Démonstration de la conjecture de Dumont

Dimension: px
Commencer à balayer dès la page:

Download "Démonstration de la conjecture de Dumont"

Transcription

1 C. R. Acad. Sci. Paris, Ser. I 1 (005) Théorie des nombres/combinatoire Démonstration de la conjecture de Dumont Bodo Lass Institut Camille Jordan, UMR 508 du CNRS, Université Claude Bernard Lyon 1,, boulevard du 11 novembre 1918, 696 Villeurbanne cedex, France Reçu le 11 juillet 005 ; accepté après révision le 11 octobre 005 Disponible sur Internet le 1 novembre 005 Présenté par Étienne Ghys À Dominique Foata, pour son 70-ième anniversaire Résumé Soit r 1() (n) : {(x 1,x,...,x ) N n x1 + x + +x,x i 1 (mod ), 1 i }, c 1() (n) : {(x 1,x,...,x ) N n x 1 x + x x + +x 1 x + x x 1,x i 1 ()}, c () (n) : {(x 1,x,...,x ) N n x 1 x + x x + +x 1 x + x x 1,x i ()}. Dumont a conjecturé l identité r 1() (n) c 1() (n) ( 1) c () (n) qui généralise, notamment, les résultats classiques de Lagrange, Gauß, Jacobi et Kronecer sur les décompositions de tout entier en deux, trois et quatre carrés. Nous donnons une preuve combinatoire de la conjecture de Dumont. Pour citer cet article : B. Lass, C. R. Acad. Sci. Paris, Ser. I 1 (005). 005 Académie des sciences. Publié par Elsevier SAS. Tous droits réservés. Abstract A proof of Dumont s conjecture. Let r 1() (n) : {(x 1,x,...,x ) N n x1 + x + +x,x i 1 (mod ), 1 i }, c 1() (n) : {(x 1,x,...,x ) N n x 1 x + x x + +x 1 x + x x 1,x i 1 ()}, c () (n) : {(x 1,x,...,x ) N n x 1 x + x x + +x 1 x + x x 1,x i ()}. Dumont has conjectured the identity r 1() (n) c 1() (n) ( 1) c () (n), which generalizes, in particular, the classical results of Lagrange, Gauß, Jacobi and Kronecer on the sums of two, three and four squares. We give a combinatorial proof of Dumont s conjecture. To cite this article: B. Lass, C. R. Acad. Sci. Paris, Ser. I 1 (005). 005 Académie des sciences. Publié par Elsevier SAS. Tous droits réservés. Adresse (B. Lass) X/$ see front matter 005 Académie des sciences. Publié par Elsevier SAS. Tous droits réservés. doi: /j.crma

2 71 B. Lass / C. R. Acad. Sci. Paris, Ser. I 1 (005) Abridged English version Let N a(b) denote the set of strictly positive integers congruent to a modulo b, and let and n be integers such that 1 n and n (mod 8). We want to count the number of solutions of the following Diophantine equations: r 1() (n) : { (x 1,x,...,x ) ( N 1()) n x 1 + x } + +x, c 1() (n) : { (x 1,x,...,x ) ( N 1()) } n x1 x + x x + +x 1 x + x x 1, c () (n) : { (x 1,x,...,x ) ( N ()) } n x1 x + x x + +x 1 x + x x 1. Let y 1,y,...,y be arbitrary strictly positive integers. The equivalence ( ) ( ) ( ) y1 y y m m + (y 1 1) + (y 1) + +(y 1) shows that the congruence n (mod 8) is satisfied automatically in the first Diophantine equation (this is true for the two other equations too) and that r 1() (n) also counts the number of decompositions of (n )/8into triangular numbers. Moreover, Jacobi s two and four odd squares theorems tell us that for n (mod 8) and n (mod 8) we have r 1() (n) ( 1) (d 1)/, r 1() (n) d, d (n/) d (n/) respectively (the sums go over all positive divisors), whereas Kronecer s three odd squares theorem gives r 1() (n) { (a,b,c) N n ac b,b>0, b<a, b < c } for n (mod 8). The aim of André Weil s article [] is to prove exactly those three theorems. Up to now, we could not see in such results anything else than special cases of the general conjecture that number theory is less beautiful than combinatorics. Dominique Dumont [], however, recently recognized them as the cases,, of the following marvellous conjecture (which he also proved for n 0, 8, 16,,, 0). Conjecture 0.1 (Dumont). The following relation holds for all positive integers n and : r 1() (n) c 1() (n) ( 1) c () (n). Once the right statement has been found, the proof almost taes care of itself. We thin that this aphorism can be applied directly to Dumont s conjecture. In any case, it can be applied to our main result: Theorem 0.. Let the infinite matrices A (a ij ) and B (b ij ), i, j 0, 1,,,..., be defined by a ij : q (i+1)(j+1) for all i, j and by b ij : q (i 1)(j 1), b 0j b i0 0 for i, j > 0, whereas b 00 : q (n+1). Then there exists an inversible matrix X (defined in the main version) such that XB AX. In particular, tr[a ]tr[b ], which is the generating function formulation of the identity c 1() (n) r 1() (n) + ( 1) c () (n). 1. Combinatoire En suivant Andrews [1], commençons par rappeler les plus beaux théorèmes de la combinatoire des q-séries formelles (ceux qui préfèrent l analyse complexe pourront supposer q < 1), qui utilisent tous les notations (a; q) n : (1 a)(1 aq) (1 aq n 1), (a; q) : lim n (a; q) n, (a; q) 0 : 1. Théorème 1.1 (q-binomial (Cauchy)). (a; q) n t n (at; q). (q; q) n (t; q)

3 B. Lass / C. R. Acad. Sci. Paris, Ser. I 1 (005) Démonstration. Posons F(t): (at; q) /(t; q) : A n (a; q) t n. On vérifie immédiatement (1 t)f(t) (1 at)(atq; q) /(tq; q) (1 at)f (tq), d oùa n (a; q) A n 1 (a; q) q n A n (a; q) aq n 1 A n 1 (a; q),i.e. A n (a; q) A n 1 (a; q)(1 aq n 1 )/(1 q n ). Corollaire 1. (Euler). t n 1, (q; q) n (t; q) t n q n(n 1)/ ( t; q). (q; q) n Démonstration. Il suffit de poser a 0 ou bien de remplacer a par a/b et t par bt pour ensuite poser b 0et a 1. Théorème 1. (Triple produit (Jacobi)). q n z n ( q ; q ) ( qz; q ) ( q/z; q ). Démonstration. Nous utilisons trois fois le corollaire précédent : ( q ; q ) ( qz; q ) ( q ; q ) q n z n (q ; q ) n q n z n( q n+ ; q ) q n z n( q n+ ; q ) q n z n ( 1) m q m +m+mn (q ; q ) m0 m ( 1) m q m z m (q ; q q (n+m) z n+m ( q/z) m ) m0 m (q ; q q n z n ) m0 m 1 ( q/z; q q n z n. ) Corollaire 1. (Gauß). ( 1) n q n (q; q), ( q; q) q n(n+1)/ (q ; q ) (q; q ). Démonstration. L identité 1 + q n (1 q n )/(1 q n ) entraîne ( q; q) (q ; q ) /(q; q) 1/(q; q ). Les cas z 1etz q du théorème précédent impliquent donc bien les deux identités ( 1) n q n (q ; q ) (q; q ) (q; q ) (q; q) (q; q ) (q; q) /( q; q) et q n(n+1)/ 1 q n(n+1)/ 1 (q; q) ( q; q) ( 1; q) (q; q) ( q; q) ( q; q) (q ; q ) ( q; q) (q ; q ) /(q; q ).. Algèbre linéaire Nous regardons maintenant des matrices infinies A (a ij ), i, j 0, 1,,,..., dont les éléments a ij sont des q-séries formelles. Appelons une telle matrice admissible si et seulement si, pour tout n N,ilexisteun N tel que i j >implique deg(a ij )>n,oùdeg( m0 a m q m ) est la plus petite valeur de m avec a m 0(deg(0) ). Autrement dit, une matrice est admissible si sa réduction modulo q N est concentrée sur un nombre fini de lignes diagonales pour tout N. L identité I est admissible et le produit AB de deux matrices admissibles A et B est bien défini et admissible. De plus, la multiplication des matrices admissibles est associative. Si A (a ij ) est une matrice admissible avec deg(a ij )>0 pour tout i, j,alors(i + A) 1 0 ( 1) A est également bien défini et admissible. Appelons la matrice A (a ij ) admise si et seulement si, pour tout n N, ilexisteun N tel que max(i, j) > implique deg(a ij )>n. Autrement dit, une matrice est admise si sa réduction modulo q N est une matrice finie pour

4 716 B. Lass / C. R. Acad. Sci. Paris, Ser. I 1 (005) tout N. Pour chaque matrice admise tr[a] est bien définie. De plus, si A est une matrice admise et X est une matrice admissible, alors AX et XA sont des matrices admises et l on a l identité tr[ax]tr[xa]. Nous nous intéressons ici plus spécialement aux matrices de la forme q ij (pour les étudier dans le cas q < 1et mettre fin à «l injustice de la transformation de Fourier» de se borner au bord q 1). Définissons donc les deux matrices admises A (a ij ), B (b ij ) et la matrice admissible X (x ij ) par a ij : q (i+1)(j+1), q (i 1)(j 1), si i, j > 0, b ij : q (n+1), si i j 0, 0, sinon, q1(j i 1)+, si j>i, 1 q16(j i 1)+8 q x ij : (i j), si 1 j i, 1 q16(i j)+8 (q 8 ; q 16 ) i (q 16 ; q 16 q i, si j 0. ) i Théorème.1. Nous avons XB AX. Démonstration. D abord, il nous faut montrer, pour tout i 0etj 1, que i m1 q (i m) 1 q 16(i m)+8 q(m 1)(j 1) + mi+1 j 1 q 1(j n 1)+ 1 q 16(j n 1)+8 q(n+1)(i+1) + En posant m i 1 n j, nous obtenons nj q (n j) 1 q 16(n j)+8 q(n+1)(i+1) q 16ij +j i+1 0 ( 1) [i>j] q 16ij +j i+1 mi+1 q 1(m i 1)+ q(m 1)(j 1) 1 q16(m i 1)+8 nj q (n j) 1 q 16(n j)+8 q(n+1)(i+1). q 1(m i 1)+ q(m 1)(j 1) 1 q16(m i 1)+8 q 8 (q16+8 ) i (q 16+8 ) j 16ij +j i+1 1 q 16+8 q D autre part, en posant i m j n 1, nous obtenons i m1 q (i m) 1 q 16(i m)+8 j 1 q(m 1)(j 1) [ q 16ij +j i+1 ( 1) [j>i] min(i,j) [ ( 1) [j>i] q 16ij +j i+1 min(i,j) [ ( 1) [j>i] q 16ij +j i+1 q 8 ( 1) [i>j] (q 16+8 ) l 0 q 8l { 1, si i>j,, où [i >j]: 1 q16l+8 0, sinon. q 1(j n 1)+ q(n+1)(i+1) 1 q16(j n 1)+8 q 8 (q16+8 ) min(i,j) min(i,j) 1 1 q q 8 (q16+8 ) min(i,j) min(i,j) 1 1 q q 8l (q16l+8 ) min(i,j) 1 q 16l+8 ] q 8 (q16+8 ) j (q 16+8 ) i 1 q 16+8 q 8 min(i,j) 1 q 8(l+1) 0 (q 16+8 ) l 1 ] (q 16l+8 ) ]

5 B. Lass / C. R. Acad. Sci. Paris, Ser. I 1 (005) [ ] ( 1) [j>i] q 16ij +j i+1 q 8l (q16l+8 ) min(i,j) 1 q 16l+8 q 8(l+1) (q16l+8 ) min(i,j)+1 q 16l+8 1 q 16l+8 ( 1) [j>i] q 16ij +j i+1 q 8l 1 q 16l+8, ce qui achève la démonstration dans le cas i 0etj 1. Dans le cas j 0, grâce aux identités de Cauchy et de Gauß, nous avons pour tout i (q 8 ; q 16 ) n (q 16 ; q 16 ) n q n q (n+1)(i+1) q i+1 (q 8 ; q 16 ) n ( q 16i+8 ) n q i+1 (q16i+16 ; q 16 ) (q 16 ; q 16 ) n (q 16i+8 ; q 16 ) [ ] q (n+1) q (q16 ; q 16 ) (q 8 ; q 16 ) (q8 ; q 16 ) i (q 16 ; q 16 ) i q i Corollaire.. Nous avons c 1() (n) r 1() (n) + ( 1) c () (n). (q8 ; q 16 ) i (q 16 ; q 16 ) i q i. Démonstration. tr[a ]tr[(xbx 1 ) ]tr[(xb )X 1 ]tr[x 1 (XB )]tr[b ].. Théorie des nombres Terminons cette Note avec quelques applications de notre théorème principal, en commençant avec le théorème dit «Eurêa» de Gauß. Corollaire.1 (Gauß). Tout nombre naturel se décompose en trois nombres triangulaires. Démonstration. Puisque m ( y 1 ) ( + y ) ( + y ) 8m + (y1 1) + (y 1) + (y 1), il faut montrer que r 1() (8m + ) c 1() (8m + ) + c () (8m + )>0. En effet, en posant x 1 x 1etx m + 1, nous avons x 1 x + x x + x x 1 8m +. Corollaire. (Jacobi). r 1() (8m + ) ( 1) (d 1)/. d m+1 Démonstration. Nous avons bien 8m + x 1 x + x x 1 m + 1 x 1 x. Corollaire. (Jacobi). r 1() (8m + ) d. d m+1 Démonstration. Nous avons bien 8m + x 1 x + x x + x x + x x 1 m + 1 x 1+x x+x. Il s ensuit que r 1() (8m + ) c 1() (8m + ) c () (8m + ) d d m+1 d+ d + d d d d m+1 d+d d m+1 d. Corollaire. (Jacobi). Notons r (n) : {(x 1,x ) Z n x1 + x } pour tout n N.Alors r (n) ( 1) (d 1)/. d n, d

6 718 B. Lass / C. R. Acad. Sci. Paris, Ser. I 1 (005) Démonstration. L équivalence n (x 1 + x ) + (x 1 x ) n x1 + x fournit une preuve bijective que r (n) r (n), parce que l on a automatiquement y 1 y (mod ) si n y1 + y. Il suffit donc de démontrer le corollaire dans le cas n (mod ). Dans ce cas, cependant, nous avons r (n) r 1() (n). Corollaire.5 (Jacobi). Notons r (n) : {(x 1,x,x,x ) Z n x1 + x + x + x } pour tout n N. Alors r (n) 8 d. d n, d Démonstration. L équivalence n (x 1 + x ) + (x 1 x ) + (x + x ) + (x x ) n x1 + x + x + x fournit une preuve bijective que r (n) r (n) si n est pair, parce que l on a automatiquement y 1 y y y (mod ) si n y1 +y +y +y.sin est impair, alors exactement un tiers des solutions de n y 1 +y +y +y satisfait aux relations y 1 y (mod ) et y y (mod ), c est-à-dire r (n) r (n). Comme d assure les mêmes relations pour le membre de droite, il suffit de démontrer le corollaire dans le cas n (mod 8). Dans ce cas, cependant, nous avons r (n) 16r 1() (n) + r (n/) 16r 1() (n) + r (n)/, i.e. r (n) r 1() (n). Corollaire.6 (Lagrange). Tout nombre naturel se décompose en quatre carrés. Remerciements En tout premier lieu, je voudrais remercier vivement Dominique Dumont d avoir rendu possible la rédaction de cet article en présentant sa conjecture merveilleuse au séminaire «Théorie des nombres et Combinatoire» à l Institut Camille Jordan. Je remercie aussi Victor Guo, Frédéric Chapoton et un arbitre pour des remarques utiles. Références [1] G. Andrews, The Theory of Partitions, Cambridge University Press, 1998 ; Teoriya razbienii, Naua, 198 (en russe). [] D. Dumont, A conjecture on sums of any number of odd squares, Prépublication. [] A. Weil, Sur les sommes de trois et quatre carrés, Enseign. Math. II. Sér. 0 (197) 15.

Démonstration de la conjecture de Dumont

Démonstration de la conjecture de Dumont C. R. Acad. Sci. Paris, t. xxx, Série I, p. xxx xxx, 005 Théorie des nombres/number Theory (Combinatoire/Combinatorics) Démonstration de la conjecture de Dumont Bodo LASS Institut Camille Jordan, UMR 508

Plus en détail

La démonstration du Théorème de Fermat : huit ans de solitude

La démonstration du Théorème de Fermat : huit ans de solitude La démonstration du Théorème de Fermat : huit ans de solitude Matthieu Romagny Université Pierre et Marie Curie, Paris 6 http ://www.institut.math.jussieu.fr/fs2008/ http ://www.math.jussieu.fr/ romagny/

Plus en détail

2003 Maritime Mathematics Competition Concours de Mathématiques des Maritimes 2003

2003 Maritime Mathematics Competition Concours de Mathématiques des Maritimes 2003 200 Maritime Mathematics Competition Concours de Mathématiques des Maritimes 200 1. When a father distributes a number of candies among his children, each child receives 15 candies and there is one left

Plus en détail

Calcul Matriciel. Chapitre 10. 10.1 Qu est-ce qu une matrice? 10.2 Indexation des coefficients. 10.3 Exemples de matrices carrées.

Calcul Matriciel. Chapitre 10. 10.1 Qu est-ce qu une matrice? 10.2 Indexation des coefficients. 10.3 Exemples de matrices carrées. Chapitre 10 Calcul Matriciel 101 Qu est-ce qu une matrice? Définition : Soit K un ensemble de nombres exemples, K = N, Z, Q, R, C, n, p N On appelle matrice à n lignes et p colonnes la données de np nombres

Plus en détail

2002 Maritime Mathematics Competition Concours de Mathématiques des Maritimes 2002

2002 Maritime Mathematics Competition Concours de Mathématiques des Maritimes 2002 2002 Maritime Mathematics Competition Concours de Mathématiques des Maritimes 2002 Instructions: Directives : 1 Provide the information requested below Veuillez fournir les renseignements demandés ci-dessous

Plus en détail

Nombres de Bell et somme de factorielles

Nombres de Bell et somme de factorielles Journal de Théorie des Nombres de Bordeaux 6 2004, 7 Nombres de Bell et somme de factorielles par Daniel BARSKY et Bénali BENZAGHOU Résumé. Dj. Kurepa a conjecturé que pour tout nombre premier impair,

Plus en détail

Algebra for Digital Communication. Test 2

Algebra for Digital Communication. Test 2 EPFL - Section de Mathématiques Algebra for Digital Communication Prof. E. Bayer Fluckiger Sections de Systèmes de Communications et Physique Winter semester 2006-2007 Test 2 Thursday, 1st February 2007

Plus en détail

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. 1 Définitions, notations Calcul matriciel Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. On utilise aussi la notation m n pour le

Plus en détail

Matrices. 1. Définition. Exo7. 1.1. Définition

Matrices. 1. Définition. Exo7. 1.1. Définition Exo7 Matrices Vidéo partie 1 Définition Vidéo partie 2 Multiplication de matrices Vidéo partie 3 Inverse d'une matrice : définition Vidéo partie 4 Inverse d'une matrice : calcul Vidéo partie 5 Inverse

Plus en détail

UNIVERSITÉ DE CERGY Année 2012-2013 U.F.R. Économie & Gestion Licence d Économie et Mathématiques MATH104 : Mathématiques

UNIVERSITÉ DE CERGY Année 2012-2013 U.F.R. Économie & Gestion Licence d Économie et Mathématiques MATH104 : Mathématiques 1 UNIVERSITÉ DE CERGY Année 2012-201 U.F.R. Économie & Gestion Licence d Économie et Mathématiques MATH104 : Mathématiques Chapitre III : Polynômes 1 Fonctions polynômes & polynômes Définition 1. Soit

Plus en détail

Une forme générale de la conjecture abc

Une forme générale de la conjecture abc Une forme générale de la conjecture abc Nicolas Billerey avec l aide de Manuel Pégourié-Gonnard 6 août 2009 Dans [Lan99a], M Langevin montre que la conjecture abc est équivalente à la conjecture suivante

Plus en détail

TABLE DES MATIÈRES. Préface...

TABLE DES MATIÈRES. Préface... TABLE DES MATIÈRES Préface......................................................... iii G. Henniart Représentations linéaires de groupes finis..... 1 1. Caractères des groupes abéliens finis.......................

Plus en détail

MAT 2377 Solutions to the Mi-term

MAT 2377 Solutions to the Mi-term MAT 2377 Solutions to the Mi-term Tuesday June 16 15 Time: 70 minutes Student Number: Name: Professor M. Alvo This is an open book exam. Standard calculators are permitted. Answer all questions. Place

Plus en détail

Exercices - Polynômes : corrigé. Opérations sur les polynômes

Exercices - Polynômes : corrigé. Opérations sur les polynômes Opérations sur les polynômes Exercice 1 - Carré - L1/Math Sup - Si P = Q est le carré d un polynôme, alors Q est nécessairement de degré, et son coefficient dominant est égal à 1. On peut donc écrire Q(X)

Plus en détail

C. R. Acad. Sci. Paris, Ser. I 336 (2003) 1 6. Théorie des nombres. Damien Roy

C. R. Acad. Sci. Paris, Ser. I 336 (2003) 1 6. Théorie des nombres. Damien Roy C. R. Acad. Sci. Paris, Ser. I 336 (2003) 1 6 Théorie des nombres Approximation simultanée d un nombre et de son carré Simultaneous approximation to a real number and its square Damien Roy Département

Plus en détail

Abdallah Derbal Département de Mathématiques, Ecole Normale Supérieure, Vieux Kouba - Alger - abderbal@yahoo.fr

Abdallah Derbal Département de Mathématiques, Ecole Normale Supérieure, Vieux Kouba - Alger - abderbal@yahoo.fr #A56 INTEGERS 9 009), 735-744 UNE FORME EFFECTIVE D UN THÉORÈME DE BATEMAN SUR LA FONCTION PHI D EULER Abdallah Derbal Département de Mathématiques, Ecole Normale Supérieure, Vieux Kouba - Alger - Algérie,

Plus en détail

LA PERSONNE SPÉCIALE

LA PERSONNE SPÉCIALE LA PERSONNE SPÉCIALE These first questions give us some basic information about you. They set the stage and help us to begin to get to know you. 1. Comment tu t appelles? What is your name? Je m appelle

Plus en détail

Congruences et théorème chinois des restes

Congruences et théorème chinois des restes Congruences et théorème chinois des restes Michel Van Caneghem Février 2003 Turing : des codes secrets aux machines universelles #2 c 2003 MVC Les congruences Développé au début du 19ème siècle par Carl

Plus en détail

Nombres premiers. Comment reconnaître un nombre premier? Mais...

Nombres premiers. Comment reconnaître un nombre premier? Mais... Introduction Nombres premiers Nombres premiers Rutger Noot IRMA Université de Strasbourg et CNRS Le 19 janvier 2011 IREM Strasbourg Definition Un nombre premier est un entier naturel p > 1 ayant exactement

Plus en détail

L essentiel du cours 2014/2015 Terminale S Spécialité Maths, Lycée Français de Valence

L essentiel du cours 2014/2015 Terminale S Spécialité Maths, Lycée Français de Valence L essentiel du cours 2014/2015 Terminale S Spécialité Maths, Lycée Français de Valence Sommaire 1. Arithmétique 2 1.1. Division euclidienne......................... 2 1.2. Congruences.............................

Plus en détail

Arithmetical properties of idempotents in group algebras

Arithmetical properties of idempotents in group algebras Théorie des Groupes/Group Theory Arithmetical properties of idempotents in group algebras Max NEUNHÖFFER Lehrstuhl D für Mathematik, Templergraben 64, 52062 Aachen, Allemagne E-mail: max.neunhoeffer@math.rwth-aachen.de

Plus en détail

Le nombre des diviseurs d'un entier dans les progressions arithmétiques

Le nombre des diviseurs d'un entier dans les progressions arithmétiques Laboratoire d Arithmétique, Calcul formel et d Optimisation UMR CNRS 6090 Le nombre des diviseurs d'un entier dans les progressions arithmétiques Abdallah Derbal Abdelhakim Smati Rapport de recherche n

Plus en détail

DESCENTES DES DÉRANGEMENTS ET MOTS CIRCULAIRES(*)

DESCENTES DES DÉRANGEMENTS ET MOTS CIRCULAIRES(*) DESCENTES DES DÉRANGEMENTS ET MOTS CIRCULAIRES(*) Jacques DÉSARMÉNIEN (**) ET Michelle WACHS (***) RÉSUMÉ. Au moyen de deux bijections, dues à Macdonald et à Gessel, nous établissons que l ensemble des

Plus en détail

Placements de tours sur les diagrammes de permutations

Placements de tours sur les diagrammes de permutations Placements de tours sur les diagrammes de permutations 5 août 0 Résumé Le problème des placements de tours consiste à compter le nombre de manières de placer k tours sur un échiquier sans que les tours

Plus en détail

On the small-time local controllability of a quantum particle in a moving one-dimensional infinite square potential well

On the small-time local controllability of a quantum particle in a moving one-dimensional infinite square potential well C. R. Acad. Sci. Paris, Ser. 342 (26) 13 18 Partial Differential Equations/Optimal Control http://france.elsevier.com/direct/crass1/ On the small-time local controllability of a quantum particle in a moving

Plus en détail

Calcul matriciel ... Il est impossible de faire la somme de 2 matrices de tailles différentes.

Calcul matriciel ... Il est impossible de faire la somme de 2 matrices de tailles différentes. Chapitre : Calcul matriciel Spé Maths - Matrices carrées, matrices-colonnes : opérations. - Matrice inverse d une matrice carrée. - Exemples de calcul de la puissance n-ième d une matrice carrée d ordre

Plus en détail

2. MATRICES ET APPLICATIONS LINÉAIRES

2. MATRICES ET APPLICATIONS LINÉAIRES 2. MATRICES ET APPLICATIONS LINÉAIRES 2.1 Définition Une matrice n m est un tableau rectangulaire de nombres (réels en général) à n lignes et m colonnes ; n et m sont les dimensions de la matrice. Notation.

Plus en détail

Exo7. Sujets de l année 2008-2009. 1 Partiel. Enoncés et corrections : Sandra Delaunay. Exercice 1 Soit A une matrice 2 2 à coefficients réels.

Exo7. Sujets de l année 2008-2009. 1 Partiel. Enoncés et corrections : Sandra Delaunay. Exercice 1 Soit A une matrice 2 2 à coefficients réels. Enoncés et corrections : Sandra Delaunay Exo7 Sujets de l année 28-29 1 Partiel Exercice 1 Soit A une matrice 2 2 à coefficients réels. On suppose a + c = b + d = 1 et a b 1. ( ) a b c d 1. Soient (x 1,x

Plus en détail

Produit scalaire dans l Espace

Produit scalaire dans l Espace Produit scalaire dans l Espace Christophe ROSSIGNOL Année scolaire 014/015 Table des matières 1 Produit scalaire du plan 1.1 Différentes expressions du produit scalaire............................... 1.

Plus en détail

Vidéo partie 1. Logique Vidéo partie 2. Raisonnements Exercices Logique, ensembles, raisonnements

Vidéo partie 1. Logique Vidéo partie 2. Raisonnements Exercices Logique, ensembles, raisonnements Exo7 Logique et raisonnements Vidéo partie 1. Logique Vidéo partie 2. Raisonnements Exercices Logique, ensembles, raisonnements Quelques motivations Il est important d avoir un langage rigoureux. La langue

Plus en détail

Théorème du point fixe - Théorème de l inversion locale

Théorème du point fixe - Théorème de l inversion locale Chapitre 7 Théorème du point fixe - Théorème de l inversion locale Dans ce chapitre et le suivant, on montre deux applications importantes de la notion de différentiabilité : le théorème de l inversion

Plus en détail

Example of the mdbch fonts.

Example of the mdbch fonts. Example of the mdbch fonts. Paul Pichaureau August 9, 013 Abstract The package mdbch consists of a full set of mathematical fonts, designed to be combined with Bitstream Bitstream Charter as the main text

Plus en détail

Mathématiques assistées par ordinateur

Mathématiques assistées par ordinateur Mathématiques assistées par ordinateur Chapitre 4 : Racines des polynômes réels et complexes Michael Eisermann Mat249, DLST L2S4, Année 2008-2009 www-fourier.ujf-grenoble.fr/ eiserm/cours # mao Document

Plus en détail

Example of the mdput fonts.

Example of the mdput fonts. Example of the mdput fonts. Paul Pichaureau August 9, 013 Abstract The package mdput consists of a full set of mathematical fonts, designed to be combined with Adobe Utopia as the main text font. This

Plus en détail

0 h(s)ds et h [t = 1 [t, [ h, t IR +. Φ L 2 (IR + ) Φ sur U par

0 h(s)ds et h [t = 1 [t, [ h, t IR +. Φ L 2 (IR + ) Φ sur U par Probabilités) Calculus on Fock space and a non-adapted quantum Itô formula Nicolas Privault Abstract - The aim of this note is to introduce a calculus on Fock space with its probabilistic interpretations,

Plus en détail

Cours 3: Inversion des matrices dans la pratique...

Cours 3: Inversion des matrices dans la pratique... Cours 3: Inversion des matrices dans la pratique... Laboratoire de Mathématiques de Toulouse Université Paul Sabatier-IUT GEA Ponsan Module complémentaire de maths, année 2012 1 Rappel de l épisode précédent

Plus en détail

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme Chapitre 3 Quelques fonctions usuelles 1 Fonctions logarithme et eponentielle 1.1 La fonction logarithme Définition 1.1 La fonction 7! 1/ est continue sur ]0, +1[. Elle admet donc des primitives sur cet

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)

Plus en détail

Exercices 4. Nombres réels...

Exercices 4. Nombres réels... Exercices 4 Nombres réels La maîtrise des inégalités et de la notion de borne supérieure est un préalable incontournable à l étude de l analyse réelle. 4 Nombres réels..........................................................................

Plus en détail

SUR LA SIGNATURE DE L AUTOMORPHISME DE FROBENIUS. par. Stef Graillat

SUR LA SIGNATURE DE L AUTOMORPHISME DE FROBENIUS. par. Stef Graillat SUR LA SIGNATURE DE L AUTOMORPHISME DE FROBENIUS par Stef Graillat Résumé. Dans cette note, nous calculons la signature de l automorphisme de Frobenius dans un corps fini. Nous serons amené pour cela à

Plus en détail

Le corps R des nombres réels

Le corps R des nombres réels Le corps R des nombres réels. Construction de R à l aide des suites de Cauchy de nombres rationnels On explique brièvement dans ce paragraphe comment construire le corps R des nombres réels à partir du

Plus en détail

CHAPITRE V SYSTEMES DIFFERENTIELS LINEAIRES A COEFFICIENTS CONSTANTS DU PREMIER ORDRE. EQUATIONS DIFFERENTIELLES.

CHAPITRE V SYSTEMES DIFFERENTIELS LINEAIRES A COEFFICIENTS CONSTANTS DU PREMIER ORDRE. EQUATIONS DIFFERENTIELLES. CHAPITRE V SYSTEMES DIFFERENTIELS LINEAIRES A COEFFICIENTS CONSTANTS DU PREMIER ORDRE EQUATIONS DIFFERENTIELLES Le but de ce chapitre est la résolution des deux types de systèmes différentiels linéaires

Plus en détail

Analyse fonctionnelle Théorie des représentations du groupe quantique compact libre O(n) Teodor Banica Résumé - On trouve, pour chaque n 2, la classe

Analyse fonctionnelle Théorie des représentations du groupe quantique compact libre O(n) Teodor Banica Résumé - On trouve, pour chaque n 2, la classe Analyse fonctionnelle Théorie des représentations du groupe quantique compact libre O(n) Teodor Banica Résumé - On trouve, pour chaque n 2, la classe des n n groupes quantiques compacts qui ont la théorie

Plus en détail

Polynômes à plusieurs variables. Résultant

Polynômes à plusieurs variables. Résultant Polynômes à plusieurs variables. Résultant Christophe Ritzenthaler 1 Relations coefficients-racines. Polynômes symétriques Issu de [MS] et de [Goz]. Soit A un anneau intègre. Définition 1.1. Soit a A \

Plus en détail

Université Paris 13 Année 2014-2015 M2 Introduction à la théorie spectrale

Université Paris 13 Année 2014-2015 M2 Introduction à la théorie spectrale Université Paris 13 Année 014-015 M Introduction à la théorie spectrale Examen Les exercices sont indépendants 1. Spectre des opérateurs annihilation-création. On considère sur R les opérateurs différentiels

Plus en détail

90558-CDT-06-L3French page 1 of 10. 90558: Listen to and understand complex spoken French in less familiar contexts

90558-CDT-06-L3French page 1 of 10. 90558: Listen to and understand complex spoken French in less familiar contexts 90558-CDT-06-L3French page 1 of 10 NCEA LEVEL 3: FRENCH CD TRANSCRIPT 2006 90558: Listen to and understand complex spoken French in less familiar contexts New Zealand Qualifications Authority: NCEA French

Plus en détail

Sur certaines séries entières particulières

Sur certaines séries entières particulières ACTA ARITHMETICA XCII. 2) Sur certaines séries entières particulières par Hubert Delange Orsay). Introduction. Dans un exposé à la Conférence Internationale de Théorie des Nombres organisée à Zakopane

Plus en détail

Rappels sur les applications linéaires

Rappels sur les applications linéaires Rappels sur les applications linéaires 1 Définition d une application linéaire Définition 1 Soient E et F deux espaces vectoriels sur un même corps K et f une application de E dans F Dire que f est linéaire

Plus en détail

1.1 Définitions... 2 1.2 Opérations élémentaires... 2 1.3 Systèmes échelonnés et triangulaires... 3

1.1 Définitions... 2 1.2 Opérations élémentaires... 2 1.3 Systèmes échelonnés et triangulaires... 3 Chapitre 5 Systèmes linéaires 1 Généralités sur les systèmes linéaires 2 11 Définitions 2 12 Opérations élémentaires 2 13 Systèmes échelonnés et triangulaires 3 2 Résolution des systèmes linéaires 3 21

Plus en détail

Instructions Mozilla Thunderbird Page 1

Instructions Mozilla Thunderbird Page 1 Instructions Mozilla Thunderbird Page 1 Instructions Mozilla Thunderbird Ce manuel est écrit pour les utilisateurs qui font déjà configurer un compte de courrier électronique dans Mozilla Thunderbird et

Plus en détail

Un résultat de densité pour les équations de Maxwell

Un résultat de densité pour les équations de Maxwell Un résultat de densité pour les équations de Maxwell Faker Ben Belgacem 1, Christine Bernardi 2, Martin Costabel 3, Monique Dauge 3 1 M.I.P. (UMR C.N.R.S. 5640), Université Paul Sabatier, 118 route de

Plus en détail

CEST POUR MIEUX PLACER MES PDF

CEST POUR MIEUX PLACER MES PDF CEST POUR MIEUX PLACER MES PDF ==> Download: CEST POUR MIEUX PLACER MES PDF CEST POUR MIEUX PLACER MES PDF - Are you searching for Cest Pour Mieux Placer Mes Books? Now, you will be happy that at this

Plus en détail

EQUATIONS ELLIPTIQUES SEMI LINEAIRES DANS DES DOMAINES NON BORNES DE IR N

EQUATIONS ELLIPTIQUES SEMI LINEAIRES DANS DES DOMAINES NON BORNES DE IR N PORTUGALIAE MATHEMATICA Vol. 53 Fasc. 4 1996 EQUATIONS ELLIPTIQUES SEMI LINEAIRES DANS DES DOMAINES NON BORNES DE IR N B. Khodja Résumé: Soit f une fonction numérique continue, localement lipschitzienne

Plus en détail

Autour du cardinal d un ensemble de matrices binaires

Autour du cardinal d un ensemble de matrices binaires Autour du cardinal d un ensemble de matrices binaires Adrien REISNER 1 Abstract. We here study a couple of algebraic and analytic properties of certain binary matrices in the spaces M n(r). In particular,

Plus en détail

Chapitre 5: Opérateurs dans les espaces de Hilbert. Notions d opérateur adjoint

Chapitre 5: Opérateurs dans les espaces de Hilbert. Notions d opérateur adjoint Chapitre 5: Opérateurs dans les espaces de Hilbert. Notions d opérateur adjoint 18 mars 2008 1 Généralités sur les opérateurs 1.1 Définitions Soient H et H deux espaces de Hilbert sur C. Définition 1.1

Plus en détail

Quelques tests de primalité

Quelques tests de primalité Quelques tests de primalité J.-M. Couveignes (merci à T. Ezome et R. Lercier) Institut de Mathématiques de Bordeaux & INRIA Bordeaux Sud-Ouest Jean-Marc.Couveignes@u-bordeaux.fr École de printemps C2 Mars

Plus en détail

Finance des matières premières (6b) De la formation des prix sur les marchés financiers à la possibilité d un équilibre (non walrasien)

Finance des matières premières (6b) De la formation des prix sur les marchés financiers à la possibilité d un équilibre (non walrasien) Finance des matières premières (6b) De la formation des prix sur les marchés financiers à la possibilité d un équilibre (non walrasien) Alain Bretto & Joël Priolon - 25 mars 2013 Question Dans un équilibre

Plus en détail

C. R. Acad. Sci. Paris, Ser. I

C. R. Acad. Sci. Paris, Ser. I C. R. Acad. Sci. Paris, Ser. I 348 (21) 35 31 Contents lists available at ScienceDirect C. R. Acad. Sci. Paris, Ser. I www.sciencedirect.com Probabilités/Statistique Un contre-exemple à une conjecture

Plus en détail

Éléments spectraux d une fonction cyclostationnaire

Éléments spectraux d une fonction cyclostationnaire Éléments spectraux d une fonction cyclostationnaire Alain BOUDOU 1 & Sylvie VIGUIR-PLA 1 & 2 1 quipe de Stat. et Proba., Institut de Mathématiques, UMR5219 Université Paul Sabatier, 118 Route de Narbonne,

Plus en détail

À propos des matrices échelonnées

À propos des matrices échelonnées À propos des matrices échelonnées Antoine Ducros appendice au cours de Géométrie affine et euclidienne dispensé à l Université Paris 6 Année universitaire 2011-2012 Introduction Soit k un corps, soit E

Plus en détail

2 players Ages 8+ Note: Please keep these instructions for future reference. WARNING. CHOKING HAZARD. Small parts. Not for children under 3 years.

2 players Ages 8+ Note: Please keep these instructions for future reference. WARNING. CHOKING HAZARD. Small parts. Not for children under 3 years. Linja Game Rules 2 players Ages 8+ Published under license from FoxMind Games NV, by: FoxMind Games BV Stadhouderskade 125hs Amsterdam, The Netherlands Distribution in North America: FoxMind USA 2710 Thomes

Plus en détail

M2 EFM TD MATHÉMATIQUES APPLIQUÉES : ARITHMÉTIQUE CHRISTOPHE RITZENTHALER

M2 EFM TD MATHÉMATIQUES APPLIQUÉES : ARITHMÉTIQUE CHRISTOPHE RITZENTHALER M2 EFM TD MATHÉMATIQUES APPLIQUÉES : ARITHMÉTIQUE CHRISTOPHE RITZENTHALER 1. Euclide, relation de Bézout, gcd Exercice 1. [DKM94,.14] Montrer que 6 n 3 n our tout entier n ositif. Exercice 2. [DKM94,.15]

Plus en détail

CHAPTER2. Le Problème Economique

CHAPTER2. Le Problème Economique CHAPTER2 Le Problème Economique Les Possibilités de Production et Coût d Opportunité La courbe des possibilités de production représente (CPP) représente la limite entre les différentes combinaisons en

Plus en détail

Leçon 6. Savoir compter

Leçon 6. Savoir compter Leçon 6. Savoir compter Cette leçon est une introduction aux questions de dénombrements. Il s agit, d une part, de compter certains objets mathématiques (éléments, parties, applications,...) et, d autre

Plus en détail

Théorie des nombres. Alexandre SIMON 6/05/2009

Théorie des nombres. Alexandre SIMON 6/05/2009 Théorie des nombres Alexandre SIMON 6/05/2009 Table des matières 1 Equations diophantienne : Joseph H. Silverman, arithmetic of Elliptic Curve 2 1.1 Equation diophantienne linéaire..........................

Plus en détail

Please find attached a revised amendment letter, extending the contract until 31 st December 2011.

Please find attached a revised amendment letter, extending the contract until 31 st December 2011. Sent: 11 May 2011 10:53 Subject: Please find attached a revised amendment letter, extending the contract until 31 st December 2011. I look forward to receiving two signed copies of this letter. Sent: 10

Plus en détail

Le raisonnement par récurrence

Le raisonnement par récurrence Le raisonnement par récurrence Nous notons N l ensemble des entiers naturels : N = {0,,, } Nous dirons naturel au lieu de entier naturel Le principe du raisonnement par récurrence Soit A une partie de

Plus en détail

Nouvelles classes de problèmes pour la fouille de motifs intéressants dans les bases de données 2

Nouvelles classes de problèmes pour la fouille de motifs intéressants dans les bases de données 2 Nouvelles classes de problèmes pour la fouille de motifs intéressants dans les bases de données 2 Lhouari Nourine 1 1 Université Blaise Pascal, CNRS, LIMOS, France SeqBio 2012 Marne la vallée, France 2.

Plus en détail

The Skill of Reading French

The Skill of Reading French The Skill of Reading French By the end of this session... ALL of you will be able to recognise words A LOT of you will be able to recognise simple phrases SOME of you will be able to translate a longer

Plus en détail

Calcul différentiel sur R n Première partie

Calcul différentiel sur R n Première partie Calcul différentiel sur R n Première partie Université De Metz 2006-2007 1 Définitions générales On note L(R n, R m ) l espace vectoriel des applications linéaires de R n dans R m. Définition 1.1 (différentiabilité

Plus en détail

1 Définition et premières propriétés des congruences

1 Définition et premières propriétés des congruences Université Paris 13, Institut Galilée Département de Mathématiques Licence 2ème année Informatique 2013-2014 Cours de Mathématiques pour l Informatique Des nombres aux structures Sylviane R. Schwer Leçon

Plus en détail

Image d un intervalle par une fonction continue

Image d un intervalle par une fonction continue DOCUMENT 27 Image d un intervalle par une fonction continue La continuité d une fonction en un point est une propriété locale : une fonction est continue en un point x 0 si et seulement si sa restriction

Plus en détail

Problème 1 : applications du plan affine

Problème 1 : applications du plan affine Problème 1 : applications du plan affine Notations On désigne par GL 2 (R) l ensemble des matrices 2 2 inversibles à coefficients réels. Soit un plan affine P muni d un repère (O, I, J). Les coordonnées

Plus en détail

Arithmétique Algorithmique. http://www.math.univ-lyon1.fr/~roblot/ens.html

Arithmétique Algorithmique. http://www.math.univ-lyon1.fr/~roblot/ens.html Arithmétique Algorithmique http://www.math.univ-lyon1.fr/~roblot/ens.html Partie III Algorithmes classiques 1 Coût de la multiplication et de la division 2 Exponentiation rapide 3 Algorithme d Euclide

Plus en détail

EXISTENCE OF ALGEBRAIC HECKE CHARACTERS ( C. R. ACAD. SCI. PARIS SER. I MATH, 332(2001)1041-1046) Tonghai Yang

EXISTENCE OF ALGEBRAIC HECKE CHARACTERS ( C. R. ACAD. SCI. PARIS SER. I MATH, 332(2001)1041-1046) Tonghai Yang EXISTENCE OF ALGEBRAIC HECKE CHARACTERS ( C. R. ACAD. SCI. ARIS SER. I MATH, 332(2001)1041-1046) Tonghai Yang Abstract. In this note, we will characterize a weak version of the Brumer-Stark conjecture

Plus en détail

Cours de spécialité mathématiques en Terminale ES

Cours de spécialité mathématiques en Terminale ES Cours de spécialité mathématiques en Terminale ES O. Lader 2014/2015 Lycée Jean Vilar Spé math terminale ES 2014/2015 1 / 51 Systèmes linéaires Deux exemples de systèmes linéaires à deux équations et deux

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 16 octobre 2015 Enoncés 1

[http://mp.cpgedupuydelome.fr] édité le 16 octobre 2015 Enoncés 1 [http://mp.cpgedupuydelome.fr] édité le 16 octobre 2015 Enoncés 1 Relations binaires Relations d équivalence Exercice 1 [ 02643 ] [Correction] Soit R une relation binaire sur un ensemble E à la fois réflexive

Plus en détail

Introduction à l étude des Corps Finis

Introduction à l étude des Corps Finis Introduction à l étude des Corps Finis Robert Rolland (Résumé) 1 Introduction La structure de corps fini intervient dans divers domaines des mathématiques, en particulier dans la théorie de Galois sur

Plus en détail

Matrices. 1 Matrices rectangulaires. 1.2 L espace vectoriel M n,p (R)

Matrices. 1 Matrices rectangulaires. 1.2 L espace vectoriel M n,p (R) Matrices Matrices rectangulaires Soient n, p deux nombres entiers non-nuls On appelle matrice à n lignes et p colonnes un tableau rectangulaire de nombres réels comportant n lignes et p colonnes } }{{}

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. b) On suppose rga + rgb n. Montrer qu il existe U, V GL n (K) tels que

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. b) On suppose rga + rgb n. Montrer qu il existe U, V GL n (K) tels que [http://mp.cpgedupuydelome.fr] édité le 0 juillet 204 Enoncés Rang d une matrice Exercice [ 0070 ] [correction] Soit A M n K une matrice carrée de rang. a Etablir l existence de colonnes X, Y M n, K vérifiant

Plus en détail

TD : Algèbre. Université Pierre et Marie Curie Les 7 et 8 février 2013 http ://www.eleves.ens.fr/home/waldspur/lm125.html.

TD : Algèbre. Université Pierre et Marie Curie Les 7 et 8 février 2013 http ://www.eleves.ens.fr/home/waldspur/lm125.html. Université Pierre et Marie Curie Les 7 et 8 février 203 LM25 http ://www.eleves.ens.fr/home/waldspur/lm25.html TD : Algèbre Corrigé Exercice : 4 2 2 4 2 3 3 0 2 3 0 2 2 4 6 4 5 6 2 0 5 0 2 3 4 0 + 3 2

Plus en détail

La notion de dualité

La notion de dualité La notion de dualité Dual d un PL sous forme standard Un programme linéaire est caractérisé par le tableau simplexe [ ] A b. c Par définition, le problème dual est obtenu en transposant ce tableau. [ A

Plus en détail

Arithmétique. Préambule. 1. Division euclidienne et pgcd. Exo7. 1.1. Divisibilité et division euclidienne

Arithmétique. Préambule. 1. Division euclidienne et pgcd. Exo7. 1.1. Divisibilité et division euclidienne Exo7 Arithmétique Vidéo partie 1. Division euclidienne et pgcd Vidéo partie 2. Théorème de Bézout Vidéo partie 3. Nombres premiers Vidéo partie 4. Congruences Exercices Arithmétique dans Z Préambule Une

Plus en détail

Stress and Difficulties at School / College

Stress and Difficulties at School / College Stress and Difficulties at School / College This article will deal with the pressures and problems that students face at school and college. It will also discuss the opposite - the positive aspects of

Plus en détail

Introduction à la cryptologie.

Introduction à la cryptologie. Université Joseph Fourier, Grenoble I UFR IM 2 AG, Master 1 maths/info Année 2011/2012, 1er semestre Introduction à la cryptologie. TP du 9 décembre 2011, de 13h30 à 16h45, durée 3h. Cours de Alexei Pantchichkine

Plus en détail

Promotion of bio-methane and its market development through local and regional partnerships. A project under the Intelligent Energy Europe programme

Promotion of bio-methane and its market development through local and regional partnerships. A project under the Intelligent Energy Europe programme Promotion of bio-methane and its market development through local and regional partnerships A project under the Intelligent Energy Europe programme Contract Number: IEE/10/130 Deliverable Reference: W.P.2.1.3

Plus en détail

Unique normal forms for the Takens Bogdanov singularity in a special case

Unique normal forms for the Takens Bogdanov singularity in a special case C. R. Acad. Sci. Paris, t. 332, Série I, p. 551 555, 2001 Systèmes dynamiques/dynamical Systems Unique normal forms for the Taens Bogdanov singularity in a special case Xiaofeng WANG a, Guoting CHEN b,

Plus en détail

UNIVERSITÉ DE POITIERS

UNIVERSITÉ DE POITIERS UNIVERSITÉ DE POITIERS Faculté des Sciences Fondamentales et Appliquées Mathématiques PREMIÈRE ANNEE DE LA LICENCE DE SCIENCES ET TECHNOLOGIES UE L «algèbre linéaire» Plan du cours Exercices Enoncés des

Plus en détail

Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin.

Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin. Exo7 Matrice d une application linéaire Corrections d Arnaud odin. Exercice Soit R muni de la base canonique = ( i, j). Soit f : R R la projection sur l axe des abscisses R i parallèlement à R( i + j).

Plus en détail

L2 MIEE 2012-2013 VAR Université de Rennes 1

L2 MIEE 2012-2013 VAR Université de Rennes 1 . Sous-ensembles de R n et fonctions (suite) 1 Nappes paramétrées Si f une fonction de deux variables, son graphe est une surface incluse dans R 3 : {(x, y, f(x, y)) / (x, y) R 2 }. Une telle surface s

Plus en détail

Cours élémentaire d arithmétique. Valentin Vinoles

Cours élémentaire d arithmétique. Valentin Vinoles Cours élémentaire d arithmétique Valentin Vinoles décembre 2009 Introduction «Wir müssen wissen. Wir werden wissen.» (Nous devons savoir. Nous saurons.) David Hilbert Voici un document présentant les principales

Plus en détail

Algorithmique et Programmation TD n 9 : Fast Fourier Transform

Algorithmique et Programmation TD n 9 : Fast Fourier Transform Algorithmique et Programmation TD n 9 : Fast Fourier Transform Ecole normale supérieure Département d informatique td-algo@di.ens.fr 2011-2012 1 Petits Rappels Convolution La convolution de deux vecteurs

Plus en détail

Sur l algorithme RSA

Sur l algorithme RSA Sur l algorithme RSA Le RSA a été inventé par Rivest, Shamir et Adleman en 1978. C est l exemple le plus courant de cryptographie asymétrique, toujours considéré comme sûr, avec la technologie actuelle,

Plus en détail

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE. Algèbre Linéaire. Bachelor 1ère année 2008-2009. Sections : Matériaux et Microtechnique

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE. Algèbre Linéaire. Bachelor 1ère année 2008-2009. Sections : Matériaux et Microtechnique ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE Algèbre Linéaire Bachelor ère année 28-29 Sections : Matériaux et Microtechnique Support du cours de Dr Lara Thomas Polycopié élaboré par : Prof Eva Bayer Fluckiger

Plus en détail

Cours de terminale S Suites numériques

Cours de terminale S Suites numériques Cours de terminale S Suites numériques V. B. et S. B. Lycée des EK 13 septembre 2014 Introduction Principe de récurrence Exemple En Mathématiques, un certain nombre de propriétés dépendent d un entier

Plus en détail

AGRÉGATION INTERNE: RÉDUCTION DES ENDOMORPHISMES

AGRÉGATION INTERNE: RÉDUCTION DES ENDOMORPHISMES AGRÉGATION INTERNE: RÉDUCTION DES ENDOMORPHISMES VINCENT GUEDJ 1. Notions fondamentales 1.1. Noyau, Image. On se donne E un K-espace vectoriel de dimension finie (K = R, C principalement) et f L(E) un

Plus en détail

Un problème de Laplace non standard en milieu non

Un problème de Laplace non standard en milieu non INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE Un problème de Laplace non standard en milieu non borné Sébastien Tordeux N 5799 Janvier 2006 THÈME 4 apport d e recherche ISSN 0249-6399

Plus en détail

Introduction aux inégalités

Introduction aux inégalités Introduction aux inégalités -cours- Razvan Barbulescu ENS, 8 février 0 Inégalité des moyennes Faisons d abord la liste des propritétés simples des inégalités: a a et b b a + b a + b ; s 0 et a a sa sa

Plus en détail

AINoE. Rapport sur l audition d AINoE Paris, 18 juin 2003

AINoE. Rapport sur l audition d AINoE Paris, 18 juin 2003 AINoE Abstract Interpretation Network of Excellence Patrick COUSOT (ENS, Coordinator) Rapport sur l audition d AINoE Paris, 18 juin 2003 Thématique Rapport sur l audition d AINoE Paris, 18 juin 2003 1

Plus en détail

Cours de mathématiques M22 Algèbre linéaire

Cours de mathématiques M22 Algèbre linéaire Cours de mathématiques M22 Algèbre linéaire λ u u + v u v u Exo7 Sommaire Systèmes linéaires 3 Introduction aux systèmes d équations linéaires 3 2 Théorie des systèmes linéaires 7 3 Résolution par la méthode

Plus en détail