Problème : Calcul d'échéanciers de prêt bancaire (15 pt)

Dimension: px
Commencer à balayer dès la page:

Download "Problème : Calcul d'échéanciers de prêt bancaire (15 pt)"

Transcription

1 Problème : Calcul d'échéanciers de prêt bancaire (15 pt) 1 Principe d'un prêt bancaire et dénitions Lorsque vous empruntez de l'argent dans une banque, cet argent (appelé capital) vous est loué. Chaque mois vous devez payer un loyer correspondant à l'argent que la banque vous a prêtée et vous devez aussi rembourser une partie du capital emprunté, qu'on appelle le remboursement. En résumé vous devez payer chaque mois une mensualité qui est la somme du loyer et du remboursement jusqu'à ce que vous ayez remboursé tout le capital emprunté. Le loyer est le coût de l'emprunt : c'est ce que la banque vous demande de payer en échange du service qu'elle vous rend en vous prêtant de l'argent. Le loyer est calculé chaque mois en fonction du capital emprunté et du taux de l'emprunt. Le taux est un pourcentage. Les banques indiquent le taux annuel noté ta mais pour le calcul on utilise le taux mensuel tm = ta/12. Dans le langage des banquiers : la durée du prêt est calculée en nombre de mois. l'argent prêté est appélé capital. On note E le capital emprunté initialement. On note C i le capitial qui n'est pas encore remboursé et qui est donc loué pour le mois i. chaque mois vous vous engagez à verser à la banque une mensualité xe M qui est la somme du loyer et du remboursement. le loyer à payer au mois i pour le prêt du capital C i est noté L i. Il est calculé à partir du taux mensuel tm de la manière suivante : L i = tm 100 C i le remboursement au mois i est ce qu'il reste de la mensualité M une fois que vous avez payé le loyer, c'est-à-dire M L i. Mais pour ne pas rembourser plus que le capital emprunté on utilise la fonction min : R i = min(c i, M L i ) Après chaque remboursement le capital à rembourser diminue. Le capital loué pour le mois i + 1 correspond à l'argent que vous n'avez pas ni de rembourser. Il est calculé par la formule suivante : C i+1 = C i R i Un échéancier de prêt indique pour chaque mois i le capital C i restant, le loyer L i et le remboursement R i. La durée du prêt est le nombre de mois n nécessaires pour rembourser le capital E emprunté initialement, autrement dit on cherche à calculer le nombre n tel que C n = 0 ou de manière équivalente R 1 + R R n = E Exemple Vous empruntez un capital E = 1000= C avec un taux annuel ta = 24.36% par an. Le taux mensuel est donc tm = ta/12 = 2.03%. Vous choississez de versez une mensualité M = 150= C chaque mois. Le premier mois vous n'avez encore rien remboursé donc le capital restant C 1 = E. Le capital C 1 = 1000= C est donc loué et vous coûte un loyer L1 = C 1 = 20.3= C. Le remboursement du premier mois est donc R 1 = M L 1 = = 129.7= C. Autrement dit, sur la mensualité de 150= C versée le premier mois : seuls = C servent à rembourser l'emprunt, les 20.3= C restant servent à payer le loyer. Le second mois le capital emprunté C 2 est ce que vous n'avez pas encore remboursé : C 2 = C 1 R 1 = = 870.3= C. La suite des calculs pour les mois suivants s'eectue de la même façon. 1

2 2 2 Dénition de l'échéancier à l'aide d'une suite récurrente Les formules données dénissent une suite récurrente qui permet de calculer pour chaque mois i le capital restant C i puis le loyer L i puis le remboursement R i C 1 = capital E emprunté initialement (E = 500=Cdans l'exemple) C i+1 = C i R i L i = tm 100 C i R i = min(c i, M L i ) 3 But du problème Il s'agit de programmer le calcul des échéanciers de prêt. Ce programme vous serra utile le jour où vous aurez besoin d'un prêt bancaire. Questions 4 Calcul à la main d'un échéancier Q1. (1 pt) Complétez le tableau suivant pour un taux mensuel tm = 2.03% et une mensualité M = 150=C en utilisant les équations de la suite récurrente indiquées précédemment. Cette question ne nécessite aucun calcul. i = 1 C 1 = E = 500 L 1 = tm 100 C 1 = R 1 = min(c 1, M L 1 ) = i = 2 C 2 = C 1 R 1 L 2 = tm 100 C... R 2 = min(c..., M L... ) = = = min(, ) = = 7.31 = i = 3 C 3 = L 3 = tm R 3 = min(......, ) = = = min(, ) = = 4.41 = et ainsi de suite jusqu'au mois n tel que C n = 0 i = 4 C 4 = L 4 = tm R 4 = min(......, ) = = = min(71.88, ) = = 1.46 = i = 5 C 5 = L... = tm R... = min(......, ) = = = min(, ) =.... =.... = Programmation du calcul d'échéanciers 5.1 Dénitions de types Un prêt est déni par le capital initial emprunté E, le taux mensuel tm, la mensualité M. 2

3 3 Q2. (1 pt) Complétez les dénitions de types suivantes. L'ensemble Montant correspond aux sommes d'argent positives ou nulles. Le capital, les mensualités, les loyers, les remboursements sont des valeurs de l'ensemble Montant. À l'aide des types Montant et Taux dénissez l'ensemble Prêt qui correspond à l'ensemble des vecteurs (E, tm, M). DÉFINITION MATHÉMATIQUE D'ENSEMBLES déf Montant = déf Taux = {t t } déf NumMois = déf Prêt = DÉFINITION INFORMATIQUE DE TYPES... montant =... (*..... *) ;;... taux =... (* *) ;;... nummois =... (*.... *) ;;... prêt = ;; 5.2 Programmation du calcul de la suite C i, L i, R i Q3. (0,5 pt) Complétez les spécications des fonctions suivantes : Prol capital : Montant Sémantique : (capital (E, tm, M) i) est le capital emprunté au mois i, c'est-à-dire C i Prol loyer : Sémantique : (loyer (E, tm, M) i) est le loyer du mois i, c'est-à-dire L i Prol remb : Sémantique : (remb (E, tm, M) i) est le remboursement du mois i, c'est-à-dire R i Q4. (1 pt) À partir de la suite récurrente dénissant C i, L i, R i, complétez les équations qui dénissent les fonctions capital, loyer, remb. RÉALISATION INFORMATIQUE 3

4 4 Algorithme : dénition récursive de la fonction par des équations (1) capital (E, tm, M) 1 = (2) capital pret i + 1 = (3) loyer (E, tm, M) i = (4) remb = ( , ) Remarque Les fonctions mutuellement récursives sont des fonctions qui font appel les unes aux autres. Par exemple f appelle g qui appelle h qui appelle f. Pour implanter des fonctions mutuellement récursives en Ocaml on doit les dénir ensembles au moyen de la construction suivante : let rec f =... and g =... and h =... ; ; Q5. (1 pt) Donnez l'implantation en ocaml des trois fonctions mutuellement récursives capital, loyer, remb. Implantation let rec (capital :... ->... -> montant ) = function... -> function i -> and (loyer : ) = function... -> > and (remb : ) = ;; Q6. (0,25 pt) Donnez le type de la fonction min utilisée : Prol min : Création d'un échéancier à partir d'un intervalle d'entiers Principe 4

5 5 On commence par construire l'intervalle des mois pour la durée du prêt puis on utilise les fonctions capital, loyer, remb pour calculer le relevé (i, C i, L i, R i ) de chaque mois. Dénition de types Q7. (1 pt) À l'aide des ensembles NumMois, Taux et Montant, dénissez les ensembles suivants : Intervalle est l'ensemble des intervalles de mois. Par exemple, [1 ;... ; n] Intervalle Relevé est l'ensemble des vecteurs (i, C i, L i, R i ) Échéancier est l'ensemble des successions des relevés d'un échéancier. DÉFINITION MATHÉMATIQUE D'ENSEMBLES déf Intervalle = déf Relevé = déf Échéancier = DÉFINITION INFORMATIQUE DE TYPES... intervalle = ;;... relevé = ;;... écheancier = ;; 5.4 Création de l'intervalle des numéros de mois de 1 à n Q8. (1.5 pt) Dénissez la fonction créer-intervalle : Prol créer-intervalle : N Sémantique : créer-intervalle n = [1 ; 2 ;... ; n] Exemples : 1. créer-intervalle 0 = créer-intervalle 5 = RÉALISATION INFORMATIQUE Algorithme : dénition récursive de la fonction par des équations (1) créer-intervalle = (2) créer-intervalle = cas

6 6 5.5 Création de l'échéancier On donne la spécication de la fonction calculer-relevés qui utilise les caractéristiques (E, tm, M) d'un prêt pour calculer les relevés de chaque mois de l'intervalle d'entiers donné. Dans un premier temps on vous demande d'utiliser cette fonction à partir de sa spécication ; elle sera implantée plus tard. Prol calculer-relevés : Prêt Intervalle Échéancier Sémantique : calculer-relevés (prêt, [i 1 ;... ; i n ]) = [(i 1, C i1, L i1, R i1 ) ;... ; (i n, C in, L in, R in ) ] Q9. (1 pt) Utilisez les fonctions créer-intervalle et calculer-relevés pour dénir la fonction créer-échéancier qui construit l'échéancier à partir des caractéristiques (E, tm, M) d'un prêt et d'un nombre n de mois : Prol créer-échéancier : Prêt NumMois Échéancier Sémantique : créer-échéancier (prêt, n) = [(1, C 1, L 1, R 1 ) ;... ; (n, C n, L n, R n ) ] RÉALISATION INFORMATIQUE let (créer_écheancier : ) = function ;; Q10. (1 pt) Donnez les équations récursives qui dénissent la fonction calculer-relevés spéciée précédemment : RÉALISATION INFORMATIQUE Algorithme : dénition récursive de la fonction par des équations (1) calculer-relevés ( , ) = (2) calculer-relevés ( , ) = calculer-relevés (prêt, ) 6 Prêts multiples et surendettement Pour lutter contre le surendettement, une banque sérieuse calcule la somme des échéanciers de tous vos prêts non remboursés avant de vous en accorder un nouveau. 6

7 7 Q11. (0,25 pt) Complétez le prol de la spécication de la fonction somme-échéancier : Prol somme-échéancier : Sémantique : somme-échéancier (ech, ech ) est un échéancier qui respecte les contraintes suivantes : 1. il contient les relevés des échéanciers ech et ech 2. il fait la somme des relevés pour les mois communs aux deux échéanciers. Autrement dit, si ech contient le relevé (i, c, l, r) et ech contient le relevé (i, c, l, r ) alors l'échéancier calculé par somme-échéancier (ech, ech ) doit contenir un relevé du mois i qui fait la somme des capitaux c, c, des loyers l, l et des remboursements r, r Exemple : somme-échéancier ( [ (1, c 1, l 1, r 1 ) ; (2, c 2, l 2, r 2 ) ], [ (2, c 2, l 2, r 2 ) ; (3, c 3, l 3, r 3 ) ] ) = [ (1, c 1, l 1, r 1 ) ; (2, c 2 + c 2, l 2 + l 2, r 2 + r 2 ) ; (3, c 3, l 3, r 3 ) ] Q12. (1,25 pt) Complétez les équations récursives qui dénissent la fonction somme-échéancier : RÉALISATION INFORMATIQUE Algorithme : dénition récursive de la fonction par des équations (1) somme-échéancier ( [ ], [ ] ) = (2) somme-échéancier ( , ) = (3) somme-échéancier ( , ) = (4) cas i = somme-échéancier ((i, c, l, r) , (i, c, l, r ) ) = (4 ) cas i < somme-échéancier ((i, c, l, r) , ) = (4 ) cas somme-échéancier ((i, c, l, r) , ) = Q13. (0,25 pt) On remarque que l'équation est inutile c'est un cas particulier de l'équation et de l'équation

8 8 Q14. (1 pt) Donnez la preuve de terminaison de l'équation (4 ) : Terminaison : mesure (ech 1, ech 2 ) = preuve : (i) Justions que la mesure choisie retourne des valeurs dans N : la fonction retourne et de deux naturels est un (ii) Montrons que la mesure décroit strictement à chaque appel récursif. Pour (ii), on repère les équations qui comportent des appels récursifs et on prouve la décroissance pour chaque appel récursif. ech 2 { }} { (4 ) somme-échéancier ( (i, c, l, r) , ) } {{ } appelle appel somme-échéancier ( , ) } {{ } appel engendré Pour l'équation (4'), on doit démontrer que : mesure ( (i, c, l, r) , ech 2 ) ? > mesure ( , )? > ok > Calcul de l'échéancier correspondant au remboursement complet Dans les questions précédentes on a construit l'échéancier pour un nombre de mois n xé à l'avance. Désormais on cherche à construire l'échéancier jusqu'à la n du remboursement, autrement dit jusqu'à ce qu'il ne reste plus de capital emprunté, c'est-à-dire jusqu'au mois n tel que C n = 0. Prol générer-suite-échéancier : Prêt Relevé Échéancier Sémantique : (générer-suite-échéancier prêt (i, C i, L i, R i )) génère l'échéancier depuis le relevé du mois i + 1 jusqu'au relevé du mois n, tel que C n = 0 c'est-à-dire [ (i + 1, C i+1, L i+1, R i+1 ) ;... ; (n, C n, L n, R n ) ] Exemples extraits de l'échéancier de la partie Ÿ4 : 1. générer-suite-échéancier prêt (5, 0, 0, 0) = générer-suite-échéancier prêt (3, , 4.41, ) = [ ; ] 8

9 9 Q15. (1 pt) Complétez la spécication et la réalisation de la fonction générer-suite-échéancier en utilisant la dénition de C i, L i, R i par une suite récurrente et sans utiliser les fonctions capital, loyer, remb : RÉALISATION INFORMATIQUE Algorithme : dénition récursive de la fonction par des équations (1) générer-suite-échéancier prêt (n,......, L n, R n ) = (2) générer-suite-échéancier prêt (i, C i, L i, R i ) = (générer-suite-échéancier ) avec C i+1 = C i R i L i+1 = tm 100 C i+1 R i+1 = min(c i+1, M L i+1 ) Q16. (1 pt) Complétez l'implantation de la fonction générer-suite-échéancier : Implantation let rec (générer_suite_échéancier : pret -> releve -> echeancier) = function (E,tm,M) -> function (i,ci,li,ri) -> let in let in in ;; Q17. (1 pt) Utilisez la fonction générer-suite-échéancier pour réaliser la fonction calculer-échéancier : Prol calculer-échéancier : Prêt Échéancier Sémantique : calculer-échéancier prêt génère l'échéancier depuis le premier mois jusqu'au dernier mois de remboursement, c'est-à-dire [ (1, C 1, L 1, R 1 ) ;... ; (n, C n, L n, R n ) ] avec C n = 0 9

10 10 Indication : Avec quel relevé faut-il commencer pour obtenir l'échéancier demandé? Exécutez la fonction à la main pour vérier votre réponse. Implantation let (calculer_écheancier :... ) = ;; 8 Compléments d'information pour les curieux qui veulent en savoir plus que leur banquier. Il est possible de calculer la durée du prêt sans avoir recours au calcul de la suite. Certaines suites récursives peuvent être reformulées sous la forme d'équations mathématiques non récursives. Remarque On ne sait pas le faire pour toute suite récurrente. Pour plus d'informations consultez Wikipédia à la rubrique : terme général d'une suite récurrente Par exemple que la suite de raison q S n (q) def = q 0 + q q n est une suite récursive (les mathématiciens disent récurrente). En mathématique la récursivité est cachée dans les.... La dénition récursive précise est la suivante : S 0 (q) = q 0 = 1 S n+1 (q) = S n (q) + q n+1 Cette suite récursive peut s'exprimer sans récursivité par la formule : S n (q) = 1 + qn+1 1 q Preuve que les deux formulations (récursive et directe) sont équivalentes d'où par diérence terme à terme en factorisant S n (q) = q 0 + q q n q S n (q) = q q n + q n+1 S n (q) q S n (q) = q 0 q n+1 (1 q)s n (q) = 1 + q n Caclul des termes R n sans utiliser C n ni L n Tant que le captial restant C i est supérieur au remboursement on peut simplier la formule qui dénit R i : R i def = min(c i, M L i ) def = M L i or L i = C i tm = M C i tm 10

11 11 Cette dernière égalité est utilisée dans le calcul suivant : R i = M L i def = M C i tm or C i = C i 1 R i 1 = M (C i 1 R i 1 ) tm = M C i 1 tm + R i 1 tm = R i 1 + R i 1 tm d'après l'égalité R i 1 = M C i 1 tm = R i 1 (1 + tm) On peut donc redénir la suite (R i ) directement R 0 =? R i = R i 1 (1 + tm) Il reste à déterminer R 0 de sorte que R 1 = M L 1 On veut que R 1 = R 0 (1 + tm). Or on a dénit R 1 = M L 1 = M (C 1 tm) avec C 1 = E c'est-à-dire R 1 = M (E tm). Il faut donc choisir R 0 pour que les deux manière de calculer R 1 coïncident, on doit donc avoir l'égalité : R 0 (1 + tm) } {{ } = M (E tm) } {{ } Il faut donc prendre M (E tm) 1 + tm R 1(méthode 2) def R 0 = La suite des termes R i est donc équivalente à M (E tm) R 0 = 1 + tm R i = R 0 (1 + tm) i R 1(méthode 1) 8.2 Détermination de n par une formule directe On rappelle que E = R 1 + R R n En utilisant la dénition précédente de R i et en posant q def = 1 + tm on peut réécrire E de la manière suivante : d'où E = R 1 + R R n = R 0 q 1 + R 0 q R 0 q n = R 0 (q 1 + q q n ) = R 0 (q S n 1 (q)) = R 0 (q 1 1 qn q ) = R 0 q qn 1 q 1 M (E tm) = q q qn 1 q 1 = M (E tm) qn 1 q 1 M (E tm) = q 1 (q n M (E tm) 1) = 1 + tm 1 (q n 1) M (E tm) = tm (q n 1) 11

12 12 donc q n 1 = q n = E tm M E tm M E E tm tm + 1 = E tm + M E tm M E tm = M M E tm On applique le logarithme népérien à chaque membre. On rappelle que ln(x n ) = n ln(x). On obtient : ( ) ln(q n ) = n ln(q) = ln M M E tm Donc ( ) n = ln M M E tm ln(q) et nalement, en remplaçant q par sa dénition 1 + tm, on obtient une formule qui donne la durée du prêt en fonction des caractéristiques (E, tm, M) du prêt. Le nombre de mois pour rembourser le capital est le nombre entier immédiatement supérieur à : ( ) ln M M E tm ln(1 + tm) 12

Rédigé par un élève de Terminale S à l'aide de ses livres de maths (Indice, Bordas), ses cours, toute sa peine, et son stress pour le bac! J.

Rédigé par un élève de Terminale S à l'aide de ses livres de maths (Indice, Bordas), ses cours, toute sa peine, et son stress pour le bac! J. Rédigé par un élève de Terminale S à l'aide de ses livres de maths (Indice, Bordas), ses cours, toute sa peine, et son stress pour le bac! J. FAIVRE s de cours exigibles au bac S en mathématiques Enseignement

Plus en détail

Correction Code nécessaire à la compilation : let bs ="\\" let nl = "\n" ;; let appliquer = List.map ;; (* affichage d'un noeud *)

Correction Code nécessaire à la compilation : let bs =\\ let nl = \n ;; let appliquer = List.map ;; (* affichage d'un noeud *) Correction Code nécessaire à la compilation : let bs ="\\" let nl = "\n" let appliquer = List.map (* affichage d'un noeud *) let (noeud_vers_ch : int -> string) = function n -> "fib(" ^ (string_of_int

Plus en détail

LICENCE SCIENCES & TECHNOLOGIES 1 re ANNÉE UE INF121 ALGORITHMIQUE ET PROGRAMMATION FONCTIONNELLE

LICENCE SCIENCES & TECHNOLOGIES 1 re ANNÉE UE INF121 ALGORITHMIQUE ET PROGRAMMATION FONCTIONNELLE Université Joseph Fourier UFR IMA LICENCE SCIENCES & TECHNOLOGIES 1 re ANNÉE Département Licence Sciences et Technologie UE INF121 ALGORITHMIQUE ET PROGRAMMATION FONCTIONNELLE Devoir maison - Dénition

Plus en détail

ADMISSION AU COLLEGE UNIVERSITAIRE Samedi 1 mars 2014 MATHEMATIQUES durée de l épreuve : 3h coefficient 2

ADMISSION AU COLLEGE UNIVERSITAIRE Samedi 1 mars 2014 MATHEMATIQUES durée de l épreuve : 3h coefficient 2 ADMISSION AU COLLEGE UNIVERSITAIRE Samedi 1 mars 2014 MATHEMATIQUES durée de l épreuve : 3h coefficient 2 Le sujet est numéroté de 1 à 5. L annexe 1 est à rendre avec la copie. L exercice Vrai-Faux est

Plus en détail

Calcul rapide des puissances

Calcul rapide des puissances Calcul rapide des puissances Par Mathtous Il s'agit de puissances à exposant entier naturel (avec la convention a 0 = 1, et a 1 = a). Si on applique la dénition pour calculer a n, on calcule de proche

Plus en détail

Taux d'évolution, cours de Terminale STG

Taux d'évolution, cours de Terminale STG Taux d'évolution, cours de Terminale STG F.Gaudon 7 novembre 2007 Table des matières Évolutions 2 2 Évolutions successives 3 2. Taux global............................ 3 2.2 Taux moyen............................

Plus en détail

Lois normales, cours, terminale S

Lois normales, cours, terminale S Lois normales, cours, terminale S F.Gaudon 6 mai 2014 Table des matières 1 Variables centrées et réduites 2 2 Loi normale centrée et réduite 2 3 Loi normale N (µ, σ 2 ) 4 1 1 Variables centrées et réduites

Plus en détail

TS. 2012/2013. Lycée Prévert. Corrigé du contrôle n 3. Durée : 3 heures. Mardi 20/11/12

TS. 2012/2013. Lycée Prévert. Corrigé du contrôle n 3. Durée : 3 heures. Mardi 20/11/12 TS. 01/013. Lycée Prévert. Corrigé du contrôle n 3. Durée : 3 heures. Mardi 0/11/1 Exercice 1 : ( 6,5 pts) Première partie : Démonstration à rédiger { Démontrer que si ( ) et (v n ) sont deux suites telles

Plus en détail

SUITES ET SÉRIES GÉOMÉTRIQUES

SUITES ET SÉRIES GÉOMÉTRIQUES SUITES ET SÉRIES GÉOMÉTRIQUES Sommaire 1. Suites géométriques... 2 2. Exercice... 6 3. Application des suites géométriques aux mathématiques financières... 7 4. Vocabulaire... 7 5. Exercices :... 8 6.

Plus en détail

MATHEMATIQUES ECE 1 NOTIONS DE COURS A CONNAITRE PAR COEUR

MATHEMATIQUES ECE 1 NOTIONS DE COURS A CONNAITRE PAR COEUR MATHEMATIQUES ECE NOTIONS DE COURS A CONNAITRE PAR COEUR CALCULS NUMERIQUES Fractions, puissances, racines carrées, résolution d équations et inéquations GENERALITES SUR LES FONCTIONS ) Nombre dérivé d

Plus en détail

3 2 Séries numériques

3 2 Séries numériques BCPST 9 5 3 Séries numériques I Généralités A) Dénition Soit (a n ) n N une suite à valeurs dans R. On appelle série de terme général a n, et on note a n la suite dénie par : S n = On dit que S n est la

Plus en détail

Correction du premier sujet

Correction du premier sujet Correction du premier sujet Problème 1 1. Soit (u n ) la suite arithmétique de premier terme u 1 = 3 et de raison. Donner la somme des 0 premiers termes de cette suite. Préciser la formule utilisée.. Soit

Plus en détail

Athénée Royal d'uccle 1. Cours de Mathématique 5 ème année Les bases pour les math 6h

Athénée Royal d'uccle 1. Cours de Mathématique 5 ème année Les bases pour les math 6h Athénée Royal d'uccle 1 Cours de Mathématique 5 ème année Les bases pour les math 6h A.Droesbeke Version : 015 Table des matières I Algèbre 1 1 Rappel du cours de 3 ème 3 1.1 Les exposants......................................

Plus en détail

FONCTIONS. I Généralités sur les fonctions. Définitions. Remarque. Exercice 01. Remarque

FONCTIONS. I Généralités sur les fonctions. Définitions. Remarque. Exercice 01. Remarque FNCTINS I Généralités sur les fonctions Définitions Soit D une partie de l'ensemble IR. n définit une fonction f de D dans IR, en associant à chaque réel de D, un réel et un seul noté f() et que l'on appelle

Plus en détail

En 2005, année de sa création, un club de randonnée pédestre comportait 80 adhérents. Chacune des années suivantes on a constaté que :

En 2005, année de sa création, un club de randonnée pédestre comportait 80 adhérents. Chacune des années suivantes on a constaté que : Il sera tenu compte de la présentation et de la rédaction de la copie lors de l évaluation finale. Les élèves n ayant pas la spécialité mathématique traiteront les exercices 1, 2,3 et 4, les élèves ayant

Plus en détail

FONCTION EXPONENTIELLE ( ) 2 = 0.

FONCTION EXPONENTIELLE ( ) 2 = 0. FONCTION EXPONENTIELLE I. Définition Théorème : Il eiste une unique fonction f dérivable sur R telle que f ' = f et f (0) =. Démonstration de l'unicité (eigible BAC) : L'eistence est admise - Démontrons

Plus en détail

Valeur cible et solveur. Les calculs effectués habituellement avec Excel utilisent des valeurs numériques qui constituent les données d'un problème.

Valeur cible et solveur. Les calculs effectués habituellement avec Excel utilisent des valeurs numériques qui constituent les données d'un problème. Valeur cible et solveur Atteindre une valeur cible Les calculs effectués habituellement avec Excel utilisent des valeurs numériques qui constituent les données d'un problème. A l'aide d'un certain nombre

Plus en détail

DUT Techniques de commercialisation Mathématiques et statistiques appliquées

DUT Techniques de commercialisation Mathématiques et statistiques appliquées DUT Techniques de commercialisation Mathématiques et statistiques appliquées Francois.Kauffmann@unicaen.fr Université de Caen Basse-Normandie 3 novembre 2014 Francois.Kauffmann@unicaen.fr UCBN MathStat

Plus en détail

Université de Nice-Sophia Antipolis École Supérieure en Sciences Informatiques

Université de Nice-Sophia Antipolis École Supérieure en Sciences Informatiques Université de Nice-Sophia Antipolis École Supérieure en Sciences Informatiques 20042005 Controle de Mathématiques Discrètes du 24 Janvier 2005 Nom : Prénom : Groupe: Durée : 2 heures 1 2 3 4 5 Tous documents

Plus en détail

chapitre 4 Nombres de Catalan

chapitre 4 Nombres de Catalan chapitre 4 Nombres de Catalan I Dénitions Dénition 1 La suite de Catalan (C n ) n est la suite dénie par C 0 = 1 et, pour tout n N, C n+1 = C k C n k. Exemple 2 On trouve rapidement C 0 = 1, C 1 = 1, C

Plus en détail

REPRÉSENTATION DES NOMBRES EN MACHINE

REPRÉSENTATION DES NOMBRES EN MACHINE Info 2 REPRÉSENTATION DES NOMBRES EN MACHINE Problématique Dans la mémoire d'un ordinateur, les données sont représentées sous forme de séquences de 0 et de 1. Par conséquent, toute information mémorisée

Plus en détail

Corrigé Pondichéry 1999

Corrigé Pondichéry 1999 Corrigé Pondichéry 999 EXERCICE. = 8 = i ). D'où les solutions de l'équation : z = + i et z = z = i. a. De manière immédiate : z = z = b. Soit θ la mesure principale de arg z : cos θ = Par suite arg z

Plus en détail

Nom: INF5171 Programmation concurrente et parallèle Examen nal (Automne 2012) Code permanent: 1 2 3 4 5 Total /10 /10 /10 /10 /10 /50 XXX XXX XXX

Nom: INF5171 Programmation concurrente et parallèle Examen nal (Automne 2012) Code permanent: 1 2 3 4 5 Total /10 /10 /10 /10 /10 /50 XXX XXX XXX Examen nal 1 INF5171 Programmation concurrente et parallèle Examen nal (Automne 2012) Durée: 13h30 16h30 Documentation : Documentation personnelle (papier) autorisée. Nom: Code permanent: 1 2 3 4 5 Total

Plus en détail

3 Fonctions logarithmiques

3 Fonctions logarithmiques Log-Cours_standard.nb 12 3 Fonctions logarithmiques Edition 2007-2008 / DELM Liens hypertextes Cours de niveau avancé (plus étoffé): http://www.deleze.name/marcel/sec2/cours/logarithmes/log-cours_avance.pdf

Plus en détail

Cours de mathématiques (Terminale S)

Cours de mathématiques (Terminale S) Cours de mathématiques (Terminale S) II. Chapitre 00 : La trigonométrie. Les angles orientés A. Les radians DÉFINITION Le radian est une unité de mesure angulaire, notée rad définie par : REMARQUE A partir

Plus en détail

Géométrie vectorielle plane, cours, première S

Géométrie vectorielle plane, cours, première S Géométrie vectorielle plane, cours, première S F.Gaudon 25 septembre 2015 Table des matières 1 Géométrie vectorielle dans un repère 2 1.1 Compléments sur la colinéarité.................................

Plus en détail

Raisonnement par récurrence Suites numériques

Raisonnement par récurrence Suites numériques Chapitre 1 Raisonnement par récurrence Suites numériques Terminale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Raisonnement par récurrence. Limite finie ou infinie d une suite.

Plus en détail

BACCALAURÉAT BLANC 2013

BACCALAURÉAT BLANC 2013 BACCALAURÉAT BLANC 203 Série S Corrigé Exercice. a) On traduit les données de l énoncé et on représente la situation par un arbre pondéré. PF ) = 2, PF 2) = 3, P F ) = 5 00 = 20, P F 2 ) =,5 00 = 3 3,5,

Plus en détail

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre :

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre : Terminale STSS 2 012 2 013 Pourcentages Synthèse 1) Définition : Calculer t % d'un nombre, c'est multiplier ce nombre par t 100. 2) Exemples de calcul : a) Calcul d un pourcentage : Un article coûtant

Plus en détail

Leçon 01 Exercices d'entraînement

Leçon 01 Exercices d'entraînement Leçon 01 Exercices d'entraînement Exercice 1 Etudier la convergence des suites ci-dessous définies par leur terme général: 1)u n = 2n3-5n + 1 n 2 + 3 2)u n = 2n2-7n - 5 -n 5-1 4)u n = lnn2 n+1 5)u n =

Plus en détail

Université Laval Faculté des sciences et de génie Département d'informatique et de génie logiciel IFT-3101. Travail pratique #2

Université Laval Faculté des sciences et de génie Département d'informatique et de génie logiciel IFT-3101. Travail pratique #2 Université Laval Faculté des sciences et de génie Département d'informatique et de génie logiciel IFT-3101 Danny Dubé Hiver 2014 Version : 11 avril Questions Travail pratique #2 Traduction orientée-syntaxe

Plus en détail

Théorie de la crédibilité

Théorie de la crédibilité ISFA - Année 2008-2009 Théorie de la crédibilité Chapitre 2 : Prime de Bayes Pierre-E. Thérond Email, Page web, Ressources actuarielles Langage bayesien (1/2) Considérons une hypothèse H et un événement

Plus en détail

Développements limités. Notion de développement limité

Développements limités. Notion de développement limité MT12 - ch2 Page 1/8 Développements limités Dans tout ce chapitre, I désigne un intervalle de R non vide et non réduit à un point. I Notion de développement limité Dans tout ce paragraphe, a désigne un

Plus en détail

Sciences Po Paris 2012 Mathématiques Solutions

Sciences Po Paris 2012 Mathématiques Solutions Sciences Po Paris 202 athématiques Solutions Partie : Le modèle de althus odèle discret a Pour tout entier naturel n, on a P n+ P n = P n donc P n+ = +P n Par suite la suite P n est géométrique de raison

Plus en détail

«L art de la réussite consiste à s entourer des meilleurs» STAGE INTENSIF OBJECTIF BAC PRIMITIVES, INTEGRALES & CALCUL D AIRES

«L art de la réussite consiste à s entourer des meilleurs» STAGE INTENSIF OBJECTIF BAC PRIMITIVES, INTEGRALES & CALCUL D AIRES «L art de la réussite consiste à s entourer des meilleurs» STAGE INTENSIF OBJECTIF BAC PRIMITIVES, INTEGRALES & CALCUL D AIRES LIBAN 2015 Une entreprise artisanale produit des parasols. Elle en fabrique

Plus en détail

Mathématiques financières

Mathématiques financières Mathématiques financières Table des matières 1 Intérêt simple 1 1.1 Exercices........................................ 1 2 Intérêt composé 2 2.1 Taux nominal, taux périodique, taux réel.......................

Plus en détail

COR TD 2. Exercice 1. Déterminer si les applications f i suivantes sont linéaires : x + x, y + y )

COR TD 2. Exercice 1. Déterminer si les applications f i suivantes sont linéaires : x + x, y + y ) COR TD 2 Année 21 Exercice 1. Déterminer si les applications f i suivantes sont linéaires : f 1 : R 2 R 2 f 1 x, y = 2x + y, x y f 2 : R R f 2 x, y, z = xy, x, y f : R R f x, y, z = 2x + y + z, y z, x

Plus en détail

Vous trouverez dans ce dossier les documents correspondants à ce que nous allons travailler aujourd hui :

Vous trouverez dans ce dossier les documents correspondants à ce que nous allons travailler aujourd hui : Sommaire SAMEDI 7 JANVIER 202 Vous trouverez dans ce dossier les documents correspondants à ce que nous allons travailler aujourd hui : Un rappel de cours sur les suites ; Page 2 Deu eercices intitulés

Plus en détail

est diagonale si tous ses coefficients en dehors de la diagonale sont nuls.

est diagonale si tous ses coefficients en dehors de la diagonale sont nuls. Diagonalisation des matrices http://www.math-info.univ-paris5.fr/~ycart/mc2/node2.html Sous-sections Matrices diagonales Valeurs propres et vecteurs propres Polynôme caractéristique Exemples Illustration

Plus en détail

Baccalauréat S Nouvelle-Calédonie 17 novembre 2014

Baccalauréat S Nouvelle-Calédonie 17 novembre 2014 Durée : 4 heures Baccalauréat S Nouvelle-Calédonie 17 novembre 2014 A. P. M. E. P. EXERCICE 1 Commun à tous les candidats Les trois parties A, B et C sont indépendantes Une fabrique de desserts glacés

Plus en détail

Mathématiques pour l'informatique? Au programme. Objectif du semestre

Mathématiques pour l'informatique? Au programme. Objectif du semestre Mathématiques pour l'informatique? Calcul des Ensembles David Teller 09/02/2007 Q L'informatique, au juste, c'est quoi? A L'informatique, c'est : de l'électronique de la théorie des processus de la linguistique

Plus en détail

Semaine 6 : La notation For

Semaine 6 : La notation For Semaine 6 : La notation For Les fonctions d'ordre supérieur telles que map, atmap ou lter fournissent des constructions puissantes pour manipuler les listes. Mais parfois le niveau d'abstraction requis

Plus en détail

BACCALAUREAT GENERAL MATHÉMATIQUES

BACCALAUREAT GENERAL MATHÉMATIQUES BACCALAUREAT GENERAL FEVRIER 2014 MATHÉMATIQUES SERIE : ES Durée de l épreuve : 3 heures Coefficient : 5 (ES), 4 (L) 7(spe ES) Les calculatrices électroniques de poche sont autorisées, conformement à la

Plus en détail

Recherche dans un tableau

Recherche dans un tableau Chapitre 3 Recherche dans un tableau 3.1 Introduction 3.1.1 Tranche On appelle tranche de tableau, la donnée d'un tableau t et de deux indices a et b. On note cette tranche t.(a..b). Exemple 3.1 : 3 6

Plus en détail

TP n 5. XML et expressions symboliques. 1 Dénition de XML. L2 Math-Info/L3 Informatique/M1 Linguistique Année 2011-2012

TP n 5. XML et expressions symboliques. 1 Dénition de XML. L2 Math-Info/L3 Informatique/M1 Linguistique Année 2011-2012 Université Paris Diderot Programmation Fonctionnelle L2 Math-Info/L3 Informatique/M1 Linguistique Année 2011-2012 TP n 5 XML et expressions symboliques L'objectif de ce TP est double. En première partie

Plus en détail

COURS GESTION FINANCIERE SEANCE 5 VOCABULAIRE BANCAIRE ET FINANCIER MATHEMATIQUES FINANCIERES

COURS GESTION FINANCIERE SEANCE 5 VOCABULAIRE BANCAIRE ET FINANCIER MATHEMATIQUES FINANCIERES COURS GESTION FINANCIERE SEANCE 5 VOCABULAIRE BANCAIRE ET FINANCIER MATHEMATIQUES FINANCIERES SEANCE 5 VOCABULAIRE BANCAIRE ET FINANCIER MATHEMATIQUES FINANCIERES Objet de la séance 5: les séances précédentes

Plus en détail

Collège du Sud, Bulle 2-ème année OS PAM 3-ème année OC AM. Applications des mathématiques. Equations

Collège du Sud, Bulle 2-ème année OS PAM 3-ème année OC AM. Applications des mathématiques. Equations Collège du Sud, Bulle 2-ème année OS PAM 3-ème année OC AM Applications des mathématiques Equations Résolution de l'équation f(x) = 0 par diverses méthodes Version pour Mathematica Edition 2014/2015 Marcel

Plus en détail

2. RAPPEL DES TECHNIQUES DE CALCUL DANS R

2. RAPPEL DES TECHNIQUES DE CALCUL DANS R 2. RAPPEL DES TECHNIQUES DE CALCUL DANS R Dans la mesure où les résultats de ce chapitre devraient normalement être bien connus, il n'est rappelé que les formules les plus intéressantes; les justications

Plus en détail

Démonstrations exigibles au bac

Démonstrations exigibles au bac Démonstrations exigibles au bac On donne ici les 11 démonstrations de cours répertoriées comme exigibles dans le programme officiel. Toutes ces démonstrations peuvent donner lieu à une «restitution organisée

Plus en détail

Corrigé Bac ES Spécialité Maths Antilles Guyane 2011

Corrigé Bac ES Spécialité Maths Antilles Guyane 2011 Corrigé Bac ES Spécialité Maths Antilles Guyane 2011 Christian CYRILLE A quoi servent les mathématiques? : C est pour l honneur de l esprit humain? Jacobi 1 Exercice 1-5 points - Commun à tous les candidats

Plus en détail

Taux d évolution moyen.

Taux d évolution moyen. Chapitre 1 Indice Taux d'évolution moyen Terminale STMG Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Indice simple en base 100. Passer de l indice au taux d évolution, et réciproquement.

Plus en détail

EXERCICE 4 (7 points ) (Commun à tous les candidats)

EXERCICE 4 (7 points ) (Commun à tous les candidats) EXERCICE 4 (7 points ) (Commun à tous les candidats) On cherche à modéliser de deux façons différentes l évolution du nombre, exprimé en millions, de foyers français possédant un téléviseur à écran plat

Plus en détail

La fonction exponentielle

La fonction exponentielle La fonction exponentielle L expression «croissance exponentielle» est passée dans le langage courant et désigne sans distinction toute variation «hyper rapide» d un phénomène. Ce vocabulaire est cependant

Plus en détail

Travaux dirigés. Résolution numérique des équations diérentielles ordinaires. Département MIDO année 2013/2014 Master MMDMA

Travaux dirigés. Résolution numérique des équations diérentielles ordinaires. Département MIDO année 2013/2014 Master MMDMA Université Paris-Dauphine Méthodes numériques Département MIDO année 03/04 Master MMDMA Travaux dirigés Résolution numérique des équations diérentielles ordinaires Exercice. Pour α > 0, on considère le

Plus en détail

Pour l'application du présent arrêté, il faut entendre par la loi : la loi du 12 juin 1991 relative au crédit à la consommation.

Pour l'application du présent arrêté, il faut entendre par la loi : la loi du 12 juin 1991 relative au crédit à la consommation. Arrêté royal du 21 juin 2011 portant modification de divers arrêtés en matière de crédit à la consommation et portant exécution des articles 5, 1er, alinéa 2, et 2, et 15, alinéa 3, de la loi du 12 juin

Plus en détail

Complément d information concernant la fiche de concordance

Complément d information concernant la fiche de concordance Sommaire SAMEDI 0 DÉCEMBRE 20 Vous trouverez dans ce dossier les documents correspondants à ce que nous allons travailler aujourd hui : La fiche de concordance pour le DAEU ; Page 2 Un rappel de cours

Plus en détail

D'UN THÉORÈME NOUVEAU

D'UN THÉORÈME NOUVEAU DÉMONSTRATION D'UN THÉORÈME NOUVEAU CONCERNANT LES NOMBRES PREMIERS 1. (Nouveaux Mémoires de l'académie royale des Sciences et Belles-Lettres de Berlin, année 1771.) 1. Je viens de trouver, dans un excellent

Plus en détail

Sauf mention contraire, le contenu de cet ouvrage est publié sous la licence : Creative Commons BY-NC-SA 2.0 La copie de cet ouvrage est autorisée

Sauf mention contraire, le contenu de cet ouvrage est publié sous la licence : Creative Commons BY-NC-SA 2.0 La copie de cet ouvrage est autorisée Sauf mention contraire, le contenu de cet ouvrage est publié sous la licence : Creative Commons BY-NC-SA 2.0 La copie de cet ouvrage est autorisée sous réserve du respect des conditions de la licence Texte

Plus en détail

Administration unique par voie IV et sous la forme d'un bolus du principe actif. Analyse des données urinaires du principe actif

Administration unique par voie IV et sous la forme d'un bolus du principe actif. Analyse des données urinaires du principe actif Diplôme Universitaire de Pharmacocinétique de Toulouse *** Année 2007 *** Le modèle monocompartimental : Administration unique par voie IV et sous la forme d'un bolus du principe actif Analyse des données

Plus en détail

Exercice 3 (5 points) A(x) = 1-e -0039' -0 156e- 0,039x A '() -'-,..--,-,--,------:-- X = (l_e-0,039x)2

Exercice 3 (5 points) A(x) = 1-e -0039' -0 156e- 0,039x A '() -'-,..--,-,--,------:-- X = (l_e-0,039x)2 Les parties A et B sont indépendantes. Partie A Exercice 3 (5 points) Commun à tous les candidats On considère la fonction A définie sur l'intervalle [1 ; + 00 [ par A(x) = 1-e -0039' ' x 1. Calculer la

Plus en détail

I Exercices. 1 Définition de suites. 2 Sens de variation d une suite

I Exercices. 1 Définition de suites. 2 Sens de variation d une suite I Exercices 1 Définition de suites Pour toutes les suites (u n ) définies ci-dessous, on demande de calculer u 1, u, u 3 et u 6 1 u n = 7n n + { u0 = u n+1 = u n + 3 3 u n est le n ième nombre premier

Plus en détail

T ES DEVOIR SURVEILLE 2 28 NOVEMBRE 2014

T ES DEVOIR SURVEILLE 2 28 NOVEMBRE 2014 T ES DEVOIR SURVEILLE 2 28 NOVEMBRE 2014 Durée : 3h Calculatrice autorisée NOM : Prénom : Sauf mention du contraire, tous les résultats doivent être soigneusement justifiés. La précision et la clarté de

Plus en détail

COURS DE MATHEMATIQUES TERMINALE STG

COURS DE MATHEMATIQUES TERMINALE STG COURS DE MATHEMATIQUES TERMINALE STG Chapitre 1. TAUX D EVOLUTION... 5 1. TAUX D EVOLUTION ET COEFFICIENTS MULTIPLICATEURS... 5 a. Taux d évolution... 5 b. Coefficient multiplicateur... 5 c. Calcul d une

Plus en détail

212 année 2013/2014 DM de synthèse 2

212 année 2013/2014 DM de synthèse 2 22 année 20/204 DM de synthèse 2 Exercice Soit f la fonction représentée cicontre.. Donner l'ensemble de définition de la fonction f. 2. Donner l'image de 4 par f.. a. Donner un nombre qui n'a qu'un seul

Plus en détail

Entropie et Information

Entropie et Information Entropie et Information F. Didier-IREM Campus Luminy didier@irem.univ-mrs.fr Juin 2011 1 1 L entropie, mesure du degré d incertitude L étude des évènements aléatoires a pour propriété principale l absence

Plus en détail

PC* Devoir 6: Corrigé 2011 2012. Partie I : Généralités

PC* Devoir 6: Corrigé 2011 2012. Partie I : Généralités PC* Devoir 6: Corrigé 20 202 Partie I : Généralités I.A - Questions préliminaires a b c I.A.) M S M = b l m avec (a, b, c, l, m, t) R 6. c m t Les éléments de S sont les matrices de la forme : M = ae +

Plus en détail

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé Baccalauréat S ntilles-guyane 11 septembre 14 Corrigé EXERCICE 1 6 points Commun à tous les candidats Une entreprise de jouets en peluche souhaite commercialiser un nouveau produit et à cette fin, effectue

Plus en détail

Ma banque, mes emprunts et mes intérêts

Ma banque, mes emprunts et mes intérêts Ma banque, mes emprunts et mes intérêts Alexandre Vial 0 janvier 2009 Les intérêts cumulés Je place 00 e à 4% par an pendant un an. Donc au bout d un an, j ai 00 + 00. 4 = 00 00( + 4 ) =04 e. 00 Cependant,

Plus en détail

Devoir a la Maison n 7

Devoir a la Maison n 7 Nom :.....Prénom : LFKL 1ere L Note :.. / 20 Appréciation : Signature d'un parent : Temps de préparation 3 10 mai 2006 semaines Code des couleurs de font : Devoir a la Maison n 7 En noir : questions En

Plus en détail

Présentation et premiers pas.

Présentation et premiers pas. Algorithmique et langage Python. Dans cette feuille, l'objectif est : de voir quelques principes de base de l'algorithmique, dont certains sont applicables sur le programme de seconde ; d'appliquer quelques

Plus en détail

Soutien illimité 7j/7 en maths: Coach, profs, exercices & annales, cours. Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Liban

Soutien illimité 7j/7 en maths: Coach, profs, exercices & annales, cours. Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Liban Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Liban EXERCICE 1 : 4 Points Cet exercice est un questionnaire à choix multiples. Aucune justification n est demandée. Pour chacune des questions, une

Plus en détail

Exercices corrigés de SQ20

Exercices corrigés de SQ20 1 Exercices corrigés de SQ2 Corrigés TD 1 à 4 Printemps 215 responsable de l'uv : André Turbergue SQ2 TD1 : espaces probabilisés TD1 : espaces probabilisés 1 Énoncés Exercice 1. Calculer si possible une

Plus en détail

x n = x x n 1 Exercice 3 Le but de cet exercice est de modéliser les suites définies par récurrence de la façon suivante :

x n = x x n 1 Exercice 3 Le but de cet exercice est de modéliser les suites définies par récurrence de la façon suivante : Ocaml - Exercices Exercice Définir en Ocaml les fonctions suivantes:. f : x sin x + cos x. g : x x 3x+ x x 5 3. Fonction h calculant la moyenne géométrique de deux float positifs ( xy) Exercice Ecrire

Plus en détail

CHAPTER 1. Introduction

CHAPTER 1. Introduction CHAPTER Introduction.. Quelques notions mathématiques indispensables... Voisinage. On appelle voisinage d'un point x R tout intervalle ouvert ]x h, x + h[, avec h >, centré sur x. Une propriété P t est

Plus en détail

Module d'analyse des données

Module d'analyse des données *** Année 2007 *** Module d'analyse des données P.L. Toutain, A. Bousquet-Mélou UMR 181 de Physiopathologie et Toxicologie Expérimentales INRA/ENVT Ecole Nationale Vétérinaire de Toulouse 24/04/2007 Avant

Plus en détail

I. FONCTION LOGARITHME NEPERIEN

I. FONCTION LOGARITHME NEPERIEN www.mathsenligne.com STI2D - TN4 - LOGARITHME NEPERIEN COURS (/5) CONTENUS CAPACITES ATTENDUES COMMENTAIRES Fonction logarithme népérien. Utiliser la relation fonctionnelle pour transformer une écriture.

Plus en détail

Cours de mathématiques pour la Terminale S

Cours de mathématiques pour la Terminale S Cours de mathématiques pour la Terminale S Savoir-Faire par chapitre Florent Girod 1 Année scolaire 2015 / 2016 1. Externat Notre Dame - Grenoble Table des matières 1) Suites numériques.................................

Plus en détail

FctsAffines.nb 1. Mathématiques, 1-ère année Edition 2007-2008. Fonctions affines

FctsAffines.nb 1. Mathématiques, 1-ère année Edition 2007-2008. Fonctions affines FctsAffines.nb 1 Mathématiques, 1-ère année Edition 2007-2008 Fonctions affines Supports de cours de mathématiques de degré secondaire II, lien hpertete vers la page mère http://www.deleze.name/marcel/sec2/inde.html

Plus en détail

Examen 2 Mathématiques L1S1 TD 1104 2015 2016 Université Paris 1

Examen 2 Mathématiques L1S1 TD 1104 2015 2016 Université Paris 1 Examen Mathématiques LS TD 04 05 06 Université Paris Nom : Prénom : Durée : heure. Calculatrice interdite. Aucun document autorisé. Chaque question de la partie QCM vaut un point. Identifiez toutes les

Plus en détail

Lycée Alexis de Tocqueville. BACCALAUREAT TECHNOLOGIQUE Blanc Corrigé. Série S.T.M.G. Février 2015 Épreuve de mathématiques.

Lycée Alexis de Tocqueville. BACCALAUREAT TECHNOLOGIQUE Blanc Corrigé. Série S.T.M.G. Février 2015 Épreuve de mathématiques. Lycée Alexis de Tocqueville BACCALAUREAT TECHNOLOGIQUE Blanc Corrigé Série S.T.M.G. Février 2015 Épreuve de mathématiques Durée 3 heures Le candidat traitera obligatoirement les quatre exercices ******

Plus en détail

Méthode d'exhaustion pour un calcul d'aire

Méthode d'exhaustion pour un calcul d'aire Méthode d'exhaustion pour un calcul d'aire R. Danflous Niveau : Première et anticipation de la Terminale S Diculté : Dicile Durée : plus d'une heure Rubriques : Géométrie analytique plane, Suites La petite

Plus en détail

TES Bac : Exercices types 2013-2014

TES Bac : Exercices types 2013-2014 Sommaire SUITES GEOMETRIQUES... 2 CONTINUITE... 4 FONCTION EXPONENTIELLE... 5 PROBABILITES CONDITIONNELLES... 7 FONCTION LOGARITHME NEPERIEN... 9 INTEGRATION... 10 LOIS A DENSITE... 11 INTERVALLE DE FLUCTUATION

Plus en détail

9. Équations différentielles

9. Équations différentielles 63 9. Équations différentielles 9.1. Introduction Une équation différentielle est une relation entre une ou plusieurs fonctions inconnues et leurs dérivées. L'ordre d'une équation différentielle correspond

Plus en détail

Chapitre 02 Suites arithmétiques et géométriques

Chapitre 02 Suites arithmétiques et géométriques Chapitre 02 Suites arithmétiques et géométriques Classe de terminale STMG APPRENTISSAGES PARALLELES : ALGORITHMIQUE : VARIABLES ET AFFECTATIONS, INSTRUCTIONS SIMPLES, BOUCLE «POUR» RAPPELS DE PREMIERE

Plus en détail

Axiomatique de N, construction de Z

Axiomatique de N, construction de Z Axiomatique de N, construction de Z Table des matières 1 Axiomatique de N 2 1.1 Axiomatique ordinale.................................. 2 1.2 Propriété fondamentale : Le principe de récurrence.................

Plus en détail

BACCALAURÉAT GÉNÉRAL SESSION 2012 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE

BACCALAURÉAT GÉNÉRAL SESSION 2012 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE BACCALAURÉAT GÉNÉRAL SESSION 2012 MATHÉMATIQUES Série S Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE Les calculatrices électroniques de poche sont autorisées, conformément à la

Plus en détail

I. Ensemble de définition d'une fonction

I. Ensemble de définition d'une fonction Chapitre 2 Généralités sur les fonctions Fonctions de références et fonctions associées Ce que dit le programme : Étude de fonctions Fonctions de référence x x et x x Connaître les variations de ces deux

Plus en détail

Cours de Techniques Quantitatives Appliquées

Cours de Techniques Quantitatives Appliquées Université de Nice Faculté de Droit et Sciences Économiques AES - L1 Cours de Techniques Quantitatives Appliquées Analyse Premier et Deuxième Semestre Stéphane Descombes Année 2009-2010 Table des matières

Plus en détail

19. APPLICATIONS LINÉAIRES

19. APPLICATIONS LINÉAIRES 19. APPLICATIONS LINÉAIRES 1 Dénitions générales. 1. 1 Applications linéaires. On dit qu'une application d'un espace vectoriel E dans un espace vectoriel F est linéaire si elle est compatible avec les

Plus en détail

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme Chapitre 3 Quelques fonctions usuelles 1 Fonctions logarithme et eponentielle 1.1 La fonction logarithme Définition 1.1 La fonction 7! 1/ est continue sur ]0, +1[. Elle admet donc des primitives sur cet

Plus en détail

Lycée Municipal d Adultes de la ville de Paris Mardi 22 avril 2014 BACCALAURÉAT BLANC DE MATHÉMATIQUES. obligatoire SÉRIE S

Lycée Municipal d Adultes de la ville de Paris Mardi 22 avril 2014 BACCALAURÉAT BLANC DE MATHÉMATIQUES. obligatoire SÉRIE S Lycée Municipal d Adultes de la ville de Paris Mardi avril 014 BACCALAURÉAT BLANC DE MATHÉMATIQUES SÉRIE S Durée de l épreuve : 4 HEURES Les calculatrices sont AUTRISÉES obligatoire Coefficient : 7 Le

Plus en détail

Processus ponctuels. Olivier Scaillet. University of Geneva and Swiss Finance Institute

Processus ponctuels. Olivier Scaillet. University of Geneva and Swiss Finance Institute Processus ponctuels Olivier Scaillet University of Geneva and Swiss Finance Institute Outline 1 Processus ponctuels 2 Introduction On désire dans ce chapitre construire des modèles d'une distribution aléatoire

Plus en détail

Examen Programmation ENSAE première année 2006 Examen écrit (1 heure)

Examen Programmation ENSAE première année 2006 Examen écrit (1 heure) Examen Programmation ENSAE première année 2006 Examen écrit (1 heure) 1 Lors de la correction, je n ai pas enlevé de points pour les erreurs de syntaxe et accordé les points de la question à partir du

Plus en détail

Parcours d un arbre Arbres de recherche CHAPITRE 6. Arbres binaires. Karelle JULLIAN. MPSI, Option Info 2014/2015. Karelle JULLIAN

Parcours d un arbre Arbres de recherche CHAPITRE 6. Arbres binaires. Karelle JULLIAN. MPSI, Option Info 2014/2015. Karelle JULLIAN CHAPITRE 6 Arbres binaires Lycée Kléber MPSI, Option Info 2014/2015 1 Définitions 2 Parcours en largeur Parcours en profondeur Parcours préfixe, infixe, postfixe Reconstitution 3 Recherche Complexité Insertion

Plus en détail

RAPPEL MATHÉMATIQUE Méthodes quantitatives (30 610 94 + 30 620 92)

RAPPEL MATHÉMATIQUE Méthodes quantitatives (30 610 94 + 30 620 92) RAPPEL MATHÉMATIQUE Méthodes quantitatives (30 610 94 + 30 620 92) 1. Suites géométriques Définition Suite Une suite,,,, est un ensemble de nombres. L indice de chaque terme de la suite indique la ou l

Plus en détail

CONCOURS D ADMISSION. Option économique MATHEMATIQUES III. Année 2006

CONCOURS D ADMISSION. Option économique MATHEMATIQUES III. Année 2006 ESSEC M B A CONCOURS D ADMISSION Option économique MATHEMATIQUES III Année 2006 La présentation, la lisibilité, l orthographe, la qualité de la rédaction, la clarté et la précision des raisonnements entreront

Plus en détail

Exercice 1 QCM. 4 i. e π ou. e π, ou : 4 ( i) 1 /4. e π. e π Réponse d. 1. Le carré de z est : ce qui donne : soit : , soit 4i

Exercice 1 QCM. 4 i. e π ou. e π, ou : 4 ( i) 1 /4. e π. e π Réponse d. 1. Le carré de z est : ce qui donne : soit : , soit 4i TSTI2D - Bac 203 - Polynésie STI2D -.0 - Corrigé.doc - Page /5 Terminale STI2D - Bac 203 - Polynésie - Corrigé. TSTI2D - Bac 203 - Polynésie STI2D -.0 - Corrigé.doc - Page 2/5 Exercice QCM. Le carré de

Plus en détail

PETIT MANUEL DE SURVIE EN MATHÉMATIQUES À L USAGE DES TERMINALES STI2D (OU CE QU ON DOIT APPRENDRE ET CE QU ON PEUT RETROUVER SI ON EST MALIN) par M.

PETIT MANUEL DE SURVIE EN MATHÉMATIQUES À L USAGE DES TERMINALES STI2D (OU CE QU ON DOIT APPRENDRE ET CE QU ON PEUT RETROUVER SI ON EST MALIN) par M. PETIT MANUEL DE SURVIE EN MATHÉMATIQUES À L USAGE DES TERMINALES STI2D (OU CE QU ON DOIT APPRENDRE ET CE QU ON PEUT RETROUVER SI ON EST MALIN) par M. Vienney 2 M. VIENNEY Vous trouverez dans ce document

Plus en détail

Cours de terminale S Suites numériques

Cours de terminale S Suites numériques Cours de terminale S Suites numériques V. B. et S. B. Lycée des EK 13 septembre 2014 Introduction Principe de récurrence Exemple En Mathématiques, un certain nombre de propriétés dépendent d un entier

Plus en détail

Premier Exemple. Premier Exemple - Slack variables. Optimiser? Un peu de maths préliminaires La géométrie des PL

Premier Exemple. Premier Exemple - Slack variables. Optimiser? Un peu de maths préliminaires La géométrie des PL 1 Intro, Optimisation, Problème Linéaire 2 1 Intro, Optimisation, Problème Linéaire Optimiser? Problème Linéaire Un peu de maths préliminaires La géométrie des PL 2 Laure Gonnord (Lyon1 / ENS Lyon) Optimisation

Plus en détail