C. R. Acad. Sci. Paris, Ser. I

Dimension: px
Commencer à balayer dès la page:

Download "C. R. Acad. Sci. Paris, Ser. I"

Transcription

1 C. R. Acad. Sci. Paris, Ser. I ) Contents lists available at SciVerse ScienceDirect C. R. Acad. Sci. Paris, Ser. I Géométrie algébrique Le lemme fondamental métaplectique de Jacquet et Mao en caractéristique positive The metaplectic fundamental lemma of Jacquet and Mao in positive characteristic Viet Cuong Do Institut Élie Cartan, Université Henri Poincaré-Nancy 1, B.P , Vandoeuvre-lès-Nancy cedex, France info article résumé Historique de l article : Reçu le 13 juillet 2011 Acceptéle31août2011 Disponible sur Internet le 21 septembre 2011 Présenté par Gérard Laumon On démontre dans le cas de caractéristique positive un lemme fondamental conjecturé par Jacquet et Mao pour le groupe métaplectique. On utilise les arguments de B.C. Ngo pour le lemme fondamental de Jacquet Ye B.C. Ngo, 1999) [6] et une étude géométrique de l extension métaplectique Académie des sciences. Publié par Elsevier Masson SAS. Tous droits réservés. abstract We prove in the case of positive characteristic a fundamental lemma conjectured by Jacquet and Mao for the metaplectic group. We use the arguments of B.C. Ngo for Jacquet Ye s fundamental lemma B.C. Ngo, 1999) [6] and a geometric study of the metaplectic extension Académie des sciences. Publié par Elsevier Masson SAS. Tous droits réservés. Abridged English version Let k be a finite field of characteristic p 2. Let O ϖ = k[[ϖ ]] be the ring of power series with indeterminate ϖ, and let F ϖ be its field of fractions. Denote by v ϖ x) the valuation of an element x F ϖ.letl p be a prime number. Fix a non-trivial additive character ψ : k Q l, where Q l is an algebraic closure of Q l.letψ denote the character of F ϖ defined by Ψx) = ψresx dϖ )). Let N r the sub-scheme of GL r formed by unipotent upper triangular matrices and T r the one formed by diagonal matrices. Denote by S r the affine space formed by r r symmetric matrices and by gl r the affine space of r r matrices. For each α = α 1,...,α r 1 ) k ) r 1, we define the character θ α of N r F ϖ ) by θ α = Ψ 1 r 1 α 2 i=1 in i,i+1 ). This character is trivial on N r O ϖ ), and induces a function θ α : N r F ϖ )/N r O ϖ ) Q l. For each matrix t T r F ϖ ),H.Jacquet[3],forGL 2 ) and Z. Mao [5], for an arbitrary r) introduced two orbital integrals I ϖ t, α) and J ϖ t, α). They can be rewritten as sums over finite sets cf. [6]), and we will recall their definitions in this form. Let X ϖ t)k) ={n N r F ϖ )/N r O ϖ ) t ntn S r O ϖ )}. The integral I ϖ t, α) is defined by I ϖ t, α) = n Xϖ t)k) θ α 2n). To define the integral J ϖ t, α), we use a splitting of the metaplectic extension cf. [4]) GLr F ϖ ) of GL r F ϖ ) above GL r O ϖ ).Denotebyg g, κ ϖ g)) this splitting with the notations of [4]). Adresse X/$ see front matter 2011 Académie des sciences. Publié par Elsevier Masson SAS. Tous droits réservés. doi: /j.crma

2 1078 V.C. Do / C. R. Acad. Sci. Paris, Ser. I ) Let Y ϖ t)k) ={n,n ) N r F ϖ )/N r O ϖ )) 2 t ntn GL r O ϖ )}. Letα = α r 1,...,α 1 ). The integral J ϖ t, α) is defined by J ϖ t, α) = n,n ) Yϖ t)k) κ ϖ w t 0 ntn )θ α w t 0 nw 0 )θ α n ), where w 0 is the matrix of the permutation r, r 1,...,1). We recover the original integral J ϖ t, α) cf. [5]) by replacing n with w t 0 n 1 w 0. For each t = diagt 1, t 2,...,t r ),wenotea i = ij=1 t j. The nonemptiness of X ϖ t)k) and Y ϖ t)k) requires a 1,...,a r 1 O ϖ and a r Oϖ. Let ζ : k {±1} the nontrivial quadratic character ζλ)= λ q 1 2,λ k ). Denote by γ ϖ.,.) the Weil s constant. [ t ϖ t,α)iϖ t,α) t ϖ t,α)iϖ t,α) Theorem 1. For t = diaga 1, a 1 1 a 2,...,a 1 r 1 a r), we have J ϖ t, α) = ζ 1) j rmod 2) v ϖ a j ) j rmod 2) γ ϖ a j a 1 j 1,Ψ),andt ϖ t, α) = r 1 i=1 a i 1/2 ζ 1) with a 0 = 1). Moreover,iftt, α) t t, α) then the orbital integrals I ϖ and J ϖ vanish. where t ϖ t, α) = r 1 i=1 a i 1/2 j rmod 2) v ϖ a j ) j rmod 2) γ ϖ a j a 1 j 1,Ψ) These formulas were conjectured by Mao [5] for arbitrary non-archimedian local field and were proved for r = 2 by Jacquet see [3]) and for r = 3 by Mao see [5]) Mao s formula [5] μa, b, c) = a 1 b 1/2 γ a,ψ)γ c,ψ) must be corrected in μa, b, c) = a 1 b 1/2 γ a,ψ)γ c,ψ) as we see comparing to Jacquet s formula for r = 2 cf. [3])). The key point in the proof of this theorem consists in studying the metaplectic group and relating it with ACK s Arbarello, De Concini and Kac) extension, and in constructing a deformation of some global sums, which are a global product of the local sums introduced above. This theorem then appears as a limit of known identities for simple sums. The étale cohomology interpretation of exponential sums and the theory of perverse sheaves is used for passing to the limit. 1. Énoncé Soit k := F q un corps fini de caractéristique p 2. On note O ϖ := k[[ϖ ]] l anneau des séries formelles en une indéterminée ϖ et à coefficient dans k, etf ϖ son corps des fractions. On note v ϖ x) la valuation de l élément x F ϖ.soitl un nombre premier différent de p. On fixe un caractère additif non trivial ψ : k Q l,oùq l est une clôture algébrique de Q l. On notera Ψ le caractère de F ϖ défini par Ψx) = ψresx dϖ )). On note N r le sous-schéma en groupe de GL r formé des matrices triangulaires supérieures unipotentes et T r celui formé des matrices diagonales. On note S r l espace affine des matrices symétriques de taille r et gl r l espace affine des matrices de taille r. Pour tout α = α 1,...α r 1 ) k ) r 1, on définit le caractère θ α de N r F ϖ ) par θ α n) = Ψ 1 r 1 α 2 i=1 in i,i+1 ). La restriction de ce caractère à N r O ϖ ) est triviale et induit donc une fonction θ α sur N r F ϖ )/N r O ϖ ) à valeurs dans Q l. Pour toute matrice diagonale t T r F ϖ ),H.Jacquet[3]pourGL 2 )etz.mao[5]pourr abitraire) introduisent deux intégrales orbitales I ϖ t, α) et J ϖ t, α). Celles-ci se reécrivent comme des sommes portant sur des ensembles finis cf. [6]) et c est sous cette forme qu on va rappeler leur définition. Soit X ϖ t)k) ={n N r F ϖ )/N r O ϖ ) t ntn S r O ϖ )}. L intégralei ϖ t, α) est définie par I ϖ t, α) = n Xϖ t)k) θ α 2n). Pour définir l intégrale J ϖ t, α) on utilise un scindage de l extension métaplectique cf. [4]) GLr F ϖ ) de GL r F ϖ ) audessus de GL r O ϖ ).Onécritg g, κ ϖ g)) ce scindage avec les notations de [4]). Soit Y ϖ t)k) ={n,n ) N r F ϖ )/N r O ϖ )) 2 t ntn GL r O ϖ )}. Soitα = α r 1,...,α 1 ).L intégrale J ϖ t, α) est définie par J ϖ t, α) = n,n ) Yϖ t)k) κ ϖ w t 0 ntn )θ α w 0 t nw 0 )θ α n ),oùw 0 est une matrice de la permutation r, r 1,...,1). En faisant le changement de variables consistant à remplacer n par w t 0 n 1 w 0,onretrouvel intégrale J ϖ t, α) originale de Mao cf. [5]). Pour tout t = diagt 1, t 2,...,t r ),onnotea i = ij=1 t j. Donc pour que X ϖ t)k) et Y ϖ t)k) soient non vides, il faut que a 1,...,a r 1 appartiennent à O ϖ et a r à Oϖ. Soit ζ : k {±1} le caractère quadratique non trivial ζλ)= λ q 1 2, λ k ). On note γ ϖ.,.) la constante de Weil. [ Théorème 1. Pour tout t = diaga 1, a 1 1 a 2,...,a 1 r 1 a t ϖ t,α)iϖ t,α) r), on a J ϖ t, α) = t ϖ t,α)i ϖ t,α) ζ 1) j rmod 2) v ϖ a j ) j rmod 2) γ ϖ a j a 1 j 1,Ψ),etoùt ϖ t, α) = r 1 i=1 a i 1/2 ζ 1) Ψ)en convenant que a 0 = 1). Deplussit ϖ t, α) t ϖ t, α), les deux intégrales I ϖ et J ϖ sont nulles. où t ϖ t, α) = r 1 i=1 a i 1/2 j rmod 2) v ϖ a j ) j rmod 2) γ ϖ a j a 1 j 1, Mao a conjecturé ces formules pour tous les corps locaux non-archimédiens et elles ont été démontrées pour r = 2par Jacquet voir [3]) et pour r = 3 par Mao voir [5]) la formule de [5] μa, b, c) = a 1 b 1/2 γ a,ψ)γ c,ψ) doit en fait être corrigée en μa, b, c) = a 1 b 1/2 γ a,ψ)γ c,ψ), comme on le voit en la comparant avec la formule de Jacquet [3] pour GL 2 ). 2. Interprétation cohomologique Les ensembles X ϖ t)k) et Y ϖ t)k) sont de manière naturelle des ensembles de points à valeurs dans k de variétés algébriques X ϖ t) et Y ϖ t) de type fini sur k. Ces variétés sont munies d un morphisme h ϖ,x : X ϖ t) G a défini par

3 V.C. Do / C. R. Acad. Sci. Paris, Ser. I ) h ϖ,x n) = res r 1 α i=1 in i,i+1 dϖ ) et d un morphisme h ϖ,y : Y ϖ t) G a défini par h ϖ,y n,n ) = res r 1 1 α i=1 2 in i,i+1 + n i,i+1) dϖ ). Soit k une clôture algébrique de k. OnnoteX ϖ t) = X ϖ t) k k et L ψ le faisceau d Artin-Schreier sur G a associé au caractère ψ. D après la formule des traces de Grothendieck Lefschetz, on a I ϖ t) = TrFr, X ϖ t), h ϖ,x L ψ)). Pour interpréter cohomologiquement l intégrale J ϖ, la construction de Kazhdan Patterson voir [4]) n est pas commode. On a donc adopté un point de vue plus géométrique. Arbarello, De Concini et Kac associent à chaque g GL r F ϖ ) une droite cf. [1]) ) ) 1) D g = goϖ r /gor ϖ Or ϖ O r ϖ /goϖ r Or ϖ où V désigne la puissance extérieure maximale dim V V d un k-espace vectoriel V. Cette construction fournit une extension centrale GLr,ACK F ϖ ) de GL r F ϖ ) par k. On utilisera plutôt la droite g = D detg) D 1 g, ce qui revient à considérer l extension GLr,geo F ϖ ) = det GL1,ACK F ϖ )) GLr,ACK F ϖ ) la somme des extensions étant ici notée additivement). On construit, à l aide de la décomposition de Bruhat, une base δg) de g), ce qui fournit une section δ de GLr,geo F ϖ ). Proposition 1. On a σ g 1, g 2 ) = ζ δg 1)δg 2 ) δg 1 g 2 ) ),oùσ est le 2-cocycle de Kazhdan Patterson [4]. En particulier, l extension de Kazhdan Patterson s obtient à partir de notre extension GLr,geo F ϖ ) en la poussant par ζ : k {±1}. La fonction κ ϖ est le quotient triv/δ de la section obtenue trivialement pour g GL r O ϖ ) par la section δ. Onobtient de cette manière un morphisme κ ϖ : Y ϖ t) G m. On note Y ϖ t) = Y ϖ t) k k. Soit L ζ le faisceau de Kummer sur G m associé au revêtement G m G m, x x 2 et au caractère non trivial de {±1}. Il résulte de la formule des traces de Grothendieck Lefschetz que J ϖ t) = TrFr, Y ϖ t), h ϖ,y L ψ κϖ L ζ )). Le Théorème 1 est alors une conséquence de l énoncé géométrique suivant où on note I ϖ t) = Γ c X ϖ t), h ϖ,x L ψ) et J ϖ t) = Y ϖ t), h ϖ,y L ψ κϖ L ζ ). Théorème 2. J ϖ t) T ϖ t) I ϖ t) T ϖ t) I ϖ t), oùt ϖ t) et T ϖ t) sont des Q l -espaces vectoriels de rang 1 placés en degré v ϖ r 1 i=1 a i) tels que TrFr, T ϖ t)) = t ϖ t, α) et TrFr, T ϖ t)) = t ϖ t, α). Pour démontrer le Théorème 2, on commence par prouver directement le cas particulier où r = 2ett = diagt 1, t 2 ) avec v ϖ t 1 ) = 1, v ϖ t 2 ) = 1. Plus précisément on a : Proposition 2. Le Théorème 2 est vrai dans le cas particulier ci-dessus ; de plus I ϖ t) et J ϖ t) sont alors des Q l-espaces vectoriels de rang 2 placés respectivement en degré 0 et 1. La démonstration de cette proposition est en fait une géométrisation de l argument de Jacquet [2, p. 145]. Dans le cas général, on ne connaît pas explicitement X ϖ t), h ϖ,x L ψ) resp. Y ϖ t), h ϖ,y L ψ κ ϖ L ζ )) carla variété X ϖ t) resp. Y ϖ t)) est trop compliquée. 3. Sommes globales Suivant l idée de B.C. Ngo [6], on va utiliser une méthode de déformation en considérant plutôt des sommes sur un corps global de caractéristique positive. Soient O = k[ϖ ] l anneau des polynômes en une variable ϖ à coefficients dans k, etf son corps des fractions. Soient a 1,...,a r F tels que pgcd r 1 i=1 a i, a r ) = 1etα k ) r 1. Pour toute place v a r,onnoteo v le complété de O en v, F v son corps des fractions, et k v son corps résiduel. Pour t = diaga 1, a 2 /a 1,...,a r /a r 1 ) T r O v ), on peut définir un couple X v t), h v,x ) resp. un triple Y v t), h v,y, κ v )) comme on l a fait ci-dessus, simplement en remplaçant F ϖ par F v, O ϖ par O v et le résidu en ϖ par le résidu en v on prend comme forme différentielle la forme méromorphe dϖ sur P 1 Speck[ϖ ]) = A 1 ). On introduit deux variétés de type fini sur k : Xt) = v a r,v Res k v /k X v t) et Y t) = v a r,v Res k v /ky v t), où Res est la restriction de Weil. Les variétés Xt) et Y t) sont munies de morphismes h X t,α) : Xt) G a, h X t,α)n) = h Y t,α) : Y t) G a, h Y n,n ) = κt) : Y t) G m, κg) = v a r,v = v a r,v = i=1 v a r,v = i=1 N kv /kκ v g). r 1 tr kv /kh α,v,x n), r 1 tr kv /kh α,v,y n,n ),

4 1080 V.C. Do / C. R. Acad. Sci. Paris, Ser. I ) En notant = k, on a la formule de multiplicativité cohomologique : Proposition 3. Xt), h X L ) ψ = λ suppt) Y t), h Y L ψ κ L ζ ) = Xϖ λ t), h ϖ λ,x L ψ), λ suppt) où suppt) est l ensemble des racines de r 1 i=1 a i dans k. Y ϖ λ t), h ϖ λ,y L ψ κ ϖ λ L ζ ), Soient Q di lavariétéaffinesurk des polynômes unitaires de degré d i et V d ={a 1,...,a r ) r i=1 Q d i pgcd r 1 i=1 a i, a r ) = 1} avec d = d 1,...,d r ).Soitt = diaga 1, a 2 /a 1,...,a r /a r 1 ) tel que a 1,...,a r ) V d. Le couple Xt), h X ) et le triple Y t), h Y, κ) se mettent en famille de sorte qu on obtient des variétés X d et Y d de type fini sur k munies de morphismes f X d : X d Gm r 1 V d Gm r 1, f Y d : Y d Gm r 1 V d Gm r 1, h X,d : X d Gm r 1 G a, h Y,d : Y d Gm r 1 G a et κ d : Y d Gm r 1 G m tels que Xt) et Xt), h X L ψ) resp. Y t) et Y t), h Y L ψ κ L ζ )) sont respectivement les fibres en t, α) de f X d et de R fd,! X h L X,d ψ resp. de f Y d et de R f d,! Y h L X,d ψ κ L d ζ )). 4. Le cas d = 1, 2,...,r) On pose d = 1, 2,...,r). SoitU d l ouvert de r i=1 Q i G m ) r 1 formé des couples t, α) telsquelepolynôme r n ait pas de racines multiples. On note resultp, Q ) le résultant de deux polynômes P et Q. Proposition 4. La restriction à U d du complexe I = R fd,! X h L X,d ψ resp. J = R fd,! Y h L Y,d ψ κ L d ζ )) est un système local de rang 2 rr 1) 2 placé en degré 0resp. placé en degré rr 1) ). DeplusJ 2 Ud = T I Ud,oùT est un système local de rang 1 placé en degré rr 1) au-dessus de U 2 d, géométriquement constant et provenant d un caractère τ de Gal k/k tel que τ Fr q ) = 1) rr 1) 2 ζ 1) [ r2 4 ] q rr 1) 4 [ r 2 ],où = γ ϖ,ψ ). Ce proposition résulte directement de la propriété muliplicative des sommes globales et de la Proposition 2. La formule de trace pour le facteur de transfert vient du fait que le produit des constantes de Weil en toutes les places du corps global k[ϖ ] est trivial cf. [7]) ce qui par le théorème de Chebotarev) implique qu il est géométriquement constant. On prolonge alors de manière évidente T à V d Gm r 1. Théorème 3. R f Y d,! h Y,d L ψ κ d L ζ ) = T R f X d,! h X,d L ψ. Les deux membres de cette égalité sont, à décalage près, des faisceaux pervers isomorphes au prolongement intermédiaire de leur restriction à U d. i=1 a i Ceci résulte de la Proposition 4 et du théorème suivant : Théorème Le complexe de faisceaux R fd,! X h L X,d ψ[ rr+1) + r 1] est un faisceau pervers, prolongement intermédiaire de sa restriction à 2 l ouvert U d. 2. Le complexe de faisceaux R fd,! Y h L Y,d ψ κ L d ζ )[r 2 + r 1] est un faisceau pervers, prolongement intermédiaire de sa restriction àl ouvertu d. Pour démontrer le Théorème 4, on va utiliser l argument de B.C. Ngo [6], «le pas de récurence», pg. 515). La difficulté ici est le manque d équivariance de la fonction κ. Pour résoudre cette difficulté, le point crucial est le théorème suivant : Théorème 5. κw 0 y + ϖ Id r )) est en fait un polynôme en les coefficients de la matrice y gl r.deplusona : κw 0 y + ϖ Id r ))κw 0 t y + ϖ Id r )) = resulta r 1 y), a r y)), oùa i y) = dets i y) + ϖ Id i ),s i y) étant la sous-matrice faite des i permières lignes et des i permières colonnes de y. La démonstration de ce théorème repose sur la vision géométrique de l extension de Kazhdan Patterson évoquée dans le paragraphe 2. Ce théorème implique que κw 0 y + ϖ Id r ) est alors un produit de facteurs irréductibles de resulta r 1 y), a r y)). En faisant agit g GL r 1 par y diagg, 1) 1 ydiagg, 1), g transforme alors κ en la multipliant par une puissance de detg) ; l extension G r 1 de GL r 1 obtenue en extrayant une racine carrée de detg) laisse alors

5 V.C. Do / C. R. Acad. Sci. Paris, Ser. I ) invariant le faisceau κ L ζ et l argument de loc. cit. s adapte alors en remplaçant GL i par l extension G i le plongement G i G i+1 est fournit aussi par g diagg, 1) puisque les deux ont même déterminant). Le point 1) du Théorème 4 s obtient assez facilement par l argument de [6] en remplaçant cette fois GL i par le groupe orthogonal associé à la forme quadratique qx 1,...,x i ) = ij=1 x2 j. 5. L énoncé local résulte de l énoncé global Proposition 5. Le Théorème 3 entraîne le Théorème 2. Soient v A 1 k), t = diagt 1,...,t s ) T s F v ). D après [6], Prop , p. 505), pour r assez grand, il existe t = diaga 1, a 2 /a 1,...,a r /a r 1 ),aveca 1,...,a r ) V 1,2,...,r)k) tel que I v t ) I v t ) et J v t ) J v t ).Onaa = a i i a i,où a i est à racines simples premières à v et où a i a toutes ses racines en v. Soientalorsd = dega i )) i et d = dega i )) i. On fait varié a i ) i et a i ) i en introduisant l ouvert V d V d ) dist de V d V d au-dessus duquel pgcd r i=1 a i, r i=1 a i ) = 1 et les a sont à racines simples. On a alors un morphisme étale μ : V i d V d ) dist V d. On généralise les sommes globales du paragraphe 3 en introduisant X t) = Res kw /k X w t) et X t) = Res kw /k X w t) w a 1...a r 1 w a 1...a r 1 Y t) et Y t) sont définies par des formules analogues). Comme dans le paragraphe 3, celles-ci se mettent en familles. On définit de cette manière des complexes I, I, J et J vérifiant μ I = I L I et μ J = J L J.EnfaitI et J sont des systèmes locaux. En utilisant le fait que la perversité et le prolongement intermédiaire sont stables par changement de base étale et que le produit tensoriel d un complexe avec un système local est pervers et prolongement intermédiaire de sa restriction à un ouvert si et seulement si ce complexe l est déjà, on obtient que I et J sont pervers et prolongement intermédiaire de leur restriction à l ouvert μ U d. Le système local T s écrit lui aussi comme un produit T T T et T ne sont plus géométriquement constants, la définition de T ne pose pas de problème, on définit en fait T = T T 1 et la formule du produit pour les constantes de Weil permet de calculer TrFr t, T )). En spécialisant en t = t on obtient alors le Théorème 2. Références [1] E. Arbarello, C. De Concini, V.G. Kac, The infinite wedge representation and the reciprocity law for algebraic curves, in: Proceedings of Symposia in Pure Mathematics, vol. 49, 1989, pp [2] H. Jacquet, On the non vanishing of some L-functions, Proc. Indian Acad. Sci. Math. Sci.) ) [3] H. Jacquet, Représentations distinguées pour le groupe orthogonal, C. R. Acad. Sci. Paris, Ser. I ) [4] D. Kazhdan, S. Patterson, Metaplectic form, Publ. Math. IHES ) [5] Z. Mao, A fundamental lemma for metaplectic correspondence, J. Reine Angew. Math ) [6] B.C. Ngo, Le lemme fondamental de Jacquet et Ye en caractéristique positive, Duke Math. J. 96 3) 1999) [7] A. Weil, Sur certain groupes d opérateurs unitaires, Acta Math )

Démonstration de la conjecture de Dumont

Démonstration de la conjecture de Dumont C. R. Acad. Sci. Paris, Ser. I 1 (005) 71 718 Théorie des nombres/combinatoire Démonstration de la conjecture de Dumont Bodo Lass http://france.elsevier.com/direct/crass1/ Institut Camille Jordan, UMR

Plus en détail

Analyse fonctionnelle Théorie des représentations du groupe quantique compact libre O(n) Teodor Banica Résumé - On trouve, pour chaque n 2, la classe

Analyse fonctionnelle Théorie des représentations du groupe quantique compact libre O(n) Teodor Banica Résumé - On trouve, pour chaque n 2, la classe Analyse fonctionnelle Théorie des représentations du groupe quantique compact libre O(n) Teodor Banica Résumé - On trouve, pour chaque n 2, la classe des n n groupes quantiques compacts qui ont la théorie

Plus en détail

Une forme générale de la conjecture abc

Une forme générale de la conjecture abc Une forme générale de la conjecture abc Nicolas Billerey avec l aide de Manuel Pégourié-Gonnard 6 août 2009 Dans [Lan99a], M Langevin montre que la conjecture abc est équivalente à la conjecture suivante

Plus en détail

Les calculatrices, téléphones, tablettes, ordinateurs et autres appareils électroniques similaires, ainsi que les documents sont interdits.

Les calculatrices, téléphones, tablettes, ordinateurs et autres appareils électroniques similaires, ainsi que les documents sont interdits. Les calculatrices, téléphones, tablettes, ordinateurs et autres appareils électroniques similaires, ainsi que les documents sont interdits 1 La qualité de la rédaction est un facteur important dans l appréciation

Plus en détail

Séminaire BOURBAKI Novembre 2003 56ème année, 2003-2004, n o 924. LA CONJECTURE DE GREEN GÉNÉRIQUE [d après C. Voisin] par Arnaud BEAUVILLE

Séminaire BOURBAKI Novembre 2003 56ème année, 2003-2004, n o 924. LA CONJECTURE DE GREEN GÉNÉRIQUE [d après C. Voisin] par Arnaud BEAUVILLE Séminaire BOURBAKI Novembre 2003 56ème année, 2003-2004, n o 924 LA CONJECTURE DE GREEN GÉNÉRIQUE [d après C. Voisin] par Arnaud BEAUVILLE 1. Énoncé de la conjecture La conjecture de Green est une vaste

Plus en détail

0 h(s)ds et h [t = 1 [t, [ h, t IR +. Φ L 2 (IR + ) Φ sur U par

0 h(s)ds et h [t = 1 [t, [ h, t IR +. Φ L 2 (IR + ) Φ sur U par Probabilités) Calculus on Fock space and a non-adapted quantum Itô formula Nicolas Privault Abstract - The aim of this note is to introduce a calculus on Fock space with its probabilistic interpretations,

Plus en détail

L isomorphisme entre les tours de Lubin-Tate et de Drinfeld et applications cohomologiques par Laurent Fargues

L isomorphisme entre les tours de Lubin-Tate et de Drinfeld et applications cohomologiques par Laurent Fargues Préambule.................................... xv Bibliographie... xxi I L isomorphisme entre les tours de Lubin-Tate et de Drinfeld et applications cohomologiques par Laurent Fargues Introduction...................................

Plus en détail

I. Polynômes de Tchebychev

I. Polynômes de Tchebychev Première épreuve CCP filière MP I. Polynômes de Tchebychev ( ) 1.a) Tout réel θ vérifie cos(nθ) = Re ((cos θ + i sin θ) n ) = Re Cn k (cos θ) n k i k (sin θ) k Or i k est réel quand k est pair et imaginaire

Plus en détail

Filtrage stochastique non linéaire par la théorie de représentation des martingales

Filtrage stochastique non linéaire par la théorie de représentation des martingales Filtrage stochastique non linéaire par la théorie de représentation des martingales Adriana Climescu-Haulica Laboratoire de Modélisation et Calcul Institut d Informatique et Mathématiques Appliquées de

Plus en détail

Master de mathématiques Analyse numérique matricielle

Master de mathématiques Analyse numérique matricielle Master de mathématiques Analyse numérique matricielle 2009 2010 CHAPITRE 1 Méthodes itératives de résolution de systèmes linéaires On veut résoudre un système linéaire Ax = b, où A est une matrice inversible

Plus en détail

Anneaux, algèbres. Chapitre 2. 2.1 Structures

Anneaux, algèbres. Chapitre 2. 2.1 Structures Chapitre 2 Anneaux, algèbres 2.1 Structures Un anneau est un ensemble A muni de deux opérations internes + et et d éléments 0 A et 1 A qui vérifient : associativité de l addition : commutativité de l addition

Plus en détail

Abdallah Derbal Département de Mathématiques, Ecole Normale Supérieure, Vieux Kouba - Alger - abderbal@yahoo.fr

Abdallah Derbal Département de Mathématiques, Ecole Normale Supérieure, Vieux Kouba - Alger - abderbal@yahoo.fr #A56 INTEGERS 9 009), 735-744 UNE FORME EFFECTIVE D UN THÉORÈME DE BATEMAN SUR LA FONCTION PHI D EULER Abdallah Derbal Département de Mathématiques, Ecole Normale Supérieure, Vieux Kouba - Alger - Algérie,

Plus en détail

Espaces vectoriels et applications

Espaces vectoriels et applications Espaces vectoriels et applications linéaires 1 Définitions On parle d espaces vectoriels sur le corps R ou sur le corps C. Les définitions sont les mêmes en substituant R à C ou vice versa. Définition

Plus en détail

Arithmetical properties of idempotents in group algebras

Arithmetical properties of idempotents in group algebras Théorie des Groupes/Group Theory Arithmetical properties of idempotents in group algebras Max NEUNHÖFFER Lehrstuhl D für Mathematik, Templergraben 64, 52062 Aachen, Allemagne E-mail: max.neunhoeffer@math.rwth-aachen.de

Plus en détail

Résolution de systèmes linéaires par des méthodes directes

Résolution de systèmes linéaires par des méthodes directes Résolution de systèmes linéaires par des méthodes directes J. Erhel Janvier 2014 1 Inverse d une matrice carrée et systèmes linéaires Ce paragraphe a pour objet les matrices carrées et les systèmes linéaires.

Plus en détail

À propos des matrices échelonnées

À propos des matrices échelonnées À propos des matrices échelonnées Antoine Ducros appendice au cours de Géométrie affine et euclidienne dispensé à l Université Paris 6 Année universitaire 2011-2012 Introduction Soit k un corps, soit E

Plus en détail

Le produit semi-direct

Le produit semi-direct Le produit semi-direct Préparation à l agrégation de mathématiques Université de Nice - Sophia Antipolis Antoine Ducros Octobre 2007 Ce texte est consacré, comme son titre l indique, au produit semi-direct.

Plus en détail

Mathématiques assistées par ordinateur

Mathématiques assistées par ordinateur Mathématiques assistées par ordinateur Chapitre 4 : Racines des polynômes réels et complexes Michael Eisermann Mat249, DLST L2S4, Année 2008-2009 www-fourier.ujf-grenoble.fr/ eiserm/cours # mao Document

Plus en détail

EXISTENCE OF ALGEBRAIC HECKE CHARACTERS ( C. R. ACAD. SCI. PARIS SER. I MATH, 332(2001)1041-1046) Tonghai Yang

EXISTENCE OF ALGEBRAIC HECKE CHARACTERS ( C. R. ACAD. SCI. PARIS SER. I MATH, 332(2001)1041-1046) Tonghai Yang EXISTENCE OF ALGEBRAIC HECKE CHARACTERS ( C. R. ACAD. SCI. ARIS SER. I MATH, 332(2001)1041-1046) Tonghai Yang Abstract. In this note, we will characterize a weak version of the Brumer-Stark conjecture

Plus en détail

Programme de mathématiques TSI1

Programme de mathématiques TSI1 Programme de mathématiques TSI1 1. PROGRAMME DE DÉBUT D ANNÉE I. Nombres complexes et géométrie élémentaire 1. Nombres complexes 1 2. Géométrie élémentaire du plan 3 3. Géométrie élémentaire de l espace

Plus en détail

www.h-k.fr/publications/objectif-agregation

www.h-k.fr/publications/objectif-agregation «Sur C, tout est connexe!» www.h-k.fr/publications/objectif-agregation L idée de cette note est de montrer que, contrairement à ce qui se passe sur R, «sur C, tout est connexe». Cet abus de langage se

Plus en détail

1 Première section: La construction générale

1 Première section: La construction générale AMALGAMATIONS DE CLASSES DE SOUS-GROUPES D UN GROUPE ABÉLIEN. SOUS-GROUPES ESSENTIEL-PURS. Călugăreanu Grigore comunicare prezentată la Conferinţa de grupuri abeliene şi module de la Padova, iunie 1994

Plus en détail

Mathématiques appliquées à l informatique

Mathématiques appliquées à l informatique Mathématiques appliquées à l informatique Jean-Etienne Poirrier 15 décembre 2005 Table des matières 1 Matrices 3 1.1 Définition......................................... 3 1.2 Les différents types de matrices.............................

Plus en détail

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. 1 Définitions, notations Calcul matriciel Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. On utilise aussi la notation m n pour le

Plus en détail

String topology for loop stacks

String topology for loop stacks String topology for loop stacks Kai Behrend a, Grégory Ginot b, Behrang Noohi c, Ping Xu d,1 a University of British Columbia b Ecole Normale Supérieure de Cachan et Université Paris 13 c Max Planck Institut

Plus en détail

Finance des matières premières (6b) De la formation des prix sur les marchés financiers à la possibilité d un équilibre (non walrasien)

Finance des matières premières (6b) De la formation des prix sur les marchés financiers à la possibilité d un équilibre (non walrasien) Finance des matières premières (6b) De la formation des prix sur les marchés financiers à la possibilité d un équilibre (non walrasien) Alain Bretto & Joël Priolon - 25 mars 2013 Question Dans un équilibre

Plus en détail

MAT 2377 Solutions to the Mi-term

MAT 2377 Solutions to the Mi-term MAT 2377 Solutions to the Mi-term Tuesday June 16 15 Time: 70 minutes Student Number: Name: Professor M. Alvo This is an open book exam. Standard calculators are permitted. Answer all questions. Place

Plus en détail

Polynômes à plusieurs variables. Résultant

Polynômes à plusieurs variables. Résultant Polynômes à plusieurs variables. Résultant Christophe Ritzenthaler 1 Relations coefficients-racines. Polynômes symétriques Issu de [MS] et de [Goz]. Soit A un anneau intègre. Définition 1.1. Soit a A \

Plus en détail

Cohomologie Étale (SGA 4 1 2 )

Cohomologie Étale (SGA 4 1 2 ) Séminaire de Géométrie Algébrique du Bois-Marie Cohomologie Étale (SGA 4 1 2 ) par P. Deligne avec la collaboration de J.F. Boutot, A. Grothendieck, L. Illusie et J.L. Verdier 1977 i Typesetters note This

Plus en détail

Exemple 4.4. Continuons l exemple précédent. Maintenant on travaille sur les quaternions et on a alors les décompositions

Exemple 4.4. Continuons l exemple précédent. Maintenant on travaille sur les quaternions et on a alors les décompositions Exemple 4.4. Continuons l exemple précédent. Maintenant on travaille sur les quaternions et on a alors les décompositions HQ = He 1 He 2 He 3 He 4 HQ e 5 comme anneaux (avec centre Re 1 Re 2 Re 3 Re 4

Plus en détail

La filtration de Krull de la catégorie U et la cohomologie des espaces

La filtration de Krull de la catégorie U et la cohomologie des espaces ISSN 1472-2739 (on-line) 1472-2747 (printed) 519 Algebraic & Geometric Topology Volume 1 (2001) 519 548 Published: 5 Octoberber 2001 ATG La filtration de Krull de la catégorie U et la cohomologie des espaces

Plus en détail

Exercices - Polynômes : corrigé. Opérations sur les polynômes

Exercices - Polynômes : corrigé. Opérations sur les polynômes Opérations sur les polynômes Exercice 1 - Carré - L1/Math Sup - Si P = Q est le carré d un polynôme, alors Q est nécessairement de degré, et son coefficient dominant est égal à 1. On peut donc écrire Q(X)

Plus en détail

Projet CLANU en 3GE: Compléments d algèbre linéaire numérique

Projet CLANU en 3GE: Compléments d algèbre linéaire numérique Projet CLANU en 3GE: Compléments d algèbre linéaire numérique Année 2008/2009 1 Décomposition QR On rappelle que la multiplication avec une matrice unitaire Q C n n (c est-à-dire Q 1 = Q = Q T ) ne change

Plus en détail

Limites finies en un point

Limites finies en un point 8 Limites finies en un point Pour ce chapitre, sauf précision contraire, I désigne une partie non vide de R et f une fonction définie sur I et à valeurs réelles ou complees. Là encore, les fonctions usuelles,

Plus en détail

Rappels et compléments, première partie : Nombres complexes et applications à la géométrie

Rappels et compléments, première partie : Nombres complexes et applications à la géométrie Rappels et compléments, première partie : Nombres complexes et applications à la géométrie 1 Définition des nombres complexes On définit sur les couples de réels une loi d addition comme suit : (x; y)

Plus en détail

Programme de la classe de première année MPSI

Programme de la classe de première année MPSI Objectifs Programme de la classe de première année MPSI I - Introduction à l analyse L objectif de cette partie est d amener les étudiants vers des problèmes effectifs d analyse élémentaire, d introduire

Plus en détail

Algèbres de von Neumann et théorie ergodique des actions de groupes

Algèbres de von Neumann et théorie ergodique des actions de groupes Algèbres de von Neumann et théorie ergodique des actions de groupes Séminaire Tripode, ENS Lyon, Juin 2008. Stefaan Vaes 1/22 Sujet de l exposé 1 Introduction aux relations d équivalence dénombrables,

Plus en détail

Dérivées d ordres supérieurs. Application à l étude d extrema.

Dérivées d ordres supérieurs. Application à l étude d extrema. Chapitre 5 Dérivées d ordres supérieurs. Application à l étude d extrema. On s intéresse dans ce chapitre aux dérivées d ordre ou plus d une fonction de plusieurs variables. Comme pour une fonction d une

Plus en détail

RAPHAËL ROUQUIER. 1. Introduction

RAPHAËL ROUQUIER. 1. Introduction CATÉGORIES DÉRIVÉES ET GÉOMÉTRIE ALGÉBRIQUE Trois exposés à la semaine «Géométrie algébrique complexe» au CIRM, Luminy, décembre 2003 1. Introduction On étudie dans un premier temps les propriétés internes

Plus en détail

Équations d amorçage d intégrales premières formelles

Équations d amorçage d intégrales premières formelles Équations d amorçage d intégrales premières formelles D Boularas, A Chouikrat 30 novembre 2005 Résumé Grâce à une analyse matricielle et combinatoire des conditions d intégrabilité, on établit des équations

Plus en détail

par Igor Klep & Markus Schweighofer

par Igor Klep & Markus Schweighofer POLYNÔMES POSITIFS NON COMMUTATIFS par Igor Klep & Markus Schweighofer Résumé. Dans [Co], Alain Connes demande si tout facteur de type II 1 se plonge dans une ultrapuissance du facteur hyperfini du type

Plus en détail

Chapitre 3. Mesures stationnaires. et théorèmes de convergence

Chapitre 3. Mesures stationnaires. et théorèmes de convergence Chapitre 3 Mesures stationnaires et théorèmes de convergence Christiane Cocozza-Thivent, Université de Marne-la-Vallée p.1 I. Mesures stationnaires Christiane Cocozza-Thivent, Université de Marne-la-Vallée

Plus en détail

http://www.bysoft.fr

http://www.bysoft.fr http://www.bysoft.fr Flash Slideshow Module for MagentoCommerce Demo on http://magento.bysoft.fr/ - Module Slideshow Flash pour MagentoCommerce Démonstration sur http://magento.bysoft.fr/ V3.0 ENGLISH

Plus en détail

Olivier Debarre ALGÈBRE 2 ÉCOLE NORMALE SUPÉRIEURE

Olivier Debarre ALGÈBRE 2 ÉCOLE NORMALE SUPÉRIEURE Olivier Debarre ALGÈBRE 2 ÉCOLE NORMALE SUPÉRIEURE 2012 2013 Olivier Debarre ALGÈBRE 2 ÉCOLE NORMALE SUPÉRIEURE 2012 2013 Olivier Debarre TABLE DES MATIÈRES I. Extensions de corps......................................................................

Plus en détail

Groupoïdes quantiques mesurés : axiomatique, étude, dualité, exemples

Groupoïdes quantiques mesurés : axiomatique, étude, dualité, exemples Groupoïdes quantiques mesurés : axiomatique, étude, dualité, exemples Franck LESIEUR Mathématiques et Applications, Physique Mathématique d Orléans UMR 6628 - BP 6759 45067 ORLEANS CEDEX 2 - FRANCE e-mail

Plus en détail

On ne peut pas entendre la forme d un tambour

On ne peut pas entendre la forme d un tambour On ne peut pas entendre la forme d un tambour Pierre Bérard Institut Fourier Laboratoire de Mathématiques Unité Mixte de Recherche 5582 CNRS UJF Université Joseph Fourier, Grenoble 1 Introduction 1.1 Position

Plus en détail

Instructions pour mettre à jour un HFFv2 v1.x.yy v2.0.00

Instructions pour mettre à jour un HFFv2 v1.x.yy v2.0.00 Instructions pour mettre à jour un HFFv2 v1.x.yy v2.0.00 HFFv2 1. OBJET L accroissement de la taille de code sur la version 2.0.00 a nécessité une évolution du mapping de la flash. La conséquence de ce

Plus en détail

C. R. Acad. Sci. Paris, Ser. I

C. R. Acad. Sci. Paris, Ser. I C. R. Acad. Sci. Paris, Ser. I 348 (21) 35 31 Contents lists available at ScienceDirect C. R. Acad. Sci. Paris, Ser. I www.sciencedirect.com Probabilités/Statistique Un contre-exemple à une conjecture

Plus en détail

Formes quadratiques. 1 Formes quadratiques et formes polaires associées. Imen BHOURI. 1.1 Définitions

Formes quadratiques. 1 Formes quadratiques et formes polaires associées. Imen BHOURI. 1.1 Définitions Formes quadratiques Imen BHOURI 1 Ce cours s adresse aux étudiants de niveau deuxième année de Licence et à ceux qui préparent le capes. Il combine d une façon indissociable l étude des concepts bilinéaires

Plus en détail

NCTS INFORMATION QUANT AUX NOUVEAUTES POUR 2010

NCTS INFORMATION QUANT AUX NOUVEAUTES POUR 2010 NCTS INFORMATION QUANT AUX NOUVEAUTES POUR 2010 Sur pied des nouveaux articles 365, paragraphe 4 (NCTS) et 455bis, paragraphe 4 (NCTS-TIR) du Code Communautaire d'application 1, le principal obligé doit

Plus en détail

Nombres premiers. Comment reconnaître un nombre premier? Mais...

Nombres premiers. Comment reconnaître un nombre premier? Mais... Introduction Nombres premiers Nombres premiers Rutger Noot IRMA Université de Strasbourg et CNRS Le 19 janvier 2011 IREM Strasbourg Definition Un nombre premier est un entier naturel p > 1 ayant exactement

Plus en détail

Cours d analyse numérique SMI-S4

Cours d analyse numérique SMI-S4 ours d analyse numérique SMI-S4 Introduction L objet de l analyse numérique est de concevoir et d étudier des méthodes de résolution de certains problèmes mathématiques, en général issus de problèmes réels,

Plus en détail

Séminaire BOURBAKI Juin 2012 64ème année, 2011-2012, n o 1057. PERFECTOÏDES, PRESQUE PURETÉ ET MONODROMIE-POIDS [d après Peter Scholze]

Séminaire BOURBAKI Juin 2012 64ème année, 2011-2012, n o 1057. PERFECTOÏDES, PRESQUE PURETÉ ET MONODROMIE-POIDS [d après Peter Scholze] Séminaire BOURBAKI Juin 2012 64ème année, 2011-2012, n o 1057 PERFECTOÏDES, PRESQUE PURETÉ ET MONODROMIE-POIDS [d après Peter Scholze] par Jean Marc FONTAINE INTRODUCTION Quiconque s est intéressé aux

Plus en détail

Espaces vectoriels. Université d Orléans Année 2009-2010 Espaces vectoriels et applications linéaires. 2MA01-Licence de Mathématiques

Espaces vectoriels. Université d Orléans Année 2009-2010 Espaces vectoriels et applications linéaires. 2MA01-Licence de Mathématiques Université d Orléans Année 2009-2010 Espaces vectoriels et applications linéaires 2MA01-Licence de Mathématiques Espaces vectoriels Exercice 1 Soit E un espace vectoriel. Pour x, y E et λ, µ K, montrer

Plus en détail

Carl-Louis-Ferdinand von Lindemann (1852-1939)

Carl-Louis-Ferdinand von Lindemann (1852-1939) Par Boris Gourévitch "L'univers de Pi" http://go.to/pi314 sai1042@ensai.fr Alors ça, c'est fort... Tranches de vie Autour de Carl-Louis-Ferdinand von Lindemann (1852-1939) est transcendant!!! Carl Louis

Plus en détail

Introduction à l étude des Corps Finis

Introduction à l étude des Corps Finis Introduction à l étude des Corps Finis Robert Rolland (Résumé) 1 Introduction La structure de corps fini intervient dans divers domaines des mathématiques, en particulier dans la théorie de Galois sur

Plus en détail

Calcul fonctionnel holomorphe dans les algèbres de Banach

Calcul fonctionnel holomorphe dans les algèbres de Banach Chapitre 7 Calcul fonctionnel holomorphe dans les algèbres de Banach L objet de ce chapitre est de définir un calcul fonctionnel holomorphe qui prolonge le calcul fonctionnel polynômial et qui respecte

Plus en détail

Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin.

Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin. Exo7 Matrice d une application linéaire Corrections d Arnaud odin. Exercice Soit R muni de la base canonique = ( i, j). Soit f : R R la projection sur l axe des abscisses R i parallèlement à R( i + j).

Plus en détail

Mathématiques autour de la cryptographie.

Mathématiques autour de la cryptographie. Mathématiques autour de la cryptographie. Index Codage par division Codage série Code cyclique Code dual Code linéaire Corps de Galois Elément primitif m séquence Matrice génératrice Matrice de contrôle

Plus en détail

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer Pour commencer Exercice 1 - Ensembles de définition - Première année - 1. Le logarithme est défini si x + y > 0. On trouve donc le demi-plan supérieur délimité par la droite d équation x + y = 0.. 1 xy

Plus en détail

Groupe symétrique. Chapitre II. 1 Définitions et généralités

Groupe symétrique. Chapitre II. 1 Définitions et généralités Chapitre II Groupe symétrique 1 Définitions et généralités Définition. Soient n et X l ensemble 1,..., n. On appelle permutation de X toute application bijective f : X X. On note S n l ensemble des permutations

Plus en détail

Exo7. Sujets de l année 2008-2009. 1 Partiel. Enoncés et corrections : Sandra Delaunay. Exercice 1 Soit A une matrice 2 2 à coefficients réels.

Exo7. Sujets de l année 2008-2009. 1 Partiel. Enoncés et corrections : Sandra Delaunay. Exercice 1 Soit A une matrice 2 2 à coefficients réels. Enoncés et corrections : Sandra Delaunay Exo7 Sujets de l année 28-29 1 Partiel Exercice 1 Soit A une matrice 2 2 à coefficients réels. On suppose a + c = b + d = 1 et a b 1. ( ) a b c d 1. Soient (x 1,x

Plus en détail

Fiche n 2: Morphisme, sous-groupe distingué, quotient

Fiche n 2: Morphisme, sous-groupe distingué, quotient Université Lille 1 Algèbre 2010/11 M51.MIMP Fiche n 2: Morphisme, sous-groupe distingué, quotient Exercice 1 Soient G, G deux groupes et f un homomorphisme de G dans G. Montrer que si A G, alors f( A )

Plus en détail

Séminaire BOURBAKI Novembre 2008 61ème année, 2008-2009, n o 1000 LE GROUPE DE CREMONA ET SES SOUS-GROUPES FINIS. par Jean Pierre SERRE

Séminaire BOURBAKI Novembre 2008 61ème année, 2008-2009, n o 1000 LE GROUPE DE CREMONA ET SES SOUS-GROUPES FINIS. par Jean Pierre SERRE Séminaire BOURBAKI Novembre 2008 61ème année, 2008-2009, n o 1000 LE GROUPE DE CREMONA ET SES SOUS-GROUPES FINIS par Jean Pierre SERRE Qu est-ce que le groupe de Cremona? Pour un géomètre, c est le groupe

Plus en détail

Jeux à somme nulle : le cas fini

Jeux à somme nulle : le cas fini CHAPITRE 2 Jeux à somme nulle : le cas fini Les jeux à somme nulle sont les jeux à deux joueurs où la somme des fonctions de paiement est nulle. Dans ce type d interaction stratégique, les intérêts des

Plus en détail

Le passé composé. C'est le passé! Tout ça c'est du passé! That's the past! All that's in the past!

Le passé composé. C'est le passé! Tout ça c'est du passé! That's the past! All that's in the past! > Le passé composé le passé composé C'est le passé! Tout ça c'est du passé! That's the past! All that's in the past! «Je suis vieux maintenant, et ma femme est vieille aussi. Nous n'avons pas eu d'enfants.

Plus en détail

RULE 5 - SERVICE OF DOCUMENTS RÈGLE 5 SIGNIFICATION DE DOCUMENTS. Rule 5 / Règle 5

RULE 5 - SERVICE OF DOCUMENTS RÈGLE 5 SIGNIFICATION DE DOCUMENTS. Rule 5 / Règle 5 RULE 5 - SERVICE OF DOCUMENTS General Rules for Manner of Service Notices of Application and Other Documents 5.01 (1) A notice of application or other document may be served personally, or by an alternative

Plus en détail

Sur certaines séries entières particulières

Sur certaines séries entières particulières ACTA ARITHMETICA XCII. 2) Sur certaines séries entières particulières par Hubert Delange Orsay). Introduction. Dans un exposé à la Conférence Internationale de Théorie des Nombres organisée à Zakopane

Plus en détail

La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1

La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1 La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1 La licence Mathématiques et Economie-MASS de l Université des Sciences Sociales de Toulouse propose sur les trois

Plus en détail

Théorème du point fixe - Théorème de l inversion locale

Théorème du point fixe - Théorème de l inversion locale Chapitre 7 Théorème du point fixe - Théorème de l inversion locale Dans ce chapitre et le suivant, on montre deux applications importantes de la notion de différentiabilité : le théorème de l inversion

Plus en détail

Chapitre VI - Méthodes de factorisation

Chapitre VI - Méthodes de factorisation Université Pierre et Marie Curie Cours de cryptographie MM067-2012/13 Alain Kraus Chapitre VI - Méthodes de factorisation Le problème de la factorisation des grands entiers est a priori très difficile.

Plus en détail

1 Codes linéaires. G = [I k A]. Dans ce cas on constate que la matrice. H = [ t A I n k ] est une matrice de contrôle de C. Le syndrome de x F n q

1 Codes linéaires. G = [I k A]. Dans ce cas on constate que la matrice. H = [ t A I n k ] est une matrice de contrôle de C. Le syndrome de x F n q 1 Codes linéaires Un code de longueur n est une partie de F n q. Un code linéaire C de longueur n sur le corps ni F q est un sous-espace vectoriel de F n q. Par défaut, un code sera supposé linéaire. La

Plus en détail

Programmes des classes préparatoires aux Grandes Ecoles

Programmes des classes préparatoires aux Grandes Ecoles Programmes des classes préparatoires aux Grandes Ecoles Filière : scientifique Voie : Biologie, chimie, physique et sciences de la Terre (BCPST) Discipline : Mathématiques Seconde année Préambule Programme

Plus en détail

Calcul différentiel sur R n Première partie

Calcul différentiel sur R n Première partie Calcul différentiel sur R n Première partie Université De Metz 2006-2007 1 Définitions générales On note L(R n, R m ) l espace vectoriel des applications linéaires de R n dans R m. Définition 1.1 (différentiabilité

Plus en détail

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre IUFM du Limousin 2009-10 PLC1 Mathématiques S. Vinatier Rappels de cours Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre 1 Fonctions de plusieurs variables

Plus en détail

I. Programmation I. 1 Ecrire un programme en Scilab traduisant l organigramme montré ci-après (on pourra utiliser les annexes):

I. Programmation I. 1 Ecrire un programme en Scilab traduisant l organigramme montré ci-après (on pourra utiliser les annexes): Master Chimie Fondamentale et Appliquée : spécialité «Ingénierie Chimique» Examen «Programmation, Simulation des procédés» avril 2008a Nom : Prénom : groupe TD : I. Programmation I. 1 Ecrire un programme

Plus en détail

Classification des structures CR invariantes pour les groupes de Lie compacts.

Classification des structures CR invariantes pour les groupes de Lie compacts. Journal of Lie Theory Volume 14 (2004) 165 198 c 2004 Heldermann Verlag Classification des structures CR invariantes pour les groupes de Lie compacts. Jean-Yves Charbonnel et Hella Ounaïes Khalgui Communicated

Plus en détail

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que Introduction. On suppose connus les ensembles N (des entiers naturels), Z des entiers relatifs et Q (des nombres rationnels). On s est rendu compte, depuis l antiquité, que l on ne peut pas tout mesurer

Plus en détail

Continuité en un point

Continuité en un point DOCUMENT 4 Continuité en un point En général, D f désigne l ensemble de définition de la fonction f et on supposera toujours que cet ensemble est inclus dans R. Toutes les fonctions considérées sont à

Plus en détail

Séminaire BOURBAKI Mars 2004 56ème année, 2003-04, n o 929. MOTIFS DE DIMENSION FINIE [d après S.-I. Kimura, P. O Sullivan,...

Séminaire BOURBAKI Mars 2004 56ème année, 2003-04, n o 929. MOTIFS DE DIMENSION FINIE [d après S.-I. Kimura, P. O Sullivan,... Séminaire BOURBAKI Mars 2004 56ème année, 2003-04, n o 929 MOTIFS DE DIMENSION FINIE [d après S.-I. Kimura, P. O Sullivan,...] par Yves ANDRÉ Table des matières 1. Introduction : les groupes de Chow sont-ils

Plus en détail

C. R. Acad. Sci. Paris, Ser. I 336 (2003) 1 6. Théorie des nombres. Damien Roy

C. R. Acad. Sci. Paris, Ser. I 336 (2003) 1 6. Théorie des nombres. Damien Roy C. R. Acad. Sci. Paris, Ser. I 336 (2003) 1 6 Théorie des nombres Approximation simultanée d un nombre et de son carré Simultaneous approximation to a real number and its square Damien Roy Département

Plus en détail

Une borne supérieure pour l entropie topologique d une application rationnelle

Une borne supérieure pour l entropie topologique d une application rationnelle Annals of Mathematics, 161 (2005), 1637 1644 Une borne supérieure pour l entropie topologique d une application rationnelle By Tien-Cuong Dinh and Nessim Sibony Abstract Let be a complex projective manifold

Plus en détail

Université de Nantes Année 2009-2010 Faculté des Sciences et des Techniques Département de Mathématiques. Topologie et calculs différentiel Liste n 5

Université de Nantes Année 2009-2010 Faculté des Sciences et des Techniques Département de Mathématiques. Topologie et calculs différentiel Liste n 5 Université de Nantes Année 009-010 Faculté des Sciences et des Techniques Département de Mathématiques Topologie et calculs différentiel Liste n 5 Applications Différentiables Exercice 1. Soit f : R n

Plus en détail

Université Joseph Fourier MAT231 2008-2009

Université Joseph Fourier MAT231 2008-2009 Université Joseph Fourier MAT231 2008-2009 mat231-exo-03.tex (29 septembre 2008) Feuille d exercices n o 3 Exercice 3.1 Soit K un corps commutatif et soit {P 0, P 1,... P n } une famille de polynômes de

Plus en détail

Contents. (Entries in square brackets refer to the bibliography on pp. 863 874) Preface...v. Curriculum Vitae...xiv

Contents. (Entries in square brackets refer to the bibliography on pp. 863 874) Preface...v. Curriculum Vitae...xiv (Entries in square brackets refer to the bibliography on pp. 863 874) Preface...v Curriculum Vitae...xiv A Belgian mathematician: Jacques Tits by Francis Buekenhout...xvi Quelques coups de projecteurs

Plus en détail

Nouvelles classes de problèmes pour la fouille de motifs intéressants dans les bases de données 2

Nouvelles classes de problèmes pour la fouille de motifs intéressants dans les bases de données 2 Nouvelles classes de problèmes pour la fouille de motifs intéressants dans les bases de données 2 Lhouari Nourine 1 1 Université Blaise Pascal, CNRS, LIMOS, France SeqBio 2012 Marne la vallée, France 2.

Plus en détail

Quelques remarques sur les d-webs des surfaces complexes et un problème proposé

Quelques remarques sur les d-webs des surfaces complexes et un problème proposé Boletín de la Asociación Matemática Venezolana, Vol. X, No. 1 (2003) 21 Quelques remarques sur les d-webs des surfaces complexes et un problème proposé par D. Cerveau Ivan Pan Résumé On introduit une notion

Plus en détail

Cours de mathématiques - Alternance Gea

Cours de mathématiques - Alternance Gea Cours de mathématiques - Alternance Gea Anne Fredet 11 décembre 005 1 Calcul matriciel Une matrice n m est un tableau de nombres à n lignes( et m colonnes. 1 0 Par exemple, avec n = et m =, on peut considérer

Plus en détail

APPENDIX 6 BONUS RING FORMAT

APPENDIX 6 BONUS RING FORMAT #4 EN FRANÇAIS CI-DESSOUS Preamble and Justification This motion is being presented to the membership as an alternative format for clubs to use to encourage increased entries, both in areas where the exhibitor

Plus en détail

Introduction à la Topologie

Introduction à la Topologie Introduction à la Topologie Licence de Mathématiques Université de Rennes 1 Francis Nier Dragoş Iftimie 2 3 Introduction Ce cours s adresse à des étudiants de Licence en mathématiques. Il a pour objectif

Plus en détail

Exemple PLS avec SAS

Exemple PLS avec SAS Exemple PLS avec SAS This example, from Umetrics (1995), demonstrates different ways to examine a PLS model. The data come from the field of drug discovery. New drugs are developed from chemicals that

Plus en détail

Improving the breakdown of the Central Credit Register data by category of enterprises

Improving the breakdown of the Central Credit Register data by category of enterprises Improving the breakdown of the Central Credit Register data by category of enterprises Workshop on Integrated management of micro-databases Deepening business intelligence within central banks statistical

Plus en détail

Please find attached a revised amendment letter, extending the contract until 31 st December 2011.

Please find attached a revised amendment letter, extending the contract until 31 st December 2011. Sent: 11 May 2011 10:53 Subject: Please find attached a revised amendment letter, extending the contract until 31 st December 2011. I look forward to receiving two signed copies of this letter. Sent: 10

Plus en détail

SEMINAIRE DE GEOMETRIE ALGEBRIQUE DU BOIS MARIE REVETEMENTS ETALES ET GROUPE FONDAMENTAL (SGA 1) Un séminaire dirigé par A.

SEMINAIRE DE GEOMETRIE ALGEBRIQUE DU BOIS MARIE REVETEMENTS ETALES ET GROUPE FONDAMENTAL (SGA 1) Un séminaire dirigé par A. Ceci est une version saisie en L A TEX2e du livre Revêtements Étales et Groupe Fondamental, Lecture Notes in Mathematics, 224, Springer-Verlag, Berlin-Heidelberg- New York, 1971, par Alexander Grothendieck

Plus en détail

Séminaire BOURBAKI Mars 2003 55 e année, 2002-2003, n o 914

Séminaire BOURBAKI Mars 2003 55 e année, 2002-2003, n o 914 Séminaire BOURBAKI Mars 2003 55 e année, 2002-2003, n o 914 POINTS RATIONNELS ET GROUPES FONDAMENTAUX : APPLICATIONS DE LA COHOMOLOGIE p-adique [d après P. Berthelot, T. Ekedahl, H. Esnault, etc.] par

Plus en détail

Calculs approchés d un point fixe

Calculs approchés d un point fixe M11 ÉPREUVE COMMUNE DE TIPE 2013 - Partie D TITRE : Calculs approchés d un point fixe Temps de préparation :.. 2 h 15 minutes Temps de présentation devant les examinateurs :.10 minutes Dialogue avec les

Plus en détail

Épreuve pratique de mathématiques Printemps 2009. Descriptifs. (Page vide)

Épreuve pratique de mathématiques Printemps 2009. Descriptifs. (Page vide) Épreuve pratique de mathématiques Printemps 2009 Descriptifs (Page vide) Sujet 001 Épreuve pratique de mathématiques Descriptif Étude d une fonction dépendant d un paramètre Étant donné une fonction dépendant

Plus en détail

Chapitre 2. Matrices

Chapitre 2. Matrices Département de mathématiques et informatique L1S1, module A ou B Chapitre 2 Matrices Emmanuel Royer emmanuelroyer@mathuniv-bpclermontfr Ce texte mis gratuitement à votre disposition a été rédigé grâce

Plus en détail

Approche hybride de reconstruction de facettes planes 3D

Approche hybride de reconstruction de facettes planes 3D Cari 2004 7/10/04 14:50 Page 67 Approche hybride de reconstruction de facettes planes 3D Ezzeddine ZAGROUBA F. S.T, Dept. Informatique. Lab. d Informatique, Parallélisme et Productique. Campus Universitaire.

Plus en détail

X-ENS PSI - 2009 Un corrigé

X-ENS PSI - 2009 Un corrigé X-ENS PSI - 009 Un corrigé Première partie.. Des calculs élémentaires donnent χ A(α) = χ B(α) = X X + et χ A(α)+B(α) = X X + 4α + 4 On en déduit que Sp(A(α)) = Sp(B(α)) = {j, j } où j = e iπ 3 Sp(A(α)

Plus en détail