Quelques tests de primalité

Dimension: px
Commencer à balayer dès la page:

Download "Quelques tests de primalité"

Transcription

1 Quelques tests de primalité J.-M. Couveignes (merci à T. Ezome et R. Lercier) Institut de Mathématiques de Bordeaux & INRIA Bordeaux Sud-Ouest École de printemps C2 Mars 2014

2 Plan 1 Introduction 2 De Fermat à Miller-Rabin 3 Test de Miller-Rabin 4 Le test de Solovay-Strassen

3 Définition et résultats classiques Euclide, livre sept des Élément, vers -300 : définition, existence d un diviseur premier, algorithme pour pgcd et ppcm, infinité, p k+1 l k p l + 1, crible d Eratosthène, théorème fondamental de l arithmétique (preuve par Gauss), complexité linéaire pour +, quadratique pour, exponentielle pour primalité et factorisation : T = n 1/2+o(1).

4 Distribution des nombres premiers A π(a) A/π(A) log A Théorème des nombres premiers : π(a) = p n =(1 + o(1)) n log n. Assez nombreux! A log A (1 + o(1)) et

5 Exponentiation Étant donné g dans G et e entier naturel, calculer g e. Maladroit g, g 2, g 3,...,g e 1, g e. T =(e 1). L algorithme d exponentiation rapide permet de calculer efficacement g e. Méthode inventée par Piṅgala dans son Chandah-sûtra (entre -450 et -250). e = 0 k K k2 k et b 0 = g, b k = bk 1 2 pour 1 k K. Puis g e b k k. 0 k K T = O(log e).

6 Ordre d un élément dans un groupe 0 oz Z G a g a. Trouver o? Prouver o? Si f = i pm i i et q i = f /p i et g f = 1etg q i = 1alorsf = o. Si l on a des preuves courtes de primalité, on a des preuves courtes pour l ordre d un élément dans un groupe.

7 Un peu d arithmétique Les propriétés de l anneau Z/nZ reflètent la factorisation de n. Si n = i pm i i alors Z/nZ i (Z/pm i i Z). Bijection effective : r i = n/p m i i et s i inverse de r i modulo p m i i (u i ) i i u i r i s i mod n. En particulier (Z/nZ) est d ordre i pm i 1 i (p i 1) donc #(Z/nZ) = n 1 n est premier. Une preuve que g mod n est d ordre n 1estunepreuvedeprimalité.

8 Preuves courtes de primalité Exhiber un générateur g de (Z/nZ) et une preuve que g est d ordre n 1. Exhiber la factorisation n 1 = i pm i i premiers. et une preuve que les p i sont Vérifier que g n 1 = 1etg n 1 p i = 1. PRIMES est dans NP co-np.

9 Ordre ou ordre exact On se donne un groupe algébrique G, e.g. groupe multiplicatif ou courbe elliptique sur Z/nZ. Soit G(Z/nZ) =(Z/nZ) ou E(Z/nZ) par exemple. On a un morphisme ρ p : G(Z/nZ) G p (Z/pZ) pour tout p n. Soit o premier à n. OnditqueA G(Z/nZ) est d ordre exact o si oa = 0 et pour tout p n l image ρ p (A) est d ordre o dans G p (Z/pZ). Autrement dit pour tout q o et p n on a o q A = 0modp.

10 Ordre ou ordre exact Soit n = 7 13 = 91 et G le groupe multiplicatif. 1 est d ordre 2 modulo 7 et 3 est d ordre 3 modulo 13, donc ( 1) 6 13 = 36 = 55 est d ordre 6 modulo n mais pas d ordre exact 6. En revanche 3 est d ordre 6 modulo 7 et 10 est d ordre 6 modulo 13, donc = 374 = 10 est d ordre exact 6. En particulier et sont inversibles modulo n.

11 Théorème (Pocklington) Test de Pocklington-Lehmer Soit n 2 un entier. Soit a (Z/nZ) d ordre exact s n. Alors n est premier. a est d ordre exact s signifie a s = 1eta i 1 est inversible pour 1 i < s (de façon équivalente a s/q 1 est inversible pour tout diviseur premier q de s). Démonstration. Soit p un diviseur premier de n. Le groupe (Z/pZ) contient a mod p. Donc s divise p 1. Donc p 1 + s > n. Donc tout diviseur premier de n est plus grand que n,etn est premier. Ce qui est difficile en pratique, c est de trouver un facteur s assez grand de n 1 qui soit produit de petits premiers. Souvent on écrit n 1 = 2m et on est bloqué.

12 Des premiers pour quoi faire? On va voir que PRIMES est dans P. Le problème de la factorisation ne semble pas être dans P. Fonctions asymétriques et fonctions trappes. Pour construire des groupes multiplicatifs et utiliser des logarithmes discrets. On connaît #(Z/pZ). Pour construire des corps finis et faire de la géométrie : (3x + 2y) p = 3x p + 2y p F p [x, y]. SiV est une variété algébrique sur F p on a une application F : V V.Onpeutcalculer#E(F p ).

13 Critère de Fermat Si n est premier alors x n = x mod n pour tout entier x et x n 1 = 1modn si (x, n) =1. Preuve 1 : on vérifie pour x = 1 et on utilise (x + y) p = x p + y p. Preuve 2 : théorème de Lagrange. Critère de composition : W n =(Z/nZ), F n associée est définie par : F n : (Z/nZ) {prime, composite} x prime si x n 1 = 1modn composite si x n 1 = 1modn On choisit x au hasard (comment?) et on calcule F n (x). Si F n (x) =composite alors n est composé. Critère de composition. Si F n (x) =prime que faire?

14 Critère de Fermat Combien de faux témoins? Pas trop en général. 100% pour les nombres de Carmichael exemple n = 561 = Que se passe-t-il? Il y a une infinité de nombres de Carmichael d après Alford, Granville, Pomerance. Le test de Fermat n a pas de faux témoins si n est premier, mais peut avoir 100% de faux témoins pour certains nombres composés.

15 Théorème Le critère de Miller-Rabin Soit n 3 un entier impair et posons n 1 = 2 k mavecmimpair. Si nestpremier, alors pour tout x dans (Z/nZ), on a Démonstration. x m = 1 ou x 2i m = 1 pour un 0 i < k. (1) D après le théorème de Fermat, x n 1 1 = 0. Mais x n 1 1 =(x n 1 2 ) 2 1 =(x n 1 2 1)(x n ) = (x m 1)(x m + 1)(x 2m + 1) (x 2k 1 m + 1) (Z/nZ) est un corps, donc au moins un des facteurs est nul.

16 Le test de Miller-Rabin Corollaire : Si l on trouve un x tel que Eq. (1) est fausse, alors n est composé. Critère de composition : W n =(Z/nZ), M n associée est définie par : M n : (Z/nZ) {prime, composite} x prime si (1) est vraie composite sinon On choisit x au hasard et on calcule M n (x). Comment? Complexité? Si M n (x) =composite alors n est composé. Critère de composition. Si M n (x) =prime que dire?

17 Le test de Miller-Rabin Théorème Si n est composé et impair, et s il a t facteurs premiers, alors #{x in(z/nz) : Eq. (1) est vraie} ϕ(n) 1 2 t 1. Si de plus n 15 alors 1/4. Remarque 1 : Après λ tests, la probabilité de manquer un composé est majorée par 1/4 λ. Remarque 2 : Cette majoration est presque optimale. Pour n = pq avec p = 2 a + 1, q = 4 a 1 deux premiers et a impair, n 1 = 2 a (4a + 3) et il y a beaucoup d entiers x d ordre a modulo n.

18 Preuve I Soit l le plus grand entier tel que 2 l divise p 1 pour tout diviseur premier p de n. Alors B = {x in (Z/nZ) : Eq. (1) est vraie} est contenu dans B = {x in (Z/nZ) : x 2l 1 m = ±1} Si x m = 1modn alors x B.Six m2i = 1 modn avec 1 i < k alors 2 i+1 divise p 1 pour tout p n. Donc l i + 1. Donc x 2l 1m =( 1) 2l i 1.

19 Preuve II Le nombre de x tels que x 2l 1 m = 1estleproduitsurp du nombre de solutions de x 2l 1 m = 1modp ap, Donc, pgcd((p 1)p ap 1, m 2 l 1 ) (= pgcd(p 1, m) 2 l 1 ). #{x in (Z/nZ) : x 2l 1 m = 1} = p n pgcd(p 1, m) 2 l 1. De même, le nombre de x tels que x 2l m = 1modp ap est pgcd(p 1, m) 2 l, donc le nombre de x tels que x 2l 1 m = 1 mod p ap est aussi pgcd(p 1, m) 2 l 1. Donc, #B = 2 p n pgcd(p 1, m) 2l 1, et #B ϕ(n) = 2 pgcd(p 1, m) 2 l 1 (p 1) p ap 1. p n

20 Preuve III Comme 2 l 1 pgcd(p 1, m) divise (p 1)/2, on a #B ϕ(n) 1 2 t 1. Enfin si t = 1, #B /ϕ(n) 1/3.

21 Complexité et fiabilité Si n est premier, pas de faux temoin. Si n est composé, la densité de faux témoins est 1/4 et 1/2 t 1. T =(log n) 2+(n) avec exponentiation et arithmétique rapides. Avec λ/2 tests de Miller-Rabin, pour n 15 impair, l algorithme répond prime avec probabilité 2 λ si n est composé. Le temps de calcul est (λ/2)(log n) 2+(n). Nous verrons qu il existe un algorithme qui atteint la même sécurité en temps λ 1 2 +(λ) (log n) 2+(n) si λ log n.

22 Symbole de Legendre Soit n 3 un entier premier. Pour a entier a n est défini par a 0 si a = 0modn. = 1 si l équation X 2 = a a deux solutions dans Z/nZ. n 1 si l équation X 2 = a n a aucune solution dans Z/nZ. On a n 1 a n = a 2 mod n. Eneffetsia = b 2 alors a n 1 2 = b n 1 = 1et le polynôme x n 1 2 1n apasplusde(n 1)/2 solutions. Cela donne une première méthode pour calculer efficacement ce symbole. Notons que a a n est un morphisme de groupes.

23 Loi de réciprocité quadratique Théorème Si p et q sont des premiers impairs positifs et distincts, alors 2 p p q q p =( 1) (p 1)(q 1) 4, =( 1) p ,et p =( 1) p 1 2.

24 Démonstration. Soit Φ q (x) =1 + x + + x q 1 et A(x) F p [x] un facteur irréductible de Φ q (x) modulo p. Soit L = F p [x]/a et ζ = x mod A(x) L.C estuneracineq-ième primitive de l unité dans L.Lasomme de Gauss τ = x ζ x q x F q 1 est dans L. On montre que τ 2 = q L. Donc τ est une q 1 racine carrée de q. CetteracineestdansF q p si et seulement si p 1 τ p = τ. Onvérifiequeτ p = τ. Donc q est un carré q q p modulo p si et seulement si = 1. q

25 Symbole de Jacobi Soit N 3entierimpairetN = i pe i i sa factorisation. Le symbole de Jacobi est x = ei x. N p i i a Dépend de x mod N. Et = 0ssipgcd(a, b) = 1. b Théorème (Gauss) 1 Pour M 3 et N 3 impairs M et M N N M =( 1) M 1 2, =( 1) (M 1)(N 1) 4. 2 M =( 1) M2 1 8,

26 Calcul du symbole de Jacobi Pour calculer M N on utilise alternativement trois idées remplacer M par M%N, si M est pair, sortir 2, si M est impair et < N basculer. Et même mieux. T =(log max(m, N)) 2+o(1).

27 Critère de Solovay-Strassen Si n 3 est premier alors pour tout x dans (Z/nZ) on a x n 1 x 2 = mod n. n L ensemble des témoins pour ce test est donc W n =(Z/nZ) et l application associée S n : (Z/nZ) {prime, composite} est définie par : S n (x) =prime ssi x n 1 2 = x n mod n.

28 Densité de faux témoins Si n est premier impair, pas de faux témoins. Théorème Si n est un entier impair composé, la densité de faux témoins vérifie où ϕ(n) =#(Z/nZ). {x (Z/nZ) x n 1 2 = x n mod n} 1 ϕ(n) 2, Complexité? Densité? Comparaison avec Miller-Rabin?

29 Bilan On a montré que PRIME est dans co RP. Montrer que PRIME est dans RP a pris beaucoup de temps. Adleman et Huang l ont montré en Rappel : RP co RP est noté ZPP. Quantités pertinentes pour un test de composition : densité µ(n), complexité T (n). Le quotient T (n) log 2 µ(n) est le prix d un bit de sécurité, ou d espérance. On obtient (log n) 2+o(1).

30 Résumé Complexité des algorithmes antiques Distribution des nombres premiers Exponentiation rapide Preuves courtes de l ordre d un élément Preuves courtes de primalité et de composition PRIME est dans NP co NP Ordre exact Test de Pocklington-Lehmer Tests de composition (Miller-Rabin, Solovay-Strassen) PRIME est dans co RP

Quelques tests de primalité

Quelques tests de primalité Quelques tests de primalité J.-M. Couveignes Institut de Mathématiques de Bordeaux & INRIA Bordeaux Sud-Ouest Jean-Marc.Couveignes@u-bordeaux.fr École de printemps C2 Mars 2014 Plan 1 Rappels 2 Agrawal,

Plus en détail

Nombres premiers. Comment reconnaître un nombre premier? Mais...

Nombres premiers. Comment reconnaître un nombre premier? Mais... Introduction Nombres premiers Nombres premiers Rutger Noot IRMA Université de Strasbourg et CNRS Le 19 janvier 2011 IREM Strasbourg Definition Un nombre premier est un entier naturel p > 1 ayant exactement

Plus en détail

Sur l algorithme RSA

Sur l algorithme RSA Sur l algorithme RSA Le RSA a été inventé par Rivest, Shamir et Adleman en 1978. C est l exemple le plus courant de cryptographie asymétrique, toujours considéré comme sûr, avec la technologie actuelle,

Plus en détail

M2 EFM TD MATHÉMATIQUES APPLIQUÉES : ARITHMÉTIQUE CHRISTOPHE RITZENTHALER

M2 EFM TD MATHÉMATIQUES APPLIQUÉES : ARITHMÉTIQUE CHRISTOPHE RITZENTHALER M2 EFM TD MATHÉMATIQUES APPLIQUÉES : ARITHMÉTIQUE CHRISTOPHE RITZENTHALER 1. Euclide, relation de Bézout, gcd Exercice 1. [DKM94,.14] Montrer que 6 n 3 n our tout entier n ositif. Exercice 2. [DKM94,.15]

Plus en détail

Introduction à l étude des Corps Finis

Introduction à l étude des Corps Finis Introduction à l étude des Corps Finis Robert Rolland (Résumé) 1 Introduction La structure de corps fini intervient dans divers domaines des mathématiques, en particulier dans la théorie de Galois sur

Plus en détail

Langage C et aléa, séance 4

Langage C et aléa, séance 4 Langage C et aléa, séance 4 École des Mines de Nancy, séminaire d option Ingénierie Mathématique Frédéric Sur http://www.loria.fr/ sur/enseignement/courscalea/ 1 La bibliothèque GMP Nous allons utiliser

Plus en détail

Arithmétique modulaire et applications à la cryptographie

Arithmétique modulaire et applications à la cryptographie Arithmétique modulaire et applications à la cryptographie Etant donné un entier n, l arithmétique modulo n consiste à faire des calculs sur les restes dans la division euclidienne des entiers par n. Exemples

Plus en détail

Introduction à la cryptographie à clef publique

Introduction à la cryptographie à clef publique {Franck.Leprevost,Sebastien.Varrette,Nicolas.Bernard}@uni.lu Université du Luxembourg, CESI-LACS, Luxembourg Laboratoire ID-IMAG, Grenoble, France Master CSCI - 2005-2006 Outlines 1 Génération de nombres

Plus en détail

Congruences et théorème chinois des restes

Congruences et théorème chinois des restes Congruences et théorème chinois des restes Michel Van Caneghem Février 2003 Turing : des codes secrets aux machines universelles #2 c 2003 MVC Les congruences Développé au début du 19ème siècle par Carl

Plus en détail

Cryptographie à clé publique

Cryptographie à clé publique Les systèmes à clé publique Cryptographie à clé publique Systèmes symétriques : même clé pour le chiffrement et le déchiffrement Problèmes : transmission de la clé 1 clé par destinataire Système asymétrique

Plus en détail

EXERCICES : GROUPES, ANNEAUX, CORPS

EXERCICES : GROUPES, ANNEAUX, CORPS EXERCICES : GROUPES, ANNEAUX, CORPS Dans les exercices suivants (G,.) est un groupe dont l élément neutre est noté e. 1. Soient x, y, z trois éléments de G tels que x 3 = y 2, y 3 = z 2, z 3 = x 2. (a)

Plus en détail

Quelle sécurité? Cryptographie à clé publique. Fonction à sens unique. Clés publiques. ! Notion de trappe. Repose sur la sécurité calculatoire.

Quelle sécurité? Cryptographie à clé publique. Fonction à sens unique. Clés publiques. ! Notion de trappe. Repose sur la sécurité calculatoire. Quelle sécurité? Repose sur la sécurité calculatoire. Signification : cryptanalyste déploie plus d efforts de calcul pour retrouver le clair (ou la clé) à partir du chiffré que la durée de vie du clair.

Plus en détail

Arithmétique. Préambule. 1. Division euclidienne et pgcd. Exo7. 1.1. Divisibilité et division euclidienne

Arithmétique. Préambule. 1. Division euclidienne et pgcd. Exo7. 1.1. Divisibilité et division euclidienne Exo7 Arithmétique Vidéo partie 1. Division euclidienne et pgcd Vidéo partie 2. Théorème de Bézout Vidéo partie 3. Nombres premiers Vidéo partie 4. Congruences Exercices Arithmétique dans Z Préambule Une

Plus en détail

Exo7. Devoir à la maison et sujet de partiel. Énoncés : V. Gritsenko Corrections : J.-F. Barraud. Exercice 1 Soit d non rationel.

Exo7. Devoir à la maison et sujet de partiel. Énoncés : V. Gritsenko Corrections : J.-F. Barraud. Exercice 1 Soit d non rationel. Énoncés : V. Gritsenko Corrections : J.-F. Barraud Exo7 Devoir à la maison et sujet de partiel Exercice 1 Soit d non rationel. Dans l anneau on definit la conjugaison" z : Z[ d] = {n + m d n,m Z} si z

Plus en détail

SUR LA SIGNATURE DE L AUTOMORPHISME DE FROBENIUS. par. Stef Graillat

SUR LA SIGNATURE DE L AUTOMORPHISME DE FROBENIUS. par. Stef Graillat SUR LA SIGNATURE DE L AUTOMORPHISME DE FROBENIUS par Stef Graillat Résumé. Dans cette note, nous calculons la signature de l automorphisme de Frobenius dans un corps fini. Nous serons amené pour cela à

Plus en détail

Cours élémentaire d arithmétique. Valentin Vinoles

Cours élémentaire d arithmétique. Valentin Vinoles Cours élémentaire d arithmétique Valentin Vinoles décembre 2009 Introduction «Wir müssen wissen. Wir werden wissen.» (Nous devons savoir. Nous saurons.) David Hilbert Voici un document présentant les principales

Plus en détail

Chapitre VI - Méthodes de factorisation

Chapitre VI - Méthodes de factorisation Université Pierre et Marie Curie Cours de cryptographie MM067-2012/13 Alain Kraus Chapitre VI - Méthodes de factorisation Le problème de la factorisation des grands entiers est a priori très difficile.

Plus en détail

Exercices - Polynômes : corrigé. Opérations sur les polynômes

Exercices - Polynômes : corrigé. Opérations sur les polynômes Opérations sur les polynômes Exercice 1 - Carré - L1/Math Sup - Si P = Q est le carré d un polynôme, alors Q est nécessairement de degré, et son coefficient dominant est égal à 1. On peut donc écrire Q(X)

Plus en détail

Exo7. Lemme Chinois. Énoncés : V. Gritsenko Corrections : J.-F. Barraud

Exo7. Lemme Chinois. Énoncés : V. Gritsenko Corrections : J.-F. Barraud Énoncés : V. Gritsenko Corrections : J.-F. Barraud Exo7 Lemme Chinois Exercice 1 Soient A un anneau et I et J les idéaux de A tels que I + J = (1). Démontrer que I n + J m = (1) quels que soient entiers

Plus en détail

Chiffrement à clef publique ou asymétrique

Chiffrement à clef publique ou asymétrique Université de Limoges, XLIM-DMI, 123, Av. Albert Thomas 87060 Limoges Cedex France 05.55.45.73.10 pierre-louis.cayrel@xlim.fr Licence professionnelle Administrateur de Réseaux et de Bases de Données IUT

Plus en détail

Algorithmes Probabilistes COMPLEX

Algorithmes Probabilistes COMPLEX Algorithmes Probabilistes COMPLEX Ludovic Perret Université Pierre et Marie Curie (Paris VI) ludovic.perret@lip6.fr Introduction Algorithme Il retourne toujours une solution correcte, et pour une même

Plus en détail

Mathématiques assistées par ordinateur

Mathématiques assistées par ordinateur Mathématiques assistées par ordinateur Chapitre 4 : Racines des polynômes réels et complexes Michael Eisermann Mat249, DLST L2S4, Année 2008-2009 www-fourier.ujf-grenoble.fr/ eiserm/cours # mao Document

Plus en détail

Tests de primalité et cryptographie

Tests de primalité et cryptographie UNIVERSITE D EVRY VAL D ESSONNE Tests de primalité et cryptographie Latifa Elkhati Chargé de TER : Mr.Abdelmajid.BAYAD composé d une courbe de Weierstrass et la fonction (exp(x), cos (y), cos(z) ) Maîtrise

Plus en détail

UNIVERSITÉ DE CERGY Année 2012-2013 U.F.R. Économie & Gestion Licence d Économie et Mathématiques MATH104 : Mathématiques

UNIVERSITÉ DE CERGY Année 2012-2013 U.F.R. Économie & Gestion Licence d Économie et Mathématiques MATH104 : Mathématiques 1 UNIVERSITÉ DE CERGY Année 2012-201 U.F.R. Économie & Gestion Licence d Économie et Mathématiques MATH104 : Mathématiques Chapitre III : Polynômes 1 Fonctions polynômes & polynômes Définition 1. Soit

Plus en détail

Arithmétique. 2 ième année de DUT Informatique. Version 2.1 3 février 2009. Ph. Roux

Arithmétique. 2 ième année de DUT Informatique. Version 2.1 3 février 2009. Ph. Roux Arithmétique 2 ième année de DUT Informatique Version 2.1 3 février 2009 Ph. Roux 2002-2009 Table des matières Table des matières 2 1 cours magistral 3 1.1 Divisibilité.................................

Plus en détail

Structures algébriques et algorithmes

Structures algébriques et algorithmes Univ. Lille 1 - Master Info 2011-2012 Principes et Algorithmes de Cryptographie Table des matières Structures algébriques et algorithmes 1 Entiers et opérations sur les entiers 2 1.1 Taille d'un entier...........

Plus en détail

Cryptographie et fonctions à sens unique

Cryptographie et fonctions à sens unique Cryptographie et fonctions à sens unique Pierre Rouchon Centre Automatique et Systèmes Mines ParisTech pierre.rouchon@mines-paristech.fr Octobre 2012 P.Rouchon (Mines ParisTech) Cryptographie et fonctions

Plus en détail

CRYPTOGRAPHIE. Chiffrement asymétrique. E. Bresson. Emmanuel.Bresson@sgdn.gouv.fr. SGDN/DCSSI Laboratoire de cryptographie

CRYPTOGRAPHIE. Chiffrement asymétrique. E. Bresson. Emmanuel.Bresson@sgdn.gouv.fr. SGDN/DCSSI Laboratoire de cryptographie CRYPTOGRAPHIE Chiffrement asymétrique E. Bresson SGDN/DCSSI Laboratoire de cryptographie Emmanuel.Bresson@sgdn.gouv.fr I. CHIFFREMENT ASYMÉTRIQUE I.1. CHIFFREMENT À CLÉ PUBLIQUE Organisation de la section

Plus en détail

Arithmétique modulaire pour la cryptographie

Arithmétique modulaire pour la cryptographie Académie de Montpellier U n i v e r s i t é M o n t p e l l i e r I I Sciences et Techniques du Languedoc Thèse présentée au Laboratoire d Informatique de Robotique et de Microélectronique de Montpellier

Plus en détail

Introduction à la Cryptologie

Introduction à la Cryptologie Introduction à la Cryptologie Chapitre 11 : Classification et construction des corps finis Michael Eisermann (Institut Fourier, UJF Grenoble) Année 2008-2009 IF / IMAG, Master 1, S1-S2 document mis à jour

Plus en détail

Cours de Terminale S - Nombres remarquables dont les nombres premiers. E. Dostal

Cours de Terminale S - Nombres remarquables dont les nombres premiers. E. Dostal Cours de Terminale S - Nombres remarquables dont les nombres premiers E. Dostal juin 2015 Table des matières 2 Nombres remarquables dont les nombres premiers 2 2.1 Introduction............................................

Plus en détail

Que faire en algorithmique en classe de seconde? ElHassan FADILI Lycée Salvador Allende

Que faire en algorithmique en classe de seconde? ElHassan FADILI Lycée Salvador Allende Que faire en algorithmique en classe de seconde? BEGIN Que dit le programme? Algorithmique (objectifs pour le lycée) La démarche algorithmique est, depuis les origines, une composante essentielle de l

Plus en détail

Polynômes. Motivation. 1. Définitions. Exo7. 1.1. Définitions

Polynômes. Motivation. 1. Définitions. Exo7. 1.1. Définitions Exo7 Polynômes Vidéo partie 1. Définitions Vidéo partie 2. Arithmétique des polynômes Vidéo partie 3. Racine d'un polynôme, factorisation Vidéo partie 4. Fractions rationnelles Exercices Polynômes Exercices

Plus en détail

Fiche n 2: Morphisme, sous-groupe distingué, quotient

Fiche n 2: Morphisme, sous-groupe distingué, quotient Université Lille 1 Algèbre 2010/11 M51.MIMP Fiche n 2: Morphisme, sous-groupe distingué, quotient Exercice 1 Soient G, G deux groupes et f un homomorphisme de G dans G. Montrer que si A G, alors f( A )

Plus en détail

Programme de mathématiques TSI1

Programme de mathématiques TSI1 Programme de mathématiques TSI1 1. PROGRAMME DE DÉBUT D ANNÉE I. Nombres complexes et géométrie élémentaire 1. Nombres complexes 1 2. Géométrie élémentaire du plan 3 3. Géométrie élémentaire de l espace

Plus en détail

L essentiel du cours 2014/2015 Terminale S Spécialité Maths, Lycée Français de Valence

L essentiel du cours 2014/2015 Terminale S Spécialité Maths, Lycée Français de Valence L essentiel du cours 2014/2015 Terminale S Spécialité Maths, Lycée Français de Valence Sommaire 1. Arithmétique 2 1.1. Division euclidienne......................... 2 1.2. Congruences.............................

Plus en détail

Cours d arithmétique Première partie

Cours d arithmétique Première partie Cours d arithmétique Première partie Pierre Bornsztein Xavier Caruso Pierre Nolin Mehdi Tibouchi Décembre 2004 Ce document est la première partie d un cours d arithmétique écrit pour les élèves préparant

Plus en détail

Factorisation d entiers (première partie)

Factorisation d entiers (première partie) Factorisation d entiers ÉCOLE DE THEORIE DES NOMBRES 0 Factorisation d entiers (première partie) Francesco Pappalardi Théorie des nombres et algorithmique 22 novembre, Bamako (Mali) Factorisation d entiers

Plus en détail

Chaînes d addition Euclidiennes Appliquées à la Multiplication de Points sur les Courbes Elliptiques

Chaînes d addition Euclidiennes Appliquées à la Multiplication de Points sur les Courbes Elliptiques Chaînes d addition Euclidiennes Appliquées à la Multiplication de Points sur les Courbes Elliptiques Nicolas Méloni ARITH-LIRMM, Université Montpellier2, France I3M, Université Montpellier2, France 23

Plus en détail

Seul document autorisé : le polycopié du cours Examen du 3 juin 2009 Durée : 3 heures

Seul document autorisé : le polycopié du cours Examen du 3 juin 2009 Durée : 3 heures Université P. et M. Curie (Paris VI) Master de sciences et technologies ère année - applications Spécialité : Mathématiques Fondamentales code UE : MMAT4020 Mention : Mathématiques et MO : (2 ECTS) code

Plus en détail

CHAPITRE 6 : Signature, identi cation.

CHAPITRE 6 : Signature, identi cation. CHAPITRE 6 : Signature, identi cation. La cryptographie ne se limite plus à l art de chi rer des messages, on va considérer dans ce chapitre de nouvelles tâches qu il est possible de réaliser. La signature

Plus en détail

La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1

La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1 La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1 La licence Mathématiques et Economie-MASS de l Université des Sciences Sociales de Toulouse propose sur les trois

Plus en détail

1 Exercices à savoir faire

1 Exercices à savoir faire Licence 1 Mathématiques 2013 2014 Algèbre et Arithmétique 1 Feuille n 5 : Congruences, indicatrice d Euler, RSA 1 Exercices à savoir faire Exercice 1 1 Trouver tous les couples (x, y) Z 2 tels que 3x +

Plus en détail

Equations polynomiales modulaires et Conjecture de Goldbach

Equations polynomiales modulaires et Conjecture de Goldbach Equations polynomiales modulaires et Conjecture de Goldbach Denise Vella-Chemla 5/2/2013 La conjecture de Goldbach stipule que tout nombre pair supérieur à 2 est la somme de deux nombres premiers. 1 Modéliser

Plus en détail

Exercices à savoir faire

Exercices à savoir faire Licence 1 Mathématiques 2014 2015 Algèbre et Arithmétique 1 Feuille n 6 : équations aux congruences, Z/nZ Exercices à savoir faire Exercice 1 1. Trouver tous les couples (x, y) Z 2 tels que 3x + 7y = 5.

Plus en détail

Groupe symétrique. Chapitre II. 1 Définitions et généralités

Groupe symétrique. Chapitre II. 1 Définitions et généralités Chapitre II Groupe symétrique 1 Définitions et généralités Définition. Soient n et X l ensemble 1,..., n. On appelle permutation de X toute application bijective f : X X. On note S n l ensemble des permutations

Plus en détail

Nombres ayant même reste dans la division euclidienne par un entier non nul notion de congruence - Compatibilité avec les opérations usuelles.

Nombres ayant même reste dans la division euclidienne par un entier non nul notion de congruence - Compatibilité avec les opérations usuelles. ARITHMETIQUE Partie des mathématiques étudiant les propriétés élémentaires des nombres entiers. Introduction : Le développement de l informatique et plus généralement de ce qu on appelle «le numérique»,

Plus en détail

Université Joseph Fourier MAT231 2008-2009

Université Joseph Fourier MAT231 2008-2009 Université Joseph Fourier MAT231 2008-2009 mat231-exo-03.tex (29 septembre 2008) Feuille d exercices n o 3 Exercice 3.1 Soit K un corps commutatif et soit {P 0, P 1,... P n } une famille de polynômes de

Plus en détail

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que Introduction. On suppose connus les ensembles N (des entiers naturels), Z des entiers relatifs et Q (des nombres rationnels). On s est rendu compte, depuis l antiquité, que l on ne peut pas tout mesurer

Plus en détail

Cours arithmétique et groupes. Licence première année, premier semestre

Cours arithmétique et groupes. Licence première année, premier semestre Cours arithmétique et groupes. Licence première année, premier semestre Raphaël Danchin, Rejeb Hadiji, Stéphane Jaffard, Eva Löcherbach, Jacques Printems, Stéphane Seuret Année 2006-2007 2 Table des matières

Plus en détail

PROGRAMME DE MATHEMATIQUES

PROGRAMME DE MATHEMATIQUES MINISTERE DE L EDUCATION NATIONALE -------------- DIRECTION DE LA PEDAGOGIE ET DE LA FORMATION CONTINUE -------------- COORDINATION NATIONALE DE MATHEMATIQUES REPUBLIQUE DE COTE D IVOIRE UNION-DISCIPLINE-TRAVAIL

Plus en détail

MULTIPLICATION RAPIDE : KARATSUBA ET FFT

MULTIPLICATION RAPIDE : KARATSUBA ET FFT MULTIPLICATION RAPIDE : KARATSUBA ET FFT 1. Introduction La multiplication est une opération élémentaire qu on utilise évidemment très souvent, et la rapidité des nombreux algorithmes qui l utilisent dépend

Plus en détail

La fonction zêta de Riemann

La fonction zêta de Riemann Sébastien Godillon Les nombres premiers Problème de répartition Arithmétique des entiers naturels 2 + 5 = 7 7 6 = 42 Les nombres premiers Problème de répartition Arithmétique des entiers naturels 7 6 =

Plus en détail

Cours de mathématiques ECS 1 ère année. BÉGYN Arnaud

Cours de mathématiques ECS 1 ère année. BÉGYN Arnaud Cours de mathématiques ECS 1 ère année BÉGYN Arnaud 12/11/2012 2 Introduction Ce manuscrit regroupe des notes de cours de mathématiques pour une classe d ECS première année. J ai écris ces notes lors de

Plus en détail

Master-1 de mathématiques (MAlg 1), 2004/2005 module MAlg 1 "Algèbre" (Master-1, MAT 401i)

Master-1 de mathématiques (MAlg 1), 2004/2005 module MAlg 1 Algèbre (Master-1, MAT 401i) Master-1 de mathématiques (MAlg 1), 2004/2005 module MAlg 1 "Algèbre" (Master-1, MAT 401i) A. A. Pantchichkine Institut Fourier, B.P.74, 38402 St. Martin d Hères, FRANCE e-mail : panchish@mozart.ujf-grenoble.fr,

Plus en détail

STRUCTURES ALGÉBRIQUES FONDAMENTALES

STRUCTURES ALGÉBRIQUES FONDAMENTALES STRUCTURES ALGÉBRIQUES FONDAMENTALES A. BOUARICH 1. Notion de relations binaires 1.1. Relation binaire d équivalence sur un ensemble. Définition 1. Soit A un ensemble non vide. Une fonction propositionnelle

Plus en détail

Table des matières. I Mise à niveau 11. Préface

Table des matières. I Mise à niveau 11. Préface Table des matières Préface v I Mise à niveau 11 1 Bases du calcul commercial 13 1.1 Alphabet grec...................................... 13 1.2 Symboles mathématiques............................... 14 1.3

Plus en détail

Eléments de théorie des corps finis.

Eléments de théorie des corps finis. Université de Rouen Agrégation de mathématiques 2005-2006 Eléments de théorie des corps finis. Application : les codes correcteurs. Nicolas Bruyère Table des matières I Les corps finis 1 1 Corps finis

Plus en détail

COURS DE SPÉCIALITÉ MATHÉMATIQUES Terminale S

COURS DE SPÉCIALITÉ MATHÉMATIQUES Terminale S COURS DE SPÉCIALITÉ MATHÉMATIQUES Terminale S Valère BONNET (postmaster@mathsaulycee.info) 1 er novembre 2006 Lycée PONTUS DE TYARD 13 rue des Gaillardons 71100 CHALON SUR SAÔNE Tél. : (33) 03 85 46 85

Plus en détail

Structures Algébriques Groupes : exercices

Structures Algébriques Groupes : exercices Institut Galilée Université Paris XIII Structures Algébriques Groupes : exercices L3 semestre 5 2012-2013 Exercice 1 Soit (G, ) un ensemble muni d une loi de composition associative. Montrer que G est

Plus en détail

Mathématique - Cours Filière STAV 2014-2015 Centre de Formation aux Métier de la Montagne Marine Estorge

Mathématique - Cours Filière STAV 2014-2015 Centre de Formation aux Métier de la Montagne Marine Estorge Mathématique - Cours Filière STAV 2014-2015 Centre de Formation aux Métier de la Montagne Marine Estorge Le programme se compose ainsi : Rappels collège/seconde Partie STAV 1/3 Partie STAV 2/3 Partie STAV

Plus en détail

Cours de spécialité mathématiques en T ale S. Vincent PANTALONI

Cours de spécialité mathématiques en T ale S. Vincent PANTALONI Cours de spécialité mathématiques en T ale S Vincent PANTALONI VERSION DU 7 DÉCEMBRE 2010 II Mathzani VERSION DU 7 DÉCEMBRE 2010 Table des matières A Arithmétique 1 I Divisibilité et congruences dans Z

Plus en détail

Olivier Debarre ALGÈBRE 2 ÉCOLE NORMALE SUPÉRIEURE

Olivier Debarre ALGÈBRE 2 ÉCOLE NORMALE SUPÉRIEURE Olivier Debarre ALGÈBRE 2 ÉCOLE NORMALE SUPÉRIEURE 2012 2013 Olivier Debarre ALGÈBRE 2 ÉCOLE NORMALE SUPÉRIEURE 2012 2013 Olivier Debarre TABLE DES MATIÈRES I. Extensions de corps......................................................................

Plus en détail

J. Sauloy 1. 19 novembre 2012

J. Sauloy 1. 19 novembre 2012 ALGÈBRE (COURS DE L3, PREMIER SEMESTRE 2012/2013) J. Sauloy 1 19 novembre 2012 1. Institut mathématique de Toulouse et U.F.R. M.I.G., Université Paul Sabatier, 118, route de Narbonne, 31062 Toulouse CEDEX

Plus en détail

CH.5 SYSTÈMES À CLÉ PUBLIQUE

CH.5 SYSTÈMES À CLÉ PUBLIQUE CH.5 SYSTÈMES À CLÉ PUBLIQUE 5.1 Les clés publiques : RSA 5.2 Les clés publiques : le sac à dos 5.3 Les clés publiques : le logarithme discret 5.4 L'authentification et la signature électronique 5.5 Les

Plus en détail

Algèbre Année 2007-2008 ENS Cachan Vincent Beck. Théorème de Cayley

Algèbre Année 2007-2008 ENS Cachan Vincent Beck. Théorème de Cayley Algèbre Année 2007-2008 ENS Cachan Vincent Beck Théorème de Cayley Le (ou plutôt un des nombreux) théorème(s) de Cayley assure que tout groupe G s identifie de façon naturelle à un sous-groupe du groupe

Plus en détail

Tous droits de traduction, de reproduction et d adaptation réservés pour tous pays.

Tous droits de traduction, de reproduction et d adaptation réservés pour tous pays. Maquette de couverture : Graphir Maquette intérieure : Frédéric Jély Mise en page : CMB Graphic Dessins techniques : Gilles Poing Hachette Livre 008, 43, quai de Grenelle, 790 Paris Cedex ISBN : 978--0-8-

Plus en détail

Université de Cergy-Pontoise Département de Mathématiques L1 MPI - S1. Cours de Mathématiques 1

Université de Cergy-Pontoise Département de Mathématiques L1 MPI - S1. Cours de Mathématiques 1 Université de Cergy-Pontoise Département de Mathématiques L1 MPI - S1 Cours de Mathématiques 1 Table des matières 1 Un peu de formalisme mathématique 7 1.1 Rudiments de logique........................................

Plus en détail

Utiliser les propriétés Savoir réduire un radical savoir +,-,x,: Utiliser les propriétés des puissances Calculer avec des puissances

Utiliser les propriétés Savoir réduire un radical savoir +,-,x,: Utiliser les propriétés des puissances Calculer avec des puissances ARITHMETIQUE 1 C B A Numération Ecrire en lettres et en chiffres Poser des questions fermées autour d un document simple (message, consigne, planning ) Connaître le système décimal Déterminer la position

Plus en détail

1 Questions de coût (de la vie?)

1 Questions de coût (de la vie?) 1 Université Paul Sabatier Année 2009-2010 Préparation à l'agrégation Arithmétique des entiers et des polynômes Option C emmanuel hallouin@univ-tlse2.fr http://www.math.univ-toulouse.fr/ hallouin/eh-agreg.html

Plus en détail

Cahier de textes Page 1 sur 9. Cahier de textes

Cahier de textes Page 1 sur 9. Cahier de textes Cahier de textes Page 1 sur 9 Cahier de textes Jeudi 04/09/2014 9h-12h et 13h30-16h30 : Cours sur la logique : - Conjonction, disjonction, implication, équivalence - Quelques formules. - Quantificateurs

Plus en détail

Cours et activités en arithmétique pour les classes terminales - 3 e édition

Cours et activités en arithmétique pour les classes terminales - 3 e édition Cours et activités en arithmétique pour les classes terminales - 3 e édition Groupe de travail sur la liaison Lycées-Universités IREM de Marseille 2 Table des matières 1 Introduction 7 2 Un projet de cours

Plus en détail

Terminale S Spécialité Cours : DIVISIBILITE ET CONGRUENCES DANS.

Terminale S Spécialité Cours : DIVISIBILITE ET CONGRUENCES DANS. A la fin de ce chapitre vous devez être capable de : connaître différents procédés pour établir une divisibilité : utilisation de la définition, utilisation d identités remarquables, disjonction des cas,

Plus en détail

Cours d algebre pour la licence et le Capes

Cours d algebre pour la licence et le Capes Cours d algebre pour la licence et le Capes Jean-Étienne ROMBALDI 6 juillet 007 ii Table des matières Avant-propos Notation v vii 1 Éléments de logique et de théorie des ensembles 1 11 Quelques notions

Plus en détail

LIVRET DE MATHEMATIQUES ENTREE EN PREMIERE S Institut Notre-Dame (Saint Germain en Laye) Année 2015-2016

LIVRET DE MATHEMATIQUES ENTREE EN PREMIERE S Institut Notre-Dame (Saint Germain en Laye) Année 2015-2016 LIVRET DE MATHEMATIQUES ENTREE EN PREMIERE S Institut Notre-Dame (Saint Germain en Laye) Année 015-016 Pourquoi ce livret? Afin de mieux préparer cette rentrée, ce livret reprend un ensemble de notions

Plus en détail

1.1 Définitions... 2 1.2 Opérations élémentaires... 2 1.3 Systèmes échelonnés et triangulaires... 3

1.1 Définitions... 2 1.2 Opérations élémentaires... 2 1.3 Systèmes échelonnés et triangulaires... 3 Chapitre 5 Systèmes linéaires 1 Généralités sur les systèmes linéaires 2 11 Définitions 2 12 Opérations élémentaires 2 13 Systèmes échelonnés et triangulaires 3 2 Résolution des systèmes linéaires 3 21

Plus en détail

Épreuve pratique de mathématiques Printemps 2009. Descriptifs. (Page vide)

Épreuve pratique de mathématiques Printemps 2009. Descriptifs. (Page vide) Épreuve pratique de mathématiques Printemps 2009 Descriptifs (Page vide) Sujet 001 Épreuve pratique de mathématiques Descriptif Étude d une fonction dépendant d un paramètre Étant donné une fonction dépendant

Plus en détail

Mathématiques MPSI. Pierron Théo. ENS Ker Lann

Mathématiques MPSI. Pierron Théo. ENS Ker Lann Mathématiques MPSI Pierron Théo ENS Ker Lann 2 Table des matières I Algèbre 1 1 Ensembles 3 1.1 Vocabulaire général........................ 3 1.2 Opérations sur les parties d un ensemble............ 4

Plus en détail

Cahier de textes Mathématiques

Cahier de textes Mathématiques Cahier de textes Mathématiques Mercredi 6 janvier : cours 2h Début du chapitre 12 - Convergence de suites réelles : 12.1 Convergence de suites : suites convergentes, limites de suites convergentes, unicité

Plus en détail

Fondamentaux pour les Mathématiques et l Informatique :

Fondamentaux pour les Mathématiques et l Informatique : Université Bordeaux 1 Licence de Sciences, Technologies, Santé Mathématiques, Informatique, Sciences de la Matière et Ingénierie M1MI1002 Fondamentaux pour les Mathématiques et l Informatique Fondamentaux

Plus en détail

P (X) = (X a) 2 T (X)

P (X) = (X a) 2 T (X) Université Bordeaux I - année 00-0 MHT0 Structures Algébriques Correction du devoir maison Exercice. Soit P (X) Q[X]\Q.. Soit D(X) := pgcd(p (X), P (X)). a) Montrer que si deg D alors il existe α C tel

Plus en détail

Cryptographie RSA. Introduction Opérations Attaques. Cryptographie RSA NGUYEN Tuong Lan - LIU Yi 1

Cryptographie RSA. Introduction Opérations Attaques. Cryptographie RSA NGUYEN Tuong Lan - LIU Yi 1 Cryptographie RSA Introduction Opérations Attaques Cryptographie RSA NGUYEN Tuong Lan - LIU Yi 1 Introduction Historique: Rivest Shamir Adleman ou RSA est un algorithme asymétrique de cryptographie à clé

Plus en détail

Nombre maximum de points rationnels d une courbe sur un corps fini.

Nombre maximum de points rationnels d une courbe sur un corps fini. Séminaire de Théorie des Nombres de Bordeaux Le 07 Juin 1991. Marc Perret Equipe Arithmétique et Théorie de l Information C.I.R.M., Luminy, Case 916 13288 - Marseille Cedex 9. Nombre maximum de points

Plus en détail

L algorithme AKS ou Les nombres premiers sont de classe P

L algorithme AKS ou Les nombres premiers sont de classe P L algorithme AKS ou Les nombres premiers sont de classe P Julien Élie «Le plus beau résultat mathématique des dix dernières années.» Shafi Goldwasser En août 2002, le professeur Agrawal et deux de ses

Plus en détail

I OBJECTIFS DE FORMATION

I OBJECTIFS DE FORMATION CLASSE DE DEUXÈME ANNÉE MP OBJECTFS DE FORMATON ET PROGRAMME DE MATHÉMATQUES OBJECTFS DE FORMATON 1) Objectifs généraux de la formation Dans la filière Mathématiques et Physique, les mathématiques constituent

Plus en détail

Moments des variables aléatoires réelles

Moments des variables aléatoires réelles Chapter 6 Moments des variables aléatoires réelles Sommaire 6.1 Espérance des variables aléatoires réelles................................ 46 6.1.1 Définition et calcul........................................

Plus en détail

Devoir surveillé n 1 : correction

Devoir surveillé n 1 : correction E1A-E1B 013-01 Devoir surveillé n 1 : correction Samedi 8 septembre Durée : 3 heures. La calculatrice est interdite. On attachera une grande importance à la qualité de la rédaction. Les questions du début

Plus en détail

Extrait du poly de Stage de Grésillon 1, août 2010

Extrait du poly de Stage de Grésillon 1, août 2010 MINI-COURS SUR LES POLYNÔMES À UNE VARIABLE Extrait du poly de Stage de Grésillon 1, août 2010 Table des matières I Opérations sur les polynômes 3 II Division euclidienne et racines 5 1 Division euclidienne

Plus en détail

Cours d analyse 1 Licence 1er semestre. Guy Laffaille Christian Pauly

Cours d analyse 1 Licence 1er semestre. Guy Laffaille Christian Pauly Cours d analyse 1 Licence 1er semestre Guy Laffaille Christian Pauly janvier 006 Table des matières 1 Les nombres réels et complexes 5 1.1 Nombres rationnels................................... 5 1. Nombres

Plus en détail

avec des nombres entiers

avec des nombres entiers Calculer avec des nombres entiers Effectuez les calculs suivants.. + 9 + 9. Calculez. 9 9 Calculez le quotient et le rest. : : : : 0 :. : : 9 : : 9 0 : 0. 9 9 0 9. Calculez. 9 0 9. : : 0 : 9 : :. : : 0

Plus en détail

THEORIE DES CORPS Cours de mathématiques pour Licence L3 et Master M1 Cours et Exercices corrigés 1

THEORIE DES CORPS Cours de mathématiques pour Licence L3 et Master M1 Cours et Exercices corrigés 1 THEORIE DES CORPS Cours de mathématiques pour Licence L3 et Master M1 Cours et Exercices corrigés 1 Michel Goze, Elisabeth Remm 1. Edité par Ramm Algebra Center 2 Introduction Ce cours s adresse aux étudiants

Plus en détail

Programme de la classe de première année MPSI

Programme de la classe de première année MPSI Objectifs Programme de la classe de première année MPSI I - Introduction à l analyse L objectif de cette partie est d amener les étudiants vers des problèmes effectifs d analyse élémentaire, d introduire

Plus en détail

2 30 402 457 1 est le plus grand nombre premier connu en 2005. Son ordre de grandeur est de :

2 30 402 457 1 est le plus grand nombre premier connu en 2005. Son ordre de grandeur est de : ARITHMETIQUE Emilien Suquet, suquet@automaths.com I Introduction aux différents ensembles de nombres L'ensemble de tous les nombres se nomme l'ensemble des réels. On le note IR (de real en allemand) On

Plus en détail

Cours de maîtrise de mathématiques : Théorie algébrique des nombres

Cours de maîtrise de mathématiques : Théorie algébrique des nombres Cours de maîtrise de mathématiques : Théorie algébrique des nombres Bas Edixhoven, Université de Rennes 1 Laurent Moret-Bailly, Université de Rennes 1 Dernière révision : septembre 2004 Ce texte est une

Plus en détail

Notion de complexité

Notion de complexité 1 de 27 Algorithmique Notion de complexité Florent Hivert Mél : Florent.Hivert@lri.fr Adresse universelle : http://www-igm.univ-mlv.fr/ hivert Outils mathématiques 2 de 27 Outils mathématiques : analyse

Plus en détail

Programme de mathématiques pour la classe de terminale S. Année scolaire 2011-2012

Programme de mathématiques pour la classe de terminale S. Année scolaire 2011-2012 Programme de mathématiques pour la classe de terminale S Année scolaire 2011-2012 I. INTRODUCTION Le programme de terminale S s inscrit dans la continuité de celui de première et il en reprend de ce fait

Plus en détail

Introduction à l algèbre pour les Codes cycliques

Introduction à l algèbre pour les Codes cycliques Introduction à l algèbre pour les Codes cycliques A. Bonnecaze 2006-2007 Contents 1 Notes sur ce support de cours 2 2 Rappels algébriques 3 2.1 Groupes................................................ 3

Plus en détail

Raisonnement par récurrence Suites numériques

Raisonnement par récurrence Suites numériques Chapitre 1 Raisonnement par récurrence Suites numériques Terminale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Raisonnement par récurrence. Limite finie ou infinie d une suite.

Plus en détail

Introduction des nombres complexes en TS

Introduction des nombres complexes en TS Introduction des nombres complexes en TS 1 À la découverte de nouveaux nombres Résoudre : dans, puis dans, l équation 5 + x = 0 ; dans, puis dans, l équation 3x + 2 = 0 ; dans, puis dans, l équation x

Plus en détail

Université Paris 6 Année universitaire 2011-2012 Cours Groupes finis et leurs représentations Corrigé de l examen terminal du 21 mai 2012.

Université Paris 6 Année universitaire 2011-2012 Cours Groupes finis et leurs représentations Corrigé de l examen terminal du 21 mai 2012. Université Paris 6 Année universitaire 011-01 Cours Groupes finis et leurs représentations Corrigé de l examen terminal du 1 mai 01 Exercice 1 Questions de cours Soit G un groupe fini et soit p un nombre

Plus en détail