction sur l'utilisation

Plus en détail

INFÉRENCE COMBINATOIRE EN ANALYSE GÉOMÉTRIQUE DES DONNÉES

INFÉRENCE COMBINATOIRE EN ANALYSE GÉOMÉTRIQUE DES DONNÉES INFÉRENCE COMBINATOIRE EN ANALYSE GÉOMÉTRIQUE DES DONNÉES Solène Bienaise 1 & Brigitte Le Roux 2 1 CEREMADE, Place du Maréchal de Lattre de Tassigny 75775 PARIS Cedex 16. bienaise@ceremade.dauphine.fr

Plus en détail

NON-LINEARITE ET RESEAUX NEURONAUX

NON-LINEARITE ET RESEAUX NEURONAUX NON-LINEARITE ET RESEAUX NEURONAUX Vêlayoudom MARIMOUTOU Laboratoire d Analyse et de Recherche Economiques Université de Bordeaux IV Avenue. Leon Duguit, 33608 PESSAC, France tel. 05 56 84 85 77 e-mail

Plus en détail

MAT 2377 Solutions to the Mi-term

MAT 2377 Solutions to the Mi-term MAT 2377 Solutions to the Mi-term Tuesday June 16 15 Time: 70 minutes Student Number: Name: Professor M. Alvo This is an open book exam. Standard calculators are permitted. Answer all questions. Place

Plus en détail

Regime Switching Model : une approche «pseudo» multivarie e

Regime Switching Model : une approche «pseudo» multivarie e Regime Switching Model : une approche «pseudo» multivarie e A. Zerrad 1, R&D, Nexialog Consulting, Juin 2015 azerrad@nexialog.com Les crises financières survenues dans les trente dernières années et les

Plus en détail

Modèles références de régression multinomiale.

Modèles références de régression multinomiale. Modèles références de régression multinomiale. Propriétés et applications en classification supervisée. Jean Peyhardi 1,3, Catherine Trottier 1,2 & Yann Guédon 3 1 UM2, Institut de Mathématiques et Modélisation

Plus en détail

3 e Atelier des Étudiants Gradués en Actuariat et Mathématiques Financières. 3 rd Graduate Students Workshop on Actuarial and Financial Mathematics

3 e Atelier des Étudiants Gradués en Actuariat et Mathématiques Financières. 3 rd Graduate Students Workshop on Actuarial and Financial Mathematics 3 e Atelier des Étudiants Gradués en Actuariat et Mathématiques Financières 3 rd Graduate Students Workshop on Actuarial and Financial Mathematics Résumé-Abstracts Organization: Ghislain Léveillé Co-organization:

Plus en détail

Équation de Langevin avec petites perturbations browniennes ou

Équation de Langevin avec petites perturbations browniennes ou Équation de Langevin avec petites perturbations browniennes ou alpha-stables Richard Eon sous la direction de Mihai Gradinaru Institut de Recherche Mathématique de Rennes Journées de probabilités 215,

Plus en détail

Éléments spectraux d une fonction cyclostationnaire

Éléments spectraux d une fonction cyclostationnaire Éléments spectraux d une fonction cyclostationnaire Alain BOUDOU 1 & Sylvie VIGUIR-PLA 1 & 2 1 quipe de Stat. et Proba., Institut de Mathématiques, UMR5219 Université Paul Sabatier, 118 Route de Narbonne,

Plus en détail

Traitement des données influentes dans le cas d un sondage à deux phases avec une application au traitement de la non-réponse

Traitement des données influentes dans le cas d un sondage à deux phases avec une application au traitement de la non-réponse Traitement des données influentes dans le cas d un sondage à deux phases avec une application au traitement de la non-réponse Jean-François Beaumont, Statistics Canada Cyril Favre Martinoz, Crest-Ensai

Plus en détail

TESTS PORTMANTEAU D ADÉQUATION DE MODÈLES ARMA FAIBLES : UNE APPROCHE BASÉE SUR L AUTO-NORMALISATION

TESTS PORTMANTEAU D ADÉQUATION DE MODÈLES ARMA FAIBLES : UNE APPROCHE BASÉE SUR L AUTO-NORMALISATION TESTS PORTMANTEAU D ADÉQUATION DE MODÈLES ARMA FAIBLES : UNE APPROCHE BASÉE SUR L AUTO-NORMALISATION Bruno Saussereau Laboratoire de Mathématiques de Besançon Université de Franche-Comté Travail en commun

Plus en détail

mesures d asymétrie en économie et en finance

mesures d asymétrie en économie et en finance mesures d asymétrie en économie et en finance Hélène Honoré 1 1 CNRS Eurofidai UPS 3390. Eurofidai, Domaine Universitaire - UPMF, 150 rue de la Chimie - BP 47 38040 Grenoble Cedex 9, France. helene.honore@eurofidai.org

Plus en détail

Économétrie, causalité et analyse des politiques

Économétrie, causalité et analyse des politiques Économétrie, causalité et analyse des politiques Jean-Marie Dufour Université de Montréal October 2006 This work was supported by the Canada Research Chair Program (Chair in Econometrics, Université de

Plus en détail

Analyse de variance à 2 facteurs imbriqués sur données de comptage - Application au contrôle de

Analyse de variance à 2 facteurs imbriqués sur données de comptage - Application au contrôle de Analyse de variance à 2 facteurs imbriqués sur données de comptage - Application au contrôle de qualité Florence Loingeville 1,2,3, Julien Jacques 1,2, Cristian Preda 1,2, Philippe Guarini 3 & Olivier

Plus en détail

Situation professionnelle. Études. Thèmes de recherche

Situation professionnelle. Études. Thèmes de recherche Arnaud GLOTER Né le 03/11/72 (42 ans), à Montreuil Adresse : Université d Evry Val d Essonne, 23 bd de France, 91037 Evry Cedex Téléphone : 01 64 85 35 68 e-mail : arnaud.gloter@univ-evry.fr Situation

Plus en détail

Tests d indépendance en analyse multivariée et tests de normalité dans les modèles ARMA

Tests d indépendance en analyse multivariée et tests de normalité dans les modèles ARMA Tests d indépendance en analyse multivariée et tests de normalité dans les modèles ARMA Soutenance de doctorat, sous la direction de Pr. Bilodeau, M. et Pr. Ducharme, G. Université de Montréal et Université

Plus en détail

Classification. Session organisée par Charles Bouveyron et Francois Caron et Marie Chavent

Classification. Session organisée par Charles Bouveyron et Francois Caron et Marie Chavent Classification Session organisée par Charles Bouveyron et Francois Caron et Marie Chavent La classification a pour objet de regrouper des données en classes possédant des caractéristiques similaires. La

Plus en détail

Provisionnement face au risque de défaut des emprunteurs

Provisionnement face au risque de défaut des emprunteurs Provisionnement face au risque de défaut des emprunteurs Geoffrey Nichil et Pierre Vallois Institut Elie Cartan de Lorraine. 6-11 Avril 2014 1/12 Geoffrey Nichil et Pierre Vallois Provisionnement face

Plus en détail

MODELES dits "DE LA REPONSE A UN ITEM" (MRI) : LE CAS PARTICULIER DU MODELE DEVELOPPE PAR RASCH A PROPOS D'ITEMS DICHOTOMIQUES

MODELES dits DE LA REPONSE A UN ITEM (MRI) : LE CAS PARTICULIER DU MODELE DEVELOPPE PAR RASCH A PROPOS D'ITEMS DICHOTOMIQUES MODELES dits DE LA REPONSE A UN ITEM (MRI) : LE CAS PARTICULIER DU MODELE DEVELOPPE PAR RASCH A PROPOS D'ITEMS DICHOTOMIQUES Marc Demeuse 1 1. Description et principes!# $ % & # % '! $ && $(! ') %#%!#

Plus en détail

TITRE DE LA THESE. Développement durable et lutte contre la pauvreté, Cas de la Tunisie. Par. Riadh Béchir. Unité de recherche ; Laboratoire ;

TITRE DE LA THESE. Développement durable et lutte contre la pauvreté, Cas de la Tunisie. Par. Riadh Béchir. Unité de recherche ; Laboratoire ; TITRE DE LA THESE Développement durable et lutte contre la pauvreté, Cas de la Tunisie Par Riadh Béchir Unité de recherche ; Laboratoire ; Entreprise - Economie - Environnement Economie et sociétés rurales

Plus en détail

Distributions à queues épaisses bilatérales

Distributions à queues épaisses bilatérales Distributions à queues épaisses bilatérales et applications en finance avec le package FatTailsR patrice.kiener@inmodelia.com Conférence R/Rmetrics - 7 juin 4 patrice.kiener@inmodelia.com Distributions

Plus en détail

Probabilités. I- Expérience aléatoire, espace probabilisé : ShotGun. 1- Définitions :

Probabilités. I- Expérience aléatoire, espace probabilisé : ShotGun. 1- Définitions : Probabilités I- Expérience aléatoire, espace probabilisé : 1- Définitions : Ω : Ensemble dont les points w sont les résultats possibles de l expérience Des évènements A parties de Ω appartiennent à A une

Plus en détail

Université d Orléans - Maitrise Econométrie Econométrie des Variables Qualitatives

Université d Orléans - Maitrise Econométrie Econométrie des Variables Qualitatives Université d Orléans - Maitrise Econométrie Econométrie des Variables Qualitatives Examen Décembre 00. C. Hurlin Exercice 1 (15 points) : Politique de Dividendes On considère un problème de politique de

Plus en détail

Tests exacts d indépendance sérielle dans les cas de distributions continues et discrètes

Tests exacts d indépendance sérielle dans les cas de distributions continues et discrètes Tests exacts d indépendance sérielle dans les cas de distributions continues et discrètes Jean-Marie Dufour Université de Montréal Abdeljelil Farhat Université de Montréal First version: August 2001 This

Plus en détail

Exemple PLS avec SAS

Exemple PLS avec SAS Exemple PLS avec SAS This example, from Umetrics (1995), demonstrates different ways to examine a PLS model. The data come from the field of drug discovery. New drugs are developed from chemicals that

Plus en détail

FIMA, 7 juillet 2005

FIMA, 7 juillet 2005 F. Corset 1 S. 2 1 LabSAD Université Pierre Mendes France 2 Département de Mathématiques Université de Franche-Comté FIMA, 7 juillet 2005 Plan de l exposé plus court chemin Origine du problème Modélisation

Plus en détail

Econométrie Appliquée Séries Temporelles

Econométrie Appliquée Séries Temporelles Chapitre 1. UFR Economie Appliquée. Cours de C. Hurlin 1 U.F.R. Economie Appliquée Maîtrise d Economie Appliquée Cours de Tronc Commun Econométrie Appliquée Séries Temporelles Christophe HURLIN Chapitre

Plus en détail

Traitements de données de captures et efforts en halieutique : Modèles, estimation et indicateurs d aide à la

Traitements de données de captures et efforts en halieutique : Modèles, estimation et indicateurs d aide à la Traitements de données de captures et efforts en halieutique : Modèles, estimation et indicateurs d aide à la décision. Francis Laloë UMR C3ED (IRD-UVSQ) IRD, BP 64501 34 394 Montpellier Cedex 5 Résumé

Plus en détail

EVALUATION DES RISQUES D EXPOSITION À UN CONTAMINANT ALIMENTAIRE : QUELQUES OUTILS STATISTIQUES.

EVALUATION DES RISQUES D EXPOSITION À UN CONTAMINANT ALIMENTAIRE : QUELQUES OUTILS STATISTIQUES. EVALUATION DES RISQUES D EXPOSITION À UN CONTAMINANT ALIMENTAIRE : QUELQUES OUTILS STATISTIQUES. PATRICE BERTAIL, LABORATOIRE DE STATISTIQUE, CREST A. [Résumé] L objet de cette étude est de présenter et

Plus en détail

Décomposition de domaine pour un milieu poreux fracturé

Décomposition de domaine pour un milieu poreux fracturé Décomposition de domaine pour un milieu poreux fracturé Laila AMIR 1, Michel KERN 2, Vincent MARTIN 3, Jean E ROBERTS 4 1 INRIA-Rocquencourt, B.P. 105, F-78153 Le Chesnay Cedex Email: laila.amir@inria.fr

Plus en détail

Indexation de sous-collections pour l amélioration de la haute précision

Indexation de sous-collections pour l amélioration de la haute précision Indexation de sous-collections pour l amélioration de la haute précision Joëlson Randriamparany *,** *IRIT, Institut de Recherche Informatique de Toulouse Université Paul Sabatier Toulouse III 118 Route

Plus en détail

X1 = Cash flow/ Dette totale. X2 = Revenu net / Total des actifs au bilan. X3 = Actif réalisable et disponible / Passif courant

X1 = Cash flow/ Dette totale. X2 = Revenu net / Total des actifs au bilan. X3 = Actif réalisable et disponible / Passif courant EXEMPLE : FAILLITE D ENTREPRISES Cet exemple a pour objectif d étudier la faillite d entreprises. Les données proviennent de l ouvrage de R.A.Johnson et D.W Wichern : Applied Multivariate Statistical Analysis»,

Plus en détail

Procédure diagnostique en arbre utilisant les tests lisses d adéquation

Procédure diagnostique en arbre utilisant les tests lisses d adéquation Procédure diagnostique en arbre utilisant les tests lisses d adéquation Walid A AKHRAS 1 & Gilles DUCHARME 1 aboratoire de probabilités et statistique cc 051, Université Montpellier, 34095 Montpellier

Plus en détail

Gestion des Risques Multiples. Cours ENSAI de 3ème année

Gestion des Risques Multiples. Cours ENSAI de 3ème année Gestion des Risques Multiples ou Copules et Aspects Multidimensionnels du Risque Cours ENSAI de 3ème année Thierry RONCALLI Notes de cours écrites avec la collaboration de Nicolas Baud et Jean-Frédéric

Plus en détail

Mesure et gestion des risques d assurance

Mesure et gestion des risques d assurance Mesure et gestion des risques d assurance Analyse critique des futurs référentiels prudentiel et d information financière Congrès annuel de l Institut des Actuaires 26 juin 2008 Pierre THEROND ptherond@winter-associes.fr

Plus en détail

Modélisation d un code numérique par un processus gaussien, application au calcul d une courbe de probabilité de dépasser un seuil

Modélisation d un code numérique par un processus gaussien, application au calcul d une courbe de probabilité de dépasser un seuil Modélisation d un code numérique par un processus gaussien, application au calcul d une courbe de probabilité de dépasser un seuil Séverine Demeyer, Frédéric Jenson, Nicolas Dominguez CEA, LIST, F-91191

Plus en détail

Modèle mixte non linéaire. Application à la modélisation de processus dynamiques et prise en compte d effets génotypiques et environnementaux

Modèle mixte non linéaire. Application à la modélisation de processus dynamiques et prise en compte d effets génotypiques et environnementaux Modèle mixte non linéaire. Application à la modélisation de processus dynamiques et prise en compte d effets génotypiques et environnementaux Hervé Monod Unité MIA-Jouy en Josas INRA - Dépt Mathématiques

Plus en détail

Analyse de données et méthodes numériques

Analyse de données et méthodes numériques Analyse de données et méthodes numériques Analyse de données: Que faire avec un résultat? Comment le décrire? Comment l analyser? Quels sont les «modèles» mathématiques associés? Analyse de données et

Plus en détail

Rev. Ivoir. Sci. Technol., 19 (2012) 59 71. ISSN 1813-3290, http://www.revist.ci

Rev. Ivoir. Sci. Technol., 19 (2012) 59 71. ISSN 1813-3290, http://www.revist.ci 59 ISSN 1813-3290, http://www.revist.ci RÉGRESSION LOGISTIQUE DANS LES ESSAIS CLINIQUES PAR MCMC Ahlam LABDAOUI * et Hayet MERABET Département de Mathématiques, Université Mentouri-Constantine, Route d

Plus en détail

C. R. Acad. Sci. Paris, Ser. I

C. R. Acad. Sci. Paris, Ser. I C. R. Acad. Sci. Paris, Ser. I 348 (21) 35 31 Contents lists available at ScienceDirect C. R. Acad. Sci. Paris, Ser. I www.sciencedirect.com Probabilités/Statistique Un contre-exemple à une conjecture

Plus en détail

TECH. INFOTECH # 34 Solvabilité 2 : Le calcul du capital économique dans le cadre d un modèle interne. Introduction

TECH. INFOTECH # 34 Solvabilité 2 : Le calcul du capital économique dans le cadre d un modèle interne. Introduction INFO # 34 dans le cadre d un modèle interne Comment les méthodes d apprentissage statistique peuvent-elles optimiser les calculs? David MARIUZZA Actuaire Qualifié IA Responsable Modélisation et Solvabilité

Plus en détail

Statistiques Multivariées pour la Bioinformatique. Susan Holmes, Stanford, susan@stat.stanford.edu

Statistiques Multivariées pour la Bioinformatique. Susan Holmes, Stanford, susan@stat.stanford.edu BMM 1 Presentation Statistiques Multivariées pour la Bioinformatique Susan Holmes, Stanford, susan@stat.stanford.edu Specificités de cette classe Les données genetiques sont discretes: comptage. En general

Plus en détail

Formulation économique d une carte de contrôle aux attributs utilisant une taille d échantillonnage variable

Formulation économique d une carte de contrôle aux attributs utilisant une taille d échantillonnage variable Formulation économique d une carte de contrôle aux attributs utilisant une taille d échantillonnage variable Imen Kooli, Mohamed Limam To cite this version: Imen Kooli, Mohamed Limam. Formulation économique

Plus en détail

Les simulations dans l enseignement des sondages Avec le logiciel GENESIS sous SAS et la bibliothèque Sondages sous R

Les simulations dans l enseignement des sondages Avec le logiciel GENESIS sous SAS et la bibliothèque Sondages sous R Les simulations dans l enseignement des sondages Avec le logiciel GENESIS sous SAS et la bibliothèque Sondages sous R Yves Aragon, David Haziza & Anne Ruiz-Gazen GREMAQ, UMR CNRS 5604, Université des Sciences

Plus en détail

Mesure d entropie asymétrique et consistante

Mesure d entropie asymétrique et consistante Djamel A. Zighed, Simon Marcellin Gilbert Ritschard Université Lumière Lyon 2, Laboratoire ERIC {abdelkader.zighed,simon.marcellin}@univ-lyon2.fr http://eric.univ-lyon2.fr Université de Genève, Département

Plus en détail

Introduction à la statistique non paramétrique

Introduction à la statistique non paramétrique Introduction à la statistique non paramétrique Catherine MATIAS CNRS, Laboratoire Statistique & Génome, Évry http://stat.genopole.cnrs.fr/ cmatias Atelier SFDS 27/28 septembre 2012 Partie 2 : Tests non

Plus en détail

Création de typologie sous SPSS

Création de typologie sous SPSS Création de typologie sous SPSS À Propos de ce document... 1 Introduction... 1 La démarche à suivre sous SPSS... 2 1. «Iterate»... 2 2. «Save»... 2 3. «Options»... 3 Analyse des résultats... 3 1. Historique

Plus en détail

Complexité sur les marchés financiers

Complexité sur les marchés financiers Complexité sur les marchés financiers Par Professeur François Longin - ESSEC Business School Chaire ESSEC Edgar Morin de la complexité Mardi 9 décembre 2014 - ESSEC Complextité sur les marchés financiers

Plus en détail

TABLE DES MATIERES. C Exercices complémentaires 42

TABLE DES MATIERES. C Exercices complémentaires 42 TABLE DES MATIERES Chapitre I : Echantillonnage A - Rappels de cours 1. Lois de probabilités de base rencontrées en statistique 1 1.1 Définitions et caractérisations 1 1.2 Les propriétés de convergence

Plus en détail

Probabilités et inférence statistique (STAT-S202)

Probabilités et inférence statistique (STAT-S202) Probabilités et inférence statistique (STAT-S202) Partie 2: Inférence statistique Catherine Dehon 2014-2015 (2e édition) Université libre de Bruxelles Solvay Brussels School of Economics and Management

Plus en détail

NOUVELLES MESURES DE DÉPENDANCE POUR

NOUVELLES MESURES DE DÉPENDANCE POUR NOUVELLES MESURES DE DÉPENDANCE POUR UNE MODÉLISATION ALPHA-STABLE. Bernard GAREL & Bernédy KODIA Institut de Mathématiques de Toulouse et INPT-ENSEEIHT Xèmmes Journées de Méthodologie Statistique de l

Plus en détail

Une mesure de risque extrême agrégée : risque de marché et risque de liquidité

Une mesure de risque extrême agrégée : risque de marché et risque de liquidité 3, allée François Mitterrand BP 3633 4900 ANGERS Cedex 0 Tél. : +33 (0) 4 96 06 Web : http://www.univ-angers.fr/granem Une mesure de risque extrême agrégée : risque de marché et risque de liquidité Angélique

Plus en détail

- 1 - ===================================================================

- 1 - =================================================================== Sommaire - 1 - INTRODUCTION...- 3-1. INSTALLATION DU LOGICIEL EXTREMES...- 7-1.1. Environnement Windows...- 7-1.1.1. Le fichier setup.exe...- 7-1.1.2. Organisation des répertoires...- 11-1.2. Environnement

Plus en détail

AICp. Vincent Vandewalle. To cite this version: HAL Id: inria-00386678 https://hal.inria.fr/inria-00386678

AICp. Vincent Vandewalle. To cite this version: HAL Id: inria-00386678 https://hal.inria.fr/inria-00386678 Sélection prédictive d un modèle génératif par le critère AICp Vincent Vandewalle To cite this version: Vincent Vandewalle. Sélection prédictive d un modèle génératif par le critère AICp. 41èmes Journées

Plus en détail

1 Sujets donnés en option scientifique

1 Sujets donnés en option scientifique Les sujets suivants, posés aux candidats des options scientifique, économique, technologique et littéraire BL constituent la première version d un échantillon des sujets proposés lors des épreuves orales

Plus en détail

Influence du nombre de réplicats dans une analyse différentielle de données RNA-Seq

Influence du nombre de réplicats dans une analyse différentielle de données RNA-Seq Influence du nombre de réplicats dans une analyse différentielle de données RNA-Seq Sophie Lamarre 1, Stéphane Pyronnet 2, Emeline Sarot 2, Sébastien Déjean 3, Magali San Cristobal 3,4 & Matthieu Vignes

Plus en détail

Approximation polynomiale de la densité de probabilité

Approximation polynomiale de la densité de probabilité Approximation polynomiale de la densité de probabilité Applications en assurance P.O. Goffard Axa France - Institut de Mathématiques de Marseille I2M Aix-Marseille Université Soutenance de thèse de doctorat

Plus en détail

Modélisation géostatistique des débits le long des cours d eau.

Modélisation géostatistique des débits le long des cours d eau. Modélisation géostatistique des débits le long des cours d eau. C. Bernard-Michel (actuellement à ) & C. de Fouquet MISTIS, INRIA Rhône-Alpes. 655 avenue de l Europe, 38334 SAINT ISMIER Cedex. Ecole des

Plus en détail

Détermination des fréquences propres d une structure avec paramètres incertains

Détermination des fréquences propres d une structure avec paramètres incertains Détermination des fréquences propres d une structure avec paramètres incertains Etienne ARNOULT Abdelhamid TOUACHE Pascal LARDEUR Université de Technologie de Compiègne Laboratoire Roberval BP 20 529 60

Plus en détail

Résumé des communications des Intervenants

Résumé des communications des Intervenants Enseignements de la 1ere semaine (du 01 au 07 décembre 2014) I. Titre du cours : Introduction au calcul stochastique pour la finance Intervenante : Prof. M hamed EDDAHBI Dans le calcul différentiel dit

Plus en détail

L UTILISATION DU MODÈLE DE COX-PLS DANS LA PRÉVISION DE

L UTILISATION DU MODÈLE DE COX-PLS DANS LA PRÉVISION DE L UTILISATION DU MODÈLE DE COX-PLS DANS LA PRÉVISION DE DÉFAILLANCE DES ENTREPRISES Sami Ben Jabeur IPAG Business Scool, 84 Boulevard Saint-Germain, 75006 Paris sbenjabeur@gmail.com Résumé. L objectif

Plus en détail

Stress testing et théorie des valeurs extrêmes: une vision quantiée du risque extrême

Stress testing et théorie des valeurs extrêmes: une vision quantiée du risque extrême Stress testing et théorie des valeurs extrêmes: une vision quantiée du risque extrême Arnaud Costinot, Gaël Riboulet, Thierry Roncalli Groupe de Recherche Opérationnelle Crédit Lyonnais France 15 Septembre

Plus en détail

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures)

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures) CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE Cinquième épreuve d admissibilité STATISTIQUE (durée : cinq heures) Une composition portant sur la statistique. SUJET Cette épreuve est composée d un

Plus en détail

Plans d expérience bayésiens: Que nous proposent Chaloner et Verdinelli?

Plans d expérience bayésiens: Que nous proposent Chaloner et Verdinelli? Plans d expérience bayésiens: Que nous proposent Chaloner et Verdinelli? Bayesian Experimental Design: A Review Statistical Science, Vol. 10, No. 3 Sophie Ancelet 1, 2 1 UMR 518 AgroParisTech/INRA, Département

Plus en détail

Curriculum Vitae. Rémi Servien. 24 juin 2014. Adresse Professionnelle : UMR 1331 Toxalim

Curriculum Vitae. Rémi Servien. 24 juin 2014. Adresse Professionnelle : UMR 1331 Toxalim Curriculum Vitae Rémi Servien 24 juin 2014 Adresse Professionnelle : UMR 1331 Toxalim INRA - ENVT Laboratoire de Physiologie 23 chemin des Capelles BP 87614 31076 Toulouse Cedex 03 31 ans Nationalité française

Plus en détail

Feuille d exercices Variables Aléatoires et Conditionnement

Feuille d exercices Variables Aléatoires et Conditionnement Feuille d exercices Variables Aléatoires et Conditionnement B. Delyon, V. Monbet Master 1-2013-2014 1 Indépendance et conditionnement 1.1 Introduction Exercice 1 Pour améliorer la sûreté de fonctionnement

Plus en détail

PRÉSENTATION TRAVAIL EN COURS - APPRENTISSAGE INTERACTIF. Ianis Lallemand, 21 janvier 2013

PRÉSENTATION TRAVAIL EN COURS - APPRENTISSAGE INTERACTIF. Ianis Lallemand, 21 janvier 2013 PRÉSENTATION TRAVAIL EN COURS - APPRENTISSAGE INTERACTIF Ianis Lallemand, 21 janvier 2013 APPRENTISSAGE INTERACTIF definition Contours encore assez flous dans le champ de l apprentissage automatique. Néanmoins,

Plus en détail

Prédiction et Big data

Prédiction et Big data Prédiction et Big data Mitra Fouladirad Institut Charles Delaunay - UMR CNRS 6281 Université de Technologie de Troyes 29 avril 2015 1 1 Sujet Motivation Le pronostic ou la prédiction du comportement futur

Plus en détail