Calcul de développements de Puiseux et application au calcul du groupe de monodromie d'une courbe algébrique plane

Dimension: px
Commencer à balayer dès la page:

Download "Calcul de développements de Puiseux et application au calcul du groupe de monodromie d'une courbe algébrique plane"

Transcription

1 Calcul de développements de Puiseux et application au calcul du groupe de monodromie d'une courbe algébrique plane Poteaux Adrien XLIM-DMI, UMR-CNRS 6172 Université de Limoges Soutenance de thèse 15 octobre 2008

2 Stratégie employée Situation Entrée : exacte. Sortie : approchée. Approche 1 Trouver la structure du problème modulo p. 2 Utiliser la structure pour faire des calculs numériques.

3

4 Plan 1 Calcul des développements de Puiseux : un nouvel algorithme symbolique-numérique 1 Calculs modulo un bon premier p informations exactes. 2 Calcul numérique des séries de Puiseux à l'aide de ces informations. 2 Calcul du groupe de monodromie 1 Chemins optimisés 2 Développements en des points critiques 3 Stratégie nombre de pas / ordre de troncation 3 Exemples, conclusion et perspectives

5 Notations K = Q(α) un corps de nombres F (X, Y ) K[X, Y ] C = {(x, y) C 2 F (x, y) = 0} Soit x 0 C : Fibre en x 0 : F(x 0 ) = {racines de F (x 0, Y ) = 0}. Point régulier : #F(x 0 ) = d Y. Point critique : #F(x 0 ) < d Y.

6 Calcul de développements de Puiseux

7 Développements de Puiseux Théorème (Puiseux) Il existe e 1,..., e s des entiers positifs vériant s i=1 e i = d Y tel que F (vu comme un polynôme univarié en y) possède d Y racines distinctes dans K((X )), qui s'écrivent de la manière suivante : Y ij (X ) = α ik ζ jk ei k=n i où 1 i s, 0 j e i 1, n i Z et α ini 0. De plus, l'ensemble des coecients {α ik } est inclus dans une extension nie de K. X k e i

8 Partie singulière Y ij (X ) = = α ik ζ jk ei k=n i r ij X k e i k=n i α ik ζ jk ei X k e i + termes suivants r ij est l'indice de régularité ; r i = r ij pour 1 j e i Termes suivants : calculés par exemple via Newton quadratique Kung & Traub 1978, All Algebraic Functions Can Be Computed Fast

9 Polygones de Newton génériques F (X, Y ) = i,j a ij X j Y i Supp(F)= {(i, j) N 2 a ij 0} N (F ) : partie inférieure de l'enveloppe convexe de Supp(F). - - GN (F ) : pentes de N (F ) 1. Polynôme caractéristique : φ (T ) = (i,j) a ij T i i 0 q

10 Algorithme de Newton-Puiseux rationnel D. Duval 89, Rational Puiseux Expansions Pour chaque arête de GN (F ) φ = s k=1 φ M k k Pour chaque φ k F (X, Y ) F (ξu k X q, X m (ξ v k + Y )) X l avec ξ k t.q. φ k (ξ k ) = 0, avec (u, v) tel que uq vm = 1.

11 Arbre des polygones

12 Algorithme symbolique Calcul dans des extensions de degré potentiellement élevé. Croissance des coecients. Exemple : F = (Y 3 X ) ((Y 1) 2 X ) (Y 2 X 2 ) + X 2 Y 5 a pour discriminant X 3 P(X ) avec deg X (P) = 23. Les coecients des développement de Puiseux au-dessus des racines de P à l'ordre 1 ont une taille de 136 chires! Complexité binaire O (d Y 32 d X 4 ) Walsh 2000

13 Une approche modulaire-numérique 1 Calculer la partie singulière des séries de Puiseux modulo un bon premier p. Cela nous donne l'arbre des polygones T (F ), i.e. : Les polygones de Newton génériques, Les structures de multiplicité des φ. 2 Calculer numériquement les séries de Puiseux en suivant T (F ).

14 Contributions Notion de polygone de Newton générique. Critère de bonne réduction (choix d'un bon p). Bornes sur le premier p. Complexité améliorée de la partie modulaire de notre algorithme. Calculs numériques suivant T (F ). Prototype d'implémentation en Maple

15 Calcul de développements de Puiseux : partie symbolique Poteaux & Rybowicz, On the good reduction of Puiseux series and complexity of the Newton-Puiseux algorithm over nite elds, ISSAC'08

16 Bonne p-réduction On note : o l'anneau des entiers algébriques de K, p un nombre premier, p un idéal premier de o divisant p. Dénition F a une bonne p-réduction locale (en x = 0) si : F o p [X, Y ], p > d Y, tc(r F ) 0 mod p. où R F = Resultant Y (F, F Y )

17 Réduction des séries de Puiseux L une extension nie de K engendrée par les coecients des séries de Puiseux, O l'anneau des entiers algébriques de L, P un idéal premier de O P divisant p, O P = {α L v P (α) 0}. Théorème Si F a une bonne p-réduction locale, alors les coecients des séries de Puiseux de F au-dessus de 0 sont dans O P. Preuve : Utilise un théorème de Dwork & Robba 79 On Natural Radii of p-adic Convergence

18 Réduction de T (F ) Théorème Si F a une bonne p-réduction locale, alors T (F ) = T (F ). Faux avec les polygones classiques : Exemple F (X, Y ) = (Y px )(Y 2 X ) + X 3 tc(r F ) = 4

19 Choix du nombre premier p K = Q(γ), w = [K : Q], M γ le polynôme minimal de γ ht(q) = log Q où Q est un polynôme multivarié. ht(p) appartient à Stratégie déterministe O(wd Y (w ht(m γ ) + ht(f ) + log(wd X d Y ))) Stratégie de type Monte-Carlo, probabilité d'erreur ɛ O(log(d Y w log d X ) + log(ht(f )) + log(ht(m γ )) + log(ɛ 1 )) Stratégie de type Las-Vegas, 2 itérations en moyenne O(log(d Y w log d X ) + log(ht(f )) + log(ht(m γ )))

20 Complexité de l'algorithme rationnel au-dessus de L = F p t 0 Substitutions O (δ 2 F d Y ) Factorisations O (δ F [d 2 Y + d Y t 0 log p]) Total O (δ F d Y [δ F + d Y + t 0 log p]) Lemme δ F v X ( F ) d X (2d Y 2) Théorème (Nombre d'opérations dans L) T (F ) au-dessus de 0 : O (d 3 Y d 2 X + d 2 Y d X t 0 log p) T (F ) au-dessus de l'ensemble des points critiques : O (d 3 Y d 2 X t 0 log p) D. Duval 89 Rational Puiseux Expansions : O(d 6 Y d 2 X )

21 Complexité binaire du calcul de T (F ) F K[X, Y ] K = Q(γ) w = [K : Q] M γ le polynôme minimal de γ Théorème Il existe un algorithme de type Monte-Carlo qui calcule T (F ) en O (d 3 Y d 2 X w 2 log 2 ɛ 1 [ht(m γ ) + ht(f )]) opérations binaires avec une probabilité d'erreur ɛ.

22 Calcul de développements de Puiseux : partie numérique

23 Suivre T (F ) numériquement : un exemple Développements de Puiseux de F : S 1 (X ) = X + S 2 (X ) = 4X X S 3 (X ) = 2X X + S 4 (X ) = 2X X + X S 5 (X ) = X X + X S 6 (X ) = X X + S 7 (X ) = X X + d Y = 25, d X = 26 ; 1 coecients ; Digits = 20.

24 Premier polygone de Newton

25 Premier polygone de Newton

26 Tri selon les polygones G i (X, Y ) F (X 2, X (Y + ξ 1/2 i )), ξ 1 = 1. ξ 2 = 4. ξ 3 = 16. X polynôme coecient en X 3 G 1 0. G 2 0. G

27 Tri selon les polygones

28 Tri selon les multiplicités Structures de multiplicité : (2, 1, 1) deg(pgcd(φ, φ )) = 1 (3, 1) deg(pgcd(φ, φ )) = 2 Polynômes caractéristiques : φ 1 = T T T T 4 φ 2 = T T T T 4 1 S i Syl(φ i, φ i ) 2 Calcul des valeurs singulières des S i

29 Tri selon les multiplicités Valeurs singulières associées à φ 1 : [ , , , , , , ] Valeurs singulières associées à φ 2 : [ , , , , , , ]

30 Calcul du groupe de monodromie Poteaux, Computing monodromy groups dened by plane algebraic curves, SNC'07

31 Groupe de monodromie On note c 1,..., c n les points critiques. On xe un point de base régulier a. On cherche les n permutations σ 1,..., σ n correspondant à c 1,..., c n. Ces permutations engendrent le groupe de monodromie.

32 Méthodes Relier les bres 1 Choix des chemins. 2 Choix des points de connexion. a

33 Méthodes Relier les bres 1 Choix des chemins. 2 Choix des points de connexion. 3 Calcul des bres a

34 Méthodes Relier les bres 1 Choix des chemins. 2 Choix des points de connexion. 3 Calcul des bres 4 Méthode de connexion. a

35 Monodromie : état de l'art (sketch) 1 Relier les bres van Hoeij & Deconinck 99 Fonction monodromy de Maple. Fibres reliées à l'aide des dérivées premières. Critère de connexion et contrôle de l'erreur heuristiques. van Hoeij & Rybowicz (com. perso.) Théorème de Smith + arithmétique numérique/intervalles. Algorithme certié mais trop lent 2 Equation diérentielle

36 Monodromie : état de l'art (sketch) 1 Relier les bres 2 Equation diérentielle Intérêt : calcul rapide des développements à ordre élevé. Chudnovsky & Chudnovsky 86, 90 ; van der Hoeven 00 ; Cormier-Singer-Trager-Ulmer 02 ; Bostan & all Calcul de l'équation diérentielle potentiellement coûteux. Taille de l'équation diérentielle importante. On utilise des développements à ordre petit.

37 Contributions 1 Choix des chemins : arbre de recouvrement minimal. 2 Méthode de connexion : développements en série tronqués et développements de Puiseux au-dessus des points critiques. Bornes sur les ordres de troncation. Donne la monodromie locale. Utile pour l'application d'abel (Deconinck and Patterson 07). 3 Choix des points intermédiaires : Compromis entre les ordres de troncation et le nombre de points. Borne sur le nombre de points intermédiaires.

38 Arbre de recouvrement minimum

39 Connexions le long de l'arbre

40 Nombre de points intermédiaires À ce stade, on a besoin de O(n) = O(d 2 ) points intermédiaires.

41 Ordres de troncation Cauchy ordres de troncation F (X, Y ) = Y 3 X 5 + 2(10X 1) 2 n Ajouts de points intermédiaires

42 Bornes sur le nombre d'étapes Théorème Nombre total de points : O(n log L M Lm O(d 2 log L M Lm ). + g + d Y ) et donc Corollaire Si F Z[X, Y ], on a O(d 6 + d 5 log F ) points intermédiaires. borne cubique en la sortie.

43 Exemples

44 Exemple 1 M a,d = x d 2(ax 1) 2, F 1 (x, y) = y 3 M 10,5 (x) coecient en x 16/3 : Digits évaluation numérique algorithme numérique-modulaire Algorithme de monodromie : version symbolique/numérique : secondes. Précision de 40 chires nécessaires pour avoir un résultat correct. version numérique/modulaire : secondes. Digits 10.

45 Exemple 2 F 2 (x, y) = (y 3 M 10,6 (x))(y 3 M 10,3 (x)) + y 2 x 5 coecient en x 1/2 Digits évaluation numérique algorithme numérique-modulaire

46 Exemple 3 où G n (x, y) = ( y ) n 2 P n 2 (x) G n (x, y) 2 P n0 (x) = 1 ( n 03! x x n 0 + (n 0 1) x 1 ). n 0! Polynôme algorithme symbolique algorithme numérique-modulaire considéré temps en seconde temps en secondes précision G G G G G G G

47 Résumé des contributions et perspectives

48 Résumé (Puiseux) Critère de réduction : Permet de calculer T (F ) Algorithmes probabilistes petit p Utilisation de T (F ) pour le calcul numérique : Filtre à deux étages Utilisation de la SVD Bornes de complexité améliorées Complexité binaire pour le calcul de T (F )

49 Résumé (monodromie) Chemins optimisés. Stratégie nombre de pas / ordre de troncation : borne sur le nombres d'étapes. Développements en des points critiques : utilisation de l'algorithme numérique-modulaire.

50 Perspectives Développements de Puiseux : Extensions : complexité (calcul du genre) Contrôle des erreurs numériques (implémentation certiée) Groupe de monodromie : Contrôle numérique des erreurs (implémentation certiée) Complexité Autres utilisations de la stratégie modulaire-numérique.

Calcul de développements de Puiseux : un nouvel algorithme symbolique-numérique

Calcul de développements de Puiseux : un nouvel algorithme symbolique-numérique Calcul de : un nouvel algorithme symbolique-numérique Poteaux Adrien Laboratoire J.A. Dieudonné, UNSA Projet Galaad, INRIA Sophia-Antipolis JNCF 2008 22 octobre 2008 Résumé de l'épisode précédent JNCF

Plus en détail

Polynômes à plusieurs variables. Résultant

Polynômes à plusieurs variables. Résultant Polynômes à plusieurs variables. Résultant Christophe Ritzenthaler 1 Relations coefficients-racines. Polynômes symétriques Issu de [MS] et de [Goz]. Soit A un anneau intègre. Définition 1.1. Soit a A \

Plus en détail

1 Codes linéaires. G = [I k A]. Dans ce cas on constate que la matrice. H = [ t A I n k ] est une matrice de contrôle de C. Le syndrome de x F n q

1 Codes linéaires. G = [I k A]. Dans ce cas on constate que la matrice. H = [ t A I n k ] est une matrice de contrôle de C. Le syndrome de x F n q 1 Codes linéaires Un code de longueur n est une partie de F n q. Un code linéaire C de longueur n sur le corps ni F q est un sous-espace vectoriel de F n q. Par défaut, un code sera supposé linéaire. La

Plus en détail

Introduction à l étude des Corps Finis

Introduction à l étude des Corps Finis Introduction à l étude des Corps Finis Robert Rolland (Résumé) 1 Introduction La structure de corps fini intervient dans divers domaines des mathématiques, en particulier dans la théorie de Galois sur

Plus en détail

Arithmétique Algorithmique. http://www.math.univ-lyon1.fr/~roblot/ens.html

Arithmétique Algorithmique. http://www.math.univ-lyon1.fr/~roblot/ens.html Arithmétique Algorithmique http://www.math.univ-lyon1.fr/~roblot/ens.html Partie III Algorithmes classiques 1 Coût de la multiplication et de la division 2 Exponentiation rapide 3 Algorithme d Euclide

Plus en détail

Le bruit dans les transmissions

Le bruit dans les transmissions Le bruit dans les transmissions Christophe Chabot Université de Limoges - XLIM - DMI - PI2C INRIA Rocquencourt - Projet CODES Séminaire des doctorants - 07/12/2007 Sommaire 1 Introduction 2 Diérents types

Plus en détail

Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48

Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48 Méthodes de Polytech Paris-UPMC - p. 1/48 Polynôme d interpolation de Preuve et polynôme de Calcul de l erreur d interpolation Étude de la formule d erreur Autres méthodes - p. 2/48 Polynôme d interpolation

Plus en détail

Polynômes. Motivation. 1. Définitions. Exo7. 1.1. Définitions

Polynômes. Motivation. 1. Définitions. Exo7. 1.1. Définitions Exo7 Polynômes Vidéo partie 1. Définitions Vidéo partie 2. Arithmétique des polynômes Vidéo partie 3. Racine d'un polynôme, factorisation Vidéo partie 4. Fractions rationnelles Exercices Polynômes Exercices

Plus en détail

Résolution d équations non linéaires

Résolution d équations non linéaires Analyse Numérique Résolution d équations non linéaires Said EL HAJJI et Touria GHEMIRES Université Mohammed V - Agdal. Faculté des Sciences Département de Mathématiques. Laboratoire de Mathématiques, Informatique

Plus en détail

Problème: si les tableaux que l'on trie sont déjà à peu près triés, l'algorithme n'est pas efficace.

Problème: si les tableaux que l'on trie sont déjà à peu près triés, l'algorithme n'est pas efficace. Traonmilin Yann traonmil@enst.fr MOD Algorithmique Probabiliste 1. Deux exemples 1.1. Quicksort randomisé. Dans l'algorithme de tri classique Quicksort, le pivot est choisi au début du tableau puis on

Plus en détail

Structures algébriques et algorithmes

Structures algébriques et algorithmes Univ. Lille 1 - Master Info 2011-2012 Principes et Algorithmes de Cryptographie Table des matières Structures algébriques et algorithmes 1 Entiers et opérations sur les entiers 2 1.1 Taille d'un entier...........

Plus en détail

Anneaux, algèbres. Chapitre 2. 2.1 Structures

Anneaux, algèbres. Chapitre 2. 2.1 Structures Chapitre 2 Anneaux, algèbres 2.1 Structures Un anneau est un ensemble A muni de deux opérations internes + et et d éléments 0 A et 1 A qui vérifient : associativité de l addition : commutativité de l addition

Plus en détail

1.8 Exercices. Analyse d'erreurs 43

1.8 Exercices. Analyse d'erreurs 43 1.8 Exercices Analyse d'erreurs 43 1. Tous les chires des nombres suivants sont signicatifs. Donner une borne supérieure de l'erreur absolue et estimer l'erreur relative. a) 0,1234 b) 8,760 c) 3,14156

Plus en détail

Contents. Systèmes d'équations non linéaires 2 1. Dichotomie 2 2. Point xe 3 3. Méthodes de Newton et et de la sécante 5

Contents. Systèmes d'équations non linéaires 2 1. Dichotomie 2 2. Point xe 3 3. Méthodes de Newton et et de la sécante 5 Contents Systèmes d'équations non linéaires 2 1. Dichotomie 2 2. Point xe 3 3. Méthodes de Newton et et de la sécante 5 1 Systèmes d'équations non linéaires On considère un intervalle I R (borné ou non)

Plus en détail

Equations dierentielles

Equations dierentielles Equations dierentielles Université Mohammed I Faculté des Sciences Département de Mathématiques Oujda. Plan 1 Introduction 2 3 Résponsable du cours : Pr. NAJIB TSOULI. 1 Introduction 2 3 Introduction Une

Plus en détail

COR TD 2. Exercice 1. Déterminer si les applications f i suivantes sont linéaires : x + x, y + y )

COR TD 2. Exercice 1. Déterminer si les applications f i suivantes sont linéaires : x + x, y + y ) COR TD 2 Année 21 Exercice 1. Déterminer si les applications f i suivantes sont linéaires : f 1 : R 2 R 2 f 1 x, y = 2x + y, x y f 2 : R R f 2 x, y, z = xy, x, y f : R R f x, y, z = 2x + y + z, y z, x

Plus en détail

Table des matières. I Mise à niveau 11. Préface

Table des matières. I Mise à niveau 11. Préface Table des matières Préface v I Mise à niveau 11 1 Bases du calcul commercial 13 1.1 Alphabet grec...................................... 13 1.2 Symboles mathématiques............................... 14 1.3

Plus en détail

Interprétation algébrique d une identité de Greene. combinatoire due à Greene

Interprétation algébrique d une identité de Greene. combinatoire due à Greene Interprétation algébrique d une identité combinatoire due à Greene (LaBRI) travail avec Adrien Boussicault et Victor Reiner GT CÉA, 25 septembre 2009 Plan 1 Présentation de l identité de Greene 2 Recodage

Plus en détail

En 2005, année de sa création, un club de randonnée pédestre comportait 80 adhérents. Chacune des années suivantes on a constaté que :

En 2005, année de sa création, un club de randonnée pédestre comportait 80 adhérents. Chacune des années suivantes on a constaté que : Il sera tenu compte de la présentation et de la rédaction de la copie lors de l évaluation finale. Les élèves n ayant pas la spécialité mathématique traiteront les exercices 1, 2,3 et 4, les élèves ayant

Plus en détail

Notion de complexité

Notion de complexité 1 de 27 Algorithmique Notion de complexité Florent Hivert Mél : Florent.Hivert@lri.fr Adresse universelle : http://www-igm.univ-mlv.fr/ hivert Outils mathématiques 2 de 27 Outils mathématiques : analyse

Plus en détail

Équations du troisième degré

Équations du troisième degré par Z, auctore L objet de cet article est d exposer deux méthodes pour trouver des solutions à une équation du troisième degré : la recherche de racines évidentes d une part, et la formule de Cardan d

Plus en détail

Évaluation et Interpolation rapide.

Évaluation et Interpolation rapide. Évaluation et Interpolation rapide une généralisation de la FFT Adrien Poteaux inspiré du cours d Alin Bostan aux JNCF 2010 1 Univ Lille 1 - LIFL, équipe Calcul Formel Groupe de Travail de Calcul Formel

Plus en détail

CHAPTER 1. Introduction

CHAPTER 1. Introduction CHAPTER Introduction.. Quelques notions mathématiques indispensables... Voisinage. On appelle voisinage d'un point x R tout intervalle ouvert ]x h, x + h[, avec h >, centré sur x. Une propriété P t est

Plus en détail

1 - INTERPOLATION. J-P. Croisille. Semestre S7, master de mathématiques M1, année 2008/2009. Université Paul Verlaine-Metz

1 - INTERPOLATION. J-P. Croisille. Semestre S7, master de mathématiques M1, année 2008/2009. Université Paul Verlaine-Metz 1 - INTERPOLATION J-P. Croisille Université Paul Verlaine-Metz Semestre S7, master de mathématiques M1, année 2008/2009 1- INTRODUCTION Théorie de l interpolation: approximation de f(x) par une fonction

Plus en détail

TP Sage. Yannick Renard.

TP Sage. Yannick Renard. TP Sage. Yannick Renard. 1. Introduction. Le logiciel Software for Algebra and Geometry Experimentation (Sage) est un logiciel de mathématiques qui rassemble de nombreux programmes et bibliothèques libres

Plus en détail

Quadrature n 74 (2009) 10 22. Online Material

Quadrature n 74 (2009) 10 22. Online Material Quadrature n 74 (009) 10 Online Material E. Brugallé, Online Material Un peu de géométrie tropicale Solutions des exercices Erwan Brugallé Université Pierre et Marie Curie, Paris 6, 175 rue du Chevaleret,

Plus en détail

Travaux dirigés. Résolution numérique des équations diérentielles ordinaires. Département MIDO année 2013/2014 Master MMDMA

Travaux dirigés. Résolution numérique des équations diérentielles ordinaires. Département MIDO année 2013/2014 Master MMDMA Université Paris-Dauphine Méthodes numériques Département MIDO année 03/04 Master MMDMA Travaux dirigés Résolution numérique des équations diérentielles ordinaires Exercice. Pour α > 0, on considère le

Plus en détail

Séminaire ALGO. Solutions formelles locales en un point singulier d une classe de systèmes d EDP linéaires d ordre 1

Séminaire ALGO. Solutions formelles locales en un point singulier d une classe de systèmes d EDP linéaires d ordre 1 Séminaire ALGO Solutions formelles locales en un point singulier d une classe de systèmes d EDP linéaires d ordre 1 Nicolas Le Roux projet ALGO. séminaire ALGO 1 avertissement A certains moments de l exposé

Plus en détail

Nombres premiers. Comment reconnaître un nombre premier? Mais...

Nombres premiers. Comment reconnaître un nombre premier? Mais... Introduction Nombres premiers Nombres premiers Rutger Noot IRMA Université de Strasbourg et CNRS Le 19 janvier 2011 IREM Strasbourg Definition Un nombre premier est un entier naturel p > 1 ayant exactement

Plus en détail

GEL-7064 : Théorie et pratique des codes correcteurs Codes cycliques Notes de cours

GEL-7064 : Théorie et pratique des codes correcteurs Codes cycliques Notes de cours linéaires GEL-7064 : Théorie et pratique des codes correcteurs Notes de cours Département de génie électrique et de génie informatique Université Laval jean-yves.chouinard@gel.ulaval.ca 12 février 2013

Plus en détail

Mathématiques assistées par ordinateur

Mathématiques assistées par ordinateur Mathématiques assistées par ordinateur Chapitre 4 : Racines des polynômes réels et complexes Michael Eisermann Mat249, DLST L2S4, Année 2008-2009 www-fourier.ujf-grenoble.fr/ eiserm/cours # mao Document

Plus en détail

3 Approximation de solutions d équations

3 Approximation de solutions d équations 3 Approximation de solutions d équations Une équation scalaire a la forme générale f(x) =0où f est une fonction de IR dans IR. Un système de n équations à n inconnues peut aussi se mettre sous une telle

Plus en détail

MULTIPLICATION RAPIDE : KARATSUBA ET FFT

MULTIPLICATION RAPIDE : KARATSUBA ET FFT MULTIPLICATION RAPIDE : KARATSUBA ET FFT 1. Introduction La multiplication est une opération élémentaire qu on utilise évidemment très souvent, et la rapidité des nombreux algorithmes qui l utilisent dépend

Plus en détail

Exo7. Lemme Chinois. Énoncés : V. Gritsenko Corrections : J.-F. Barraud

Exo7. Lemme Chinois. Énoncés : V. Gritsenko Corrections : J.-F. Barraud Énoncés : V. Gritsenko Corrections : J.-F. Barraud Exo7 Lemme Chinois Exercice 1 Soient A un anneau et I et J les idéaux de A tels que I + J = (1). Démontrer que I n + J m = (1) quels que soient entiers

Plus en détail

Théorie et codage de l information

Théorie et codage de l information Théorie et codage de l information Les codes de Hamming et les codes cycliques - Chapitre 6 (suite et fin)- Les codes de Hamming Principe La distance minimale d un code linéaire L est le plus petit nombre

Plus en détail

La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1

La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1 La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1 La licence Mathématiques et Economie-MASS de l Université des Sciences Sociales de Toulouse propose sur les trois

Plus en détail

Cahier de vacances - Préparation à la Première S

Cahier de vacances - Préparation à la Première S Cahier de vacances - Préparation à la Première S Ce cahier est destiné à vous permettre d aborder le plus sereinement possible la classe de Première S. Je vous conseille de le travailler pendant les 0

Plus en détail

Le voyageur de commerce, méthode de branch and bound.

Le voyageur de commerce, méthode de branch and bound. Le voyageur de commerce, méthode de branch and bound. Pierre Chatelain, Kevin Quirin ENS Cachan - Antenne de Bretagne 15 août 2010 TSP Le problème du voyageur de commerce ( TSP ) consiste à trouver le

Plus en détail

Algorithmique et Programmation TD n 9 : Fast Fourier Transform

Algorithmique et Programmation TD n 9 : Fast Fourier Transform Algorithmique et Programmation TD n 9 : Fast Fourier Transform Ecole normale supérieure Département d informatique td-algo@di.ens.fr 2011-2012 1 Petits Rappels Convolution La convolution de deux vecteurs

Plus en détail

Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables

Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables Guy Desaulniers Département de mathématiques et de génie industriel École Polytechnique de Montréal Automne 2014 Table des matières

Plus en détail

Quelques tests de primalité

Quelques tests de primalité Quelques tests de primalité J.-M. Couveignes (merci à T. Ezome et R. Lercier) Institut de Mathématiques de Bordeaux & INRIA Bordeaux Sud-Ouest Jean-Marc.Couveignes@u-bordeaux.fr École de printemps C2 Mars

Plus en détail

Suites et Convergence

Suites et Convergence Suites et Convergence Une suite c est se donner une valeur (sans ambigüité) pour chaque N sauf peutêtre les premiers n. Donc une suite est une fonction : I R où I = N: = N. Notation : On note ( ) I R pour

Plus en détail

Queue de la solution stationnaire d un modèle auto-régressif d ordre 1 à coefficients markoviens.

Queue de la solution stationnaire d un modèle auto-régressif d ordre 1 à coefficients markoviens. . Queue de la solution stationnaire d un modèle auto-régressif d ordre 1 à coefficients markoviens. Benoîte de Saporta Université de Nantes Université de Nantes - 9 juin 2005 p. 1/37 Plan de l exposé 1.

Plus en détail

Examen 2 Mathématiques L1S1 TD 1104 2015 2016 Université Paris 1

Examen 2 Mathématiques L1S1 TD 1104 2015 2016 Université Paris 1 Examen Mathématiques LS TD 04 05 06 Université Paris Nom : Prénom : Durée : heure. Calculatrice interdite. Aucun document autorisé. Chaque question de la partie QCM vaut un point. Identifiez toutes les

Plus en détail

Factorisation des matrices creuses

Factorisation des matrices creuses Chapitre 5 Factorisation des matrices creuses 5.1 Matrices creuses La plupart des codes de simulation numérique en mécanique des fluides ou des structures et en électromagnétisme utilisent des discrétisations

Plus en détail

Génération aléatoire de structures ordonnées

Génération aléatoire de structures ordonnées Génération aléatoire de structures ordonnées Olivier Roussel Équipe APR Laboratoire d Informatique de Paris 6 Université Pierre et Marie Curie ALÉA 2011 7 mars 2011 Olivier Roussel (LIP6) Génération de

Plus en détail

Les relations de Plücker

Les relations de Plücker Université Claude Bernard LYON 1 Préparation à l'agrégation de Mathématiques Les relations de Plücker Michel CRETIN On montre que l'ensemble des sous-espaces vectoriels de dimension r de K n est la sous-variété

Plus en détail

1 Questions de coût (de la vie?)

1 Questions de coût (de la vie?) 1 Université Paul Sabatier Année 2009-2010 Préparation à l'agrégation Arithmétique des entiers et des polynômes Option C emmanuel hallouin@univ-tlse2.fr http://www.math.univ-toulouse.fr/ hallouin/eh-agreg.html

Plus en détail

Utiliser les propriétés Savoir réduire un radical savoir +,-,x,: Utiliser les propriétés des puissances Calculer avec des puissances

Utiliser les propriétés Savoir réduire un radical savoir +,-,x,: Utiliser les propriétés des puissances Calculer avec des puissances ARITHMETIQUE 1 C B A Numération Ecrire en lettres et en chiffres Poser des questions fermées autour d un document simple (message, consigne, planning ) Connaître le système décimal Déterminer la position

Plus en détail

NOTATIONS PRÉLIMINAIRES

NOTATIONS PRÉLIMINAIRES Pour le Jeudi 14 Octobre 2010 NOTATIONS Soit V un espace vectoriel réel ; l'espace vectoriel des endomorphismes de l'espace vectoriel V est désigné par L(V ). Soit f un endomorphisme de l'espace vectoriel

Plus en détail

Algorithmes Probabilistes COMPLEX

Algorithmes Probabilistes COMPLEX Algorithmes Probabilistes COMPLEX Ludovic Perret Université Pierre et Marie Curie (Paris VI) ludovic.perret@lip6.fr Introduction Algorithme Il retourne toujours une solution correcte, et pour une même

Plus en détail

Chapitre VI - Méthodes de factorisation

Chapitre VI - Méthodes de factorisation Université Pierre et Marie Curie Cours de cryptographie MM067-2012/13 Alain Kraus Chapitre VI - Méthodes de factorisation Le problème de la factorisation des grands entiers est a priori très difficile.

Plus en détail

chapitre 4 Nombres de Catalan

chapitre 4 Nombres de Catalan chapitre 4 Nombres de Catalan I Dénitions Dénition 1 La suite de Catalan (C n ) n est la suite dénie par C 0 = 1 et, pour tout n N, C n+1 = C k C n k. Exemple 2 On trouve rapidement C 0 = 1, C 1 = 1, C

Plus en détail

par Gilles CHRISTOL 1. Vecteurs de Witt 0 + px pn 1 = X pn 1 + + p n X n. = W 0 (a 0 ),..., W n (a 0,..., a n ),...

par Gilles CHRISTOL 1. Vecteurs de Witt 0 + px pn 1 = X pn 1 + + p n X n. = W 0 (a 0 ),..., W n (a 0,..., a n ),... RAYONS DES SOLUTIONS DE L ÉQUATION DE DWORK par Gilles CHRISTOL Résumé. Soit a dans une extension valuée de Q p. On se propose de calculer le rayon de convergence de la solution de l équation différentielle

Plus en détail

Exercices d oraux de la banque CCP BANQUE ALGÈBRE

Exercices d oraux de la banque CCP BANQUE ALGÈBRE Exercices d oraux de la banque CCP 2014-2015 20 exercices sur les 37 d algèbre peuvent être traités en Maths Sup. BANQUE ALGÈBRE EXERCICE 59 Soit E l espace vectoriel des polynômes à coefficients dans

Plus en détail

Notes du cours MTH1101N Calcul I Partie II: fonctions de plusieurs variables

Notes du cours MTH1101N Calcul I Partie II: fonctions de plusieurs variables Notes du cours MTH1101N Calcul I Partie II: fonctions de plusieurs variables Fausto Errico Département de mathématiques et de génie industriel École Polytechnique de Montréal Automne 2012 Table des matières

Plus en détail

Cours fonctions, expressions algébriques

Cours fonctions, expressions algébriques I. Expressions algébriques, équations a) Développement factorisation Développer Développer un produit, c est l écrire sous forme d une somme. Réduire une somme, c est l écrire avec le moins de termes possibles.

Plus en détail

AGRÉGATION INTERNE: RÉDUCTION DES ENDOMORPHISMES

AGRÉGATION INTERNE: RÉDUCTION DES ENDOMORPHISMES AGRÉGATION INTERNE: RÉDUCTION DES ENDOMORPHISMES VINCENT GUEDJ 1. Notions fondamentales 1.1. Noyau, Image. On se donne E un K-espace vectoriel de dimension finie (K = R, C principalement) et f L(E) un

Plus en détail

Utilisation de PARI/GP pour la théorie algébrique des nombres. Bill Allombert

Utilisation de PARI/GP pour la théorie algébrique des nombres. Bill Allombert Utilisation de PARI/GP pour la théorie algébrique des nombres. Bill Allombert Université Montpellier 2 LIRMM/I3M (avec Karim Belabas, Université Bordeaux 1) 22/01/2010 GP> Qu est ce que PARI/GP Le système

Plus en détail

Cours de mathématiques : Equation du second degré

Cours de mathématiques : Equation du second degré Cours de mathématiques : Equation du second degré I ) Formes de l'équation du second degré. L'équation du deuxiéme degré à une inconnue est celle où l'inconnue est élévé à la puissance de 2, sans y etre

Plus en détail

Image d un intervalle par une fonction continue

Image d un intervalle par une fonction continue DOCUMENT 27 Image d un intervalle par une fonction continue La continuité d une fonction en un point est une propriété locale : une fonction est continue en un point x 0 si et seulement si sa restriction

Plus en détail

Arithmétique Algorithmique.

Arithmétique Algorithmique. Arithmétique Algorithmique http://www.math.univ-lyon1.fr/~roblot/ens.html Partie II Arithmétique rapide 1 Opérations de base sur les entiers longs 2 Polynômes à coefficients dans Z/2 w Z 3 Multiplication

Plus en détail

UNIVERSITÉ DE CERGY Année 2012-2013 U.F.R. Économie & Gestion Licence d Économie et Mathématiques MATH104 : Mathématiques

UNIVERSITÉ DE CERGY Année 2012-2013 U.F.R. Économie & Gestion Licence d Économie et Mathématiques MATH104 : Mathématiques 1 UNIVERSITÉ DE CERGY Année 2012-201 U.F.R. Économie & Gestion Licence d Économie et Mathématiques MATH104 : Mathématiques Chapitre III : Polynômes 1 Fonctions polynômes & polynômes Définition 1. Soit

Plus en détail

Sécurité des Réseaux Jean-Yves Antoine LI - Université François Rabelais de Tours Jean-Yves.Antoine AT univ-tours.fr J.-Y. Antoine & L.

Sécurité des Réseaux Jean-Yves Antoine LI - Université François Rabelais de Tours Jean-Yves.Antoine AT univ-tours.fr J.-Y. Antoine & L. Sécurité des Réseaux Jean-Yves Antoine LI - UniversitéFrançois Rabelais de Tours Jean-Yves.Antoine AT univ-tours.fr Sécurité des réseaux Codage : codes polynomiaux et cycliques application aux réseaux

Plus en détail

Programme de Première

Programme de Première BAC TECHNO STAV 66 I. Algèbre Programme de Première Objectif 1 - Effectuer de manière autonome des calculs numériques ou algébriques, résoudre des équations ou inéquations en vue de résoudre des problèmes

Plus en détail

Les Interros Corrigées de Sup MPSI-PCSI en Mathématiques

Les Interros Corrigées de Sup MPSI-PCSI en Mathématiques Les Interros Corrigées de Sup MPSI-PCSI en Mathématiques Vandana BHANDARI Marc-Olivier CZARNECKI P R E P AMA TH Collection dirigée par Éric MAURETTE Sommaire Algèbre Notionsdebase... 1,2 Arithmétique...

Plus en détail

Le théorème du point xe. Applications

Le théorème du point xe. Applications 49 Le théorème du point xe. Applications 1 Comme dans le titre de cette leçon, le mot théorème est au singulier, on va s'occuper du théorème du point xe de Picard qui a de nombreuses applications. Le cas

Plus en détail

Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples

Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples 45 Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples Les espaces vectoriels considérés sont réels, non réduits au vecteur nul et

Plus en détail

Cours d'arithmétique

Cours d'arithmétique Université Pierre & Marie Curie Cours d'arithmétique LM 220 Pierre Wassef Le chapitre 0 rappelle les notions prérequises et les dénitions les plus importantes. Il n'est pas traité en cours mais il est

Plus en détail

SPLEX Statistiques pour la classification et fouille de données en

SPLEX Statistiques pour la classification et fouille de données en SPLEX Statistiques pour la classification et fouille de données en génomique Classification Linéaire Binaire CLB Pierre-Henri WUILLEMIN DEcision, Système Intelligent et Recherche opérationnelle LIP6 pierre-henri.wuillemin@lip6.fr

Plus en détail

Principes généraux de codage entropique d'une source. Cours : Compression d'images Master II: IASIG Dr. Mvogo Ngono Joseph

Principes généraux de codage entropique d'une source. Cours : Compression d'images Master II: IASIG Dr. Mvogo Ngono Joseph Principes généraux de codage entropique d'une source Cours : Compression d'images Master II: IASIG Dr. Mvogo Ngono Joseph Table des matières Objectifs 5 Introduction 7 I - Entropie d'une source 9 II -

Plus en détail

Topologie du discriminant d une surface

Topologie du discriminant d une surface Topologie du discriminant d une surface Guillaume Moroz et Marc Pouget Inria Nancy - Grand Est JNCF 2014 4 novembre 2014 Guillaume Moroz et Marc Pouget (Inria Nancy Topologie - Grand Est dujncf discriminant

Plus en détail

Théorie des ensembles

Théorie des ensembles Théorie des ensembles Cours de licence d informatique Saint-Etienne 2002/2003 Bruno Deschamps 2 Contents 1 Eléments de théorie des ensembles 3 1.1 Introduction au calcul propositionnel..................

Plus en détail

Le corps R des nombres réels

Le corps R des nombres réels Le corps R des nombres réels. Construction de R à l aide des suites de Cauchy de nombres rationnels On explique brièvement dans ce paragraphe comment construire le corps R des nombres réels à partir du

Plus en détail

Fiche n 2: Morphisme, sous-groupe distingué, quotient

Fiche n 2: Morphisme, sous-groupe distingué, quotient Université Lille 1 Algèbre 2010/11 M51.MIMP Fiche n 2: Morphisme, sous-groupe distingué, quotient Exercice 1 Soient G, G deux groupes et f un homomorphisme de G dans G. Montrer que si A G, alors f( A )

Plus en détail

Calculs approchés d un point fixe

Calculs approchés d un point fixe M11 ÉPREUVE COMMUNE DE TIPE 2013 - Partie D TITRE : Calculs approchés d un point fixe Temps de préparation :.. 2 h 15 minutes Temps de présentation devant les examinateurs :.10 minutes Dialogue avec les

Plus en détail

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que Introduction. On suppose connus les ensembles N (des entiers naturels), Z des entiers relatifs et Q (des nombres rationnels). On s est rendu compte, depuis l antiquité, que l on ne peut pas tout mesurer

Plus en détail

Multiplication par une constante entière

Multiplication par une constante entière Multiplication par une constante entière Vincent Lefèvre Juin 2001 Introduction But : générer du code optimal à l aide d opérations élémentaires (décalages vers la gauche, additions, soustractions). Utile

Plus en détail

Modèle probabiliste: Algorithmes et Complexité

Modèle probabiliste: Algorithmes et Complexité Modèles de calcul, Complexité, Approximation et Heuristiques Modèle probabiliste: Algorithmes et Complexité Jean-Louis Roch Master-2 Mathématique Informatique Grenoble-INP UJF Grenoble University, France

Plus en détail

Optimisation en nombres entiers

Optimisation en nombres entiers Optimisation en nombres entiers p. 1/83 Optimisation en nombres entiers Michel Bierlaire michel.bierlaire@epfl.ch EPFL - Laboratoire Transport et Mobilité - ENAC Optimisation en nombres entiers p. 2/83

Plus en détail

Liste complète des sujets d oral (SESSION 2004) servant pour 2004-2005. Leçons d Algèbre et de Géométrie

Liste complète des sujets d oral (SESSION 2004) servant pour 2004-2005. Leçons d Algèbre et de Géométrie http://perso.wanadoo.fr/gilles.costantini/agreg.htm Liste complète des sujets d oral (SESSION 2004) servant pour 2004-2005 Légende : En italique : leçons dont le libellé a changé ou évolué par rapport

Plus en détail

Construction distribuée de groupes pour le calcul à grande échelle. O. Beaumont, N. Bonichon, P. Duchon, L. Eyraud-Dubois, H.

Construction distribuée de groupes pour le calcul à grande échelle. O. Beaumont, N. Bonichon, P. Duchon, L. Eyraud-Dubois, H. Construction distribuée de groupes pour le calcul à grande échelle O. Beaumont, N. Bonichon, P. Duchon, L. Eyraud-Dubois, H. Larchevêque O. Beaumont, N. Bonichon, P. Duchon, L. Construction Eyraud-Dubois,

Plus en détail

Le calcul numérique : pourquoi et comment?

Le calcul numérique : pourquoi et comment? Le calcul numérique : pourquoi et comment? 16 juin 2009 Claude Gomez Directeur du consortium Scilab Plan Le calcul symbolique Le calcul numérique Le logiciel Scilab Scilab au lycée Le calcul symbolique

Plus en détail

Programmation des Systèmes Experts

Programmation des Systèmes Experts Conception de systèmes intelligents Programmation des Systèmes Experts James L. Crowley Deuxième Année ENSIMAG Troisième Bimestre 2000/2001 Séance 3 23 février 2001 Planification et Parcours de Graphe

Plus en détail

Mathématique - Cours Filière STAV 2014-2015 Centre de Formation aux Métier de la Montagne Marine Estorge

Mathématique - Cours Filière STAV 2014-2015 Centre de Formation aux Métier de la Montagne Marine Estorge Mathématique - Cours Filière STAV 2014-2015 Centre de Formation aux Métier de la Montagne Marine Estorge Le programme se compose ainsi : Rappels collège/seconde Partie STAV 1/3 Partie STAV 2/3 Partie STAV

Plus en détail

MATÉRIEL D APPRENTISSAGE SERVANT D APPUI AU NOUVEAU TABLEAU DE CORRESPONDANCE DU CURRICULUM À : MATHÉMATIQUES 11 NO P-0-257

MATÉRIEL D APPRENTISSAGE SERVANT D APPUI AU NOUVEAU TABLEAU DE CORRESPONDANCE DU CURRICULUM À : MATHÉMATIQUES 11 NO P-0-257 MATÉRIEL D APPRENTISSAGE SERVANT D APPUI AU NOUVEAU CURRICULUM DE L ONTARIO : MATHÉMATIQUES, FONCTIONS, 11 e année, COURS PRÉUNIVERSITAIRE/PRÉCOLLÉGIAL (MCF3M) TABLEAU DE CORRESPONDANCE DU CURRICULUM À

Plus en détail

MATIÈRE DU COURS D'ALGÈBRE ET D'ANALYSE

MATIÈRE DU COURS D'ALGÈBRE ET D'ANALYSE MATIÈRE DU COURS D'ALGÈBRE ET D'ANALYSE Titulaire : A.M. Tilkin 8h/semaine 1) MATIERE DE 4 e ANNEE a) ALGEBRE - Rappels algébriques concernant la résolution d équations et d inéquations (fractionnaires

Plus en détail

Langage C et aléa, séance 4

Langage C et aléa, séance 4 Langage C et aléa, séance 4 École des Mines de Nancy, séminaire d option Ingénierie Mathématique Frédéric Sur http://www.loria.fr/ sur/enseignement/courscalea/ 1 La bibliothèque GMP Nous allons utiliser

Plus en détail

Introduction au cours STA 102 Analyse des données : Méthodes explicatives

Introduction au cours STA 102 Analyse des données : Méthodes explicatives Analyse des données - Méthodes explicatives (STA102) Introduction au cours STA 102 Analyse des données : Méthodes explicatives Giorgio Russolillo giorgio.russolillo@cnam.fr Infos et support du cours Slide

Plus en détail

Université Joseph Fourier MAT231 2008-2009

Université Joseph Fourier MAT231 2008-2009 Université Joseph Fourier MAT231 2008-2009 mat231-exo-03.tex (29 septembre 2008) Feuille d exercices n o 3 Exercice 3.1 Soit K un corps commutatif et soit {P 0, P 1,... P n } une famille de polynômes de

Plus en détail

Gestion d'un entrepôt

Gestion d'un entrepôt Gestion d'un entrepôt Épreuve pratique d'algorithmique et de programmation Concours commun des écoles normales supérieures Durée de l'épreuve: 3 heures 30 minutes Juin/Juillet 2010 ATTENTION! N oubliez

Plus en détail

COURS SUR LES POLYNÔMES À UNE VARIABLE

COURS SUR LES POLYNÔMES À UNE VARIABLE 1 COURS SUR LES POLYNÔMES À UNE VARIABLE - Opérations sur les polynômes - On commence par définir la notion de polynôme et voir quelques propriétés. Définition 1. Une fonction P de R dans R est appelée

Plus en détail

SOMMES ET PRODUITS. 1 Techniques de calcul. 1.1 Le symbole. 1.2 Règles de calcul. Laurent Garcin MPSI Lycée Jean-Baptiste Corot

SOMMES ET PRODUITS. 1 Techniques de calcul. 1.1 Le symbole. 1.2 Règles de calcul. Laurent Garcin MPSI Lycée Jean-Baptiste Corot SOMMES ET PRODUITS 1 Techniques de calcul 1.1 Le symbole Notation 1.1 Soient m et n deux entiers naturels. Alors { a m + a m+1 + + a + a n si m n, a = 0 sinon. On peut aussi noter m n =m a ou encore m,n

Plus en détail

Exemple d implantation de fonction mathématique sur ST240

Exemple d implantation de fonction mathématique sur ST240 Exemple d implantation de fonction mathématique sur ST240 Guillaume Revy Encadrants : Claude-Pierre Jeannerod et Gilles Villard Équipe INRIA Arénaire Laboratoire de l Informatique du Parallélisme - ENS

Plus en détail

Un corrigé de l épreuve de mathématiques du baccalauréat blanc

Un corrigé de l épreuve de mathématiques du baccalauréat blanc Terminale ES Un corrigé de l épreuve de mathématiques du baccalauréat blanc EXERCICE ( points). Commun à tous les candidats On considère une fonction f : définie, continue et doublement dérivable sur l

Plus en détail

P (X) = (X a) 2 T (X)

P (X) = (X a) 2 T (X) Université Bordeaux I - année 00-0 MHT0 Structures Algébriques Correction du devoir maison Exercice. Soit P (X) Q[X]\Q.. Soit D(X) := pgcd(p (X), P (X)). a) Montrer que si deg D alors il existe α C tel

Plus en détail

Théorie de l information

Théorie de l information Théorie de l information Exercices Dpt. Génie Electrique Théorie de l information T. Grenier Exercices A Exercice n A. Dans un processus d'automatisation, une source génère de façon indépendante quatre

Plus en détail

Quelques perspectives pour la programmation mathématique en commande robuste

Quelques perspectives pour la programmation mathématique en commande robuste Quelques perspectives pour la programmation mathématique en commande robuste P. Apkarian, D. Arzelier, D. Henrion, D. Peaucelle UPS - CERT - LAAS-CNRS Contexte de la commande robuste 2 Théorie de la complexité

Plus en détail

Chaîne d additions ATTENTION!

Chaîne d additions ATTENTION! Chaîne d additions Épreuve pratique d algorithmique et de programmation Concours commun des écoles normales supérieures Durée de l épreuve: 3 heures 30 minutes Juin 2012 ATTENTION! N oubliez en aucun cas

Plus en détail

Arbres ordonnés, binaires, tassés, FAP, tri par FAP, tas, tri par tas

Arbres ordonnés, binaires, tassés, FAP, tri par FAP, tas, tri par tas Arbres ordonnés, binaires, tassés, FAP, tri par FAP, tas, tri par tas 1. Arbres ordonnés 1.1. Arbres ordonnés (Arbres O) On considère des arbres dont les nœuds sont étiquetés sur un ensemble muni d'un

Plus en détail