Chapitre 4: Dérivée d'une fonction et règles de calcul
|
|
- Odette Paquette
- il y a 5 ans
- Total affichages :
Transcription
1 DERIVEES ET REGLES DE CALCULS 69 Chapitre 4: Dérivée d'une fonction et règles de calcul Prérequis: Généralités sur les fonctions, Introduction dérivée Requis pour: Croissance, Optimisation, Études de fct. 4. Les règles de dérivation y Introduction Dans le chapitre précédent, nous nous sommes concentrés dans la recherche de la pente d'une tangente à une courbe donnée. Plusieurs démarches vous ont été présentées. La première était de type graphique suivi d'une méthode utilisant un calcul de limites assez répétitif pour finalement nous amener à la définition suivante: B A x La dérivée d une fonction f est la fonction f définie par: f '(a) = f (x) f (a) lim x a x a Cette méthode reposant toujours sur un calcul de limites n'est pas très efficace. Il est donc souhaitable de pouvoir utiliser des règles générales de dérivation. Les 7 règles de dérivation qui suivent se démontrent en utilisant systématiquement ce même type de calcul de limites. Nous nous contenterons de leur utilisation. ère règle: Pour dériver x à une certaine puissance, on passe la puissance devant, on reproduit x et on descend la puissance d'un cran. dérivée d'une puissance f (x) = x n f (x) = n x n Exemples ) f (x) = x alors f (x) = ) f (x) = x 3 alors f (x) = 3x dérivée d'une fraction simple 3) f (x) = x alors f (x) = x - donc f (x) = - x - = - x = x dérivée d'une racine 4) f (x) = x alors f (x) = x / donc f (x) = x/ = x / = x / = x = x
2 70 CHAPITRE 4 Exemple à compléter 4) dériver f (x) = x 3 ème règle: La dérivée d'un nombre vaut 0 f (x) = nbre f (x) = 0 Exemple f (x) = 0'000 alors f ' (x) = 0 3 ème règle: Pour dériver une expression du type "un nombre fois une fonction", on garde le nombre et on dérive la fonction g(x) = nbre f (x) g (x) = nbre f (x) Exemples ) f (x) = 5x alors f ' (x) = 5 x = 0x 3 ) f (x) = 7 x alors f (x) = 7x /3 donc f ' (x) = 7 3 x/3 = 7 3 x /3 = 7 3 x = 7 /3 3 3 x Exemple à compléter 3) dériver f (x) = 5 x 4
3 DERIVEES ET REGLES DE CALCULS 7 Exercice 4. : Calculer la dérivée des fonctions suivantes: ) f (x) = 3x ) f (t) = 7t 6 3) f (x) = x 7 4) f (x) = ax 5) f (x) = 3 x 6) f (x) = x /7 7) f (x) = x 8) f (x) = x 0) f (x) = (m ) x ) f (x) = ) f (x) = x Exercice 4. : Déterminer une fonction f(x) dont on donne sa dérivée f '(x): ) f ' (x) = 34x ) f ' (x) = x 3 3) f ' (x) = x 4) f ' (x) = x 4 ème règle: La dérivée d'une somme est la somme des dérivées. La dérivée d'une soustraction est la soustraction des dérivées. dérivée d'une somme (soustr.) h(x) = f (x) ± g(x) h (x) = f (x) ± g (x) Exemples ) f (x) = 5x + x + 3 alors f ' (x) = 0x + ) f (x) = x + 3 x alors f (x) = x + 3x donc f ' (x) = 4 x 3 x = 4 x 3 x = 4 x 3 3 x Exemple à compléter 3) dériver f (x) = x + x
4 7 CHAPITRE 4 Exercice 4.3 : Calculer la dérivée des fonctions suivantes: ) f (x) = 3x + 6 ) f (x) = 4x x + 5 3) f (x) = 3x 3 x + 5 4) f (x) = ax + b 5) f (x) = x 3 x 6) f (x) = x + x + 3 7) f (x) = 3 x + 3x 8) f (x) = x + x 9) f (x) = 3x + 3x 0) f (x) = ax + bx + c Exercice 4.4 : Déterminer une fonction f (x) dont on donne sa dérivée f '(x): ) f ' (x) = x ) f ' (x) = 4x 3 + 3x 3) f ' (x) = 3 x 4) f ' (x) = x 3/4 dérivée d'une multiplication 5 ème règle: Comment retenir des formules telles que celle-ci? Certains plus «visuels» vont véritablement la photographier et seront capables de la «redessiner» quand le besoin s'en fera sentir. D'autres se l'écoutent dire, en utilisant une ritournelle ressemblant à celles qui vous sont également proposées. À vous de trouver votre méthode. La dérivée d'une multiplication n'est pas la multiplication des dérivées!!!! Il s'agit de la dérivée de la première fois la deuxième + la première fois la dérivée de la seconde h(x) = f (x) g(x) h (x) = f (x) g(x)+f (x) g (x) Exemples ) f (x) = (3x )(x + ) alors f ' (x) = (6x)(x + ) + (3x ) = x + 6x + 6x 4 = 8x + 6x 4 = (9x + 3x ) = (3x + )(3x ) Exemple à compléter ) dériver f (x) = (x )(x + )
5 DERIVEES ET REGLES DE CALCULS 73 6 ème règle: La dérivée d'une fraction consiste en: dériver la première la deuxième la première la dérivée de la seconde, le tout diviser par le carré de la seconde dérivée d'une fraction h(x) = f (x) g(x) f h (x) = (x) g(x) f (x) g (x) g (x) Exemples ) f (x) = x 3 x 5 alors f ' (x) = (x 3)' ( x 5) ( x 3) (x 5) ' ( x 5) = = ( x 5) ( x 3) ( x 5) 7 ( x 5) ) f (x) = x + x alors f ' (x) = ( x +) ' (x ) ( x +) (x ) ' (x ) = x (x ) ( x +) (x ) = x x = (x x ) ( x ) (x ) Exemple à compléter 3) dériver f (x) = x 3x +
6 74 CHAPITRE 4 Exercice 4.5 : Calculer la dérivée des fonctions suivantes: ) f (x) = (x 3)(4x 5) ) f (x) = (x + 4) 3) f (x) = x 3 x 5) f (x) = x x 3 x 7) f (x) = ( x 5)(3 x ) 4 x + 4) f (x) = x x 6) f (x) = (x 4)(3x + ) 8) f (x) = (3x 7x)(4x 5) 7 ème règle: La dérivée d'une parenthèse à une certaine puissance consiste en: On passe la puissance devant, on reproduit la parenthèse à une puissance un cran inférieur et on multiplie le tout par la dérivée du contenu de la parenthèse. dérivée d'une parenthèse h(x) = ( f (x)) n h (x) = n ( f (x)) n- f (x) Exemples ) f (x) = (x + 3x 5) 3 alors f ' (x) = 3(x + 3x 5) (4x + 3) ) f (x) = x + 5x 4 alors f (x) = ( x + 5x 4) / alors f ' (x) = ( x + 5x 4) / ( x + 5x 4) = x + 5x 4 x + 5 ( ) = x + 5 x + 5x 4 Exemple à compléter x 3) dériver f (x) = 3x +
7 DERIVEES ET REGLES DE CALCULS 75 4) dériver f (x) = (3x ) (5x ) 3 5) dériver f (x) = (x ) 3 (5x +) Marche à suivre: Déterminer les coordonnées du point de tangence P(a ; f(a)) Déterminer f '(x) Calculer la pente m = f '(a) Déterminer l'ordonnée à l'origine h de la droite y = mx + h 6) Déterminer l'équation de la tangente au graphe de f (x) = 3 (x ) au point d'abscisse x = -3 (5x +)
8 76 CHAPITRE 4 Exercice 4.6 : Calculer la dérivée des fonctions suivantes: ) f (x) = (x + 4) 5 ) f (x) = (5x 3) 3/ 3) f (x) = 8x x + 3 4) f (x) = 5) f (x) = (x ) 3 6) f (x) = 3x x + x 4 x 7) f (x) = ( + x) ( x) 3 8) f (x) = ( x ) 3 9) f (x) = (x 3)(x + ) 0) f (x) = ( x +) (3x ) 3 (x + 3) Exercice 4.7 : Déterminer une fonction f(x) dont on donne sa dérivée f '(x): ) f ' (x) = 5(x ) 4 (x) ) f ' (x) = -3(4 x) 3) f ' (x) = 4) f ' (x) = (x ) (x) x 3 Exercice 4.8 : Un petit mélange de tout!! Déterminer l'ensemble de définition et calculer la dérivée: ) f (x) = x 3x + 4 ) f (x) = (x + 5)(x 3) 3) f (x) = (4 x) 3 4) f (x) = (3x + 5)(x ) 5) f (x) = (x ) (x + ) 6) f (x) = (ax + b)(cx + d) 7) f (x) = (x ) 3 (x + ) 8) f (x) = a x 9) f (x) = ) f (x) = x x + x 3 x + 0) f (x) = x + 5 x ) f (x) = ax + b cx + d 3 3) f (x) = x 5) f (x) = + x x 4) f (x) = x x + 6) f (x) = x + x
9 DERIVEES ET REGLES DE CALCULS 77 Exercice 4.9 : Déterminer l'équation de la tangente à la courbe au point d'abscisse a ) y = 3x 6x 5 en a = 0 ) y = x + x 0 en a = 4 3) y = 4 x + 7 en a = x + 3 Exercice 4.0 : En quel point la tangente à la courbe y = x a-t-elle une pente de -3? Exercice 4. : Calculer l'abscisse des points en lesquels la tangente au graphe de f (x) = x 3 x 5x + est parallèle à la droite passant par A(-3 ; ) et B( ; 4) Déterminer les équations des tangentes ainsi obtenues. Exercice 4. : En quel point la courbe y = Exercice 4.3 : horizontale? x x + 9 a-t-elle une tangente On considère la fonction définie par f (x) = x + a x +. Déterminer a sachant que la pente de la tangente à la courbe au point d'abscisse -3 est égale à -6 y 4 3 O Exercice 4.4 : x Sur l écran du jeu vidéo que montre la figure, on peut voir un avion qui descend de gauche à droite en suivant la trajectoire d équation y = + et qui tire des missiles x selon la tangente à leur trajectoire en direction des cibles placées sur l axe Ox aux abscisses,, 3, 4 et 5. Une cible sera-t-elle touchée si le joueur tire au moment où l avion est en: ) P( ; 3)? ) Q( 3 ; 8 3 )? Exercice 4.5 : Déterminer la fonction quadratique f (x) sachant que: La définition de la fonction quadratique se trouve au chapitre ) f (0) = 3 f (3) = f ' (4) = ) f (-) = 0 f () = 4 f ' () = 7
10 78 CHAPITRE 4 4. ère application: calcul de l'angle entre courbes Introduction Avant la construction proprement dite, des géomètres peuvent être amenés à devoir calculer l'angle entre deux routes devant aboutir à un carrefour. Cet angle ne devra bien évidemment pas être trop aigu pour permettre aux camions à remorque de manœuvrer. Où alors il faudra aménager ce carrefour différemment. Il faudra donc définir l'angle entre deux courbes: L'angle entre deux courbes est l'angle aigu des tangentes aux courbes en leur(s) point(s) d'intersection. Exemple à compléter Déterminer les angles formés par les courbes: y = x et y = x y y = x +3 4 y = x x
11 DERIVEES ET REGLES DE CALCULS 79 Exercice 4.6 : Déterminer l'angle entre les deux courbes en leur(s) point(s) d'intersection: ) y = x y = x 3 ) x = 4y y = -x + 0x 5 3) y = x 3 + x 4y = x 3 x 4) y = x 3 4x y = x 3 x 3 Exercice 4.7 : On rappelle que la courbe y = 4 x correspond à un demi-cercle x - - y centré en (0 ; 0) et de rayon ) Déterminer l'équation de la tangente à y = 4 x au point d'abscisse ) Montrer que cette tangente est bien perpendiculaire au rayon de contact. 3) Effectuer ces mêmes démarches pour tout point d'abscisse a avec a [- ; ]
12 80 CHAPITRE 4
13 DERIVEES ET REGLES DE CALCULS 8
14 8 CHAPITRE 4
Comment tracer une droite représentative d'une fonction et méthode de calcul de l'équation d'une droite.
Comment tracer une droite représentative d'une fonction et méthode de calcul de l'équation d'une droite. Introduction : Avant de commencer, il est nécessaire de prendre connaissance des trois types de
Etude de fonctions: procédure et exemple
Etude de fonctions: procédure et exemple Yves Delhaye 8 juillet 2007 Résumé Dans ce court travail, nous présentons les différentes étapes d une étude de fonction à travers un exemple. Nous nous limitons
TOUT CE QU IL FAUT SAVOIR POUR LE BREVET
TOUT E QU IL FUT SVOIR POUR LE REVET NUMERIQUE / FONTIONS eci n est qu un rappel de tout ce qu il faut savoir en maths pour le brevet. I- Opérations sur les nombres et les fractions : Les priorités par
Dérivation CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES
Capitre 4 Dérivation Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Dérivation Nombre dérivé d une fonction en un point. Tangente à la courbe représentative d une fonction dérivable
Développements limités. Notion de développement limité
MT12 - ch2 Page 1/8 Développements limités Dans tout ce chapitre, I désigne un intervalle de R non vide et non réduit à un point. I Notion de développement limité Dans tout ce paragraphe, a désigne un
DÉRIVÉES. I Nombre dérivé - Tangente. Exercice 01 (voir réponses et correction) ( voir animation )
DÉRIVÉES I Nombre dérivé - Tangente Eercice 0 ( voir animation ) On considère la fonction f définie par f() = - 2 + 6 pour [-4 ; 4]. ) Tracer la représentation graphique (C) de f dans un repère d'unité
Nombre dérivé et tangente
Nombre dérivé et tangente I) Interprétation graphique 1) Taux de variation d une fonction en un point. Soit une fonction définie sur un intervalle I contenant le nombre réel a, soit (C) sa courbe représentative
Baccalauréat ES Pondichéry 7 avril 2014 Corrigé
Baccalauréat ES Pondichéry 7 avril 204 Corrigé EXERCICE 4 points Commun à tous les candidats. Proposition fausse. La tangente T, passant par les points A et B d abscisses distinctes, a pour coefficient
a et b étant deux nombres relatifs donnés, une fonction affine est une fonction qui a un nombre x associe le nombre ax + b
I Définition d une fonction affine Faire l activité 1 «une nouvelle fonction» 1. définition générale a et b étant deux nombres relatifs donnés, une fonction affine est une fonction qui a un nombre x associe
FctsAffines.nb 1. Mathématiques, 1-ère année Edition 2007-2008. Fonctions affines
FctsAffines.nb 1 Mathématiques, 1-ère année Edition 2007-2008 Fonctions affines Supports de cours de mathématiques de degré secondaire II, lien hpertete vers la page mère http://www.deleze.name/marcel/sec2/inde.html
Notion de fonction. Série 1 : Tableaux de données. Série 2 : Graphiques. Série 3 : Formules. Série 4 : Synthèse
N7 Notion de fonction Série : Tableaux de données Série 2 : Graphiques Série 3 : Formules Série 4 : Synthèse 57 SÉRIE : TABLEAUX DE DONNÉES Le cours avec les aides animées Q. Si f désigne une fonction,
C f tracée ci- contre est la représentation graphique d une
TLES1 DEVOIR A LA MAISON N 7 La courbe C f tracée ci- contre est la représentation graphique d une fonction f définie et dérivable sur R. On note f ' la fonction dérivée de f. La tangente T à la courbe
EXERCICE 4 (7 points ) (Commun à tous les candidats)
EXERCICE 4 (7 points ) (Commun à tous les candidats) On cherche à modéliser de deux façons différentes l évolution du nombre, exprimé en millions, de foyers français possédant un téléviseur à écran plat
Mathématiques I Section Architecture, EPFL
Examen, semestre d hiver 2011 2012 Mathématiques I Section Architecture, EPFL Chargé de cours: Gavin Seal Instructions: Mettez votre nom et votre numéro Sciper sur chaque page de l examen. Faites de même
t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre :
Terminale STSS 2 012 2 013 Pourcentages Synthèse 1) Définition : Calculer t % d'un nombre, c'est multiplier ce nombre par t 100. 2) Exemples de calcul : a) Calcul d un pourcentage : Un article coûtant
Rappels sur les suites - Algorithme
DERNIÈRE IMPRESSION LE 14 septembre 2015 à 12:36 Rappels sur les suites - Algorithme Table des matières 1 Suite : généralités 2 1.1 Déition................................. 2 1.2 Exemples de suites............................
F7n COUP DE BOURSE, NOMBRE DÉRIVÉ
Auteur : S.& S. Etienne F7n COUP DE BOURSE, NOMBRE DÉRIVÉ TI-Nspire CAS Mots-clés : représentation graphique, fonction dérivée, nombre dérivé, pente, tableau de valeurs, maximum, minimum. Fichiers associés
FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4)
FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) Bernard Le Stum Université de Rennes 1 Version du 13 mars 2009 Table des matières 1 Fonctions partielles, courbes de niveau 1 2 Limites et continuité
Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables
Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables Guy Desaulniers Département de mathématiques et de génie industriel École Polytechnique de Montréal Automne 2014 Table des matières
F411 - Courbes Paramétrées, Polaires
1/43 Courbes Paramétrées Courbes polaires Longueur d un arc, Courbure F411 - Courbes Paramétrées, Polaires Michel Fournié michel.fournie@iut-tlse3.fr http://www.math.univ-toulouse.fr/ fournie/ Année 2012/2013
Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé.
Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé. I- ACTIVITES NUMERIQUES (12 points) Exercice 1 (3 points) On considère
TD1 PROPAGATION DANS UN MILIEU PRESENTANT UN GRADIENT D'INDICE
TD1 PROPAGATION DANS UN MILIEU PRESENTANT UN GRADIENT D'INDICE Exercice en classe EXERCICE 1 : La fibre à gradient d indice On considère la propagation d une onde électromagnétique dans un milieu diélectrique
DOCM 2013 http://docm.math.ca/ Solutions officielles. 1 2 10 + 1 2 9 + 1 2 8 = n 2 10.
A1 Trouvez l entier positif n qui satisfait l équation suivante: Solution 1 2 10 + 1 2 9 + 1 2 8 = n 2 10. En additionnant les termes du côté gauche de l équation en les mettant sur le même dénominateur
Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures)
Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Eercice 1 (5 points) pour les candidats n ayant pas choisi la spécialité MATH Le tableau suivant donne l évolution du chiffre
Complément d information concernant la fiche de concordance
Sommaire SAMEDI 0 DÉCEMBRE 20 Vous trouverez dans ce dossier les documents correspondants à ce que nous allons travailler aujourd hui : La fiche de concordance pour le DAEU ; Page 2 Un rappel de cours
Fonctions de deux variables. Mai 2011
Fonctions de deux variables Dédou Mai 2011 D une à deux variables Les fonctions modèlisent de l information dépendant d un paramètre. On a aussi besoin de modéliser de l information dépendant de plusieurs
Développements limités, équivalents et calculs de limites
Développements ités, équivalents et calculs de ites Eercice. Déterminer le développement ité en 0 à l ordre n des fonctions suivantes :. f() e (+) 3 n. g() sin() +ln(+) n 3 3. h() e sh() n 4. i() sin(
Lecture graphique. Table des matières
Lecture graphique Table des matières 1 Lecture d une courbe 2 1.1 Définition d une fonction.......................... 2 1.2 Exemple d une courbe........................... 2 1.3 Coût, recette et bénéfice...........................
Notes du cours MTH1101N Calcul I Partie II: fonctions de plusieurs variables
Notes du cours MTH1101N Calcul I Partie II: fonctions de plusieurs variables Fausto Errico Département de mathématiques et de génie industriel École Polytechnique de Montréal Automne 2012 Table des matières
La fonction exponentielle
DERNIÈRE IMPRESSION LE 2 novembre 204 à :07 La fonction exponentielle Table des matières La fonction exponentielle 2. Définition et théorèmes.......................... 2.2 Approche graphique de la fonction
Chapitre 0 Introduction à la cinématique
Chapitre 0 Introduction à la cinématique Plan Vitesse, accélération Coordonnées polaires Exercices corrigés Vitesse, Accélération La cinématique est l étude du mouvement Elle suppose donc l existence à
3 ème 2 DÉVELOPPEMENT FACTORISATIONS ET IDENTITÉS REMARQUABLES 1/5 1 - Développements
3 ème 2 DÉVELOPPEMENT FACTORISATIONS ET IDENTITÉS REMARQUABLES 1/5 1 - Développements Développer une expression consiste à transformer un produit en une somme Qu est-ce qu une somme? Qu est-ce qu un produit?
Cours d Analyse. Fonctions de plusieurs variables
Cours d Analyse Fonctions de plusieurs variables Licence 1ère année 2007/2008 Nicolas Prioux Université de Marne-la-Vallée Table des matières 1 Notions de géométrie dans l espace et fonctions à deux variables........
Mais comment on fait pour...
Mais comment on fait pour... Toutes les méthodes fondamentales en Maths Term.S Édition Salutπaths Table des matières 1) GÉNÉRALITÉS SUR LES FONCTIONS...13 1.Comment déterminer l'ensemble de définition
Baccalauréat ES Antilles Guyane 12 septembre 2014 Corrigé
Baccalauréat ES Antilles Guyane 12 septembre 2014 Corrigé EXERCICE 1 5 points Commun à tous les candidats 1. Réponse c : ln(10)+2 ln ( 10e 2) = ln(10)+ln ( e 2) = ln(10)+2 2. Réponse b : n 13 0,7 n 0,01
Correction du Baccalauréat S Amérique du Nord mai 2007
Correction du Baccalauréat S Amérique du Nord mai 7 EXERCICE points. Le plan (P) a une pour équation cartésienne : x+y z+ =. Les coordonnées de H vérifient cette équation donc H appartient à (P) et A n
Équations non linéaires
Équations non linéaires Objectif : trouver les zéros de fonctions (ou systèmes) non linéaires, c-à-d les valeurs α R telles que f(α) = 0. y f(x) α 1 α 2 α 3 x Equations non lineaires p. 1/49 Exemples et
Baccalauréat L spécialité, Métropole et Réunion, 19 juin 2009 Corrigé.
Baccalauréat L spécialité, Métropole et Réunion, 19 juin 2009 Corrigé. L usage d une calculatrice est autorisé Durée : 3heures Deux annexes sont à rendre avec la copie. Exercice 1 5 points 1_ Soit f la
8.1 Généralités sur les fonctions de plusieurs variables réelles. f : R 2 R (x, y) 1 x 2 y 2
Chapitre 8 Fonctions de plusieurs variables 8.1 Généralités sur les fonctions de plusieurs variables réelles Définition. Une fonction réelle de n variables réelles est une application d une partie de R
Eté 2015. LIVRET de RÉVISIONS en MATHÉMATIQUES
Eté 2015 LIVRET de RÉVISIONS en MATHÉMATIQUES Destiné aux élèves entrant en Seconde au Lycée Honoré d Estienne d Orves Elaboré par les professeurs de mathématiques des collèges et lycées du secteur Une
LE PRODUIT SCALAIRE ( En première S )
LE PRODUIT SCALAIRE ( En première S ) Dernière mise à jour : Jeudi 4 Janvier 007 Vincent OBATON, Enseignant au lycée Stendhal de Grenoble ( Année 006-007 ) 1 Table des matières 1 Grille d autoévaluation
Quelques contrôle de Première S
Quelques contrôle de Première S Gilles Auriol auriolg@free.fr http ://auriolg.free.fr Voici l énoncé de 7 devoirs de Première S, intégralement corrigés. Malgré tout les devoirs et 5 nécessitent l usage
3 Approximation de solutions d équations
3 Approximation de solutions d équations Une équation scalaire a la forme générale f(x) =0où f est une fonction de IR dans IR. Un système de n équations à n inconnues peut aussi se mettre sous une telle
I. Ensemble de définition d'une fonction
Chapitre 2 Généralités sur les fonctions Fonctions de références et fonctions associées Ce que dit le programme : Étude de fonctions Fonctions de référence x x et x x Connaître les variations de ces deux
Chapitre 2 Le problème de l unicité des solutions
Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)
Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer
Pour commencer Exercice 1 - Ensembles de définition - Première année - 1. Le logarithme est défini si x + y > 0. On trouve donc le demi-plan supérieur délimité par la droite d équation x + y = 0.. 1 xy
Continuité en un point
DOCUMENT 4 Continuité en un point En général, D f désigne l ensemble de définition de la fonction f et on supposera toujours que cet ensemble est inclus dans R. Toutes les fonctions considérées sont à
enquête pour les fautes sur le fond, ce qui est graves pour une encyclopédie.
4.0 Contrôles /4 4 e enquête pour les fautes sur le fond, ce qui est graves pour une encyclopédie. RPPEL de 0. Wikipédia 2/2 Dans le chapitre : XX e siècle : ( 4.0 mythe paroxysme ) sous la photo d un
Exercices Alternatifs. Une fonction continue mais dérivable nulle part
Eercices Alternatifs Une fonction continue mais dérivable nulle part c 22 Frédéric Le Rou (copleft LDL : Licence pour Documents Libres). Sources et figures: applications-continues-non-derivables/. Version
Fonctions de plusieurs variables
Maths MP Exercices Fonctions de plusieurs variables Les indications ne sont ici que pour être consultées après le T (pour les exercices non traités). Avant et pendant le T, tenez bon et n allez pas les
Exercices Alternatifs. Une fonction continue mais dérivable nulle part
Eercices Alternatifs Une fonction continue mais dérivable nulle part c 22 Frédéric Le Rou (copyleft LDL : Licence pour Documents Libres). Sources et figures: applications-continues-non-derivables/. Version
Notion de fonction. Résolution graphique. Fonction affine.
TABLE DES MATIÈRES 1 Notion de fonction. Résolution graphique. Fonction affine. Paul Milan LMA Seconde le 12 décembre 2011 Table des matières 1 Fonction numérique 2 1.1 Introduction.................................
Les devoirs en Première STMG
Les devoirs en Première STMG O. Lader Table des matières Devoir sur table 1 : Proportions et inclusions....................... 2 Devoir sur table 1 : Proportions et inclusions (corrigé)..................
Résolution d équations non linéaires
Analyse Numérique Résolution d équations non linéaires Said EL HAJJI et Touria GHEMIRES Université Mohammed V - Agdal. Faculté des Sciences Département de Mathématiques. Laboratoire de Mathématiques, Informatique
Mécanique : Cinématique du point. Chapitre 1 : Position. Vitesse. Accélération
2 e B et C 1 Position. Vitesse. Accélération 1 Mécanique : Cinéatique du point La écanique est le doaine de tout ce qui produit ou transet un ouveent, une force, une déforation : achines, oteurs, véhicules,
Calculs de probabilités avec la loi normale
Calculs de probabilités avec la loi normale Olivier Torrès 20 janvier 2012 Rappels pour la licence EMO/IIES Ce document au format PDF est conçu pour être visualisé en mode présentation. Sélectionnez ce
COMPTE-RENDU «MATHS EN JEANS» LYCEE OZENNE Groupe 1 : Comment faire une carte juste de la Terre?
Claire FORGACZ Marion GALLART Hasnia GOUDJILI COMPTERENDU «MATHS EN JEANS» LYCEE OZENNE Groupe 1 : Comment faire une carte juste de la Terre? Si l on se pose la question de savoir comment on peut faire
G.P. DNS02 Septembre 2012. Réfraction...1 I.Préliminaires...1 II.Première partie...1 III.Deuxième partie...3. Réfraction
DNS Sujet Réfraction...1 I.Préliminaires...1 II.Première partie...1 III.Deuxième partie...3 Réfraction I. Préliminaires 1. Rappeler la valeur et l'unité de la perméabilité magnétique du vide µ 0. Donner
Correction du baccalauréat STMG Polynésie 17 juin 2014
Correction du baccalauréat STMG Polynésie 17 juin 2014 EXERCICE 1 Cet exercice est un Q.C.M. 4 points 1. La valeur d une action cotée en Bourse a baissé de 37,5 %. Le coefficient multiplicateur associé
1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R.
Angles orientés Trigonométrie I. Préliminaires. Le radian Définition B R AB =R C O radian R A Soit C un cercle de centre O. Dire que l angle géométrique AOB a pour mesure radian signifie que la longueur
BACCALAUREAT GENERAL MATHÉMATIQUES
BACCALAUREAT GENERAL FEVRIER 2014 MATHÉMATIQUES SERIE : ES Durée de l épreuve : 3 heures Coefficient : 5 (ES), 4 (L) 7(spe ES) Les calculatrices électroniques de poche sont autorisées, conformement à la
Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire
CHAPITRE N5 FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION Code item D0 D2 N30[S] Items étudiés dans le CHAPITRE N5 Déterminer l'image
Les équations différentielles
Les équations différentielles Equations différentielles du premier ordre avec second membre Ce cours porte exclusivement sur la résolution des équations différentielles du premier ordre avec second membre
SYSTEMES LINEAIRES DU PREMIER ORDRE
SYSTEMES LINEIRES DU PREMIER ORDRE 1. DEFINITION e(t) SYSTEME s(t) Un système est dit linéaire invariant du premier ordre si la réponse s(t) est liée à l excitation e(t) par une équation différentielle
Baccalauréat technique de la musique et de la danse Métropole septembre 2008
Baccalauréat technique de la musique et de la danse Métropole septembre 008 EXERCICE 5 points Pour chacune des cinq questions à 5, trois affirmations sont proposées dont une seule est exacte. Pour chaque
= constante et cette constante est a.
Le problème Lorsqu on sait que f(x 1 ) = y 1 et que f(x 2 ) = y 2, comment trouver l expression de f(x 1 )? On sait qu une fonction affine a une expression de la forme f(x) = ax + b, le problème est donc
Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications
Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications A. Optimisation sans contrainte.... Généralités.... Condition nécessaire et condition suffisante
Découverte du logiciel ordinateur TI-n spire / TI-n spire CAS
Découverte du logiciel ordinateur TI-n spire / TI-n spire CAS Mémento Ouvrir TI-Nspire CAS. Voici la barre d outils : L insertion d une page, d une activité, d une page où l application est choisie, pourra
Du Premier au Second Degré
Du Premier au Second Degré Première Bac Pro 3 ans November 26, 2011 Première Bac Pro 3 ans Du Premier au Second Degré Sommaire 1 Fonction Polynôme du second degré 2 Fonction Polynôme du Second Degré: Synthèse
Continuité et dérivabilité d une fonction
DERNIÈRE IMPRESSIN LE 7 novembre 014 à 10:3 Continuité et dérivabilité d une fonction Table des matières 1 Continuité d une fonction 1.1 Limite finie en un point.......................... 1. Continuité
Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme
Chapitre 3 Quelques fonctions usuelles 1 Fonctions logarithme et eponentielle 1.1 La fonction logarithme Définition 1.1 La fonction 7! 1/ est continue sur ]0, +1[. Elle admet donc des primitives sur cet
Calcul intégral élémentaire en plusieurs variables
Calcul intégral élémentaire en plusieurs variables PC*2 2 septembre 2009 Avant-propos À part le théorème de Fubini qui sera démontré dans le cours sur les intégrales à paramètres et qui ne semble pas explicitement
Chafa Azzedine - Faculté de Physique U.S.T.H.B 1
Chafa Azzedine - Faculté de Physique U.S.T.H.B 1 Définition: La cinématique est une branche de la mécanique qui étudie les mouements des corps dans l espace en fonction du temps indépendamment des causes
NOMBRES COMPLEXES. Exercice 1 :
Exercice 1 : NOMBRES COMPLEXES On donne θ 0 un réel tel que : cos(θ 0 ) 5 et sin(θ 0 ) 1 5. Calculer le module et l'argument de chacun des nombres complexes suivants (en fonction de θ 0 ) : a i( )( )(1
Cours d Analyse 3 Fonctions de plusieurs variables
Université Claude Bernard, Lyon I Licence Sciences, Technologies & Santé 43, boulevard 11 novembre 1918 Spécialité Mathématiques 69622 Villeurbanne cedex, France L. Pujo-Menjouet pujo@math.univ-lyon1.fr
Exercice 3 (5 points) A(x) = 1-e -0039' -0 156e- 0,039x A '() -'-,..--,-,--,------:-- X = (l_e-0,039x)2
Les parties A et B sont indépendantes. Partie A Exercice 3 (5 points) Commun à tous les candidats On considère la fonction A définie sur l'intervalle [1 ; + 00 [ par A(x) = 1-e -0039' ' x 1. Calculer la
Chapitre 1 Régime transitoire dans les systèmes physiques
Chapitre 1 Régime transitoire dans les systèmes physiques Savoir-faire théoriques (T) : Écrire l équation différentielle associée à un système physique ; Faire apparaître la constante de temps ; Tracer
Priorités de calcul :
EXERCICES DE REVISION POUR LE PASSAGE EN QUATRIEME : Priorités de calcul : Exercice 1 : Calcule en détaillant : A = 4 + 5 6 + 7 B = 6 3 + 5 C = 35 5 3 D = 6 7 + 8 E = 38 6 3 + 7 Exercice : Calcule en détaillant
COURS EULER: PROGRAMME DE LA PREMIÈRE ANNÉE
COURS EULER: PROGRAMME DE LA PREMIÈRE ANNÉE Le cours de la première année concerne les sujets de 9ème et 10ème années scolaires. Il y a bien sûr des différences puisque nous commençons par exemple par
Complexité. Licence Informatique - Semestre 2 - Algorithmique et Programmation
Complexité Objectifs des calculs de complexité : - pouvoir prévoir le temps d'exécution d'un algorithme - pouvoir comparer deux algorithmes réalisant le même traitement Exemples : - si on lance le calcul
chapitre 4 Nombres de Catalan
chapitre 4 Nombres de Catalan I Dénitions Dénition 1 La suite de Catalan (C n ) n est la suite dénie par C 0 = 1 et, pour tout n N, C n+1 = C k C n k. Exemple 2 On trouve rapidement C 0 = 1, C 1 = 1, C
Factorisation Factoriser en utilisant un facteur commun Fiche méthode
Factorisation Factoriser en utilisant un facteur commun Fiche méthode Rappel : Distributivité simple Soient les nombres, et. On a : Factoriser, c est transformer une somme ou une différence de termes en
Vision industrielle et télédétection - Détection d ellipses. Guillaume Martinez 17 décembre 2007
Vision industrielle et télédétection - Détection d ellipses Guillaume Martinez 17 décembre 2007 1 Table des matières 1 Le projet 3 1.1 Objectif................................ 3 1.2 Les choix techniques.........................
Note de cours. Introduction à Excel 2007
Note de cours Introduction à Excel 2007 par Armande Pinette Cégep du Vieux Montréal Excel 2007 Page: 2 de 47 Table des matières Comment aller chercher un document sur CVMVirtuel?... 8 Souris... 8 Clavier
Capes 2002 - Première épreuve
Cette correction a été rédigée par Frédéric Bayart. Si vous avez des remarques à faire, ou pour signaler des erreurs, n hésitez pas à écrire à : mathweb@free.fr Mots-clés : équation fonctionnelle, série
Baccalauréat ES/L Métropole La Réunion 13 septembre 2013 Corrigé
Baccalauréat S/L Métropole La Réunion 13 septembre 2013 Corrigé A. P. M.. P. XRCIC 1 Commun à tous les candidats Partie A 1. L arbre de probabilité correspondant aux données du problème est : 0,3 0,6 H
Sites web éducatifs et ressources en mathématiques
Sites web éducatifs et ressources en mathématiques Exercices en ligne pour le primaire Calcul mental élémentaire : http://www.csaffluents.qc.ca/wlamen/tables-sous.html Problèmes de soustraction/addition
Chapitre 1 Cinématique du point matériel
Chapitre 1 Cinématique du point matériel 7 1.1. Introduction 1.1.1. Domaine d étude Le programme de mécanique de math sup se limite à l étude de la mécanique classique. Sont exclus : la relativité et la
Thème 17: Optimisation
OPTIMISATION 45 Thème 17: Optimisation Introduction : Dans la plupart des applications, les grandeurs physiques ou géométriques sont exprimées à l aide d une formule contenant une fonction. Il peut s agir
Angles orientés et fonctions circulaires ( En première S )
Angles orientés et fonctions circulaires ( En première S ) Dernière mise à jour : Jeudi 01 Septembre 010 Vincent OBATON, Enseignant au lycée Stendhal de Grenoble (Année 006-007) Lycée Stendhal, Grenoble
M2 IAD UE MODE Notes de cours (3)
M2 IAD UE MODE Notes de cours (3) Jean-Yves Jaffray Patrice Perny 16 mars 2006 ATTITUDE PAR RAPPORT AU RISQUE 1 Attitude par rapport au risque Nousn avons pas encore fait d hypothèse sur la structure de
Commun à tous les candidats
EXERCICE 3 (9 points ) Commun à tous les candidats On s intéresse à des courbes servant de modèle à la distribution de la masse salariale d une entreprise. Les fonctions f associées définies sur l intervalle
Théorème du point fixe - Théorème de l inversion locale
Chapitre 7 Théorème du point fixe - Théorème de l inversion locale Dans ce chapitre et le suivant, on montre deux applications importantes de la notion de différentiabilité : le théorème de l inversion
SINE QUA NON. Découverte et Prise en main du logiciel Utilisation de bases
SINE QUA NON Découverte et Prise en main du logiciel Utilisation de bases Sine qua non est un logiciel «traceur de courbes planes» mais il possède aussi bien d autres fonctionnalités que nous verrons tout
Cours IV Mise en orbite
Introduction au vol spatial Cours IV Mise en orbite If you don t know where you re going, you ll probably end up somewhere else. Yogi Berra, NY Yankees catcher v1.2.8 by-sa Olivier Cleynen Introduction
LES LOIS PHYSIQUES APPLIQUÉES AUX DEUX-ROUES : 1. LA FORCE DE GUIDAGE
LES LOIS PHYSIQUES APPLIQUÉES AUX DEUX-ROUES : 1. LA FORCE DE GUIDAGE 2. L EFFET GYROSCOPIQUE Les lois physiques qui régissent le mouvement des véhicules terrestres sont des lois universelles qui s appliquent
Table des matières. I Mise à niveau 11. Préface
Table des matières Préface v I Mise à niveau 11 1 Bases du calcul commercial 13 1.1 Alphabet grec...................................... 13 1.2 Symboles mathématiques............................... 14 1.3
Sur certaines séries entières particulières
ACTA ARITHMETICA XCII. 2) Sur certaines séries entières particulières par Hubert Delange Orsay). Introduction. Dans un exposé à la Conférence Internationale de Théorie des Nombres organisée à Zakopane
I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES
I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES Théorème - Définition Soit un cercle (O,R) et un point. Une droite passant par coupe le cercle en deux points A et
Dérivation : Résumé de cours et méthodes
Dérivation : Résumé de cours et métodes Nombre dérivé - Fonction dérivée : DÉFINITION (a + ) (a) Etant donné est une onction déinie sur un intervalle I contenant le réel a, est dérivable en a si tend vers