Équations non linéaires

Dimension: px
Commencer à balayer dès la page:

Download "Équations non linéaires"

Transcription

1 CHAPTER 1 Équations non linéaires On considère une partie U R d et une fonction f : U R d. On cherche à résoudre { x U 1..1) f x) = R d On distinguera les cas d = 1 et d > Dichotomie d = 1) Description. Dans ce cas la partie U est un intervalle [a, b]. Soit f : [a, b] R une fonction continue telle que f a) f b) < Alors en vertu du théorème des valeurs intermédiaire, il existe x [a, b] tel que f x ) =. Soit c = a+b, alors si f c) =, c est solution, sinon f a) f c) < ou bien f c) f b) < dans le premier cas, on pose b = c dans le deuxième cas, on pose a = c. Dans les deux cas on obtient à nouveau f a) f b) <. On peut alors réitérer le processus, jusqu'à ce que l'une des conditions suivantes soit réalisée : 1) b a < ɛ ) f c) < δ La deuxième est plus pertinente pourquoi?). En numérotant les valeurs successives de a, b et c, on dénit trois suites a n ), b n ) et c n ) Si l'un des deux tests d'arret 1) ou )est satisfait, on estime que l'on a convergé vers une solution approchée de l'équation f x) =. a b a b a b Algorithme. L'algorithme s'écrit il s'agit ici un code scilab): Algorithm 1. [k,x,e]=dichotomief,a,b,ɛ,k) //Résolution de f z) = par dichotomie. //on doit avoir f a) f b) < //entrée a < b intervalle initial // ɛ pour le test d'arret f c) < ɛ // K pour limiter le nombre d'itérations. //Sortie : k, nombre d'itérations // X=c i, i k), les itérés // E= f c i ), i k) if fa)*fb)> then return end c=a+b)*.5;fc=fc); 1

2 1.. POINT FIXE d = 1) X=c;E=absfc); k=1; while absfc)>eps & k<k do k=k+1; if fa)*fc< then b=c; else a=c; end c=a+b)*.5;fc=fc); E=[E,absfc)];X=[X,c]; end return k,x,e; endfunction ATTENTION : on ne teste jamais l'égalité d'un réel en virgule ottante x à zéro car à cause des erreurs d'arrondi, x = n'advient quasiment jamais Convergence. Theorem. Soient [a, b ], [a 1, b 1 ],..., [a n, b n ],... les intervalles engendrés par l'algorithme de dichotomie, alors les suites a n et b n sont adjacente et leur limite commune est un zéro de f. De plus, en posant x = lim n c n avec c n = an+bn, alors x n+1) b a Proof. Par construction la suite a n ) n est croissante et b n ) n est décroissante. De plus pour tout n entier, a n < b n et b n a n = 1 b n 1 a n 1 ) = n 1 b a ) donc a n ) n et b n ) n sont adjacentes donc convergent vers la meme limite x = lim n a n = lim n b n Comme f a n ) f b n ) < et f continue, en passant à la limite, on obtient : f x )) donc f x ) =, x est bien un zéro de f. Enn, l'inégalité a n < x < b n à laquelle on retranche c n donne an bn < x c n < bn an d'où x c n < b n a n = n+1) b a Example. Si [a, b] = [, 1], pour obtenir une précision x c n < 1 6, il sut de 19 itérations, quelle que soit la fonction f. 1.. Point xe d = 1) L'équation f x) = est supposée mise sous la forme F x) = x, ce qui peut se faire en posant F x) = f x) + x mais aussi de plusieurs manières. f x) = F x) = x Par exemple, x + x = peut s'écrire x + x = x, mais aussi + x = x ou encore x = x. Toutes ces équations sont de la forme F x) = x

3 1.. POINT FIXE d = 1) 3 Definition 3. On dit que x est un point xe de F si et seulement si F x) = x Description. la méthode de point xe pour résoudre f x) = consiste à considérer la suite { x R x n+1 = F x n ) qui, sous certaines conditions que l'on examine plus loin, converge vers la solution de x de l'équation??) Algorithme. L'algorithme s'écrit code scilab): function [k,x,e]=pointfixef,x,eps,k) //resolution de fx)= avec l'algo x <-- fx)+x x=x;k=1;x=x;fx=fx);e=absfx); while absfx)>eps & k<k do x=fx)+x X=[X,x] fx=fx); E=[E,absfx)] k=k+1 end return k,x,e endfunction Existence d'un point xe, convergence de la suite x n+1 = F x n ). Un théorème très simple donnant l'existence d'un point xe, pour une fonction qui n'est pas forcément dérivable. Theorem 4. Soit I un intervalle fermé, borné de R et F : I R vériant 1) F I) I ) F continue sur I alors F admet un point xe x I Proof. Pour la fonction g x) = F x) x, la condition F I) I implique g b) g a) et, g étant continue, on peut appliquer le théorème des valeurs intermédiaires qui permet de conclure. Theorem 5. Soit I un intervalle fermé, borné, non vide de R et F : I R vériant 1) F I) I ) F croissante sur I alors F admet un point xe x I Proof. Posons I = [a, b] et E = {x I, f x) x}. L'ensemble est non vide contient a) borné par b il admet donc une borne supérieure α = sup E qui vérie f α) α exercice : pourquoi? 1 ). Deux cas se présentent : 1) α = b alors on a f b) b et f b) [a, b] donc f b) = b ) α < b et dans ce cas, considérons une suite x n ]α, b], qui converge en décroissant vers α. Alors en utilisant successivement α = sup E, puis f croissante, puis x n / E on obtient α f α) < f x n ) < x n et en passant à la limite sur n la suite f x n ) est décroissante bornée inférieurement, donc elle converge) on obtient le résultat. En prime, le théorème des gendarmes montre que f est semicontinue supérieurement en α. 1 Supposons que f α) < α alors pour ɛ = 1 α f α)) >, donc par dénition de α = sup E, on peut trouver x dans E tel que α x < ɛ donc α x) < α f α) comme f est croissante et x E, on en déduit : α x) < α f x) α x ce qui est impossible.

4 1.. POINT FIXE d = 1) 4 Example 6. F x) = 1 x, I = [ a, 1 a ], < a < 1, ou bien F x) = x si x si 1 3 x 3 x 1 si 3 x 1 sur [, 1] Lorsque la fonction n'est pas monotone, an d'étudier la convergence de la méthode du point xe, donnons cette dénition : Definition 7. Soit U R une partie non vide et F : U R une application. L'application F est dite contractante sur U si et seulement si il existe un réel λ [, 1[ tel que pour tout x, y U : F x) F y) λ x y Theorem 8. Une application λ-contractante sur une partie non vide U R est uniformément continue sur U η Proof. Pour ɛ > donné, on pose η = ɛ, et on a : λ x y < η = F y) F x) < λ y x < λ η λ = Example 9. F x) = 3 x est contractante sur R car F R) R et x, y R F y) F x) = 1 y x 1 y x Cette inégalité signie que F contracte les longueurs : la distance de F x) à F y) est plus petite que la distance de x à y. Pratiquement, une fonction contractante sur I vérie : son graphe est inclus dans le carré I I et elle contracte les longueurs. Exercise 1. Donner des exemples de fonctions contractantes sur [, 1]. Trouver une fonction contractante qui admet un point xe. Proposition 11. Soit I = [a, b] et soit F une application de classe C 1 sur I Alors F est contractante sur I. sup F < 1 I Proof. Il sut d'appliquer l'inégalité des accroissements nis à F sur l'intervalle [x, y]. Donnons maintenant une condition susante pour que F I) I, qui est une inclusion pas toujours simple à démontrer. Proposition 1. Soit I = [a, b], soit F une application de classe C 1 sur I admettant un point xe x I, et vériant F x ) < 1. Alors on peut trouver un intervalle I δ = [x δ, x + δ] tel que F I δ ) I δ et F est contractante sur I δ. Proof. Comme F est de classe C 1, et F x ) < 1, on peut trouver δ > tel que sup Iδ F < 1 avec I δ = [x δ, x + δ]. Maintenant, on observe que pour x I δ on a : F x) x = F x) F x ) F ξ) x x sup F x x I δ < x x δ ce qui prouve que F I δ ) I δ et que F est contractante sur I δ. Si ça n'était pas le cas, pour n > entier, δ = 1 n on pourrait trouver xn tel que xn x < δ et F x n) 1, en passant à la limite sur n, par continuité de F on aurait alors F x ) 1 ce qui est impossible.

5 1.. POINT FIXE d = 1) 5 Figure Méthode de point xe, diérents cas de gure Le théorème suivant donne des conditions susantes pour que F admette un point xe x et pour que la suite x n converge vers x. Theorem 13. Soit I un intervalle fermé de R et F une application contractante sur I vériant F I) I alors 1) F admet un unique point xe x I et ) pour tout x I, la suite x n+1 = F x n ) converge vers x. Proof. On décompose la démonstration en plusieurs étapes : 1) Majoration de x n+1 x n x n+1 x n = F x n ) F x n 1 ) λ x n x n 1... λ n x 1 x ) La suite x n ) est convergente si et seulement si la suite s n = k n x k+1 x k ) est convergente car s n = x n+1 x. Or une condition susante pour que la suite s n soit convergente est qu'elle soit absolument convergente, ce qui advient si la série σ n = k n x k+1 x k est bornée. Montrons qu'il en est ainsi : σ n = x k+1 x k k n k n λ k x 1 x = 1 λn+1 1 λ x 1 x x 1 x 1 λ donc la suite x n converge 3) Sa limite x = lim n x n vérie, puisque F est continue : x = lim n+1 = lim n) n n ) = F lim n n donc F x ) = x qui est bien un point xe de F

6 1.. POINT FIXE d = 1) 6 Figure 1... F x) = 1 6 x 3 + x + ) sur I = [, 1] 4) Le point xe est unique, car s'il y en a deux x et y, alors x y = F x) F y) λ x y avec λ < 1. Corollary 14. Si F admet un point xe x, si F est de classe C 1 au voisinage de x, si F x ) < 1, alors il existe un voisinage V de x tel que pour tout x V, la suite x n+1 = F x n ) converge vers x. Proof. En appliquant la proposition 1), on peut trouver un intervalle I δ = ]x δ, x + δ[ tel que F I δ ) I δ et F est contractante sur I δ. On peut alors appliquer le téorème précédent 13) Example. Soit F x) = 1 6 x 3 + x + ) et I = [, 1] 1) Etude de F et F sur I : F x) = 1 6 3x + 1 ) x 1 et F x) = x F 1 x) F x) 3 3 ) comme conséquence du tableau de variation on a F I) I, et F est contractante dans I car sup I F = 3 < 1. 3) F admet donc un point xe x = lim n x n avec x I et x n+1 = F x n ). On ne sait pas résoudre analytiquement l'équation F x) = x mais on peut calculer de manière approchée x comme limite de la suite x n ) n. On trouve x ) Ordre de convergence, vitesse de convergence. Definition 15. soit u n ) une suite réelle convergent vers u telle que n N, u n u. Si l'erreur e n = u u n vérie e n+1 = O e α n) au voisinage de n =, on dit que la méthode est d'ordre de convergence au moins) α. Si α = 1 la convergence est dite linéaire, e Si lim n+1 n e n = la convergence est dite super-linéaire, Si α = la convergence est dite quadratique, e Si lim n+1 n e = la convergence est dite super-quadratique, n puis cubique,...

7 1.. POINT FIXE d = 1) 7 Figure F x) = x x + sur [ 1, ] 3 e Si de plus α = 1 et lim n+1 n e n = 1 v, v est parfois appelé la vitesse de convergence. Dans ce cas, comme la suite converge, la valeur absolue de l'erreur diminue. On a donc nécessairement v > 1. Example 16. u n = n converge vers 1 linéairement car un+1 u n = Voici une suite qui converge quadratiquement cf méthode de Newton) : n n+1) est borné. Example 17. x = 3, x n+1 = x n x n + 1) si elle converge, a pour limite x = 1 ou x = ) La fonction F x) = x x + est presque contractante sur [ 1, ] 3. Elle est contractante sur tout intervalle fermé, non vide [1 α, 1 + α] ] 1, [ 3. Comme x1 = 5 4 I = [ 3 4, ] 4] 5 1, [ 3, on peut considérér la suite x n ) n 1 et appliquer le théorème du point xe sur I sur lequel F est contractante. 3) Le seul point xe de l'intervalle I est x = 1 donc la suite x n converge vers 1 et l'erreur vérie : la convergence est donc quadratique. e n+1 = x n+1 1 = x n 1) = e n Proposition 18. Si F est susament régulière, et si la suite x n+1 = F x n ) converge vers x, alors son ordre de convergence est q, le plus petit entier tel que F q) x ) Proof. On note e n = x n x l'erreur et on fait un développement limité de F x n ) au voisinage de x : il existe ξ n entre x n et x tel que ce qui démontre le résultat. e n+1 = x n+1 x = F x n ) F x ) = F x + e n ) F x ) = e n F x ) + e F x ) n + + e q F q) x ) n q! + e q+1 F q+1) ξ n ) n q + 1)!

8 1.3. NEWTON ET SÉCANTE d = 1) Newton et sécante d = 1) Description. La méthode de Newton pour résoudre les équations non linéaires est très ecace. Elle est un cas particulier de la méthode de point xe, lorsque la fonction est de classe C. On considère l'équation f x) = et on suppose donc f de classe C au voisinage de la solution x. Si l'on dispose d'une approximation x n pas trop éloignée de x, alors on peut écrire en posant x = x n + h h est l'erreur) et en utilisant la formule de Taylor : 1.3.1) = f x ) = f x n ) + hf x n ) + O h ) f x n ) + hf x n ) Ce faisant, on a linéarisé le problème au voisinage de x n, c'est à dire que l'on a remplacé la fonction h f x n + h) par sa partie linéaire : h f x n ) + hf x n ). On a donc approximativement h fxn), à condition que f x f n) x n ). On peut donc corriger l'approximation courante en écrivant x x n+1 = x n f x n) f x n ) On réitère le processus, et on obtient la méthode de Newton. Exercise 19. Super-Newton : une méthode d'ordre 3. Soit f x) = x 3 9. On s'intéresse à la solution x = 3 de l'équation f x) = 1) Ecrire la méthode de Newton pour la fonction f et calculer x 3 à partir de x =. ) Un itéré x R étant donné, on pose x = x + h. Écrire la formule de Taylor à l'ordre pour = f x ) = f x + h). Calculer une approximation de h en résolvant l'équation du second degré obtenue. Proposer une méthode que l'on dira de super-newton pour calculer x, à partir d'un x donné. 3) Quel est l'ordre de cette méthode? a) La formule de Taylor à l'ordre 3 au voisinage de x n s'écrit f x ) = f x n + h) d'où l'approximation de h : = f x n ) + f x n ) h + f x n ) h + O h 3) f x n ) + f x n ) h + f x n ) h h f x n ) ± f x n )) f x n ) f x n ) f x n ) et la méthode de super-newton s'écrit : x n+1 = x n + f x n ) ± f x n )) f x n ) f x n ) f x n ) Appliqué à f, cela donne : x n+1 = x n ± 36xn 3x 4 n 6x n 4) Appliquer la méthode précédente à f et calculer x 3, à partir de x =. Comparer avec la méthode de Newton.

9 1.3. NEWTON ET SÉCANTE d = 1) 9 Figure Algorithmes de super-newton, Newton et de la sécante ou Quasi-Newton) a) Super-Newton b) Newton c) quasi-newton sécante) a) Résultat d'execution sous scilab avec f x) = x 3 R, R = 3, et x = 4. Les erreurs e n = 3 x n A noter, super Newton donne des résultats complexes). Newton Super-Newton E-11 Si l'on ne dispose pas de la dérivée ou si celle-ci coûte trop cher à calculer 3, on peut l'approcher par f x n ) f x n) f x n 1 ) x n x n 1 3 Par exemple, le calcul de la fonction f peut être le résultat d'un programme de simulation numérique complexe, auquel cas la dérivée risque fort de ne pas être disponible. Il existe des logiciels de diérentiation automatique, qui parcourent un tel code de calcul et sont capables de générer les lignes de code nécessaires au calcul de la dérivée, mais ces logiciels sont diciles à mettre au point, et ne sont pas toujours très ecaces.

10 1.3. NEWTON ET SÉCANTE d = 1) 1 on obtient alors la méthode de la sécante, qui est une méthode de quasi-newton. x n x n 1 ) x n+1 = x n f x n ) f x n ) f x n 1 ) On notera que pour démarrer les itérations dans cette méthode, il est nécessaire de disposer de deux itérés initiaux, x et x 1 et chaque itération nécessite la connaissance des deux itérés précédents Algorithmes codes scilab). Algorithm. [k,x,e]=newtonf,df,x,ɛ,k) #Méthode de Newton pour la résolution de fx)= #Entree : f, df la fonction et sa dérivée. # x R approximation initiale # ɛ > le test d'arret est f x) < ɛ # K nombre max d'iterations #Sortie : k nombre d'iterations, # X R k, la suite des itérés x n # E R k, la suite des f x n ) x=x ;k=1;fx=fx);dfx=dfx); X=x ;E=absfx); while absfx)>eps & k<k do x=x-fx/dfx; fx=fx); dfx=dfx); X=[X,x]; E=[E,absfx)] k=k+1; end return k,x,e; endfunction Algorithm 1. [k,x,e]=secantef,x,x 1,ɛ,K) k=1; x=x ;x1=x 1 ; fx=fx);fx1=fx1); X=x, x 1 ;E=absfx),absfx1); c=fx1*x-x1)/fx-fx1); while absfx1)>eps & k<k do x=x1;x1=x1-c; fx=fx1;fx1=fx1); c=fx1*x-x1)/fx-fx1); X=[X,x1]; E=[E,absfx1)] k=k+1; end return k,x,e; endfunction Convergence. Theorem. Supposons f de classe C au voisinage de x et x zéro simple de f i.e. f x ) ). Alors il existe un voisinage V de x et une constante réelle C tels que si x V, la méthode de Newton converge avec un ordre de convergence quadratique pour n : x n+1 x C x n x

11 1.3. NEWTON ET SÉCANTE d = 1) 11 Proof. posons e n = x x n, c'est l'erreur. Alors e n+1 = x x n+1 = x x n + f x n) f x n ) = e n + f x n) f x n ) On utilise la formule de Taylor-Young : il existe θ ], 1[ tel que = f x ) = f x n + e n ) = f x n ) + e n f x n ) + e n f x n + θe n ) d'où fxn) f x = e n) n e f x n+θe n) n f x n) puis e n+1 = e n f x n + θe n ) f x n ) et si x est assez proche de x au sens x x + D r, r bien choisi, on peut montrer que x 1 x + D r, et f x n+θe n) C où C est une constante qui ne dépend pas de n. Le théorème est alors démontré. f x n) Proof. Voici une autre démonstration de ce résultat, s'appuyant sur le théorème de point xe 13. En posant F x) = x fx) f x), la méthode de Newton apparaît comme une méthode de point xe x n+1 = F x n ). La limite, si elle existe, vérie x = x fx) f x), c'est à dire f x) = puisque f x) est non nul. Il s'agit donc bien de x. On calcule alors F x ) = < 1 ce qui permet d'appliquer la proposition 14 armant l'existence d'un δ > tel que la suite x n ) converge vers x. Comme F x ) =, la proposition 18 nous permet de conclure que l'ordre de convergence est au moins quadratique. Theorem 3. Supposons f de classe C au voisinage de x et x zéro simple de f. Alors il existe un voisinage V de x tel que, pour tout couple x, x 1 x appartenant à V, la suite de la sécante converge vers x, avec un ordre de convergence α = au moins Proof. posons e n = x n x Example. L'algorithme de la division sur un ordinateur : on calcule d'abord l'inverse du dénominateur, a >, en appliquant l'algorithme de Newton à la fonction à f x) = a 1 x ce qui donne x n+1 = x n ax n ) qui converge vers 1 a. Le calcul des termes de la suite ne fait intervenir que des soustractions et multiplications. L'erreur relative à l'itération n + 1 est 1 a xn+1 1 = 1 ax n+1 = 1 ax n ). On voit donc qu'il y a a convergence à condition que 1 ax < 1 c'est à dire x ], a[. Example. Pour calculer la racine rème d'un réel a >, on peut appliquer l'algorithme de Newton à la fonction f x) = x r a. les itérés sont x n+1 = F r x n ) avec F r x) = 1 r 1) x + a ) r x r 1 Pour r = la suite x n ) converge vers la racine carrée de a. L'algorithme se simplie en x n+1 = 1 x n + a ) 1.3.) x n

12 1.4. POINT FIXE d ) 1 Soir r n = xn a a l'erreur relative à l'étape n. On a donc On en déduit, avec 1.3.), que Donc x n+1 = a 1 + r n+1 ) = a x n = a 1 + r n ) ) a a 1 + rn ) x n+1 = 1 a 1 + rn ) + ) a a = 1 + r n r n 1 + r n + ) a 1+r n d'où nalement r n+1 = 1. r n 1 + r n On voit donc que si r n est petit devant 1, alors r n+1 r n Par contre, lorsque x n est grand, x n+1 xn, la convergence est clairement linéaire. Exercise 4. En TP, 1) tester un algorithme analogue pour calculer l'inverse d'une matricea R n,n donnée. ) Tester un algorithme pour calculer la racine carrée d'une matrice Point xe d ) On se donne une fonction g C R d, R d)4 et on cherche x R d solution de { x R 1.4.1) d g x) = d Soit f C R d, R d), dénie par f x) = x + g x). On remarque que x est solution de 1.4.1) si et seulement si x est un point xe de f, c'est à dire f x) = x. Theorem 5. Soit E un espace métrique complet, d la distance sur E et f : E E une fonction strictement contractante, c'est à dire : k ], 1[ tel que pour tout x, y E Alors f admet un unique point xe, x E. De plus la suite dénie par converge vers x d f x), f y)) kd x, y) { x ) E x n+1) = f x n ) Proof. La démonstration est analogue à celle du théorème 13) : Étape 1 : existence de x et convergence de x n)). On va montrer que x n)) est de Cauchy, n N puis x n)) converge vers un point xe de f. Pour tout n N, on a d x n+1), x n)) = d f x n)), f x n 1))) k.d x n), x n 1)) 4 La fonction est appelée g plutôt que f car elle est appelée à être le gradient d'une fonction f : R d R au chapitre suivant

13 1.4. POINT FIXE d ) 13 Par récurrence, on obtient : d x n+1), x n)) k n d x 1), x )), n. Soient maintenant n et p 1. On a donc d x n+p), x n)) d x n+p), x n+p 1)) + d x n+p 1), x n+p )) + + d x n+1), x n)) k n d x 1), x )) k n+p 1 + k n+p + 1 ) = k n d x 1), x )) 1 k n+p 1 k d x 1), x )) k n 1 k cette dernière quantité tend vers lorsque n tend vers l'inni ce qui prouve que la suite x n)) est n de Cauchy : ε >, n ε N, n n ε, p 1, d x n+p), x n)) < ε Comme E est complet, elle converge donc vers un point x R n. Le point x est point xe de f car : f étant contractante, elle est continue sur E. Dans la relation x n+1) = f x n)) on passe à la limite sur n et on obtient x = f x). Étape : unicité de x. Soient x y deux points xes distincts. Comme f est strictement contractante, on peut écrire : ce qui est impossible. d x, y) = d f x), f y)) kd x, y) < d x, y) Remark 6. 1) Sous les hypothèses du théorème 13), on peut écrire d x n+1), x ) kd x n+1), x ) donc si x n) x, la relation dxn+1),x) dx n+1),x) k < 1 exprime la convergence au moins) linéaire de x n)) vers x. On verra plus loin une méthode de point xe méthode de Newton) qui converge quadratiquement. ) On peut remplacer l'hypothèse f strictement contractante par : il existe n > tel que f n = f f f soit strictement contractante. 3) Que faire si f n'est pas contractante? On peut dénir f ω x) = x + ωg x), on remarque que x est solution de 1.4.1) si et seulement si x est un point xe de f ω. On cherche alors des conditions sur ω pour que f ω soit strictement contractante. Theorem 7. point xe avec relaxation) On désigne par. la norme euclidienne de R N. C R N, R ) N une fonction vériant : α > tel que x, y R N, g y) g x)). y x) α y x M > tel que x, y R N, g y) g x) M y x Alors la fonction f ω est strictement contractante sur R N pourvu que < ω < α M. Elle admet donc un unique point xe, x, limite de la suite x ) R N, x n+1) = f x n)) Soit g Proof. Montrons que l'hypothèse < ω < α M entraîne que f ω est strictement contractante. Pour tout x, y R n, en tenant compte des hypothèses 7) et 7) on a : f ω y) f ω x) = y x + ω g y) g x))). y x + ω g y) g x))) = y x + ω y x). g y) g x)) + ω g y) g x) y x 1 ωα + ω M ) Donc f ω est strictement contractante à condition que p ω) = 1 ωα + ω M ], 1[. L'étude de la fonction p montre que pour < ω < α M on a < p ω) < 1 Remark 8.

14 1.4. POINT FIXE d ) 14 1) Le théorème précédent montre que sous les hypothèses 7) et 7) et pour < ω < α M, on peut obtenir la solution de 1.4.1) comme limite de la suite { x ) R N x n+1) = x n) + ωg x n ) qui peut également s'écrire : x ) R N x n+ ) ) 1 = f x n) x n+1) = ωx n+ ) ω) x n ce procédé est appelé algorithme de relaxation. Quelques rappels de calcul diérentiel. Soit h C R N, R ). La fonction h est diérentiable sur R N : x R N, il existe une application linéaire Dh x) h x) L R N, R ) R 1,N telle que : h x + y) = h x) + h x) y) + y ε y) avec lim y ε y) =. Dans ce cas, par dénition du gradient de f en y, on a h x) y) = h x).y où h x) = 1 h x), h x),..., N h x)) t R N et i h x) = h x i x) est la dérivée partielle de h par rapport à la i-ème coordonnée. Comme h C R N, R ), on a h C 1 R N, L R N)) C 1 R N, R N ) et h x) est une application linéaire de R N dans R N qui vérie : h x + y) = h x) + h x) y) + y ε y) où lim y ε y) = Comme h x) est une application linéaire de L R N, R N ), on la confond avec la matrice qui la représente dans la base canonique, appelée matrice hesienne. On écrit alors par abus de notation h x) R N,N. Comme h est de classe C, cette matrice est symétrique Théorème de Schwartz) et s'écrit à l'aide des dérivées partielles secondes : h x) = ijh x) ) 1 i,j N Proposition 9. Soient h C R N, R ) et λ i x)) 1 i N les valeurs propres de la hessienne, h x), en un point x R N. On suppose qu'il existe des réels β > et γ > vériant x R N, i {1,,..., N}, β λ i x) γ Alors la fonction g=h' vérie les hypothèses du théorème 13 avec α = γ et M = β Proof. Montrons tout d'abord que 7 est vériée : soient x et y R n et soit ϕ t) = g y + t y x)) R N Alors ϕ t) = g y + t y x)) y x) et ϕ vérie : g y) g x) = ϕ 1) ϕ ) = ϕ t) dt donc puis g y) g x) = g y) g x)). y x) = g y + t y x)) y x) dt g y + t y x)) y x). y x) dt

15 1.4. POINT FIXE d ) 15 On utilise la propriété des quotients de Rayleigh de la matrice g x) 5, et l'hypothèse du théorème. On obtient pour tout w, z R N : β w g z) w.w γ w qui donne, pour w = y x et z = y + t y x) et après intégration : g y + t y x)) y x). y x) dt soit g y) g x)). y x) γ y x ce qui démontre que 7 est vériée avec α = γ. Pour démontrer 7, on repart de la relation et donc g y) g x) = g y) g x) g y + t y x)) y x) dt γ y x dt g y + t y x)) y x) dt g y + t y x)) y x dt où on a noté. la norme matricielle subordonnée à la norme euclidienne sur R n. g y + t y x)) est symétrique réelle, et nalement : ce qui achève la démonstration. g y + t y x)) = ρ g y + t y x))) g y) g x) β β y x β y x dt Comme la matrice Remark 3. les théorèmes 5) et 7) sont constructifs car ils donnent un algorithme pour approcher le point xe. Il existe un théorème de point xe beaucoup plus général et extrêmement puissant, mais non constructif, c'est le théorème de Brouwer : Theorem 31. Brouwer) Toute fonction continue d'un convexe compact K dans lui-même admet un point xe. Brouwer disait : quand on mélange son sucre dans la café, il semble qu'il y ait toujours un point immobile. A tout moment il y a un point de la surface qui n'aura pas changé de place. Si l'on prend deux feuilles de papier A et B identique, on froisse B, et on la repose sur A, puis on l'aplatit avec un fer à repasser, alors il y a un point de la feuille B qui est à la même place que celui de la feuille A. L'application est ici x, y) A x, y) B. 5 On rappelle la propriété du quotient de Rayleigh pour une matrice réelle symétrique A R N,N de valeurs propres λ i ) 1 i N : x R N, λ min Ax.x x.x λmax

16 1.5. ORDRE ET VITESSE DE CONVERGENCE Ordre et vitesse de convergence Definition 3. Soit x n)) une suite de n RN convergente et x sa limite, telle que n N, x n) x. On dit que x 1) La convergence est au moins linéaire s'il existe β ], 1[ et n N tel que n n, xn+1) x n) x β x ) La convergence est linéaire s'il existe β ], 1[ tel que lim n+1) x n = β x n) x 3) La convergence est super-linéaire si elle est linéaire avec β = x 4) La convergence est d'orde au moins q s'il existe β > et n N tel que n n, xn+1) x n) x β q x 5) La convergence est d'ordre q s'il existe β > tel que lim n+1) x n x n) x = β q de plus, si q = on parle de convergence quadratique, si q = 3, on parle de convergence cubique... Remark 33. Plus q est grand, plus la convergence est rapide. Pour avoir une convergence au moins) linéaire, il faut que la limite le majorant) β > soit plus petit que 1 sinon la convergence n'est pas assurée, cette condition n'est pas nécessaire pour q. On peut abréger la dénition, pour q par : la convergence est d'ordre q si x n+1) x = O x n) x q) Dans le cas où N = 1, on obtient assez simplement un résultat sur la vitesse de convergence de la suite du point xe. Proposition 34. Soient q N et f C q R, R) admettant un point xe x. Soit x n)) la suite du n point xe dénie par x ) R, x n+1) = f x n ). Si f x) < 1, alors on peut trouver un voisinage I α = [x α, x + α], α > de x tel que pour x ) I α, la suite x n)) n converge vers x. L'ordre de convergence est le plus petit entier p [1, q] tel que f p) x) où f p) désigne la dérivée d'ordre p de f. Proof. Comme f x) < 1, par continuité de f en x, on peut trouver α > tel que γ = max Iα f < 1 avec I α = [x α, x + α]. f Iα est à valeur dans I α : x I α, f x) x = f x) f x) γ x x < x x α f est strictement contractante sur I α grâce au théorème des accroissements nis qui s'écrit x, y I α, f x) f y) γ x y avec γ < 1 Le théorème 5) avec E = I α permet de conclure lim n x n) = x. Ordre de convergence : Si f x) on eectue un développement limité de f au voisinage de x : f x n)) ) = f x) + x n) x f ξ n)) ), avec ξ n) = x + θ x n) x et θ ], 1[ donc x n+1) x = x n) x ) f ξ n)) puis en utilisant la continuité de f en x, xn+1) x x n) x = f ξ n)) n f x) < 1. La suite x n) convergence donc linéairement. Si f x) = f x) = = f p 1) x) = et f p) x) ici l'exposant p) désigne l'ordre de dérivation) alors le développement limité de f au voisinage de x à l'ordre p s'écrit : f x n)) p = f x) + x n) x) f p) ξ n)) ), avec ξ n) = x + θ x n) x et θ ], 1[ x donc xn+1) x n) x = f p) ξ n)) p n f p) x) ce qui montre que la convergence est d'ordre p

17 1.6. LA MÉTHODE DE NEWTON d ) La méthode de Newton d ) On rappelle le problème : une fonction g : R N R N est donnée, et on cherche à résoudre le problème { x R N g x) = R N Construction de la méthode de Newton, diérents points de vue. Premier point de vue. Nous allons appliquer la proposition 34) pour construire dans le cas N = 1) une méthode qui soit d'ordre. Soient g C R, R), et x R un zéro de g. On cherche une suite x n)) n N qui converge quadratiquement vers x. On pose f x) = x + h x) g x) avec h C R, R) et h x), x R. Donc f x) = x g x) =. Le point x est donc point xe de f.pour que la méthode du point xe soit quadratique, il sut de prendre h telle que f x) =, c'est à dire h x) = 1, ce qui est possible si g x) g x). Une possibilité il y en a d'autres) est de prendre h x) = 1 gx) g x) ce qui donne f x) = x g x). Le théorème précédent assure alors qu'il existe α > tel que si x ) I α = ]x α, x + α[ alors la suite x n+1) = x n) g x n)) g x n)) converge quadratiquement vers x. Deuxième point de vue. Le principe est analogue en dimension 1 ou supérieure : soit g C R N, R N), on suppose connue une approximation x n) de la solution x de g x) =. Alors à l'itération n on peut écrire en posant x = x n) + h h R d est l'erreur) et en utilisant la formule de Taylor-Young on a : = g x ) = g x n)) + g x n)) h + O h ) g x n)) + g x n)) h Ce faisant, on a linéarisé le problème, c'est à dire que l'on a remplacé la fonction e R N g x + e) R N par sa partie linéaire : e g x) + g x) e Linéariser un problème g x) = autour de x consiste à remplacer la fonction e g x + e) par sa partie linéaire : e g x) + g x) e) On a donc approximativement e [ g x n))] 1 g x n) ), à condition que g x n)) soit une matrice inversible. On peut donc corriger l'approximation courante en écrivant x n+1) = x n) [g x n))] 1 g x n)) x C'est la méthode de Newton. On verra au chapitre prochain comment on peut éviter le calcul cher) de g x n)) et de son inverse en utilisant les informations des itérations précédentes pour approcher g x n)) ou directement [ g x n))] 1 ou même [ g x n))] 1 g x n) )

18 1.6. LA MÉTHODE DE NEWTON d ) ) Algorithme. De manière résumée, l'algorithme de Newton s'écrit : { x ) R N x n+1) = x n) + g x n))) 1.g x n) ), n > Algorithm 35. [k,x,y,e]=newtonf,df,x ),ɛ,k) #Méthode de Newton en dimension d ), pour la résolution de fx)= #Entree : f, df la fonction et sa dérivée. # x ) R d approximation initiale # ɛ > le test d'arret est f x) < ɛ # K nombre max d'iterations #Sortie : k nombre d'iterations, # x R d, la solution approchée # y R d, f x) # E la suite des f x n)) x=x ) ;k=1;y=fx);h=dfx); e=normy); E=[e]; while e>eps & k<k, résoudre H.w=y x=x-w; y=fx); H=dfx); e=normy);e=[e,e] k=k+1; end return k,x,y,e; endfunction Constructibilité : l'algorithme est constructible si la matrice f x) est inversible pour tout x Convergence. Le premier théorème démontre la convergence quadratique sous l'hypothèse assez forte g de classe C, tandis que que le second assure la convergence au moins linéaire de la méthode de Newton et ses dérivées quasi Newton), sous une hypothèse plus faible g de classe C 1 ). Theorem 36. Convergence quadratique de la méthode de Newton, I) Soient g C R N, R N) et x R N un zéro de g. On munit R N d'une norme.. On suppose que g x) R N,N est une matrice inversible. Alors il existe b > tel que si x ) B x, b) alors : 1) la suite x n ) n est bien dénie par 1.6.1) ) lim n x n) = x 3) La convergence est quadratique : β >, x n+1) x x n) x, n N Pour démontrer ce théorème, on démontre d'abord le lemme suivant : Lemma 37. Convergence quadratique de la méthode de Newton, II) Soient g C R N, R N) et x R N un zéro de g. On munit R N d'une norme. et R N,N de la norme matricielle subordonnée. On suppose que g x) R N,N est une matrice inversible, et on suppose de plus qu'il existe trois réels strictement positifs a, a 1 et a tels que x, y B x, a) : 1) g x) est inversible et g x) 1 < a1 ) g y) g x) g x) y x) a y x ) 1 En posant b = min a, et β = a 1 a, si x ) B x, b), alors les points 1, et 3 du théorème 36) sont a 1 a vériés.

19 1.6. LA MÉTHODE DE NEWTON d ) ) 1.6.3) Proof. du lemme) Soit x ) B x, b) B x, a) où b a. 1) On montre tout d'abord par récurrence que l'hypothèse H n ) : x n) B x, b), n N est réalisée : H ) est vraie. Supposons H n ) vraie. En écrivant l'hypothèse ) pour y = x et x = x n) B x, b) on obtient : g x) g x n)) g x n)) x x n)) x a x n) on remplace g x n)) par g x n)) x n) x n+1)) tirée de 1.6.1), et après majoration, on obtient l'inégalité g x n)) x n+1) x n)) x a x n) En écrivant x n+1) x n) = g x n)) 1.g x n)) x n+1) x n)) en utilisant 1.6.) et x n) B x, b), on majore facilement x n+1) x : x n+1) x g x n)) 1 g x n)) x n+1) x n)) x n+1) x x a 1 a n) x a 1 a b comme a 1 a b 1 on a nalement x n+1) x b ce qui prouve que Hn+1 ) est vraie. ) La suite x n)) converge quartiquement vers x grâce à 1.6.3) puisque, par récurrence : x a 1 a n) x x a 1 a n 1) ) x x a 1 a n ) ) 4 x L'inégalité a 1 a < 1 permet de conclure.... x a 1 a ) x ) n Proof. du théorème36)) Il sut de démontrer que si g C R N, R N) et g x) est inversible, alors les hypothèses 1) et ) du lemme 37) sont réalisées. 1) Inversibilité de g x) et majoration de g x) 1 : g x) = g x) g x) + g x) = g x) I N + S) où I N désigne la matrice identité de R n et S = g x) 1. g x) + g x)). Or on sait que I N +S est inversible si S < 1, et dans ce cas I N + S) 1 1. La continuité de 1 S g en x nous permet 1 d'écrire : pour ε = g x) 1, il existe un a > tel que x B x, a) = g x) g x) < 1 g x) 1. On obtient donc : x B x, a) = S = g x) 1. g x) g x)) g x) 1 g x) g x)

20 1.6. LA MÉTHODE DE NEWTON d ) 1 ce qui prouve que I N + S est inversible et que sa norme vérie I N + S) 1. Donc g x) 1 IN = + S) 1.g x) 1 IN + S) 1 g x) 1 g x) 1 ) On exploite le caractère C de g et le théorème des accroissements nis. On pose x, y R N, ϕ t) = g x + t y x)) g x) tg x) y x) R N Donc ϕ ) = et ϕ 1) = g y) g x) g x) y x) est le terme à majorer. donc ϕ 1) ϕ ) = = ϕ 1) y x ϕ t) dt [g x + t y x)) g x)] y x) dt g x + t y x)) g x) dt Le théorème des accroissements nis 6 appliqué à g s'écrit pout < t < 1 : g x + t y x)) g x) t y x) sup z ]x,y[ g z) L R N,R N ). Le segment ]x, y[ est inclus dans le compact K = adh B x, a)) donc sup z ]x,y[ g z) L R N,R N ) max z K g z) L R N,R N ) = γ <. On peut maintenant majorer l'intégrale : ce qui démontre le théorème. ϕ 1) y x y x γ tγ y x dt Remark 38. En pratique, on ne sait pas évaluer facilement le rayon b du théorème 36. Il faut pourtant choisir x ) susament proche de x pour assurer la convergence. Le théorème suivant permet d'établir la convergence des itérations de Newton, avec une évaluation de l'ordre de convergence grossièrement sous-estimée. Mais il donne également la convergence des itérations de quasi-newton, sous réserve que l'on dispose d'une bonne approximation de [ f x n))] 1. Theorem 39. Ordre 1)On suppose que f x) = admet une solution x, que f est de classe C 1 au voisinage de x et que f x ) R d,d est non singulière. On suppose de plus que l'on dispose d'approximations B x) de [f x)] 1 au voisinage de x vériant 7 : δ > I B x) f x ) = ρ x) δ 6 Theorem. Accroissements nis) Soient E et F deux espaces vectoriels normés et L E, F ) est l'ensemble des applications linéaires continues de E dans F, si h C 1 E, F ) alors x, y E h y) h x) F y x E sup h z) LE,F ) où ]x, y[ = {x + s y x), < s < 1} z ]x,y[ 7 B x) est une approximation de f x) 1 mais on lui demande de ne pas être trop éloignée de f x ) 1 ce qui impose à x d'être proche de x...

Contents. Systèmes d'équations non linéaires 2 1. Dichotomie 2 2. Point xe 3 3. Méthodes de Newton et et de la sécante 5

Contents. Systèmes d'équations non linéaires 2 1. Dichotomie 2 2. Point xe 3 3. Méthodes de Newton et et de la sécante 5 Contents Systèmes d'équations non linéaires 2 1. Dichotomie 2 2. Point xe 3 3. Méthodes de Newton et et de la sécante 5 1 Systèmes d'équations non linéaires On considère un intervalle I R (borné ou non)

Plus en détail

3 Approximation de solutions d équations

3 Approximation de solutions d équations 3 Approximation de solutions d équations Une équation scalaire a la forme générale f(x) =0où f est une fonction de IR dans IR. Un système de n équations à n inconnues peut aussi se mettre sous une telle

Plus en détail

CHAPTER 1. Introduction

CHAPTER 1. Introduction CHAPTER Introduction.. Quelques notions mathématiques indispensables... Voisinage. On appelle voisinage d'un point x R tout intervalle ouvert ]x h, x + h[, avec h >, centré sur x. Une propriété P t est

Plus en détail

Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples

Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples 45 Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples Les espaces vectoriels considérés sont réels, non réduits au vecteur nul et

Plus en détail

Le théorème du point xe. Applications

Le théorème du point xe. Applications 49 Le théorème du point xe. Applications 1 Comme dans le titre de cette leçon, le mot théorème est au singulier, on va s'occuper du théorème du point xe de Picard qui a de nombreuses applications. Le cas

Plus en détail

Image d un intervalle par une fonction continue

Image d un intervalle par une fonction continue DOCUMENT 27 Image d un intervalle par une fonction continue La continuité d une fonction en un point est une propriété locale : une fonction est continue en un point x 0 si et seulement si sa restriction

Plus en détail

Calculs approchés d un point fixe

Calculs approchés d un point fixe M11 ÉPREUVE COMMUNE DE TIPE 2013 - Partie D TITRE : Calculs approchés d un point fixe Temps de préparation :.. 2 h 15 minutes Temps de présentation devant les examinateurs :.10 minutes Dialogue avec les

Plus en détail

Résolution d équations non linéaires

Résolution d équations non linéaires Analyse Numérique Résolution d équations non linéaires Said EL HAJJI et Touria GHEMIRES Université Mohammed V - Agdal. Faculté des Sciences Département de Mathématiques. Laboratoire de Mathématiques, Informatique

Plus en détail

Corrigé Pondichéry 1999

Corrigé Pondichéry 1999 Corrigé Pondichéry 999 EXERCICE. = 8 = i ). D'où les solutions de l'équation : z = + i et z = z = i. a. De manière immédiate : z = z = b. Soit θ la mesure principale de arg z : cos θ = Par suite arg z

Plus en détail

Applications linéaires

Applications linéaires Applications linéaires I) Applications linéaires - Généralités 1.1) Introduction L'idée d'application linéaire est intimement liée à celle d'espace vectoriel. Elle traduit la stabilité par combinaison

Plus en détail

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications A. Optimisation sans contrainte.... Généralités.... Condition nécessaire et condition suffisante

Plus en détail

NOTATIONS PRÉLIMINAIRES

NOTATIONS PRÉLIMINAIRES Pour le Jeudi 14 Octobre 2010 NOTATIONS Soit V un espace vectoriel réel ; l'espace vectoriel des endomorphismes de l'espace vectoriel V est désigné par L(V ). Soit f un endomorphisme de l'espace vectoriel

Plus en détail

I. Polynômes de Tchebychev

I. Polynômes de Tchebychev Première épreuve CCP filière MP I. Polynômes de Tchebychev ( ) 1.a) Tout réel θ vérifie cos(nθ) = Re ((cos θ + i sin θ) n ) = Re Cn k (cos θ) n k i k (sin θ) k Or i k est réel quand k est pair et imaginaire

Plus en détail

Espaces vectoriels euclidiens. Groupe orthogonal

Espaces vectoriels euclidiens. Groupe orthogonal 19 Espaces vectoriels euclidiens. Groupe orthogonal Dans un premier temps, E est un espace vectoriel réel de dimension n 1. 19.1 Espaces vectoriels euclidiens Dénition 19.1 On dit qu'une forme bilinéaire

Plus en détail

TD2 Fonctions mesurables Corrigé

TD2 Fonctions mesurables Corrigé Intégration et probabilités 2012-2013 TD2 Fonctions mesurables Corrigé 0 Exercice qui avait été préparé chez soi Exercice 1. Soit (Ω, F, µ) un espace mesuré tel que µ (Ω) = 1. Soient A, B P (Ω) deux sousensembles

Plus en détail

Cours d Analyse. Fonctions de plusieurs variables

Cours d Analyse. Fonctions de plusieurs variables Cours d Analyse Fonctions de plusieurs variables Licence 1ère année 2007/2008 Nicolas Prioux Université de Marne-la-Vallée Table des matières 1 Notions de géométrie dans l espace et fonctions à deux variables........

Plus en détail

Le corps R des nombres réels

Le corps R des nombres réels Le corps R des nombres réels. Construction de R à l aide des suites de Cauchy de nombres rationnels On explique brièvement dans ce paragraphe comment construire le corps R des nombres réels à partir du

Plus en détail

Continuité en un point

Continuité en un point DOCUMENT 4 Continuité en un point En général, D f désigne l ensemble de définition de la fonction f et on supposera toujours que cet ensemble est inclus dans R. Toutes les fonctions considérées sont à

Plus en détail

Travaux dirigés. Résolution numérique des équations diérentielles ordinaires. Département MIDO année 2013/2014 Master MMDMA

Travaux dirigés. Résolution numérique des équations diérentielles ordinaires. Département MIDO année 2013/2014 Master MMDMA Université Paris-Dauphine Méthodes numériques Département MIDO année 03/04 Master MMDMA Travaux dirigés Résolution numérique des équations diérentielles ordinaires Exercice. Pour α > 0, on considère le

Plus en détail

Équations non linéaires

Équations non linéaires Équations non linéaires Objectif : trouver les zéros de fonctions (ou systèmes) non linéaires, c-à-d les valeurs α R telles que f(α) = 0. y f(x) α 1 α 2 α 3 x Equations non lineaires p. 1/49 Exemples et

Plus en détail

L2 MIEE 2012-2013 VAR Université de Rennes 1

L2 MIEE 2012-2013 VAR Université de Rennes 1 . Sous-ensembles de R n et fonctions (suite) 1 Nappes paramétrées Si f une fonction de deux variables, son graphe est une surface incluse dans R 3 : {(x, y, f(x, y)) / (x, y) R 2 }. Une telle surface s

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo7 Continuité (étude globale). Diverses fonctions Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr * très facile ** facile *** difficulté moyenne **** difficile *****

Plus en détail

Rédigé par un élève de Terminale S à l'aide de ses livres de maths (Indice, Bordas), ses cours, toute sa peine, et son stress pour le bac! J.

Rédigé par un élève de Terminale S à l'aide de ses livres de maths (Indice, Bordas), ses cours, toute sa peine, et son stress pour le bac! J. Rédigé par un élève de Terminale S à l'aide de ses livres de maths (Indice, Bordas), ses cours, toute sa peine, et son stress pour le bac! J. FAIVRE s de cours exigibles au bac S en mathématiques Enseignement

Plus en détail

est diagonale si tous ses coefficients en dehors de la diagonale sont nuls.

est diagonale si tous ses coefficients en dehors de la diagonale sont nuls. Diagonalisation des matrices http://www.math-info.univ-paris5.fr/~ycart/mc2/node2.html Sous-sections Matrices diagonales Valeurs propres et vecteurs propres Polynôme caractéristique Exemples Illustration

Plus en détail

Université de Cergy-Pontoise Département de Mathématiques L1 MPI - S1. Cours de Mathématiques 1

Université de Cergy-Pontoise Département de Mathématiques L1 MPI - S1. Cours de Mathématiques 1 Université de Cergy-Pontoise Département de Mathématiques L1 MPI - S1 Cours de Mathématiques 1 Table des matières 1 Un peu de formalisme mathématique 7 1.1 Rudiments de logique........................................

Plus en détail

Outils d analyse fonctionnelle Cours 5 Théorie spectrale

Outils d analyse fonctionnelle Cours 5 Théorie spectrale Outils d analyse fonctionnelle Cours 5 Théorie spectrale 22 septembre 2015 Généralités Dans tout ce qui suit V désigne un espace de Hilbert réel muni d un produit scalaire x, y. Définition Soit A une application

Plus en détail

Cours de terminale S Suites numériques

Cours de terminale S Suites numériques Cours de terminale S Suites numériques V. B. et S. B. Lycée des EK 13 septembre 2014 Introduction Principe de récurrence Exemple En Mathématiques, un certain nombre de propriétés dépendent d un entier

Plus en détail

Raisonnement par récurrence Suites numériques

Raisonnement par récurrence Suites numériques Chapitre 1 Raisonnement par récurrence Suites numériques Terminale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Raisonnement par récurrence. Limite finie ou infinie d une suite.

Plus en détail

Développements limités. Notion de développement limité

Développements limités. Notion de développement limité MT12 - ch2 Page 1/8 Développements limités Dans tout ce chapitre, I désigne un intervalle de R non vide et non réduit à un point. I Notion de développement limité Dans tout ce paragraphe, a désigne un

Plus en détail

1 Codes linéaires. G = [I k A]. Dans ce cas on constate que la matrice. H = [ t A I n k ] est une matrice de contrôle de C. Le syndrome de x F n q

1 Codes linéaires. G = [I k A]. Dans ce cas on constate que la matrice. H = [ t A I n k ] est une matrice de contrôle de C. Le syndrome de x F n q 1 Codes linéaires Un code de longueur n est une partie de F n q. Un code linéaire C de longueur n sur le corps ni F q est un sous-espace vectoriel de F n q. Par défaut, un code sera supposé linéaire. La

Plus en détail

Espaces vectoriels et applications linéaires

Espaces vectoriels et applications linéaires Espaces vectoriels et applications linéaires Exercice 1 On considère l'ensemble E des matrices carrées d'ordre 3 défini par,,, 1) Montrer que est un sous-espace vectoriel de l'espace vectoriel des matrices

Plus en détail

Notes du cours Mathématiques pour l ingénieur. Sup Galilée - année 2008-2009

Notes du cours Mathématiques pour l ingénieur. Sup Galilée - année 2008-2009 Notes du cours Mathématiques pour l ingénieur Sup Galilée - année 2008-2009 Benoît Merlet Ces notes de cours s adressent aux élèves ayant suivi le cours. Elles contiennent peu d explications. Elles pourront

Plus en détail

Amphi 3: Espaces complets - Applications linéaires continues

Amphi 3: Espaces complets - Applications linéaires continues Amphi 3: Espaces complets - Applications linéaires continues Département de Mathématiques École polytechnique Remise en forme mathématique 2013 Suite de Cauchy Soit (X, d) un espace métrique. Une suite

Plus en détail

Les supports de cours suivants font référence au cours de Mr SOL et à son livre : "Accès à l'université" chez DUNOD

Les supports de cours suivants font référence au cours de Mr SOL et à son livre : Accès à l'université chez DUNOD Les supports de cours suivants font référence au cours de Mr SOL et à son livre : "Accès à l'université" chez DUNOD Les supports de cours ne sont pas complets, ils ne contiennent ni les démonstrations,

Plus en détail

TS. 2012/2013. Lycée Prévert. Corrigé du contrôle n 3. Durée : 3 heures. Mardi 20/11/12

TS. 2012/2013. Lycée Prévert. Corrigé du contrôle n 3. Durée : 3 heures. Mardi 20/11/12 TS. 01/013. Lycée Prévert. Corrigé du contrôle n 3. Durée : 3 heures. Mardi 0/11/1 Exercice 1 : ( 6,5 pts) Première partie : Démonstration à rédiger { Démontrer que si ( ) et (v n ) sont deux suites telles

Plus en détail

Exercices - Polynômes : corrigé. Opérations sur les polynômes

Exercices - Polynômes : corrigé. Opérations sur les polynômes Opérations sur les polynômes Exercice 1 - Carré - L1/Math Sup - Si P = Q est le carré d un polynôme, alors Q est nécessairement de degré, et son coefficient dominant est égal à 1. On peut donc écrire Q(X)

Plus en détail

COR TD 2. Exercice 1. Déterminer si les applications f i suivantes sont linéaires : x + x, y + y )

COR TD 2. Exercice 1. Déterminer si les applications f i suivantes sont linéaires : x + x, y + y ) COR TD 2 Année 21 Exercice 1. Déterminer si les applications f i suivantes sont linéaires : f 1 : R 2 R 2 f 1 x, y = 2x + y, x y f 2 : R R f 2 x, y, z = xy, x, y f : R R f x, y, z = 2x + y + z, y z, x

Plus en détail

Démonstrations exigibles au bac

Démonstrations exigibles au bac Démonstrations exigibles au bac On donne ici les 11 démonstrations de cours répertoriées comme exigibles dans le programme officiel. Toutes ces démonstrations peuvent donner lieu à une «restitution organisée

Plus en détail

Introduction à l Optimisation Numérique

Introduction à l Optimisation Numérique DÉPARTEMENT STPI 3ÈME ANNÉE MIC Introduction à l Optimisation Numérique Frédéric de Gournay & Aude Rondepierre Table des matières Introduction 5 Rappels de topologie dans R n 7 0.1 Ouverts et fermés de

Plus en détail

3 2 Séries numériques

3 2 Séries numériques BCPST 9 5 3 Séries numériques I Généralités A) Dénition Soit (a n ) n N une suite à valeurs dans R. On appelle série de terme général a n, et on note a n la suite dénie par : S n = On dit que S n est la

Plus en détail

Limites finies en un point

Limites finies en un point 8 Limites finies en un point Pour ce chapitre, sauf précision contraire, I désigne une partie non vide de R et f une fonction définie sur I et à valeurs réelles ou complees. Là encore, les fonctions usuelles,

Plus en détail

Axiomatique de N, construction de Z

Axiomatique de N, construction de Z Axiomatique de N, construction de Z Table des matières 1 Axiomatique de N 2 1.1 Axiomatique ordinale.................................. 2 1.2 Propriété fondamentale : Le principe de récurrence.................

Plus en détail

Agrégation interne de Mathématiques. Session 2009. Deuxième épreuve écrite. (et CAERPA)

Agrégation interne de Mathématiques. Session 2009. Deuxième épreuve écrite. (et CAERPA) Agrégation interne de Mathématiques (et CAEPA Session 2009 Deuxième épreuve écrite 2 NOTATIONS ET PÉLIMINAIES On désigne par le corps des nombres réels et par C le corps des nombres complexes. Si f est

Plus en détail

I. Ensemble de définition d'une fonction

I. Ensemble de définition d'une fonction Chapitre 2 Généralités sur les fonctions Fonctions de références et fonctions associées Ce que dit le programme : Étude de fonctions Fonctions de référence x x et x x Connaître les variations de ces deux

Plus en détail

Mathématiques assistées par ordinateur

Mathématiques assistées par ordinateur Mathématiques assistées par ordinateur Chapitre 4 : Racines des polynômes réels et complexes Michael Eisermann Mat249, DLST L2S4, Année 2008-2009 www-fourier.ujf-grenoble.fr/ eiserm/cours # mao Document

Plus en détail

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre IUFM du Limousin 2009-10 PLC1 Mathématiques S. Vinatier Rappels de cours Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre 1 Fonctions de plusieurs variables

Plus en détail

1.8 Exercices. Analyse d'erreurs 43

1.8 Exercices. Analyse d'erreurs 43 1.8 Exercices Analyse d'erreurs 43 1. Tous les chires des nombres suivants sont signicatifs. Donner une borne supérieure de l'erreur absolue et estimer l'erreur relative. a) 0,1234 b) 8,760 c) 3,14156

Plus en détail

MATHS VUIBERT. Rappels de cours Conseils de méthode Exercices guidés Exercices d approfondissement Problèmes de synthèse Tous les corrigés détaillés

MATHS VUIBERT. Rappels de cours Conseils de méthode Exercices guidés Exercices d approfondissement Problèmes de synthèse Tous les corrigés détaillés VUIBERT MÉTHODES EXERCICES PROBLÈMES MATHS ECE 2 e année Tout le programme Rappels de cours Conseils de méthode Exercices guidés Exercices d approfondissement Problèmes de synthèse Tous les corrigés détaillés

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme

Plus en détail

2. RAPPEL DES TECHNIQUES DE CALCUL DANS R

2. RAPPEL DES TECHNIQUES DE CALCUL DANS R 2. RAPPEL DES TECHNIQUES DE CALCUL DANS R Dans la mesure où les résultats de ce chapitre devraient normalement être bien connus, il n'est rappelé que les formules les plus intéressantes; les justications

Plus en détail

EXERCICE 4 (7 points ) (Commun à tous les candidats)

EXERCICE 4 (7 points ) (Commun à tous les candidats) EXERCICE 4 (7 points ) (Commun à tous les candidats) On cherche à modéliser de deux façons différentes l évolution du nombre, exprimé en millions, de foyers français possédant un téléviseur à écran plat

Plus en détail

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que Introduction. On suppose connus les ensembles N (des entiers naturels), Z des entiers relatifs et Q (des nombres rationnels). On s est rendu compte, depuis l antiquité, que l on ne peut pas tout mesurer

Plus en détail

Calcul rapide des puissances

Calcul rapide des puissances Calcul rapide des puissances Par Mathtous Il s'agit de puissances à exposant entier naturel (avec la convention a 0 = 1, et a 1 = a). Si on applique la dénition pour calculer a n, on calcule de proche

Plus en détail

L2 2011/2012 USTV. Analyse. numérique M43. Recueil d exercices corrigés et aide-mémoire G. FACCANONI. Dernière mise-à-jour

L2 2011/2012 USTV. Analyse. numérique M43. Recueil d exercices corrigés et aide-mémoire G. FACCANONI. Dernière mise-à-jour L / Recueil d exercices corrigés et aide-mémoire USTV M Analyse numérique G FACCANONI Dernière mise-à-jour Jeudi mai Avertissement : ces notes sont régulièrement mises à jour et corrigées, ne vous étonnez

Plus en détail

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer Pour commencer Exercice 1 - Ensembles de définition - Première année - 1. Le logarithme est défini si x + y > 0. On trouve donc le demi-plan supérieur délimité par la droite d équation x + y = 0.. 1 xy

Plus en détail

Université Joseph Fourier, Grenoble. Suites numériques. Bernard Ycart

Université Joseph Fourier, Grenoble. Suites numériques. Bernard Ycart Université Joseph Fourier, Grenoble Maths en Ligne Suites numériques Bernard Ycart Vous savez déjà étudier une suite et calculer sa limite. La nouveauté réside dans la rigueur. La notion de convergence

Plus en détail

Commun à tous les candidats

Commun à tous les candidats EXERCICE 3 (9 points ) Commun à tous les candidats On s intéresse à des courbes servant de modèle à la distribution de la masse salariale d une entreprise. Les fonctions f associées définies sur l intervalle

Plus en détail

Intégration et probabilités TD1 Espaces mesurés Corrigé

Intégration et probabilités TD1 Espaces mesurés Corrigé Intégration et probabilités TD1 Espaces mesurés Corrigé 2012-2013 1 Petites questions 1 Est-ce que l ensemble des ouverts de R est une tribu? Réponse : Non, car le complémentaire de ], 0[ n est pas ouvert.

Plus en détail

1 Sujets donnés en option scientifique

1 Sujets donnés en option scientifique Les sujets suivants, posés aux candidats des options scientifique, économique, technologique et littéraire BL constituent la première version d un échantillon des sujets proposés lors des épreuves orales

Plus en détail

Cahier de vacances. Exercices PCSI - PC, Lycée Dupuy de Lôme

Cahier de vacances. Exercices PCSI - PC, Lycée Dupuy de Lôme Cahier de vacances Exercices PCSI - PC, Lycée Dupuy de Lôme Votre année de PCSI a été bien remplie et il est peu probable que l année de PC qui arrive vous paraisse plus facile. C est pourquoi, je vous

Plus en détail

COURS OPTIMISATION. Cours à l ISFA, en M1SAF. Ionel Sorin CIUPERCA

COURS OPTIMISATION. Cours à l ISFA, en M1SAF. Ionel Sorin CIUPERCA COURS OPTIMISATION Cours à l ISFA, en M1SAF Ionel Sorin CIUPERCA 1 Table des matières 1 Introduction 4 1.1 Motivation.................................... 4 1.2 Le problème général d optimisation......................

Plus en détail

Master de mathématiques Analyse numérique matricielle

Master de mathématiques Analyse numérique matricielle Master de mathématiques Analyse numérique matricielle 2009 2010 CHAPITRE 1 Méthodes itératives de résolution de systèmes linéaires On veut résoudre un système linéaire Ax = b, où A est une matrice inversible

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)

Plus en détail

Théorème du point fixe - Théorème de l inversion locale

Théorème du point fixe - Théorème de l inversion locale Chapitre 7 Théorème du point fixe - Théorème de l inversion locale Dans ce chapitre et le suivant, on montre deux applications importantes de la notion de différentiabilité : le théorème de l inversion

Plus en détail

Athénée Royal d'uccle 1. Cours de Mathématique 5 ème année Les bases pour les math 6h

Athénée Royal d'uccle 1. Cours de Mathématique 5 ème année Les bases pour les math 6h Athénée Royal d'uccle 1 Cours de Mathématique 5 ème année Les bases pour les math 6h A.Droesbeke Version : 015 Table des matières I Algèbre 1 1 Rappel du cours de 3 ème 3 1.1 Les exposants......................................

Plus en détail

Chapitre 5: Opérateurs dans les espaces de Hilbert. Notions d opérateur adjoint

Chapitre 5: Opérateurs dans les espaces de Hilbert. Notions d opérateur adjoint Chapitre 5: Opérateurs dans les espaces de Hilbert. Notions d opérateur adjoint 18 mars 2008 1 Généralités sur les opérateurs 1.1 Définitions Soient H et H deux espaces de Hilbert sur C. Définition 1.1

Plus en détail

CALCUL SCIENTIFIQUE. 1 Erreur absolue et erreur relative 2. 2 Représentation des nombres sur ordinateur 3

CALCUL SCIENTIFIQUE. 1 Erreur absolue et erreur relative 2. 2 Représentation des nombres sur ordinateur 3 MTH1504 2011-2012 CALCUL SCIENTIFIQUE Table des matières 1 Erreur absolue et erreur relative 2 2 Représentation des nombres sur ordinateur 3 3 Arithmétique flottante 4 3.1 Absorption........................................

Plus en détail

Cours de spécialité mathématiques en Terminale ES

Cours de spécialité mathématiques en Terminale ES Cours de spécialité mathématiques en Terminale ES O. Lader 2014/2015 Lycée Jean Vilar Spé math terminale ES 2014/2015 1 / 51 Systèmes linéaires Deux exemples de systèmes linéaires à deux équations et deux

Plus en détail

Fonctions analytiques

Fonctions analytiques CHAPITRE Fonctions analytiques Les principaux résultats à retenir : soit U un ouvert de C et f : U C. f est analytique sur U si et seulement si f est développable en série entière au voisinage de chaque

Plus en détail

Continuité d une fonction de plusieurs variables

Continuité d une fonction de plusieurs variables Chapitre 2 Continuité d une fonction de plusieurs variables Maintenant qu on a défini la notion de limite pour des suites dans R n, la notion de continuité s étend sans problème à des fonctions de plusieurs

Plus en détail

Mathématique - Cours Filière STAV 2014-2015 Centre de Formation aux Métier de la Montagne Marine Estorge

Mathématique - Cours Filière STAV 2014-2015 Centre de Formation aux Métier de la Montagne Marine Estorge Mathématique - Cours Filière STAV 2014-2015 Centre de Formation aux Métier de la Montagne Marine Estorge Le programme se compose ainsi : Rappels collège/seconde Partie STAV 1/3 Partie STAV 2/3 Partie STAV

Plus en détail

Notes de cours de Mathématiques en première ES/L

Notes de cours de Mathématiques en première ES/L Notes de cours de Mathématiques en première ES/L O. Lader 1 Table des matières 1 Pourcentages, taux d évolution (4S) 3 1.1 Évolution........................................... 3 2 Fonctions du second degré

Plus en détail

CENTRALE PC 2000 ÉPREUVE DE MATH 2. Première partie

CENTRALE PC 2000 ÉPREUVE DE MATH 2. Première partie CENTRALE PC 2000 ÉPREUVE DE MATH 2 Première partie I. A. 1. La fonction x px kx 2 = x(p kx) présente un maximum pour toute valeur de p au point d abscisse x = p p2 et il vaut 2k 2k. Conclusion : J(f) =

Plus en détail

Compte rendu des TP matlab

Compte rendu des TP matlab Compte rendu des TP matlab Krell Stella, Minjeaud Sebastian 18 décembre 006 1 TP1, Discrétisation de problèmes elliptiques linéaires 1d Soient > 0, a R, b 0, c, d R et f C([0, 1], R). On cerce à approcer

Plus en détail

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4)

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) Bernard Le Stum Université de Rennes 1 Version du 13 mars 2009 Table des matières 1 Fonctions partielles, courbes de niveau 1 2 Limites et continuité

Plus en détail

À propos des matrices échelonnées

À propos des matrices échelonnées À propos des matrices échelonnées Antoine Ducros appendice au cours de Géométrie affine et euclidienne dispensé à l Université Paris 6 Année universitaire 2011-2012 Introduction Soit k un corps, soit E

Plus en détail

Retournement Temporel

Retournement Temporel Retournement Temporel Rédigé par: HENG Sokly Encadrés par: Bernard ROUSSELET & Stéphane JUNCA 2 juin 28 Remerciements Je tiens tout d'abord à remercier mes responsables de mémoire, M.Bernard ROUSSELET

Plus en détail

M42. Compléments d analyse (résumé).

M42. Compléments d analyse (résumé). Université d Evry-Val-d Essonne. Année 2008-09 D. Feyel M42. Compléments d analyse (résumé). Table. I. Rappels sur les suites. Limites supérieure et inférieure. II. Topologie élémentaire. III. Fonctions

Plus en détail

Cours MP. Espaces vectoriels normés

Cours MP. Espaces vectoriels normés Table des matières Espaces vectoriels normés B. Seddoug. Médiane Sup, Oujda I Norme et distance 1 I.1 Définitions..................... 1 I.2 Evn produit.................... 12 I.3 Notions topologiques

Plus en détail

PAD - Notes de cours. S. Rigal, D. Ruiz, et J. C. Satgé

PAD - Notes de cours. S. Rigal, D. Ruiz, et J. C. Satgé ALGÈBRE PAD - Notes de cours S. Rigal, D. Ruiz, et J. C. Satgé November 23, 2006 Table des Matières Espaces vectoriels Applications linéaires - Espaces vectoriels............................... 3 -. Approche

Plus en détail

Cours 02 : Problème général de la programmation linéaire

Cours 02 : Problème général de la programmation linéaire Cours 02 : Problème général de la programmation linéaire Cours 02 : Problème général de la Programmation Linéaire. 5 . Introduction Un programme linéaire s'écrit sous la forme suivante. MinZ(ou maxw) =

Plus en détail

Cours d analyse 1 Licence 1er semestre. Guy Laffaille Christian Pauly

Cours d analyse 1 Licence 1er semestre. Guy Laffaille Christian Pauly Cours d analyse 1 Licence 1er semestre Guy Laffaille Christian Pauly janvier 006 Table des matières 1 Les nombres réels et complexes 5 1.1 Nombres rationnels................................... 5 1. Nombres

Plus en détail

Intégration et probabilités 2012-2013. TD3 Intégration, théorèmes de convergence Corrigé. 1 Petites questions. n hésitez pas à m envoyer un mail à

Intégration et probabilités 2012-2013. TD3 Intégration, théorèmes de convergence Corrigé. 1 Petites questions. n hésitez pas à m envoyer un mail à Intégration et probabilités 212-213 TD3 Intégration, théorèmes de convergence Corrigé xercice ayant été voué à être préparé xercice 1 (Mesure image). Soient (, A, µ) un espace mesuré, (F, B) un espace

Plus en détail

chapitre 4 Nombres de Catalan

chapitre 4 Nombres de Catalan chapitre 4 Nombres de Catalan I Dénitions Dénition 1 La suite de Catalan (C n ) n est la suite dénie par C 0 = 1 et, pour tout n N, C n+1 = C k C n k. Exemple 2 On trouve rapidement C 0 = 1, C 1 = 1, C

Plus en détail

CCP PSI - 2010 Mathématiques 1 : un corrigé

CCP PSI - 2010 Mathématiques 1 : un corrigé CCP PSI - 00 Mathématiques : un corrigé Première partie. Définition d une structure euclidienne sur R n [X]... B est clairement symétrique et linéaire par rapport à sa seconde variable. De plus B(P, P

Plus en détail

Programme de mathématiques TSI1

Programme de mathématiques TSI1 Programme de mathématiques TSI1 1. PROGRAMME DE DÉBUT D ANNÉE I. Nombres complexes et géométrie élémentaire 1. Nombres complexes 1 2. Géométrie élémentaire du plan 3 3. Géométrie élémentaire de l espace

Plus en détail

2. MATRICES ET APPLICATIONS LINÉAIRES

2. MATRICES ET APPLICATIONS LINÉAIRES 2. MATRICES ET APPLICATIONS LINÉAIRES 2.1 Définition Une matrice n m est un tableau rectangulaire de nombres (réels en général) à n lignes et m colonnes ; n et m sont les dimensions de la matrice. Notation.

Plus en détail

Daniel FREDON Myriam MAUMY-BERTRAND Frédéric BERTRAND. Mathématiques. Analyse. en 30 fiches

Daniel FREDON Myriam MAUMY-BERTRAND Frédéric BERTRAND. Mathématiques. Analyse. en 30 fiches Daniel FREDON Myriam MAUMY-BERTRAND Frédéric BERTRAND Mathématiques Analyse en 30 fiches Daniel FREDON Myriam MAUMY-BERTRAND Frédéric BERTRAND Mathématiques Analyse en 30 fiches Dunod, Paris, 009 ISBN

Plus en détail

ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON MATHEMATIQUES I

ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON MATHEMATIQUES I CHAMBRE DE COMMERCE ET D INDUSTRIE DE PARIS DIRECTION DE L ENSEIGNEMENT Direction des Admissions et concours ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON CONCOURS

Plus en détail

Limite d une suite - Terminale S Exercices corrigés en vidéo avec le cours sur jaicompris.com. v n. lim. lim

Limite d une suite - Terminale S Exercices corrigés en vidéo avec le cours sur jaicompris.com. v n. lim. lim Limite d une suite - Terminale S Exercices corrigés en vidéo avec le cours sur jaicompriscom Reconnaitre les formes indéterminées Dans chaque cas, on donne la ite de et v n Déterminer si possible, ( +

Plus en détail

MPSI 3 - Cahier de vacances... MPSI 3-2004/2005

MPSI 3 - Cahier de vacances... MPSI 3-2004/2005 MPSI 3 - Cahier de vacances... MPSI 3-2004/2005 Voici une fiche contenant 100 exercices de difficulté raisonable, plutôt techniques, qui recouvrent l ensemble du programme étudié cette année. A raison

Plus en détail

Corrigé de l examen partiel du 30 Octobre 2009 L2 Maths

Corrigé de l examen partiel du 30 Octobre 2009 L2 Maths Corrigé de l examen partiel du 30 Octobre 009 L Maths (a) Rappelons d abord le résultat suivant : Théorème 0.. Densité de Q dans R. QUESTIONS DE COURS. Preuve. Il nous faut nous montrer que tout réel est

Plus en détail

Dérivées d ordres supérieurs. Application à l étude d extrema.

Dérivées d ordres supérieurs. Application à l étude d extrema. Chapitre 5 Dérivées d ordres supérieurs. Application à l étude d extrema. On s intéresse dans ce chapitre aux dérivées d ordre ou plus d une fonction de plusieurs variables. Comme pour une fonction d une

Plus en détail

L essentiel du cours 2014/2015 Terminale S Spécialité Maths, Lycée Français de Valence

L essentiel du cours 2014/2015 Terminale S Spécialité Maths, Lycée Français de Valence L essentiel du cours 2014/2015 Terminale S Spécialité Maths, Lycée Français de Valence Sommaire 1. Arithmétique 2 1.1. Division euclidienne......................... 2 1.2. Congruences.............................

Plus en détail

D'UN THÉORÈME NOUVEAU

D'UN THÉORÈME NOUVEAU DÉMONSTRATION D'UN THÉORÈME NOUVEAU CONCERNANT LES NOMBRES PREMIERS 1. (Nouveaux Mémoires de l'académie royale des Sciences et Belles-Lettres de Berlin, année 1771.) 1. Je viens de trouver, dans un excellent

Plus en détail

Construction de l'intégrale de Lebesgue

Construction de l'intégrale de Lebesgue Université d'artois Faculté des ciences Jean Perrin Mesure et Intégration (Licence 3 Mathématiques-Informatique) Daniel Li Construction de l'intégrale de Lebesgue 10 février 2011 La construction de l'intégrale

Plus en détail

Licence MIMP Semestre 1. Math 12A : Fondements de l Analyse 1. http ://math.univ-lille1.fr/ mimp/math12.html

Licence MIMP Semestre 1. Math 12A : Fondements de l Analyse 1. http ://math.univ-lille1.fr/ mimp/math12.html Licence MIMP Semestre 1 Math 12A : Fondements de l Analyse 1 http ://math.univ-lille1.fr/ mimp/math12.html Septembre 2013 Table des matières Chapitre I. Les nombres réels et les suites numériques 1 1

Plus en détail

JEUX NUMÉRIQUES AVEC LE CHAOS ET LES FRACTALES ET AUTRES

JEUX NUMÉRIQUES AVEC LE CHAOS ET LES FRACTALES ET AUTRES JEUX NUMÉRIQUES AVEC LE CHAOS ET LES FRACTALES ET AUTRES PIERRE PUISEUX LMA Université de Pau. MÉTHODE DE NEWTON (D) ET LA FONCTION sin.. description. la fonction sin admet comme zéros Z (sin) = {kπ, k

Plus en détail

Topologie des espaces vectoriels normés

Topologie des espaces vectoriels normés Topologie des espaces vectoriels normés Cédric Milliet Version préliminaire Cours de troisième année de licence Université Galatasaray Année 2011-2012 2 Chapitre 1 R-Espaces vectoriels normés 1.1 Vocabulaire

Plus en détail

1 Espaces vectoriels normés

1 Espaces vectoriels normés Université Paris 7 Denis Diderot Année 2005/2006 Licence 2 MIAS MI4 1 Espaces vectoriels normés 1.1 Définitions Soit E un espace vectoriel sur R. Topologie des espaces vectoriels de dimension finie Définition

Plus en détail