Méthode de Monte Carlo pour le calcul d'options

Dimension: px
Commencer à balayer dès la page:

Download "Méthode de Monte Carlo pour le calcul d'options"

Transcription

1 Méthode de Monte Carlo pour le calcul d'options LADIAS Elie, WANG Shuai 7 juin

2 Table des matières 1 Méthode de Monte-Carlo et Calcul d'intégrales Description de la méthode Construction de l'intervalle de conance Exemple : Calcul du volume de la sphère unité dans R Méthodes de réduction de variance Méthode de l'échantillonnage préférentiel Variables de contrôle Variables antithétiques Application Application : Calcul du prix d'une option en nance Les options Pricing d'une option Option panier Annexe Code R : volume de la sphère Code R : volume de la sphère avec échantillonnage préférentiel Code R : calcul des diérents calls dans la premiere partie Code R : Calcul du call européens dans la troisième partie Code R : Calcul du call sur les options paniers

3 La naissance de la méthode Monte-Carlo remonte à l'expérience de l'aiguille de Buon en Le comte Georges-Louis Leclerc de Buon réussit à estimer π en lançant de nombreuses fois une aiguille sur son parquet. Un travail long et fastidieux, c'est pourquoi les méthodes Monte-Carlo se sont réellement développées avec l'apparition des premiers ordinateurs qui donnaient la possibilité de simuler un grand nombre d'expériences aléatoires à moindre coût. Ainsi, c'est sous l'impulsion de John Von Neumann et Stanislas Ulam, lors de la seconde guerre mondiale, que les méthodes de Monte-Carlo ont été vulgarisées. Ces deux mathématiciens ont utilisé ces méthodes probabilistes pour résoudre des équations aux dérivées partielles dans des recherches sur la fabrication de la bombe atomique. Nous nous intéressons à ces méthodes car en nance, elles permettent de calculer avec une certaine précision le prix de produit dérivée que l'on ne peut pas calculer analytiquement. Ces méthodes ont de plus l'avantage d'avoir une vitesse de convergence de K/ n, insensible à la dimension. Dans un premier temps, on expliquera le fonctionnement des méthodes Monte- Carlo(MC) pour le calcul d'intégrale, puis on verra comment optimiser nos calculs avec diérentes méthodes de réduction de variance et enn on verra les applications de ces méthodes en nance. 3

4 1 Méthode de Monte-Carlo et Calcul d'intégrales 1.1 Description de la méthode La méthode Monte-Carlo repose sur un théorème fondamental de probabilités, la loi forte des grands nombres. Théorème 1. Soit (X i ) i 1 une suite de variables aléatoires indépendantes suivant toutes la même loi qu'une variable aléatoire X. On suppose que E( X ) < +. Alors pour tout ω : P { X 1 (ω) + + X n (ω) lim = E(X) } = 1 n n L'idée de la méthode Monte-Carlo est de mettre la quantité recherchée sous la forme d'une espérance de variable aléatoire puis d'approximer cette quantité en utilisant la loi forte des grands nombres. Nous pouvons résumer cette méthode en trois étapes, premièrement nous mettons notre intégrale sous la forme d'une espérance de variable aléatoire. Ensuite, nous devons calculer une quantité de la forme E(X) où X est une variables aléatoires. Nous supposons que l'on sait simuler une suite de variable aléatoire (X i ) i 1 indépendante et identiquement distribuée de loi X. Nous simulons donc cette suite, puis nous approximons E(X) par : 1 N (X X N ) E(X) Par la loi forte des grands nombres nous pouvons dire que notre approximation nira par être égale à notre espérance. Cependant pour un nombre de simulations N ni nous avons aucune idée de la qualité de notre approximation. C'est pourquoi nous allons voir comment construire un intervalle de conance de niveau α que nous donnerons en plus de notre estimation. C'està-dire que nous donnerons en plus de notre valeur un intervalle où la valeur réel a α% de chance de se trouver. Nous allons voir comment construire cette intervalle. 1.2 Construction de l'intervalle de conance. La construction de l'intervalle de conance repose sur un deuxième théorème fondamental de probabilités, le théorème central limite. Théorème 2. Soit (X i ) i 1 une suite de variables aléatoires indépendantes identiquement distribuées telles que E(X1 2) < +. Notons σ2 la variance de X 1 Alors n ( σ ɛ n) N(0, 1) n 4

5 où ɛ n est l'erreur commise, c'est-à-dire Nous avons Nous voulons ɛ n = E(X) 1 n (X X n ) n σ (ɛ n) n N(0, 1) P [ɛ n < a] = 1 α Nous déduisons que a = u 1 α/2 est le fractile d'ordre 1 α/2 de la loi normale centrée réduite. Ainsi, nous pouvons écrire que u 1 α/2 n σ ɛ n u 1 α/2 X n u 1 α/2 E(X) X n + u 1 α/2 Finalement nous obtenons un intervalle de conance de la forme [ Xn u 1 α/2 σ n ; X n + u 1 α/2 σ n ] σ étant dans la plupart des cas inconnu nous utiliserons l'éstimateur sans biais de la variance V = 1 n (X i X N 1 n ) 2 i=1 Avec V, on peut maintenant obtenir un intervalle de conance de bonne qualité qui sera de la forme [ Xn u 1 α/2 V n ; X n + u 1 α/2 V n ] 1.3 Exemple : Calcul du volume de la sphère unité dans R 6 Nous cherchons à calculer le volume de la sphère de rayon 1 et de centre O R 6 dans R 6 par la méthode Mone-Carlo. Nous pouvons bien entendu calculer ce volume analytiquement, il est égal à V = π 3 /6. Nous allons noter S la sphère, alors : S = {x R 6 ; x 2 < 1} La quantité que nous cherchons à calculer est donc V ol(s) = dx = S R 6 1l { x 2 <1}dx 5

6 Figure 1 Volume de la sphère par Monte-Carlo Volume Volume de la boule Estimation par Monte Carlo Nombre de simulations Mettons cette intégrale sous la forme d'une espérance, pour cela on remarque que S est inclus dans l'hypercube de dimension 6 que nous noterons Q, on a donc : V ol(s) = 1l { x 2 <1}dx Q Notons dp Q (x) la probabilité uniforme sur Q, on a dp Q (x) = dx/64. On peut donc maintenant écrire V ol(s) = 64 1l { x 2 <1}dP Q (x) = 64E Q [1l { X 2 <1}] Q Notre intégrale est maintenant sous la forme d'une espérance. Nous allons maintenant simuler une suite (X i ) i=1...n de N variables uniformes sur Q puis notre volume sera donné en multipliant par 64 la moyenne des X i. Pour calculer notre volume nous avons écrit l'algorithme suivant sur R. (i) Simulation N variables aléatoire de loi uniforme sur Q: N=1000; X=rep(1,N); Y=matrix(runif(6*N), ncol=n); (ii) Simulation de l'indicatrice: Z=colSums(Y)); X[Z>1]=0; (iii) Le Volume de la sphère est donné par (64*somme)/N: Xb=cumsum(X)/(1:N); Ec=64*Xb; On obtient la gure 1. Nous voyons que l'approximation n'est pas très précise, on se rend compte de l'importance de rajouter l'intervalle de conance. Nous allons le rajouter sur notre gure, on choisira 0.95 comme niveau de conance. Nous ajoutons quelques lignes de code à notre algorithme. 6

7 (iv) Calcul de la variance: Nmoinsun=(1:N)-1; Nmoisun=[1]=1; V=rep(NA,N); V=64^2*cumsum((X-Xb)^2)/Nmoinsun; (v) Calcul de l'intervalle de confiance: Iinf=(Ec-qnorm(0.975, mean=0, sd=1)*sqrt(v/(1:n))); Isup=(Ec+qnorm(0.975, mean=0, sd=1)*sqrt(v/(1:n))); Figure 2 Volume de la sphère par Monte-Carlo et intervalle de conance Volume Volume de la boule Estimation par Monte Carlo Intervalle de confiance Nombre de simulations En plus de nous apporter des informations précieuses sur la précision de nos calculs, l'intervalle de conance nous donne la vitesse de convergence de la méthode. Ici, elle est de l'ordre de σ/ n. Dans la deuxième partie nous verrons comment diminuer cette vitesse de convergence à l'aide de diérentes méthodes de réduction de variance. 7

8 2 Méthodes de réduction de variance Nous avons vu que la vitesse de convergence de notre méthode dépend directement de σ 2, la variance de la quantité que nous voulons calculer. An d'améliorer cette vitesse de convergence, nous allons appliquer des méthodes dites de réduction de variance qui permettent de réduire la valeur de σ 2. On cherche toujours à calculer E(X), l'idée générale est de trouver une autre représentation sous la forme d'espérance de la quantité à calculer telle que la variance de cette nouvelle quantité soit inférieure. C'est-à-dire chercher Y tel que : { E[Y ] = E[X] V ar[y ] < V ar[x] Nous allons voir trois méthodes de réduction de variance, la méthode de l'échantillonnage préférentiel, la méthode de la variable de contrôle et la méthode des variables antithétiques. 2.1 Méthode de l'échantillonnage préférentiel Supposons que l'on cherche à calculer E[g(X)] et que la loi de X soit f(x)dx. La quantité que l'on cherche à évaluer vaut donc : E[g(X)] = g(x)f(x)dx R Soit maintenant, f la densité d'une autre loi telle que f > 0 et R f(x)dx = 1, il est clair que E[g(X)] peut aussi s'écrire : E[g(X)] = R g(x)f(x) f(x) f(x)dx g(y )f(y ) Cela signie que E[g(X)] = E[ ], si Y suit la loi de f(y f(x)dx sous P. ) On a donc une autre méthode de calcul de E[g(X)] en utilisant n tirages de Y, Y 1...Y n et en approchant E[g(X)] par : ( 1 g(y1 )f(y 1 ) + + g(y ) n)f(y n ) n f(y 1 ) f(y n ) A ce stade-là, nous ne sommes pas sûrs d'avoir amélioré l'algorithme. On g(y )f(y ) l'aura amélioré si V ar(z) < V ar(g(x)) où Z =. f(y ) 8

9 2.2 Variables de contrôle Dans sa version la plus simple, il s'agit d'écrire E(f(X)) sous la forme : E(f(X)) = E(f(X) h(x)) + E(h(X)) avec E(h(X)) qui peut se calculer explicitement et V ar((f(x) h(x)) sensiblement plus petit que V ar(f(x)). On utilise alors une méthode de Monte- Carlo pour évaluer E(f(X) h(x)) et le calcul direct pour E(h(X)). 2.3 Variables antithétiques Supposons que l'on cherche à calculer : I = 1 0 f(x)dx comme x 1 x laisse invariante la mesure dx, on a aussi : I = (f(x) + f(1 x))dx On peut donc calculer I de la façon suivante. On tire n variables aléatoires U 1,...U n suivant une loi uniforme sur [0, 1] et indépendantes, et on approxime I par : I 2n = 1 2n (f(u 1) + f(1 U 1 ) + + f(u n ) + f(1 U n ) Lorsqu'on compare cette méthode à une méthode de Monte-Carlo directe à l'issue de 2n tirages, on peut montrer que si la fonction f est continue monotone la qualité de l'approximation s'améliore. 2.4 Application En nance nous sommes amenés à calculer des quantités du type : C = E[(e βg K) + ] Où G est une variable aléatoire de loi normale centrée réduite. Nous expliquerons dans la troisième partie à quoi correspond cette quantité. Nous allons calculer cette quantité C pour β = 1 et k = 1 avec la méthode de Monte-Carlo expliquée au paragraphe 1 puis avec les trois méthodes de réduction de variance. Méthode Monte-Carlo sans réduction de variance : De la même manière que dans la première partie on estime la quantité C en 9

10 Figure 3 Estimation de C par Monte-Carlo Estimation MC Intervalle de confiance Valeur exacte Prix e+00 2e+04 4e+04 6e+04 8e+04 1e+05 Simulations fonction du nombre de simulation, on calcule aussi l'intervalle de con ance de niveau 0.95 ainsi que la vraie valeur de C qui se calcule facilement. Nous avons tracé les résultats obtenus sur la gure 3. Méthode Monte-Carlo avec échantillonnage préférentiel : Nous allons maintenant recalculer C mais cette fois avec la méthode de l'échantillonnage préférentiel. Nous écrivons C sous la forme d'une intégrale et on multiplie et divise par β x : Z (eβx K)+ dx 2 C= β x e x /2 β x 2π R Nous faisons le changement de variable x = y sur R+ et x = y sur R, on peut alors écrire C sous la forme : Z (eβ y K)+ + (e β y K)+ y/2 dy e C= 2 2πy R+ Nous remarquons alors que f (x) = e y/2 /2 est la densité d'une variable aléatoire Y exponentielle de paramètre 1/2. Nous pouvons alors écrire : C=E (eβ Y K)+ + (e β 2πY Y K)+ La gure 4 nous donne les résultats obtenu, a n de bien visualiser l'intérêt des méthodes de réduction de variance nous avons également tracé sur le graphique l'intervalle de con ance obtenu avec une méthode de Monte-Carlo sans réduction de variance. Nous voyons tout l'intérêt de la méthode de réduction de variance, la convergence est beaucoup plus rapide et l'intervalle de con ance obtenus est signi cativement réduit. Méthode Monte-Carlo avec variable de contrôle On peut noter C P = E[eβG K] = eβ 10 2 /2 K

11 Figure 4 Estimation de C par MC avec échantillonnage préférentiel 0.90 Estimation MC échantillonage pref IC MC classique IC MC avec échantillonage pref Valeur exacte Prix e+00 2e+04 4e+04 6e+04 8e+04 1e+05 Simulations Où P = E[K (eβg )+ ] Nous écrivons alors C = eβ 2 /2 K +P Puis nous calculons C à l'aide de la méthode Monte-carlo ( gure 5 ) comparée Figure 5 Prix du call, Monte-Carlo avec variables de contrôle Estimation MC variable de controle IC MC variable de controle IC MC classique Valeur exacte Prix e+00 2e+04 4e+04 6e+04 8e+04 1e+05 Simulations à la méthode classique, nous voyons bien que notre vitesse de convergence est nettement améliorée. Méthode Monte-Carlo avec variables antithétiques On se sert du fait que G suit la même loi que -G on peut donc écrire 1 C = (E[ eβg K)+ ] + E[(eβ( G) K + ] 2 En simulant de cette manière, on obtient la gure 6 La vitesse de convergence est légèrement améliorée, mais ici cette méthode est moins e cace que les deux précédentes. A n de comparer les trois méthodes de réduction de variance nous avons calculé 1000 fois C avec les trois 11

12 Figure 6 Prix du call, Monte-Carlo et variables antithétiques Prix Estimation MC variables antithétiques IC MC classique IC MC variables antithétiques Valeur exacte 0e+00 2e+04 4e+04 6e+04 8e+04 1e+05 Simulations méthodes de réduction de variance ainsi qu'avec la méthode de Monte-Carlo sans réduction de variance. Avec les résultats obtenu nous avons tracé la gure 7. Nous voyons sur ce boxplot l'intérêt d'utiliser une méthode de réduction de 0.96 Figure 7 Boxplot comparatif des di érentes méthodes Sans réduction de variance Variable de contrôle Variables antithétiques Echantillonage préférentiel variance, en e et en utilisant l'une de ces méthodes nos calculs de C sont beaucoup plus précis. 12

13 3 Application : Calcul du prix d'une option en - nance 3.1 Les options Une option est un titre nancier donnant à son détenteur le droit, et non l'obligation d'acheter ou de vendre (selon qu'il s'agit d'une option de vente ou d'achat) une certaine quantité d'un actif nancier à une date convenue et à un prix xé d'avance. La description de l'option se fait à partir de cinq éléments qui sont : La nature de l'option : on parlera souvent de call pour les options d'achat et de put pour les options de vente. L'actif sous-jacent sur lequel porte l'option : il peut s'agir d'une action, d'une obligation, d'une devise... Le montant, c'est à dire la quantité d'actif sous-jacent à acheter ou vendre. L'échéance ou date d'expiration, qui limite la durée de vie de l'option : si l'option peut être exercée à n'importe quel instant on parle d'option américaine, si l'option ne peut être exercée qu'à l'échéance on parle d'option européenne. Le prix d'exercice qui est le prix, xé à l'avance auquel se fait la transactions. L'option à un prix, appelé prime. Notre problème est de déterminer le prix de cette option. C'est le problème du pricing. Examinons, pour xer les idées, le cas d'un call européen, d'échéance T, sur une action dont le cours à la date t est donné par S t. Soit K le prix d'exercice. Il est clair que si, à l'échéance T, le prix K est supérieur au cours S T, le détenteur de l'option n'a pas intérêt à exercer. En revanche si S T > K, l'exercice de l'option permet à son détenteur de faire un prot égal à S T K en achetant l'action au prix K et en la revendant sur le marché au cours S T. Nous voyons qu'à l'échéance, la valeur du call est donnée par la quantité : (S T K) + Ici nous nous intéressons à trouver le montant de la prime que l'acheteur du call doit payer, autrement dit il s'agit de déterminer à l'instant t = 0 une richesse (S T K) + disponible à l'instant T. C'est le problème du pricing. 3.2 Pricing d'une option. On veut déterminer le prix d'un call dont le cours de l'actif sous-jacent est déterminé par S T = S0e (r 1 2 σ2 )T +σ T G 13

14 où S0 = 100 est la valeur de l'actif à la date t = 0, σ est la volatilité de l'actif. la volatilité est une mesure de l'ampleur des variations du cours d'un actif nancier. r est le taux d'intérêt non risqué, T la date d'échéance de l'option et G une variable aléatoire de loi normale centrée réduite. On veut donc calculer : C = e rt E[(S0e (r 1 2 σ2 )T +σ T G K)+ ] Avec S0, K, r, σ et T xé. Nous avons écrit une fonction qui prend S0, K, r, σ et T en paramètres et retourne le prix du call. An d'améliorer la vitesse de convergence nous avons utiliser la méthode de l'échantillonnage préférentiel vue dans la première partie. Nous avons pris S0 = 100, K = 120, r = 0.02, σ = 0.2 et T = 10. Nous avons tracé sur la gure 8 le prix du call en fonction du nombre de simulations. Ici nous pouvons comparer avec la valeur exacte Figure 8 Prix Call avec S0 = 100, K = 120, r = 0.02, T = 10 Prix Estimation MC échantillonage pref IC MC avec échantillonage pref Valeur exacte 0e+00 2e+04 4e+04 6e+04 8e+04 1e+05 Simulations qui s'obtient facilement. 3.3 Option panier Une option panier est une option ou l'actif sous-jacent est composé de plusieurs actifs risqué( action, option, devise) chacun uctuant en fonction d'une volatilité propre. Le cours de notre actif sous-jacent s'écrit dans ce cas S t = n i=1 et le prix de l'option panier s'écrit C = e rt E[ S0 i e rt 1 2 σ2 i T +σ i T Gi n S0 i e rt 1 2 σ2 i T +σ i T Gi K] i=1 14

15 En modi ant légèrement la fonction PrixCallEchPref on obtient une fonction qui nous donnera le prix de notre option panier. Supposons qu'on à un panier de 5 actifs. Acitf 1 : S01 = 100, σ1 = 0.5. Acitf 1 : S02 = 200, σ2 = 0.2. Acitf 1 : S03 = 150, σ3 = 0.1. Acitf 1 : S04 = 300, σ4 = 1. Acitf 1 : S05 = 500, σ5 = 0.8. Supposons que K = 1500, nous avons tracé le prix de l'option panier en fonction du nombre de simulation sur la gure 9. Dans le cas d'une option 240 Figure 9 Prix option panier Prix 230 Estimation MC IC Simulations panier la méthode Monte-Carlo prend tout son sens, en e et il n'existe pas de formule numérique pour le calcul exact du prix de l'option et une méthode numérique sont impossible à mettre en uvre. Dans cet exemple, la méthode de Monte-Carlo montre toute sa puissance et sa souplesse d'utilisation. Elle est quasiment aussi facile à programmer que la méthode dans le cas d'une seule action, et demande seulement un peu plus de temps de calcul et d'espace mémoire. 15

16 4 Annexe 4.1 Code R : volume de la sphère #TER #15/04/2013 # Exemple : Calcul du volume de la boule dans R6 N=10000; X=rep(1,N); Y=matrix(runif(6*N), ncol=n ); Y=Y*Y; Z=sqrt(colSums(Y)); X[Z>1]=0; Xb=cumsum(X)/(1:N); Ec=64*Xb; pdf("v1.pdf"); plot(ec, ylim=c( , ), col='red', xlab='nombre de simulations',ylab='v abline(h= ); legend('topright', c('volume de la boule', 'Estimation par Monte-Carlo'), col=c('blac dev.off(); #0.1.5: Calcul de l'intervalle de confiance. Nmoinsun=(1:N)-1; Nmoinsun[1]=1; V=rep(NA,N) V=64^2*cumsum((X-Xb)^2)/Nmoinsun; Iinf=(Ec-qnorm(0.975, mean = 0, sd = 1)*sqrt(V/(1:N))); Isup=(Ec+qnorm(0.975, mean = 0, sd = 1)*sqrt(V/(1:N))); pdf("v2.pdf"); plot(ec, ylim=c( , ), col='red', xlab='nombre de simulations',ylab='v abline(h= ); points(iinf, col='grey', pch='.'); points(isup, col='grey', pch='.'); legend('topright', c('volume de la boule', 'Estimation par Monte-Carlo', 'Intervalle dev.off(); 16

17 4.2 Code R : volume de la sphère avec échantillonnage préférentiel n_simul=10000; sigma=0.5; #Simulation d'un loi normale centré de variance sigma sur R6 : Y=matrix(rnorm(6*n_simul,0,sigma), ncol=n_simul); #Simulation de g(x)=1{ Y <1} G=rep(1,n_simul); Y2=Y*Y temp=colsums(y2)^2; G[temp>1]=0; #Simulation de f(y) : loi uniforme (-1,1) sur R6 X=matrix(1,nrow=6, ncol=n_simul); X[Y>1]=0; X[Y<(-1)]=0; F=rep(1,n_simul); temp=colsums(x); F[temp<6]=0; #Calculer Ft de Y: U2=colSums(Y2); Ft=exp(-U/2*sigma^2)/((2*pi*sigma^2)^3) #Caclul de la variable aléatoire cherché: Z=(G*F)/Ft #Monte-Carlo MC=cumsum(Z)/(1:n_simul); x11(); plot(mc, col='red', xlab='nombre de simulations',ylab='volume',,type='l') abline(h= ); 17

18 4.3 Code R : calcul des diérents calls dans la premiere partie #EXEMPLE CALL REDUCTION DE VARIANCE: #Simulation d'un call sans réduction de variance : N=100000; G=rnorm(N,0,1); #Simulation de N call: X0=exp(G)-1; C0=X0; C0[X0<0]=0; #Estimation du prix du call: Pc0=cumsum(C0)/(1:N) #Calcul de la variance: V0=rep(0,N) V0=cumsum((C0-Pc0)^2)/((1:N)-1); #Intervalle de Confiance de niveau 0.95: Iinf0=Pc0-qnorm(0.975, mean = 0, sd = 1)*sqrt(V0/(1:N)); Isup0=Pc0+qnorm(0.975, mean = 0, sd = 1)*sqrt(V0/(1:N)); #Résultat graphique: pdf("callbrut.pdf", height=8); plot(pc0, ylim=c( , ), type='l', col='red', xlab='simulations', ylab='p points(iinf0, col='grey', type='l'); points(isup0, col='grey', type='l'); legend('topright', c( 'Estimation MC', 'Intervalle de confiance', 'Valeur exacte'), c abline(h= , col='black'); dev.off() # Simulation d'un call par Monte-Carlo avec méthode Variable de controle. # On utilise: C=exp(beta/2)+P-K 18

19 # Simulation de N Put : X1=1-exp(G); P1=X1; P1[X1<0]=0; #Simulation de N Call a l'aide de la formule : C1=exp(1/2)+P1-1; #Estimation du prix du Call : Pc1=cumsum(C1)/(1:N); #Calcul de la variance : V1=rep(0,N) V1=cumsum((C1-Pc1)^2)/((1:N)-1); #Intervalle de Confiance de niveau 0.95: Iinf1=Pc1-qnorm(0.975, mean = 0, sd = 1)*sqrt(V1/(1:N)); Isup1=Pc1+qnorm(0.975, mean = 0, sd = 1)*sqrt(V1/(1:N)); pdf("callvarcont.pdf", height=8); plot(pc1, ylim=c( , ), type='l', col='red', xlab='simulations', ylab='p points(iinf0, col='grey', type='s'); points(isup0, col='grey', type='s'); points(iinf1, col='blue', type='s'); points(isup1, col='blue', type='s'); legend('topright', c( 'Estimation MC variable de controle', 'IC MC variable de contro abline(h= , col='black'); dev.off(); # Simulation d'un putt par Monte-Carlo avec méthode variables antithétiques. #Simulation du call: Xa=(exp(G)-1); Xb=(exp(-G)-1); Ca=Xa; Ca[Xa<0]=0; Cb=Xb; Cb[Xb<0]=0; C2=(Ca+Cb)/2 #Prix du call par Monte-Carlo: 19

20 Pc2=cumsum(C2)/(1:N); #Calcul de la variance : V2=rep(0,N) V2=cumsum((C2-Pc2)^2)/((1:N)-1); #Intervalle de Confiance de niveau 0.95: Iinf2=Pc2-qnorm(0.975, mean = 0, sd = 1)*sqrt(V2/(1:N)); Isup2=Pc2+qnorm(0.975, mean = 0, sd = 1)*sqrt(V2/(1:N)); pdf("callvaranti.pdf", height=8); plot(pc2, ylim=c( , ), type='l', col='red', xlab='simulations', ylab='p points(iinf0, col='grey', type='s'); points(isup0, col='grey', type='s'); points(iinf2, col='blue', type='s'); points(isup2, col='blue', type='s'); legend('topright', c( 'Estimation MC variables antithétiques', 'IC MC classique', 'IC abline(h= , col='black'); dev.off(); #Simulation d'un call avec echantillonage pref: Y=rexp(N,1/2); Xc=exp(sqrt(Y))-1; Xd=exp(-sqrt(Y))-1; Cc=Xc; Cc[Xc<0]=0; Cd=Xd; Cd[Xd<0]=0; C3=(Cc+Cd)/(sqrt(2*pi*Y)); #Prix du call par Monte-Carlo: Pc3=cumsum(C3)/(1:N); #Calcul de la variance : V3=rep(0,N) V3=cumsum((C3-Pc3)^2)/((1:N)-1); #Intervalle de Confiance de niveau 0.95: Iinf3=Pc3-qnorm(0.975, mean = 0, sd = 1)*sqrt(V3/(1:N)); Isup3=Pc3+qnorm(0.975, mean = 0, sd = 1)*sqrt(V3/(1:N)); 20

21 pdf("callechpref.pdf", height=5); plot(pc3, ylim=c( , ), type='l', col='red', xlab='simulations', ylab='p points(iinf0, col='grey', type='s'); points(isup0, col='grey', type='s'); points(iinf3, col='blue', type='s'); points(isup3, col='blue', type='s'); legend('topright', c( 'Estimation MC échantillonage pref', 'IC MC classique', 'IC MC abline(h= , col='black'); dev.off(); # #Construction des boxplot pour comparer les méthodes. N=10000; nb_simul=1000; Pc0=rep(NA, nb_simul); #Sans réduction de variance for( i in 1:nb_simul){ G=rnorm(N,0,1); #Simulation de N call: X0=exp(G)-1; C0=X0; C0[X0<0]=0; #Estimation du prix du call: Pc0[i]=sum(C0)/N; } Pc1=rep(NA, nb_simul); #Avec variable de controle for(i in 1:nb_simul){ G=rnorm(N,0,1); X1=1-exp(G); P1=X1; P1[X1<0]=0; C1=exp(1/2)+P1-1; Pc1[i]=sum(C1)/N; } Pc2=rep(NA, nb_simul); #Variables antithétiques for(i in 1:nb_simul){ G=rnorm(N,0,1); 21

22 Xa=(exp(G)-1); Xb=(exp(-G)-1); Ca=Xa; Ca[Xa<0]=0; Cb=Xb; Cb[Xb<0]=0; C2=(Ca+Cb)/2 Pc2[i]=sum(C2)/N; } Pc3=rep(NA, nb_simul); # échantillonage préferentiel for(i in 1:nb_simul){ G=rnorm(N,0,1); Y=rexp(N,1/2); Xc=exp(sqrt(Y))-1; Xd=exp(-sqrt(Y))-1; Cc=Xc; Cc[Xc<0]=0; Cd=Xd; Cd[Xd<0]=0; C3=(Cc+Cd)/(sqrt(2*pi*Y)); Pc3[i]=sum(C3)/N; } pdf("boxplot.pdf", height=8); boxplot(pc0, Pc2,Pc3, Pc1,col=c('red','blue','green','yellow')); legend('topright', c('sans réduction de variance', 'Variable de contrôle', 'Variables abline(h= , col='black'); dev.off() 4.4 Code R : Calcul du call européens dans la troisième partie PrixCallEchPref=function(S0, r, sigma, T, K){ #Fonction qui calcule le prix d'un call européen #Elle retourne le graphe du prix trouvé en fonction du nombre de simulation N_simul=10000; Y=rexp(N_simul, 1/2); X=rep(0, N_simul); X1=rep(0, N_simul); X=S0*exp(r*T-(1/2)*sigma^2*T+sigma*sqrt(Y)*sqrt(T))-K; X1=X; X1[X<0]=0; 22

23 Z=rep(0, N_simul); Z1=rep(0, N_simul); Z=S0*exp(r*T-(1/2)*sigma^2*T-sigma*sqrt(Y)*sqrt(T))-K; Z1[Z<0]=0; C=(X1+Z1)/(sqrt(2*pi*Y)); P=cumsum(C)/(1:N_simul); PrixCallEchPref=exp(-r*T)*P; V=rep(0,N_simul ); V=exp(-r*T)^2*cumsum((C-P)^2)/((1:N_simul)-1); Iinf=PrixCallEchPref-qnorm(0.975, mean = 0, sd = 1)*sqrt(V/(1:N_simul)); Isup=PrixCallEchPref+qnorm(0.975, mean = 0, sd = 1)*sqrt(V/(1:N_simul)); x11(); plot(prixcallechpref, ylim=c(20,30), type='l', col='yellow', xlab='simulations', ylab points(iinf, col='grey', type='l'); points(isup, col='grey', type='l'); } 4.5 Code R : Calcul du call sur les options paniers #Pricing put sur portefeuille d'option. PrixCalla=function(S0, r, sigma, T, K){ # Fonction qui retourne le prix d'une option lorsque l'actif sous jacent est un porte # S0 un vecteur de la valeurs initiale des sous jacents # r le taux d'intérêt sans risque # sigma un vecteur de volatilité des sous jacents # K le strike N_simul=3*10^5; X=rep(0,N_simul); for(i in 1:N_simul){ G=rnorm(1, 0, 1); X[i]=sum(S0*exp(r*T-(1/2)*sigma^2*T+sigma*sqrt(T)*G))-K; } X1=X; X1[X<0]=0; P=cumsum(X1)/(1:N_simul); PrixCalla=exp(-r*T)*P; 23

24 V=rep(0,N_simul ); V=exp(-r*T)^2*cumsum((X1-P)^2)/((1:N_simul)-1); Iinf=PrixCalla-qnorm(0.975, mean = 0, sd = 1)*sqrt(V/(1:N_simul)); Isup=PrixCalla+qnorm(0.975, mean = 0, sd = 1)*sqrt(V/(1:N_simul)); pdf("portefeuille.pdf", height=8); plot(prixcalla, type='l',ylim=c(200,240), col='red', xlab='simulations', ylab='prix') points(iinf, col='grey', type='l'); points(isup, col='grey', type='l'); legend('topright', c('estimation MC', 'IC'), col=c('red', 'grey'), pch=15); return(prixcalla) } S0=c(100,200,100,200,500); r=0.02; sigma=c(0.3,0.2,0.1,0.4,0.1); T=10; K=1500; A=PrixCalla(S0,r,sigma,T,K); 24

25 Références [1] Hasard nombres aléatoires et méthode Monte Carlo. [2] Introduction au calcul stochastique appliqué à la nance. [3] Méthodes de Monte-Carlo pour les équations de transport et de diusion. 25

TP1 Méthodes de Monte Carlo et techniques de réduction de variance, application au pricing d options

TP1 Méthodes de Monte Carlo et techniques de réduction de variance, application au pricing d options Université de Lorraine Modélisation Stochastique Master 2 IMOI 2014-2015 TP1 Méthodes de Monte Carlo et techniques de réduction de variance, application au pricing d options 1 Les options Le but de ce

Plus en détail

CHAMPION Matthieu Modèles de Marché en Visual Basic ESILV S04 S6. Sommaire... 1. Introduction... 2

CHAMPION Matthieu Modèles de Marché en Visual Basic ESILV S04 S6. Sommaire... 1. Introduction... 2 Sommaire Sommaire... 1 Introduction... 2 1 Trois différentes techniques de pricing... 3 1.1 Le modèle de Cox Ross Rubinstein... 3 1.2 Le modèle de Black & Scholes... 8 1.3 Méthode de Monte Carlo.... 1

Plus en détail

I. Introduction. 1. Objectifs. 2. Les options. a. Présentation du problème.

I. Introduction. 1. Objectifs. 2. Les options. a. Présentation du problème. I. Introduction. 1. Objectifs. Le but de ces quelques séances est d introduire les outils mathématiques, plus précisément ceux de nature probabiliste, qui interviennent dans les modèles financiers ; nous

Plus en détail

Simulations de Monte Carlo en finance : Pricer d option

Simulations de Monte Carlo en finance : Pricer d option Emma Alfonsi, Xavier Milhaud - M2R SAF Simulations de Monte Carlo en finance : Pricer d option Sous la direction de M. Pierre Alain Patard ISFA - Mars 2008 . 1 Table des matières 1 Introduction 4 2 Un

Plus en détail

Dérivés Financiers Evaluation des options sur action

Dérivés Financiers Evaluation des options sur action Dérivés Financiers Evaluation des options sur action Owen Williams Grenoble Ecole de Management > 2 Définitions : options sur actions Option : un contrat négociable donnant le droit d acheter ou vendre

Plus en détail

Probabilités III Introduction à l évaluation d options

Probabilités III Introduction à l évaluation d options Probabilités III Introduction à l évaluation d options Jacques Printems Promotion 2012 2013 1 Modèle à temps discret 2 Introduction aux modèles en temps continu Limite du modèle binomial lorsque N + Un

Plus en détail

Cantaluppi & Hug Software and Consulting

Cantaluppi & Hug Software and Consulting Options - Comptabilisation Nous allons examiner dans ce document la comptabilisation "state-of-the-art" des options, c'est-à-dire des calls et puts. Nous donnons tout d'abord pour rappel la définition

Plus en détail

Modélisation et simulation

Modélisation et simulation Modélisation et simulation p. 1/36 Modélisation et simulation INFO-F-305 Gianluca Bontempi Département d Informatique Boulevard de Triomphe - CP 212 http://www.ulb.ac.be/di Modélisation et simulation p.

Plus en détail

Master Modélisation Aléatoire Paris VII, Cours Méthodes de Monte Carlo en nance et C++, TP n 2.

Master Modélisation Aléatoire Paris VII, Cours Méthodes de Monte Carlo en nance et C++, TP n 2. Master Modélisation Aléatoire Paris VII, Cours Méthodes de Monte Carlo en nance et C++, TP n 2. Techniques de correction pour les options barrières 25 janvier 2007 Exercice à rendre individuellement lors

Plus en détail

Valorisation d es des options Novembre 2007

Valorisation d es des options Novembre 2007 Valorisation des options Novembre 2007 Plan Rappels Relations de prix Le modèle binomial Le modèle de Black-Scholes Les grecques Page 2 Rappels (1) Définition Une option est un contrat financier qui confère

Plus en détail

SPREAD (CYLINDRE) CONSTRUCTION DE DEUX OPTIONS

SPREAD (CYLINDRE) CONSTRUCTION DE DEUX OPTIONS Dans un contrat d'option, le détenteur acquiert un droit, l'émetteur contracte une obligation. Un prix doit être payé par le détenteur à l'émetteur : c'est la prime (premium). LE CALCUL DU MONTANT DE LA

Plus en détail

3 Approximation de solutions d équations

3 Approximation de solutions d équations 3 Approximation de solutions d équations Une équation scalaire a la forme générale f(x) =0où f est une fonction de IR dans IR. Un système de n équations à n inconnues peut aussi se mettre sous une telle

Plus en détail

Manuel d Utilisateur - Logiciel ModAFi. Jonathan ANJOU - Maud EYZAT - Kévin NAVARRO

Manuel d Utilisateur - Logiciel ModAFi. Jonathan ANJOU - Maud EYZAT - Kévin NAVARRO Manuel d Utilisateur - Logiciel ModAFi Jonathan ANJOU - Maud EYZAT - Kévin NAVARRO Grenoble, 12 juin 2012 Table des matières 1 Introduction 3 2 Modèles supportés 3 2.1 Les diérents modèles supportés pour

Plus en détail

Utilisation des éléments finis pour le pricing d'options

Utilisation des éléments finis pour le pricing d'options 1 Utilisation des éléments finis pour le pricing d'options Semaine «éléments finis», ENSMP 29 novembre 2006 Jean-Didier Garaud (ONERA, DMSE/LCME) 2 Plan Actions et produits dérivés Modèle de Black-Scholes

Plus en détail

Le modèle de Black et Scholes

Le modèle de Black et Scholes Le modèle de Black et Scholes Alexandre Popier février 21 1 Introduction : exemple très simple de modèle financier On considère un marché avec une seule action cotée, sur une période donnée T. Dans un

Plus en détail

Calculs approchés d un point fixe

Calculs approchés d un point fixe M11 ÉPREUVE COMMUNE DE TIPE 2013 - Partie D TITRE : Calculs approchés d un point fixe Temps de préparation :.. 2 h 15 minutes Temps de présentation devant les examinateurs :.10 minutes Dialogue avec les

Plus en détail

Démonstrations exigibles au bac

Démonstrations exigibles au bac Démonstrations exigibles au bac On donne ici les 11 démonstrations de cours répertoriées comme exigibles dans le programme officiel. Toutes ces démonstrations peuvent donner lieu à une «restitution organisée

Plus en détail

Mathématiques financières

Mathématiques financières Mathématiques financières Arnaud Triay Table des matières 1 Introduction Position du problème.1 Pricing des options........................................... Formalisme..............................................

Plus en détail

Master IMEA 1 Calcul Stochastique et Finance Feuille de T.D. n o 1

Master IMEA 1 Calcul Stochastique et Finance Feuille de T.D. n o 1 Master IMEA Calcul Stochastique et Finance Feuille de T.D. n o Corrigé exercices8et9 8. On considère un modèle Cox-Ross-Rubinstein de marché (B,S) à trois étapes. On suppose que S = C et que les facteurs

Plus en détail

Commun à tous les candidats

Commun à tous les candidats EXERCICE 3 (9 points ) Commun à tous les candidats On s intéresse à des courbes servant de modèle à la distribution de la masse salariale d une entreprise. Les fonctions f associées définies sur l intervalle

Plus en détail

Extrait du Bulletin Officiel des Finances Publiques-Impôts DIRECTION GÉNÉRALE DES FINANCES PUBLIQUES

Extrait du Bulletin Officiel des Finances Publiques-Impôts DIRECTION GÉNÉRALE DES FINANCES PUBLIQUES Extrait du Bulletin Officiel des Finances Publiques-Impôts DIRECTION GÉNÉRALE DES FINANCES PUBLIQUES Identifiant juridique : BOI-BIC-PDSTK-10-20-70-50-20120912 DGFIP BIC - Produits et stocks - Opérations

Plus en détail

Processus Stochastiques

Processus Stochastiques Processus Stochastiques Olivier Scaillet University of Geneva and Swiss Finance Institute Outline 1 Introduction 2 Chaînes de Markov 3 Application en assurance 4 Application en nance Processus Stochastique

Plus en détail

Retournement Temporel

Retournement Temporel Retournement Temporel Rédigé par: HENG Sokly Encadrés par: Bernard ROUSSELET & Stéphane JUNCA 2 juin 28 Remerciements Je tiens tout d'abord à remercier mes responsables de mémoire, M.Bernard ROUSSELET

Plus en détail

1 La formule de Black et Scholes en t discret

1 La formule de Black et Scholes en t discret Université de Provence Préparation Agrégation Epreuve de Modélisation, Option Proba. Texte : La formule de Black Scholes en Finance Étienne Pardoux 1 La formule de Black et Scholes en t discret On suppose

Plus en détail

Correction du baccalauréat S Liban juin 2007

Correction du baccalauréat S Liban juin 2007 Correction du baccalauréat S Liban juin 07 Exercice. a. Signe de lnx lnx) : on fait un tableau de signes : x 0 e + ln x 0 + + lnx + + 0 lnx lnx) 0 + 0 b. On afx) gx) lnx lnx) lnx lnx). On déduit du tableau

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)

Plus en détail

Probabilités II Étude de quelques lois. Master Gestion de Portefeuille IAE Gustave Eiffel Jacques Printems printems@u-pec.

Probabilités II Étude de quelques lois. Master Gestion de Portefeuille IAE Gustave Eiffel Jacques Printems printems@u-pec. Probabilités II Étude de quelques lois Master Gestion de Portefeuille IAE Gustave Eiffel Jacques Printems printems@u-pec.fr 2012 2013 1 1 Lois discrètes. On considère des v.a. ne prenant que des valeurs

Plus en détail

Chapitre 15 Options et actifs conditionnels. Plan

Chapitre 15 Options et actifs conditionnels. Plan Chapitre 15 Options et actifs conditionnels Plan Fonctionnement des options Utilisation des options La parité put-call Volatilité et valeur des options Les modèles de détermination de prix d option Modèle

Plus en détail

1 Codes linéaires. G = [I k A]. Dans ce cas on constate que la matrice. H = [ t A I n k ] est une matrice de contrôle de C. Le syndrome de x F n q

1 Codes linéaires. G = [I k A]. Dans ce cas on constate que la matrice. H = [ t A I n k ] est une matrice de contrôle de C. Le syndrome de x F n q 1 Codes linéaires Un code de longueur n est une partie de F n q. Un code linéaire C de longueur n sur le corps ni F q est un sous-espace vectoriel de F n q. Par défaut, un code sera supposé linéaire. La

Plus en détail

Evaluation d options avec incertitude sur la volatilité

Evaluation d options avec incertitude sur la volatilité Evaluation d options avec incertitude sur la volatilité Andrea Odetti, Rémy Ripoll 5 octobre 000 Table des matières 1 Introduction 1 La formule de Black et Scholes 3 Incertitude sur la volatilité 3.1 Modèles

Plus en détail

Warrants : les bases

Warrants : les bases - 1 - Warrants : les bases. Mots clés : Sommaire :! Warrant! Call! Put! Support! Sous-jacent! Echéance! Prix d'exercice! Parité! Effet de levier! Anticipation! Spéculation! Valeur! Valeur intrinsèque!

Plus en détail

Hedging delta et gamma neutre d un option digitale

Hedging delta et gamma neutre d un option digitale Hedging delta et gamma neutre d un option digitale Daniel Herlemont 1 Introduction L objectif de ce projet est d examiner la couverture delta-gamma neutre d un portefeuille d options digitales Asset-Or-Nothing

Plus en détail

3. Caractéristiques et fonctions d une v.a.

3. Caractéristiques et fonctions d une v.a. 3. Caractéristiques et fonctions d une v.a. MTH2302D S. Le Digabel, École Polytechnique de Montréal H2015 (v2) MTH2302D: fonctions d une v.a. 1/32 Plan 1. Caractéristiques d une distribution 2. Fonctions

Plus en détail

Calcul différentiel et intégral

Calcul différentiel et intégral Chapitre 27. Calcul différentiel et intégral 27 Limites... 27 2 Limite en un point fini... 27 2 Limite à droite ou à gauche... 27 2 Limite à l infini... 27 2 Utilisation de conditions... 27 2 Dérivation...

Plus en détail

Lois de probabilité à densité Loi normale

Lois de probabilité à densité Loi normale DERNIÈRE IMPRESSIN LE 31 mars 2015 à 14:11 Lois de probabilité à densité Loi normale Table des matières 1 Lois à densité 2 1.1 Introduction................................ 2 1.2 Densité de probabilité

Plus en détail

Etude de fonctions: procédure et exemple

Etude de fonctions: procédure et exemple Etude de fonctions: procédure et exemple Yves Delhaye 8 juillet 2007 Résumé Dans ce court travail, nous présentons les différentes étapes d une étude de fonction à travers un exemple. Nous nous limitons

Plus en détail

Brochure d'information sur les options

Brochure d'information sur les options Brochure d'information sur les options Introduction La présente brochure explique succinctement le fonctionnement des options et se penche sur les risques éventuels liés au négoce d options. Le glossaire

Plus en détail

NOTE SUR LA MODELISATION DU RISQUE D INFLATION

NOTE SUR LA MODELISATION DU RISQUE D INFLATION NOTE SUR LA MODELISATION DU RISQUE D INFLATION 1/ RESUME DE L ANALYSE Cette étude a pour objectif de modéliser l écart entre deux indices d inflation afin d appréhender le risque à très long terme qui

Plus en détail

MATHS FINANCIERES. Mireille.Bossy@sophia.inria.fr. Projet OMEGA

MATHS FINANCIERES. Mireille.Bossy@sophia.inria.fr. Projet OMEGA MATHS FINANCIERES Mireille.Bossy@sophia.inria.fr Projet OMEGA Sophia Antipolis, septembre 2004 1. Introduction : la valorisation de contrats optionnels Options d achat et de vente : Call et Put Une option

Plus en détail

Correction du baccalauréat ES/L Métropole 20 juin 2014

Correction du baccalauréat ES/L Métropole 20 juin 2014 Correction du baccalauréat ES/L Métropole 0 juin 014 Exercice 1 1. c.. c. 3. c. 4. d. 5. a. P A (B)=1 P A (B)=1 0,3=0,7 D après la formule des probabilités totales : P(B)=P(A B)+P(A B)=0,6 0,3+(1 0,6)

Plus en détail

Introduction à la nance quantitative

Introduction à la nance quantitative Introduction à la nance quantitative présenté par N. Champagnat IECN et INRIA Contents 1 Introduction aux marchés nanciers 2 1.1 Rôle des marchés nanciers......................... 2 1.2 Les diérents types

Plus en détail

TSTI 2D CH X : Exemples de lois à densité 1

TSTI 2D CH X : Exemples de lois à densité 1 TSTI 2D CH X : Exemples de lois à densité I Loi uniforme sur ab ; ) Introduction Dans cette activité, on s intéresse à la modélisation du tirage au hasard d un nombre réel de l intervalle [0 ;], chacun

Plus en détail

La gestion du risque de change

La gestion du risque de change Chapitre 16 La gestion du risque de change 1 Exercice 16.03 Risque de change Option de change de l importateurl Un importateur français doit régler dans 6 mois un achat libellé en dollars d'un montant

Plus en détail

Master IMEA 1 Calcul Stochastique et Finance Feuille de T.D. n o 1

Master IMEA 1 Calcul Stochastique et Finance Feuille de T.D. n o 1 Master IMEA 1 Calcul Stochastique et Finance Feuille de T.D. n o 1 1. a. On considère un modèle de marché (B, S) à une étape. On suppose que S = 5 C et qu à la date t = 1 on a (S u 1 = 51, S d 1 = 48).

Plus en détail

Événements et probabilités, probabilité conditionnelle et indépendance

Événements et probabilités, probabilité conditionnelle et indépendance Chapitre 1 Événements et probabilités, probabilité conditionnelle et indépendance On cherche ici à proposer un cadre mathématique dans lequel on puisse parler sans ambiguité de la probabilité qu un événement

Plus en détail

Chaînes de Markov. Mireille de Granrut

Chaînes de Markov. Mireille de Granrut Chaînes de Markov Mireille de Granrut Quelques précisions à propos de ce cours : Préambule 1. Tel que je l ai conçu, le cours sur les chaînes de Markov interviendra dès la rentrée, pour faire un peu de

Plus en détail

Moments des variables aléatoires réelles

Moments des variables aléatoires réelles Chapter 6 Moments des variables aléatoires réelles Sommaire 6.1 Espérance des variables aléatoires réelles................................ 46 6.1.1 Définition et calcul........................................

Plus en détail

Journal officiel de l'union européenne

Journal officiel de l'union européenne 20.5.2014 L 148/29 RÈGLEMENT DÉLÉGUÉ (UE) N o 528/2014 DE LA COMMISSION du 12 mars 2014 complétant le règlement (UE) n o 575/2013 du Parlement européen et du Conseil en ce qui concerne les normes techniques

Plus en détail

Introduction à la nance quantitative

Introduction à la nance quantitative Introduction à la nance quantitative slides disponibles sur la page web : http://www.iecn.u-nancy.fr/ champagn/enseignement.html N. Champagnat Institut Élie Cartan 2013-2014 N. Champagnat (IECL) Ecole

Plus en détail

Notes de cours de Probabilités Appliquées. Olivier François

Notes de cours de Probabilités Appliquées. Olivier François Notes de cours de Probabilités Appliquées Olivier François 2 Table des matières 1 Axiomes des probabilités 7 1.1 Introduction................................. 7 1.2 Définitions et notions élémentaires.....................

Plus en détail

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé Baccalauréat S ntilles-guyane 11 septembre 14 Corrigé EXERCICE 1 6 points Commun à tous les candidats Une entreprise de jouets en peluche souhaite commercialiser un nouveau produit et à cette fin, effectue

Plus en détail

Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques.

Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques. 14-3- 214 J.F.C. p. 1 I Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques. Exercice 1 Densité de probabilité. F { ln x si x ], 1] UN OVNI... On pose x R,

Plus en détail

DU BINAIRE AU MICROPROCESSEUR - D ANGELIS LOGIQUE COMBINATOIRE. SIMPLIFICATION DES EQUATIONS BOOLEENNES Leçon 07

DU BINAIRE AU MICROPROCESSEUR - D ANGELIS LOGIQUE COMBINATOIRE. SIMPLIFICATION DES EQUATIONS BOOLEENNES Leçon 07 DU BINAIRE AU MICROPROCESSEUR - D ANGELIS 43 SIMPLIFICATION DES EQUATIONS BOOLEENNES Leçon 7 Le rôle de la logique combinatoire est de faciliter la simplification des circuits électriques. La simplification

Plus en détail

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer Pour commencer Exercice 1 - Ensembles de définition - Première année - 1. Le logarithme est défini si x + y > 0. On trouve donc le demi-plan supérieur délimité par la droite d équation x + y = 0.. 1 xy

Plus en détail

Annexe Simulations de Monte Carlo

Annexe Simulations de Monte Carlo Annexe Simulations de Monte Carlo Cette annexe présente, de façon pratique, les principales techniques opératoires des simulations de Monte Carlo. Le lecteur souhaitant une présentation plus rigoureuse

Plus en détail

Développements limités. Notion de développement limité

Développements limités. Notion de développement limité MT12 - ch2 Page 1/8 Développements limités Dans tout ce chapitre, I désigne un intervalle de R non vide et non réduit à un point. I Notion de développement limité Dans tout ce paragraphe, a désigne un

Plus en détail

Principes de Finance

Principes de Finance Principes de Finance 12. Théorie des options I Daniel Andrei Semestre de printemps 211 Principes de Finance 12. Théorie des options I Printemps 211 1 / 43 Plan I Introduction II Comprendre les options

Plus en détail

Options et des stratégies sur dérivés

Options et des stratégies sur dérivés Options et des stratégies sur dérivés 1. Les stratégies impliquant les options 2. Les propriétés des options sur actions 1. Stratégies sur les options De nombreuses combinaisons sont possibles Prendre

Plus en détail

Chapitre 3. Mesures stationnaires. et théorèmes de convergence

Chapitre 3. Mesures stationnaires. et théorèmes de convergence Chapitre 3 Mesures stationnaires et théorèmes de convergence Christiane Cocozza-Thivent, Université de Marne-la-Vallée p.1 I. Mesures stationnaires Christiane Cocozza-Thivent, Université de Marne-la-Vallée

Plus en détail

Les mathématiques de la finance Université d été de Sourdun Olivier Bardou olivier.bardou@gdfsuez.com 28 août 2012 De quoi allons nous parler? des principales hypothèses de modélisation des marchés, des

Plus en détail

La fonction exponentielle

La fonction exponentielle DERNIÈRE IMPRESSION LE 2 novembre 204 à :07 La fonction exponentielle Table des matières La fonction exponentielle 2. Définition et théorèmes.......................... 2.2 Approche graphique de la fonction

Plus en détail

LE PROBLEME DU PLUS COURT CHEMIN

LE PROBLEME DU PLUS COURT CHEMIN LE PROBLEME DU PLUS COURT CHEMIN Dans cette leçon nous définissons le modèle de plus court chemin, présentons des exemples d'application et proposons un algorithme de résolution dans le cas où les longueurs

Plus en détail

Introduction à la Statistique Inférentielle

Introduction à la Statistique Inférentielle UNIVERSITE MOHAMMED V-AGDAL SCIENCES FACULTE DES DEPARTEMENT DE MATHEMATIQUES SMI semestre 4 : Probabilités - Statistique Introduction à la Statistique Inférentielle Prinemps 2013 0 INTRODUCTION La statistique

Plus en détail

8.1 Généralités sur les fonctions de plusieurs variables réelles. f : R 2 R (x, y) 1 x 2 y 2

8.1 Généralités sur les fonctions de plusieurs variables réelles. f : R 2 R (x, y) 1 x 2 y 2 Chapitre 8 Fonctions de plusieurs variables 8.1 Généralités sur les fonctions de plusieurs variables réelles Définition. Une fonction réelle de n variables réelles est une application d une partie de R

Plus en détail

L2 MIEE 2012-2013 VAR Université de Rennes 1

L2 MIEE 2012-2013 VAR Université de Rennes 1 . Sous-ensembles de R n et fonctions (suite) 1 Nappes paramétrées Si f une fonction de deux variables, son graphe est une surface incluse dans R 3 : {(x, y, f(x, y)) / (x, y) R 2 }. Une telle surface s

Plus en détail

NOTIONS DE PROBABILITÉS

NOTIONS DE PROBABILITÉS NOTIONS DE PROBABILITÉS Sommaire 1. Expérience aléatoire... 1 2. Espace échantillonnal... 2 3. Événement... 2 4. Calcul des probabilités... 3 4.1. Ensemble fondamental... 3 4.2. Calcul de la probabilité...

Plus en détail

Probabilités. I- Expérience aléatoire, espace probabilisé : ShotGun. 1- Définitions :

Probabilités. I- Expérience aléatoire, espace probabilisé : ShotGun. 1- Définitions : Probabilités I- Expérience aléatoire, espace probabilisé : 1- Définitions : Ω : Ensemble dont les points w sont les résultats possibles de l expérience Des évènements A parties de Ω appartiennent à A une

Plus en détail

TURBOS WARRANTS CERTIFICATS. Les Turbos Produits à effet de levier avec barrière désactivante. Produits non garantis en capital.

TURBOS WARRANTS CERTIFICATS. Les Turbos Produits à effet de levier avec barrière désactivante. Produits non garantis en capital. TURBOS WARRANTS CERTIFICATS Les Turbos Produits à effet de levier avec barrière désactivante. Produits non garantis en capital. 2 LES TURBOS 1. Introduction Que sont les Turbos? Les Turbos sont des produits

Plus en détail

I3, Probabilités 2014 Travaux Dirigés F BM F BM F BM F BM F B M F B M F B M F B M 20 20 80 80 100 100 300 300

I3, Probabilités 2014 Travaux Dirigés F BM F BM F BM F BM F B M F B M F B M F B M 20 20 80 80 100 100 300 300 I3, Probabilités 2014 Travaux Dirigés TD 1 : rappels. Exercice 1 Poker simplié On tire 3 cartes d'un jeu de 52 cartes. Quelles sont les probabilités d'obtenir un brelan, une couleur, une paire, une suite,

Plus en détail

Théorème du point fixe - Théorème de l inversion locale

Théorème du point fixe - Théorème de l inversion locale Chapitre 7 Théorème du point fixe - Théorème de l inversion locale Dans ce chapitre et le suivant, on montre deux applications importantes de la notion de différentiabilité : le théorème de l inversion

Plus en détail

Introduction. I Étude rapide du réseau - Apprentissage. II Application à la reconnaissance des notes.

Introduction. I Étude rapide du réseau - Apprentissage. II Application à la reconnaissance des notes. Introduction L'objectif de mon TIPE est la reconnaissance de sons ou de notes de musique à l'aide d'un réseau de neurones. Ce réseau doit être capable d'apprendre à distinguer les exemples présentés puis

Plus en détail

Propriétés des options sur actions

Propriétés des options sur actions Propriétés des options sur actions Bornes supérieure et inférieure du premium / Parité call put 1 / 1 Taux d intérêt, capitalisation, actualisation Taux d intéret composés Du point de vue de l investisseur,

Plus en détail

SECTION 5 : OPERATIONS SUR PRODUITS DERIVES

SECTION 5 : OPERATIONS SUR PRODUITS DERIVES SECTION 5 : OPERATIONS SUR PRODUITS DERIVES 1 - DEFINITION DES PRODUITS DERIVES 2 - DEFINITIONS DES MARCHES 3 - USAGE DES CONTRATS 4 - COMPTABILISATION DES OPERATIONS SUR PRODUITS DERIVES 51 SECTION 5

Plus en détail

Résolution d équations non linéaires

Résolution d équations non linéaires Analyse Numérique Résolution d équations non linéaires Said EL HAJJI et Touria GHEMIRES Université Mohammed V - Agdal. Faculté des Sciences Département de Mathématiques. Laboratoire de Mathématiques, Informatique

Plus en détail

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre IUFM du Limousin 2009-10 PLC1 Mathématiques S. Vinatier Rappels de cours Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre 1 Fonctions de plusieurs variables

Plus en détail

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications A. Optimisation sans contrainte.... Généralités.... Condition nécessaire et condition suffisante

Plus en détail

Compte rendu des TP matlab

Compte rendu des TP matlab Compte rendu des TP matlab Krell Stella, Minjeaud Sebastian 18 décembre 006 1 TP1, Discrétisation de problèmes elliptiques linéaires 1d Soient > 0, a R, b 0, c, d R et f C([0, 1], R). On cerce à approcer

Plus en détail

TESTS D'HYPOTHESES Etude d'un exemple

TESTS D'HYPOTHESES Etude d'un exemple TESTS D'HYPOTHESES Etude d'un exemple Un examinateur doit faire passer une épreuve type QCM à des étudiants. Ce QCM est constitué de 20 questions indépendantes. Pour chaque question, il y a trois réponses

Plus en détail

Épreuve pratique de mathématiques Printemps 2009. Descriptifs. (Page vide)

Épreuve pratique de mathématiques Printemps 2009. Descriptifs. (Page vide) Épreuve pratique de mathématiques Printemps 2009 Descriptifs (Page vide) Sujet 001 Épreuve pratique de mathématiques Descriptif Étude d une fonction dépendant d un paramètre Étant donné une fonction dépendant

Plus en détail

Baccalauréat ES Pondichéry 7 avril 2014 Corrigé

Baccalauréat ES Pondichéry 7 avril 2014 Corrigé Baccalauréat ES Pondichéry 7 avril 204 Corrigé EXERCICE 4 points Commun à tous les candidats. Proposition fausse. La tangente T, passant par les points A et B d abscisses distinctes, a pour coefficient

Plus en détail

VALORISATION DES PRODUITS DE CHANGE :

VALORISATION DES PRODUITS DE CHANGE : VALORISATION DES PRODUITS DE CHANGE : TERMES, SWAPS & OPTIONS LIVRE BLANC I 2 Table des Matières Introduction... 3 Les produits non optionnels... 3 La méthode des flux projetés... 3 Les options de change

Plus en détail

4 Distributions particulières de probabilités

4 Distributions particulières de probabilités 4 Distributions particulières de probabilités 4.1 Distributions discrètes usuelles Les variables aléatoires discrètes sont réparties en catégories selon le type de leur loi. 4.1.1 Variable de Bernoulli

Plus en détail

1 TD1 : rappels sur les ensembles et notion de probabilité

1 TD1 : rappels sur les ensembles et notion de probabilité 1 TD1 : rappels sur les ensembles et notion de probabilité 1.1 Ensembles et dénombrement Exercice 1 Soit Ω = {1, 2, 3, 4}. Décrire toutes les parties de Ω, puis vérier que card(p(ω)) = 2 4. Soit k n (

Plus en détail

Simulation de variables aléatoires

Simulation de variables aléatoires Chapter 1 Simulation de variables aléatoires Références: [F] Fishman, A first course in Monte Carlo, chap 3. [B] Bouleau, Probabilités de l ingénieur, chap 4. [R] Rubinstein, Simulation and Monte Carlo

Plus en détail

Les indices à surplus constant

Les indices à surplus constant Les indices à surplus constant Une tentative de généralisation des indices à utilité constante On cherche ici en s inspirant des indices à utilité constante à définir un indice de prix de référence adapté

Plus en détail

2- Comment les traders gèrent les risques

2- Comment les traders gèrent les risques 2- Comment les traders gèrent les risques front office middle office back office trading échange d'actifs financiers contrôle des risques, calcul du capital requis enregistrement des opérations traitement

Plus en détail

Introduction au pricing d option en finance

Introduction au pricing d option en finance Introduction au pricing d option en finance Olivier Pironneau Cours d informatique Scientifique 1 Modélisation du prix d un actif financier Les actions, obligations et autres produits financiers cotés

Plus en détail

Simulation d un système d assurance automobile

Simulation d un système d assurance automobile Simulation d un système d assurance automobile DESSOUT / PLESEL / DACHI Plan 1 Introduction... 2 Méthodes et outils utilisés... 2.1 Chaines de Markov... 2.2 Méthode de Monte Carlo... 2.3 Méthode de rejet...

Plus en détail

PROBABILITES et STATISTIQUES. Cours et exercices

PROBABILITES et STATISTIQUES. Cours et exercices PROBABILITES et STATISTIQUES Cours et exercices C. Reder IUP2-MIAGE Bordeaux I 2002-2003 1 I- Le modèle probabiliste 1- Evènements SOMMAIRE 2- Loi de probabilité, espace de probabilité 3- Le cas où les

Plus en détail

Théorie de la crédibilité

Théorie de la crédibilité ISFA - Année 2008-2009 Théorie de la crédibilité Chapitre 2 : Prime de Bayes Pierre-E. Thérond Email, Page web, Ressources actuarielles Langage bayesien (1/2) Considérons une hypothèse H et un événement

Plus en détail

Raisonnement par récurrence Suites numériques

Raisonnement par récurrence Suites numériques Chapitre 1 Raisonnement par récurrence Suites numériques Terminale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Raisonnement par récurrence. Limite finie ou infinie d une suite.

Plus en détail

IFT6561. Simulation: aspects stochastiques

IFT6561. Simulation: aspects stochastiques IFT 6561 Simulation: aspects stochastiques DIRO Université de Montréal Automne 2013 Détails pratiques Professeur:, bureau 3367, Pav. A.-Aisenstadt. Courriel: bastin@iro.umontreal.ca Page web: http://www.iro.umontreal.ca/~bastin

Plus en détail

Fonctions de deux variables. Mai 2011

Fonctions de deux variables. Mai 2011 Fonctions de deux variables Dédou Mai 2011 D une à deux variables Les fonctions modèlisent de l information dépendant d un paramètre. On a aussi besoin de modéliser de l information dépendant de plusieurs

Plus en détail

Université Paris-Dauphine DUMI2E 1ère année, 2009-2010. Applications

Université Paris-Dauphine DUMI2E 1ère année, 2009-2010. Applications Université Paris-Dauphine DUMI2E 1ère année, 2009-2010 Applications 1 Introduction Une fonction f (plus précisément, une fonction réelle d une variable réelle) est une règle qui associe à tout réel x au

Plus en détail

Devoir Surveillé n 5 BTS 2009 groupement B

Devoir Surveillé n 5 BTS 2009 groupement B EXERCICE 1 (12 points) Devoir Surveillé n 5 BTS 2009 groupement B Les trois parties de cet exercice peuvent être traitées de façon indépendante. A. Résolution d une équation différentielle On considère

Plus en détail

Romain Delacretaz. Paris 02.02.2008

Romain Delacretaz. Paris 02.02.2008 Les OPTIONS Options Romain Delacretaz Paris 02.02.2008 Les Options Service Options Hebdo par Traders Pros Livre sur les Options Romain Delacretaz I. Définition des Options II. Terminologie des options

Plus en détail

Manuel sur les risques liés aux portefeuilles d'investissement DEGIRO

Manuel sur les risques liés aux portefeuilles d'investissement DEGIRO Manuel sur les risques liés aux portefeuilles d'investissement DEGIRO Sommaire 1. Introduction... 2 2. Aperçu du portefeuille... 4 3. Risque du portefeuille dans la pratique... 7 4. Risques au niveau des

Plus en détail

OM 1 Outils mathématiques : fonction de plusieurs variables

OM 1 Outils mathématiques : fonction de plusieurs variables Outils mathématiques : fonction de plusieurs variables PCSI 2013 2014 Certaines partie de ce chapitre ne seront utiles qu à partir de l année prochaine, mais une grande partie nous servira dès cette année.

Plus en détail

CHAPITRE 12 LE DÉVELOPPEMENT DES MARCHÉS DE TAUX ET INSTRUMENTS DÉRIVÉS

CHAPITRE 12 LE DÉVELOPPEMENT DES MARCHÉS DE TAUX ET INSTRUMENTS DÉRIVÉS CHAPITRE LE DÉVELOPPEMENT DES MARCHÉS DE TAUX ET INSTRUMENTS DÉRIVÉS TESTEZ VOS CONNAISSANCES Comment définir un contrat à terme? Comment se dénoue un contrat à terme? Quelle est la définition d'une option

Plus en détail

Stratégies gagnantes sur les options. Romain Delacretaz

Stratégies gagnantes sur les options. Romain Delacretaz Stratégies gagnantes sur les options Romain Delacretaz INTRODUCTION : Les options sont des produits souples mais complexes et occupent une place à part dans les produits d'investissement. Ces produits

Plus en détail