string) = function n -> "fib(" ^ (string_of_int" name="description"> string) = function n -> "fib(" ^ (string_of_int">

Correction Code nécessaire à la compilation : let bs ="\\" let nl = "\n" ;; let appliquer = List.map ;; (* affichage d'un noeud *)

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Correction Code nécessaire à la compilation : let bs ="\\" let nl = "\n" ;; let appliquer = List.map ;; (* affichage d'un noeud *)"

Transcription

1 Correction Code nécessaire à la compilation : let bs ="\\" let nl = "\n" let appliquer = List.map (* affichage d'un noeud *) let (noeud_vers_ch : int -> string) = function n -> "fib(" ^ (string_of_int n) ^ ")" Étude expérimentale de la complexité de la fonction de Fibonacci (24 pt) L'objectif de ce problème est d'étudier le nombre d'appels récursifs eectués lors du calcul des nombres de Fibonacci. C'est un exemple classique qui montre qu'une fonction mal écrite peu engendrer un nombre gigantesque d'appels récursifs inutiles. Pour le voir, nous allons demander à la fonction de Fibonacci de construire l'arbre de ses appels récursifs. Dans la seconde partie du problème nous acherons cet arbre et dans la troisième partie nous écrirons une version plus ecace de la fonction de Fibonacci. Première partie du problème (8 pt) 1 Commençons par dénir la fonction de Fibonacci Q1. (1 pt) Donnez la réalisation de la fonction b qui prend en paramètre un entier n et retourne le n ieme nombre de Fibonacci. Prol b : N N Sémantique : b(n) est le n ieme terme de la suite de Fibonacci (u n ) n N dénie par u 0 = 1 u 1 = 1 u n = u n 1 + u n 2 Dénition récursive de la fonction par des équations (1) b( 0 ) = 1 (2) b( 1 ) = 1 (3) b( n ) = b(n 1) + b(n 2) pour n 2

2 Correction let rec (fib : int -> int) = function 0 -> 1 1 -> 1 n -> fib(n-1) + fib(n-2) Q2. (1 pt) Rédigez la preuve de terminaison de la fonction b. TERMINAISON preuve : (i) On dénit la fonction Mesure ( n ) def = n Justions que la mesure choisie retourne des valeurs dans N: n N (ii) Montrons que la mesure décroit strictement à chaque appel récursif. Pour (ii), on repère les équations qui comportent des appels récursifs et on prouve la décroissance de la mesure pour chaque appel récursif. Rédigez la preuve de terminaison ici (2) b(n) appelle b(n 1) Mesure (n) = n? < Mesure (n 1) ok < = n 1 (2) b(n) appelle aussi b(n 2) Mesure (n) = n? < Mesure (n 2) ok < = n 2 Q3. (.75 pt) Indiquez les appels récursifs engendrés par b(4) sous la forme d'un arbre. Utilisez l'espace libre pour prolonger les branches de l'arbre si nécessaire. b(5) appelle appelle b(4) b(3) appelle appelle appelle appelle b(3) b(2) b(2) b(1)

3 2 Dénition de l'arbre des appels récursifs Les appels récursifs engendrés par b(x) pour x 2 seront représentés sous la forme d'un arbre ar(ag, x, ad) où ar signigie Appel Récursif le n ud x indique qu'il s'agit du calcul de b(x) et qu'il a nécessité les appels récursifs rangés dans les arbres ag et ad ag est l'arbre des appels récursifs engendrés par b( x 1 ) ad est l'arbre des appels récursifs engendrés par b( x 2 ) Q4. (0.5 pt) Complétez les remarques précédentes et suivantes, ainsi que la dénition du type Abar (Arbre Binaire d'appels Récursifs). L'arbre des appels récursifs de la fonction de Fibonacci est un arbre binaire puisque la fonction fait deux appels récursifs. Lorsque le calcul de b(x) n'engendre pas d'appel récursif son arbre d'appel est représenté par rd(x) où rd signie Résultat Direct et x indique qu'il s'agit du calcul de b(x). Q5. (1 pt) Donnez la représentation à l'aide des constructeurs rd et ar de l'arbre d'appels de b(0) : rd(0) l'arbre d'appels de b(2) : ar( 2, rd(0) ) puis complétez la dénition de Abar. rd(1), DÉFINITION MATHÉMATIQUE D'UN ENSEMBLE déf Abar = { av(x) x {0, 1} } { ar(ag, x, ad) x N, ag, ad Abar } DÉFINITION INFORMATIQUE D'UN TYPE type nat = int (* >=0 *) type abar = Av RD of nat AR of abar * nat * abar Q6. (1.5 pt) Complétez la dénition de la fonction calcul-de-b qui calcule le terme de la suite de Fibonacci et construit simultanément l'arbre des appels récursifs de la fonction b. Prol calcul-de-b : N N Abar Sémantique : calcul-de-b(n) est un couple constitué du n ieme nombre de Fibonacci et de l'arbre des appels récursifs engendrés par le calcul de u n. Exemples 1. calcul-de-b(0) = ( (1, rd(0) ) 2. calcul-de-b(1) = ( (1, rd(1) )

4 3. calcul-de-b(2) = ( 2, ar(rd(1), 2, rd(0)) ) let rec (calcul_de_fib : int -> int * abar) = function 0 -> (1, RD(0) ) 1 -> (1, RD(1)) n -> let (r1,a1) = calcul_de_fib(n-1) and (r2,a2) = calcul_de_fib(n-2) in (r1+r2, AR(a1, n, a2) ) 3 Étude de l'arbre des appels récursifs On dispose maintenant d'une fonction calcul-de-b qui construit l'arbre d'appels récursifs de b. On aimerait par exemple compter le nombre de fois où le calcul de b(x) a demandé de calculer b(k). Pour cela on a besoin de compter le nombre d'apparitions d'un n ud dans un Abar. Q7. (1.5 pt) Complétez la fonction nb-occ qui compte le nombre d'apparitions du n ud k dans un Abar. Prol nb-occ : Z Abar N Sémantique : nb-occ(k, a) est le nombre d'occurences du n ud k dans l'arbre d'appel a Dénition récursive de la fonction par des équations (1) nb-occ( k, rd(n) ) = 0 si n k (1 ) nb-occ( k, rd(n) ) = 1 si n = k (2) nb-occ( k, ar(ag, n, ad) ) = nb-occ(k, ag) + nb-occ(k, ad) si n k (2 ) nb-occ( k, ar(ag, n, ad) ) = 1 + nb-occ(k, ag) + nb-occ(k, ad) si n = k bonus de 0.25 pour la factorisation du if ou pour une solution qui rend 1 sans appel récursif dans le cas AR(ag,n,ad) où n=k let rec (nb_occ : int * abar -> nat) = function (k,a) -> match a with Av -> 0 RD(n) -> if n=k then 1 else 0 AR(ag,n,ad) ->

5 (if n=k then 1 else 0) + nb_occ (k,ag) + nb_occ (k,ad)

6 Q8. (0.75 pt) a) À l'aide des fonctions calcul-de-b et nb-occ, donnez l'expression Ocaml qui permet de connaître le nombre de fois qu'est demandé le calcul de b(1) dans le calcul de b(121). let (_,a) = calcul_de_fib(121) in nb_occ(1,a) Le tableau suivant donne en fonction de n le nombre d'appels à b(1) dans le calcul de b(n). b) Complétez les premières cases du tableau nombre d'appels à b(1) dans le calcul de b(n) n n nombre d'appels à b(1) dans le calcul de b(n)

7 Seconde partie du problème (12 pt) 4 Achage de l'arbre des appels récursifs L'objectif de cette partie est de réaliser une fonction d'achage d'un arbre d'appel sous la forme suivante, avec les valeurs des appels à la place des (-). Notre objectif est d'acher un arbre fib(_) / \ fib(_) fib(_) / \ / \ fib(_) fib(_) fib(_) fib(_) / \ / \ / \ fib(_) fib(_) fib(_) fib(_) fib(_) fib(_) / \ fib(_) fib(_) ar(ag, n, ad) sous la forme fib(n) / \ ag ad et d'appliquer le même principe au sous-arbre gauche ag et au sous-arbre droit ad. Pour obtenir ce résultat nous devrons 1. transformer le sous-arbre ag en colonne de ligne colg 2. placer le symbole / centré au dessus de cette colonne colg 3. transformer le sous-arbre ad en colonne de ligne cold 4. placer le symbole \ centré au dessus de cette colonne cold 5. coller les colonnes obtenues aux étapes 2 et 4 (opération notée sur le schéma) 6. placer le titre fib(n) centré au dessous des deux colonnes collées an d'obtenir la colonne correspondant à l'arbre ar(ag, n, ad). Le principe de transformation d'un arbre en colonne est résumé par le schéma ci-après : (les êches indiquent que le titre doit être centré). "fib(n)" "/" sous arbre gauche } {{ } colg "\" sous arbre droit } {{ } cold Pour mettre en uvre ce principe nous allons dénir un type Colonne et des opérations de manipulations des colonnes. On décide représenter une colonne de ligne

8 "abcdefgh" "ijklmnop" "qrstuvwx" "yz" par une séquence de chaîne de caractère [ "abcdefgh" ; "ijklmnop" ; "qrstuvwx" ; "yz" ] Q9. (0.5 pt) Complétez la dénition du type Colonne. DÉFINITION MATHÉMATIQUE D'UN ENSEMBLE déf Colonne = Séq (Chaîne) DÉFINITION INFORMATIQUE D'UN TYPE type colonne = string list et indiquez l'opérateur qui permet d'ajouter une ligne au dessus d'une colonne :: Justiez votre réponse : ajouter une ligne en haut d'une colonne c'est ajouter une chaîne de caractère à gauche d'une séquence Q10. (1 pt) Utilisez l'opérateur Ocaml ( ˆ ) : Chaîne Chaîne Chaîne pour réaliser la fonction espace spéciée ainsi : Prol espace : Z Chaîne Sémantique : espace(n) est la chaînes de caractère consitutée de n espaces. Propriété n 0, espace(n) = "" Correction Dénition récursive de la fonction par des équations (1) espace( n ) = "" si n 0 (2) espace( n ) = " " ˆ espace(n 1) si n > 0 let rec (espace : int -> string) = function n -> if (n<=0) then "" else " " ^ (espace (n-1)) Q11. (1 pt) Utilisez la fonction length prédénie en Ocaml pour réaliser la fonction largeur. Prol length : Chaîne Séq (Élt) N Sémantique : length(ch) est la longueur de la chaîne ch, c'est-à-dire le nombre de caractères qu'elle contient. Notez que la fonction length s'applique aussi bien aux chaînes de caractère qu'aux séquences.

9 Prol largeur : Colonne N Sémantique : largeur(col) est la largeur de la colonne. Précisons que les lignes de la colonne n'ont pas nécessairement la même longueur. Algorithme : La largeur d'une colonne est la longueur de sa ligne la plus longue. Dénition récursive de la fonction par des équations (1) largeur( [ ] ) = 0 (2) largeur( ch :: s ) = max(length(ch), largeur(s)) ou bien length(ch) si length(ch) > largeur(s) largeur(s) sinon Correction let rec (largeur : colonne -> int) = function [] -> 0 ch::s -> max (String.length ch) (largeur s) Q12. (1 pt) Complétez la réalisation de la fonction titrer qui permet de placer un titre centré au sommet d'une colonne. Prol titrer : Chaîne Colonne Colonne Sémantique : titrer(titre, col) place le titre centré au haut de la colonne. Exemple titrer "titre", "abcdefghijklmnopqrs" "abcdefghijklmnopqrs" "abcdefghijklmnopqrs" "abcdef" = " titre" "abcdefghijklmnopqrs" "abcdefghijklmnopqrs" "abcdefghijklmnopqrs" "abcdef" Algorithme : Notons lc la largeur de la colonne et lt la taille du titre alors le nombre ne d'espaces qu'on doit ajouter à gauche du titre est : ne = lc lt 2 let (titrer : string * colonne -> colonne) = function (titre,col) -> let lc = largeur col in let lt = String.length titre in let ne = (lc - lt)/2 in ((espace ne) ^ titre) :: col

10 Q13. (0.5 pt) Donnez la réalisation en Ocaml de la fonction compléter-chaine. Prol compléter-chaine : N Chaîne Chaîne Sémantique : compléter-chaine(l, ch) est une chaîne de caractère de taille l constituée de ch suivie d'espaces Exemples 1. compléter-chaine(5, "ab") = "ab " 2. compléter-chaine(5, "abcde") = "abcde" 3. compléter-chaine(5, "") = " " let (completer_chaine : nat * string -> string) = function (larg,ch) -> let lch = (String.length ch) in ch ^ (espace (larg-lch)) Q14. (1 pt) Complétez la spécication de la fonction appliquer. Prol appliquer : (T 1 T 2 ) Séq (T 1 ) Séq ( T 2 ) Sémantique : appliquer f [e 1 ; e 2 ;... ; e n ] = [f(e 1 ) ; f(e 2 ) ;... ; f(e n )] Exemples On rappelle que (f unction x e) est une fonction qui à x associe la valeur de l'expression e. 1. appliquer (function x 2 x + 1) [0; 1; 2; 3] = [1 ; 3 ; 5 ; 7] 2. appliquer (f unction x (x, x x) ) [0; 3; 2; 5; 1] = [ (0, 0) ; (3, 9) ; (2, 4) ; (5, 25) ; (1, 1) ] 3. appliquer (f unction (x, y) y) [ (0, 0); (3, 9), (2, 4); (5, 25); (1, 1) ] = [0; 9; 4; 25; 1] Ajuster une colonne en ajoutant des espaces en n de lignes On appelle colonne ajustée une colonne dont toutes les lignes ont la même taille. On dénit ColonneAjustée comme l'ensemble des couples constitués d'une colonne et de sa largeur.

11 Q15. (0.25 pt) Complétez la déntion de type. DÉFINITION MATHÉMATIQUE D'UN ENSEMBLE déf ColonneAjustée = Colonne N DÉFINITION INFORMATIQUE D'UN TYPE type colonne_ajustée = colonne * nat Q16. (1.25 pt) Utilisez les fonctions appliquer et compléter-chaine pour réaliser en Ocaml la fonction ajuster-colonne qui complète les lignes d'une colonne par des espaces en n de ligne an que toutes les lignes aient la même taille. Prol ajuster-colonne : Colonne ColonneAjustée Sémantique : ajuster-colonne(col) est la colonne ajustée correspondant à col Exemple ajuster-colonne "abcdef" "abc" "abcdefgh" = "abcdef " "abc " "abcdefgh", 8 "a" "a " Algorithme : On rappelle qu'une colonne est une séquence de chaîne de caractère et qu'on peut donc utiliser la fonction appliquer avec les colonnes. let (ajuster_colonne : colonne -> colonne_ajustée) = function col -> let l = largeur col in let colaj = appliquer (fun ch -> completer_chaine (l,ch)) col in (colaj, l) Q17. (1.5 pt) Complétez la réalisation de la fonction coller qui prend en paramètre deux colonnes déjà ajustées et qui les colle ligne à ligne. Vous pouvez évidemment utiliser des fonctions écrites précédemment. Prol coller : ColonneAjustée ColonneAjustée Colonne Sémantique : coller(caj 1, caj 2 ) est la colonne ajustée obtenue en collant ligne par ligne la colonne ajustée caj 1 à la colonne ajustée caj 2. Précisons que les colonnes sont ajustées, par contre elles n'ont pas nécessairement le même nombre de ligne.

12 Exemples Vous remarquerez dans les exemples que les deux colonnes doivent être séparées par un espace. 1. coller 2. coller (( "abcdef" "abcdef" "ab " ( ( "abcdef" "ab ", 6 ), ( ) (, 6, "gh " "ghij" "ghi " "ligne 1" "ligne 2" "ligne 3", 4 )), 7 )) = "abcdef gh " "abcdef ghij" "ab ghi " = "abcdef ligne 1" "ab ligne 2" " ligne 3" Dénition récursive de la fonction par des équations (1) coller( ( [ ], l 1 ), ( [ ], l 2 ) ) = [ ] (2) coller( (ch 1 :: s 1, l 1 ), (ch 2 :: s 2, l 2 ) ) = (ch 1 ˆ " " ˆ ch 2 ) :: coller((s 1, l 1 ), (s 2, l 2 )) (3) coller( ([ ], l 1 ), (ch 2 :: s 2, l 2 ) ) = (espace(l 1 ) ˆ " " ˆ ch 2 ) :: coller(([ ], l 1 ), (s 2, l 2 )) (4) coller( (ch 1 :: s 1, l 1 ), (ch 2 :: s 2, l 2 ) ) = (ch 1 ˆ " " ˆ espace(l 2 )) :: coller((s 1, l 1 ), ([ ], l 2 )) Correction let rec (coller : colonne_ajustée * colonne_ajustée -> colonne) = function ((col1,l1),(col2,l2)) -> match (col1,col2) with ([],[]) -> [] (ch1::s1, ch2::s2) -> (ch1 ^ " " ^ ch2) :: (coller ((s1,l1),(s2,l2))) ([],ch2::s2) -> ((espace l1) ^ " " ^ ch2) :: (coller (([],l1),(s2,l2))) (ch1::s1,[]) -> (ch1 ^ " " ^ (espace l2)) :: (coller ((s1,l1),([],l2))) Q18. (0.5 pt) Complétez la réalisation Ocaml de la fonction coller-colonne. Prol coller-colonne : Colonne Colonne Colonne Sémantique : coller-colonne(col 1, col 2 ) est la colonne obtenue en collant les colonnes col 1 et col 2 après ajustement. Exemple coller-colonne ( "abcdef" "ab ", "ligne 1" "ligne 2" "ligne 3" ) = "abcdef ligne 1" "ab ligne 2" " ligne 3"

13 let (coller_colonne : colonne * colonne -> colonne) = function (col1,col2) -> coller (ajuster_colonne col1, ajuster_colonne col2) On dispose maintenant de toutes les fonctions nécessaires pour réaliser la fonction arbre-vers-colonne qui applique le principe présenté en Section?? pour transformer un arbre d'appel en colonne. Q19. (1.5 pt) Utilisez les fonctions des questions précédentes pour réaliser la fonction arbre-vers-colonne. Prol arbre-vers-colonne : Abar Colonne Sémantique : arbre-vers-colonne(a) est la colonne correspondant à l'arbre a construite selon le principe de la Section??. Dénition récursive de la fonction par des équations (1) arbre-vers-colonne( rd(n) ) = [titre] où titre = "fib(" ˆ string-of-int(n) ˆ ")" (2) arbre-vers-colonne( ar(ag, n, ad) ) = titrer( titre, coller-colonne(colg, cold) ) où colg = titrer( "/", arbre-vers-colonne(ag) ) où cold = titrer( "\\", arbre-vers-colonne(ag) ) où titre = "fib(" ˆ string-of-int(n) ˆ ")" Correction let rec (arbre_vers_colonne : abar -> colonne) = function RD(n) -> [ noeud_vers_ch n ] AR(ag,n,ad) -> let colg = arbre_vers_colonne ag in let cold = arbre_vers_colonne ad in let colgt = titrer ("/",colg) in let coldt = titrer (bs,cold) in let colgd = coller_colonne (colgt, coldt) in titrer (noeud_vers_ch n, colgd) Q20. (0.75 pt) Complétez la réalisation Ocaml de la fonction colonne-vers-chaîne.

14 Prol colonne-vers-chaîne : Colonne Chaîne Sémantique : colonne-vers-chaîne(col) est la chaîne de caractère construite par concaténation des lignes de la colonne en introduisant un saut de ligne entre les lignes. Algorithme : On obtient un saut de lignes en ajoutant le caractère \n en n de ligne. let rec (colonne_vers_chaine : colonne -> string) = function [] -> "" ch::s -> ch ^ nl ^ (colonne_vers_chaine s) Q21. (1 pt) Dénissez une fonction qui transforme un arbre en chaîne de caractère et donnez ensuite l'expression Ocaml qui permet d'acher à l'écran la chaîne de caractère qui correspond à l'arbre des appels de b(121). Prol arbre-vers-chaîne : Abar Chaîne Sémantique : arbre-vers-chaîne(a) est la chaînes de caractère correspondant à la mise en colonne de l'arbre a let rec (arbre_vers_chaine : abar -> string) = function a -> colonne_vers_chaine (arbre_vers_colonne a) (* let (r,a) = calcul_de_fib(121) in print_string (arbre_vers_chaine(a)) *)

15 Troisième partie du problème (4 pt) 5 Compter les appels engendrés par b(n) sans construire l'arbre d'appels L'arbre des appels est très utile pour comprendre comment se déroule l'évaluation de la fonction b ; en revanche il n'est pas nécessaire si on souhaite juste compter le nombre total d'appels récursifs engendrés par b(n). Pour eectuer ce décompte nous allons dénir la fonction nb-total-appel-de-b. Q22. (1.5 pt) Complétez la dénition de la fonction nb-total-appel-de-b. Prol nb-total-appel-de-b : N N N Sémantique : nb-total-appel-de-b(n) = (u n, nb) où u n est le n ieme terme de la suite de Fibonacci et nb le nombre total d'appels engendrés par l'appel à b(n) Dénition récursive de la fonction par des équations (1) nb-total-appel-de-b( 0 ) = (1, 1) (2) nb-total-appel-de-b( 0 ) = (1, 1) (3) nb-total-appel-de-b( 0 ) = (u n 1 + u n 2, nb 1 + nb 2 ) si où (u n 1, nb 1 ) = nb-total-appel-de-b(n 1) où (u n 2, nb 2 ) = nb-total-appel-de-b(n 2) n 2 Correction let rec (nb_appel_de_fib : nat -> nat * nat) = function 0 -> (1,1) 1 -> (1,1) n -> let (u_n_1, nb1) = nb_appel_de_fib(n-1) in let (u_n_2, nb2) = nb_appel_de_fib(n-2) in (u_n_2 + u_n_1, nb1 + nb_2) Coïncidence : D'après les équations récursives que pouvez-vous dire du nombre d'appels qu'engendre l'appel b(n)? Justiez votre réponse : C'est exactement le nombre de Fibonnacci puisque la fonction nb-total-appel-de-b retourne un couple dont les deux membres sont égaux d'après les équations). 6 Une version plus ecace de Fibonacci Q23. (2.5 pt) Complétez la dénition de la fonction b2 qui calcule les termes de la suite de Fibonacci sans faire de double appel récursif et montrez la terminaison de la fonction b2.

16 Prol b2 : N N N Sémantique : b2(n) = (u n, u n+1 ) où u n et u n+1 sont les n ieme et n + 1 ieme termes de la suite de Fibonacci. Dénition récursive de la fonction par des équations (1) b2(0) = (1, 1) (2) b2(n) = (u n, u n + u n 1 ) où (u n 1, u n ) = b2(n 1) let rec (fib2 : int -> int * int) = function 0 -> (1,1) n -> let (u_n_1,u_n) = fib2(n-1) in (u_n, u_n + u_n_1) TERMINAISON On dénit la fonction Mesure ( n ) def = n preuve : (i) Justions que la mesure choisie retourne des valeurs dans N: n N (ii) Montrons que la mesure décroit strictement à chaque appel récursif. Pour (ii), on repère les équations qui comportent des appels récursifs et on prouve la décroissance de la mesure pour chaque appel récursif. (2) f ib2(n) appelle f ib2(n 1) Mesure (n) = n? < Mesure (n 1) ok < = n 1

Étude expérimentale de la complexité de la fonction de Fibonacci (24 pt) Première partie du problème (8 pt)

Étude expérimentale de la complexité de la fonction de Fibonacci (24 pt) Première partie du problème (8 pt) Étude expérimentale de la complexité de la fonction de Fibonacci (24 pt) L'objectif de ce problème est d'étudier le nombre d'appels récursifs eectués lors du calcul des nombres de Fibonacci. C'est un exemple

Plus en détail

Problème : Calcul d'échéanciers de prêt bancaire (15 pt)

Problème : Calcul d'échéanciers de prêt bancaire (15 pt) Problème : Calcul d'échéanciers de prêt bancaire (15 pt) 1 Principe d'un prêt bancaire et dénitions Lorsque vous empruntez de l'argent dans une banque, cet argent (appelé capital) vous est loué. Chaque

Plus en détail

10' - LES ARBRES BINAIRES

10' - LES ARBRES BINAIRES Ch 10' - LES ARBRES BINAIRES On va restreindre les capacités des arbres en obligeant les nœuds à posséder au maximum deux sous-arbres. Ces nouveaux arbres seront plus faciles à maîtriser que les arbres

Plus en détail

LICENCE SCIENCES & TECHNOLOGIES 1 re ANNÉE UE INF121 ALGORITHMIQUE ET PROGRAMMATION FONCTIONNELLE

LICENCE SCIENCES & TECHNOLOGIES 1 re ANNÉE UE INF121 ALGORITHMIQUE ET PROGRAMMATION FONCTIONNELLE Université Joseph Fourier UFR IMA LICENCE SCIENCES & TECHNOLOGIES 1 re ANNÉE Département Licence Sciences et Technologie UE INF121 ALGORITHMIQUE ET PROGRAMMATION FONCTIONNELLE Devoir maison - Dénition

Plus en détail

x n = x x n 1 Exercice 3 Le but de cet exercice est de modéliser les suites définies par récurrence de la façon suivante :

x n = x x n 1 Exercice 3 Le but de cet exercice est de modéliser les suites définies par récurrence de la façon suivante : Ocaml - Exercices Exercice Définir en Ocaml les fonctions suivantes:. f : x sin x + cos x. g : x x 3x+ x x 5 3. Fonction h calculant la moyenne géométrique de deux float positifs ( xy) Exercice Ecrire

Plus en détail

Arbres binaires Version prof Version prof

Arbres binaires Version prof Version prof Arbres binaires Version prof Version prof types /* déclaration du type t_element */ t_arbrebinaire = t_noeudbinaire t_noeudbinaire = enregistrement t_element cle t_arbrebinaire fg, fd n enregistrement

Plus en détail

Devoir surveillé d'informatique UE INF121 durée : 2h00

Devoir surveillé d'informatique UE INF121 durée : 2h00 Devoir surveillé d'informatique UE INF121 durée : 2h00 Répondez sur le sujet. Ne vous ez pas à la taille des pointillés : la taille des pointillés ne correspond pas forcément à la taille de la réponse.

Plus en détail

I Arbres binaires. Lycée Faidherbe 2014-2015. 1 Rappels 2 1.1 Définition... 2 1.2 Dénombrements... 2 1.3 Parcours... 3

I Arbres binaires. Lycée Faidherbe 2014-2015. 1 Rappels 2 1.1 Définition... 2 1.2 Dénombrements... 2 1.3 Parcours... 3 I Arbres binaires 2014-2015 Table des matières 1 Rappels 2 1.1 Définition................................................ 2 1.2 Dénombrements............................................ 2 1.3 Parcours.................................................

Plus en détail

Récursivité et Récurrence

Récursivité et Récurrence Université Joseph Fourier UFR IMAG Département Licence Sciences et Technologie LICENCE SCIENCES & TECHNOLOGIES 1 re année INF121 ALGORITHMIQUE ET PROGRAMMATION FONCTIONNELLE Récursivité et Récurrence Fonctions

Plus en détail

Listes et arbres binaires

Listes et arbres binaires Des structures de données dynamiques Listes, Listes ordonnées Arbres binaires, arbre binaires de recherche Listes chaînées Utile si le nombre d éléments n est pas connu à l avance et évolue beaucoup. Permet

Plus en détail

Induction sur les arbres

Induction sur les arbres Induction sur les arbres Planning Motivations Comment définir les arbres? Équations récursives sur les arbres Complexité de fonctions sur les arbres Recherche dans un arbre binaire de recherche Recherche

Plus en détail

Fiche de TD-TP no. 4

Fiche de TD-TP no. 4 Master 1 Informatique Programmation Fonctionnelle, p. 1 Fiche de TD-TP no. 4 Exercice 1. Voici trois façons différentes de définir le type Image : type Image = [[ Int ]] data Image = Image [[ Int ]] newtype

Plus en détail

Université Laval Faculté des sciences et de génie Département d'informatique et de génie logiciel IFT-3101. Travail pratique #2

Université Laval Faculté des sciences et de génie Département d'informatique et de génie logiciel IFT-3101. Travail pratique #2 Université Laval Faculté des sciences et de génie Département d'informatique et de génie logiciel IFT-3101 Danny Dubé Hiver 2014 Version : 11 avril Questions Travail pratique #2 Traduction orientée-syntaxe

Plus en détail

TP 8 : Arbres binaires de recherche

TP 8 : Arbres binaires de recherche TP 8 : Arbres binaires de recherche Semaine du 17 Mars 2008 Exercice 1 Dénir une structure struct noeud_s permettant de coder un n ud d'un arbre binaire contenant une valeur entière. Ajouter des typedef

Plus en détail

Arbres binaires et codage de Huffman

Arbres binaires et codage de Huffman MP Option Informatique Premier TP Caml Jeudi 8 octobre 2009 Arbres baires et codage de Huffman 1 Arbres baires Soit E un ensemble non vide. On défit la notion d arbre baire étiqueté (aux feuilles) par

Plus en détail

Programmation récursive

Programmation récursive Année 2004-2005 F. Lévy IUT De Villetaneuse Dép t informatique Cours d'algorithmique 2 éme Année Cours 8 Programmation récursive 1. Qu'est-ce que la programmation récursive Définition : la programmation

Plus en détail

Option Informatique Arbres binaires équilibrés

Option Informatique Arbres binaires équilibrés Option Informatique Arbres binaires équilibrés Sujet novembre 2 Partie II : Algorithmique et programmation en CaML Cette partie doit être traitée par les étudiants qui ont utilisé le langage CaML dans

Plus en détail

Arbres binaires de recherche

Arbres binaires de recherche Chapitre 6 Arbres binaires de recherche 6.1 Introduction On a étudié le problème de la recherche dans une collection d éléments ordonnés entre eux : on a montré que Pour une liste contiguë, la recherche

Plus en détail

Projet de Programmation Fonctionnelle

Projet de Programmation Fonctionnelle Projet de Programmation Fonctionnelle L objectif de ce projet est de concevoir, en Objective Caml, un évaluateur pour le langage mini-ml (un sous ensemble du langage Objective Caml). Votre programme devra

Plus en détail

Partie I : Automates et langages

Partie I : Automates et langages 2 Les calculatrices sont interdites. N.B. : Le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction. Si un candidat est amené à repérer ce qui peut

Plus en détail

Les structures de données. Rajae El Ouazzani

Les structures de données. Rajae El Ouazzani Les structures de données Rajae El Ouazzani La récursivité 2 Définition Une procédure ou une fonction est dite récursive si elle fait appel à elle même, directement ou indirectement. 3 Exemple : Réalisation

Plus en détail

Parcours d un arbre Arbres de recherche CHAPITRE 6. Arbres binaires. Karelle JULLIAN. MPSI, Option Info 2014/2015. Karelle JULLIAN

Parcours d un arbre Arbres de recherche CHAPITRE 6. Arbres binaires. Karelle JULLIAN. MPSI, Option Info 2014/2015. Karelle JULLIAN CHAPITRE 6 Arbres binaires Lycée Kléber MPSI, Option Info 2014/2015 1 Définitions 2 Parcours en largeur Parcours en profondeur Parcours préfixe, infixe, postfixe Reconstitution 3 Recherche Complexité Insertion

Plus en détail

InitProg par l exemple

InitProg par l exemple InitProg par l exemple Martin Monperrus 16 décembre 2011 Ce cument illustre avec des programmes Ocamlcartes et Ocaml le polycopié du cours Initiation à la programmation (InitProg) de l Université Lille

Plus en détail

Université du Littoral Master 1. PROJET Puissance 4

Université du Littoral Master 1. PROJET Puissance 4 Université du Littoral Master 1 PROJET Puissance 4 Le but de ce projet est de réaliser un programme permettant à l utilisateur de jouer au Puissance 4 contre l ordinateur. 1 Travail à Rendre Le travail

Plus en détail

Chapitre 1. Programmation en Python 2ème année. 23 septembre 2014. E-mail mlahby@gmail.com

Chapitre 1. Programmation en Python 2ème année. 23 septembre 2014. E-mail mlahby@gmail.com Chapitre 1 La récursivité Programmation en Python 2ème année E-mail mlahby@gmailcom 23 septembre 2014 Programmation en Python 2ème année CPGE GSR 2014-2015 1/ 24 Plan 1 Rappel 2 Récurrence en mathématique

Plus en détail

Recherche dans un tableau

Recherche dans un tableau Chapitre 3 Recherche dans un tableau 3.1 Introduction 3.1.1 Tranche On appelle tranche de tableau, la donnée d'un tableau t et de deux indices a et b. On note cette tranche t.(a..b). Exemple 3.1 : 3 6

Plus en détail

Arbres ordonnés, binaires, tassés, FAP, tri par FAP, tas, tri par tas

Arbres ordonnés, binaires, tassés, FAP, tri par FAP, tas, tri par tas Arbres ordonnés, binaires, tassés, FAP, tri par FAP, tas, tri par tas 1. Arbres ordonnés 1.1. Arbres ordonnés (Arbres O) On considère des arbres dont les nœuds sont étiquetés sur un ensemble muni d'un

Plus en détail

Cours numéro 9 : arbres binaires et de recherche

Cours numéro 9 : arbres binaires et de recherche Cours numéro 9 : arbres binaires et de recherche LI213 Types et Structures de données Licence d Informatique Université Paris 6 Arbre Arbre Un arbre est un ensemble fini A d éléments, liés entre eux par

Plus en détail

Chap. VII : arbres binaires

Chap. VII : arbres binaires Chap. VII : arbres binaires 1. Introduction Arbre : collection d objets avec une structure hiérarchique Structure intrinsèque descendants d une personne (elle incluse) A ascendant connus d une personne

Plus en détail

chapitre 4 Nombres de Catalan

chapitre 4 Nombres de Catalan chapitre 4 Nombres de Catalan I Dénitions Dénition 1 La suite de Catalan (C n ) n est la suite dénie par C 0 = 1 et, pour tout n N, C n+1 = C k C n k. Exemple 2 On trouve rapidement C 0 = 1, C 1 = 1, C

Plus en détail

Algorithmique P2. HeapSort et files de priorité Ulg, 2009-2010 Renaud Dumont

Algorithmique P2. HeapSort et files de priorité Ulg, 2009-2010 Renaud Dumont Algorithmique P2 HeapSort et files de priorité Ulg, 2009-2010 Renaud Dumont Structure de tas - arbre Un tas est une structure de données qui Permet un nouveau type de tri (Tri par tas) Permet l'implémentation

Plus en détail

Programmation fonctionnelle

Programmation fonctionnelle 1/30 Programmation fonctionnelle Notes de cours Cours 9 23 novembre 2011 Sylvain Conchon sylvain.conchon@lri.fr 2/30 Les notions abordées cette semaine Les foncteurs Set.Make et Map.Make d Ocaml Arbres

Plus en détail

Introduction aux listes. Cours numéro 5 : Les listes LI213 Types et Structures de données. Les listes simplement chaînées

Introduction aux listes. Cours numéro 5 : Les listes LI213 Types et Structures de données. Les listes simplement chaînées Introduction aux s LI Types et Structures de données Liste : définition Collection ordonnée d éléments [x ;...; x n ] (au moins) accessibles l un après l autre de x jusqu à x n. Exemple : dans la [ ; ;5

Plus en détail

Travaux pratiques. Compression en codage de Huffman. 1.3. Organisation d un projet de programmation

Travaux pratiques. Compression en codage de Huffman. 1.3. Organisation d un projet de programmation Université de Savoie Module ETRS711 Travaux pratiques Compression en codage de Huffman 1. Organisation du projet 1.1. Objectifs Le but de ce projet est d'écrire un programme permettant de compresser des

Plus en détail

Vers l'ordinateur quantique

Vers l'ordinateur quantique Cours A&G Vers l'ordinateur quantique Données innies On a vu dans les chapîtres précédents qu'un automate permet de représenter de manière nie (et même compacte) une innité de données. En eet, un automate

Plus en détail

Gestion d'un entrepôt

Gestion d'un entrepôt Gestion d'un entrepôt Épreuve pratique d'algorithmique et de programmation Concours commun des écoles normales supérieures Durée de l'épreuve: 3 heures 30 minutes Juin/Juillet 2010 ATTENTION! N oubliez

Plus en détail

Compilation séparée. Compilation séparée. ENSIIE: Programmation avancée, Compilation séparée, Modularité, Spécifications algébriques 1

Compilation séparée. Compilation séparée. ENSIIE: Programmation avancée, Compilation séparée, Modularité, Spécifications algébriques 1 Compilation séparée Compilation séparée ENSIIE: Programmation avancée, Compilation séparée, Modularité, Spécifications algébriques 1 Compilation séparée Modularité GCC : 4 millions de lignes de code Noyau

Plus en détail

Cours Algorithmique, 2ème partie AS IUT

Cours Algorithmique, 2ème partie AS IUT Cours Algorithmique, 2ème partie AS IUT Cours 2 : Arbres Binaires Anne Vilnat http://www.limsi.fr/individu/anne/coursalgo Plan 1 Représentations arborescentes 2 Définition d un arbre binaire récursive

Plus en détail

Algorithmique IN102 TD 3

Algorithmique IN102 TD 3 Algorithmique IN10 TD 16 décembre 005 Exercice 1 Clairement, il existe des arbres de hauteur h à h + 1 éléments : il sut pour cela que leurs n uds internes aient au plus un ls non vide. On a alors un arbre

Plus en détail

Arbres binaires de recherche (ABR) Binary Search Trees (BST)

Arbres binaires de recherche (ABR) Binary Search Trees (BST) LSVIII-BIM Algorithmie, 2015 Arbres binaires de recherche (ABR) Binary Search Trees (BST) I. Arbres binaires 1. Structure 2. Parcours II. Arbres binaires de recherche 1. Définition 2. Opérations sur les

Plus en détail

1 Le code ASCII et le code Latin-1

1 Le code ASCII et le code Latin-1 USTL - Licence ST-A 1ère année 2006-2007 Algorithmes et Programmation Impérative 1 Objectifs du TP 1. travailler la mise en forme d'un achage. TP 1 : Table de caractères ASCII 1 Le code ASCII et le code

Plus en détail

λ-calcul et typage Qu est-ce qu une fonction?

λ-calcul et typage Qu est-ce qu une fonction? λ-calcul et typage Nicolas Barnier, Pascal Brisset ENAC Avril 2009 Nicolas Barnier, Pascal Brisset (ENAC) λ-calcul et typage Avril 2009 1 / 1 Qu est-ce qu une fonction? Classiquement Pas de notation uniforme/standard

Plus en détail

Applications linéaires

Applications linéaires Applications linéaires I) Applications linéaires - Généralités 1.1) Introduction L'idée d'application linéaire est intimement liée à celle d'espace vectoriel. Elle traduit la stabilité par combinaison

Plus en détail

Série d exercices N 9 Arbres

Série d exercices N 9 Arbres Série d exercices N 9 Arbres Exercice 1 a) Ecrire une fonction ARBIN creerarbreentiers() qui permet de créer et de renvoyer l arbre d entiers suivant : b) Ecrire une fonction int feuilles(arbin a) qui

Plus en détail

L2 - Algorithmique et structures de données (Année 2010/2011) Examen (2 heures)

L2 - Algorithmique et structures de données (Année 2010/2011) Examen (2 heures) L2 - lgorithmique et structures de données (nnée 2010/2011) Delacourt, Phan Luong, Poupet xamen (2 heures) Les documents (cours, TD, TP) sont autorisés. Les quatre exercices sont indépendants. À la fin

Plus en détail

Introduction à la Programmation 1

Introduction à la Programmation 1 Introduction à la Programmation 1 Séance de cours/td Université Paris-Diderot Objectifs: Découverte du type String. Comprendre qu il y a des types différents. Maîtriser les expressions booléennes dans

Plus en détail

Arbres bien équilibrés

Arbres bien équilibrés Arbres bien équilibrés ENSIIE : Programmation avancée 1/24 Recherche par dichotomie on aimerait avoir des opérations de recherche, d insertion et de suppression efficaces en moyenne et dans le pire des

Plus en détail

Travaux dirigés n o 6

Travaux dirigés n o 6 Travaux dirigés n o 6 Lycée Kléber MPSI, Option Info 2014/2015 Exercice 1 (Indexation d un arbre binaire) Ecrire une fonction Caml indexation : ( f, n) arbre_binaire -> (string,string) arbre_binaire qui

Plus en détail

Polytechnique. Épreuve d Informatique 1998

Polytechnique. Épreuve d Informatique 1998 Polytechnique Épreuve d Informatique 1998 Corrigé rédigé par Martine Lannaud, Lycée Chaptal, Paris Pour toute remarque ou correction martine.lannaud@prepas.org Motifs et automates Question 1. Quelques

Plus en détail

Algorithmique avancée en Python TDs

Algorithmique avancée en Python TDs Algorithmique avancée en Python TDs Denis Robilliard sept. 2014 1 TD 1 Révisions 1. Ecrire un programme qui saisit un entier, et détermine puis affiche si l entier est pair où impair. 2. Ecrire un programme

Plus en détail

PROJET INFORMATIQUE RECHERCHE DE SOUS-CHAÎNE DE CARACTERES

PROJET INFORMATIQUE RECHERCHE DE SOUS-CHAÎNE DE CARACTERES PROJET INFORMATIQUE RECHERCHE DE SOUS-CHAÎNE DE CARACTERES I-Présentation Un algorithme de recherche de sous-chaine est un type d'algorithme de recherche qui a pour objectif de trouver une chaîne de caractères

Plus en détail

Concours 2015 Épreuve d Informatique Filière : MP Durée de l épreuve : 3 heures. L utilisation d une calculatrice est autorisée.

Concours 2015 Épreuve d Informatique Filière : MP Durée de l épreuve : 3 heures. L utilisation d une calculatrice est autorisée. A 2015 INFO. MP École des Ponts ParisTech, SUPAERO (ISAE), ENSTA ParisTech, Télécom ParisTech, Mines ParisTech, Mines de Saint-étienne, Mines Nancy, Télécom Bretagne, ENSAE ParisTech (filière MP), École

Plus en détail

DEUG MIAS2 - MODULE INFORMATIQUE (MIA10B) EXAMEN (SEPTEMBRE 1999)

DEUG MIAS2 - MODULE INFORMATIQUE (MIA10B) EXAMEN (SEPTEMBRE 1999) coller l étiquette ici DEUG MIAS2 - MODULE INFORMATIQUE (MIA10B) EXAMEN (SEPTEMBRE 1999) Durée : 2 heures Aucun document autorisé - Calculatrices interdites Les réponses doivent être brèves et justifiées

Plus en détail

Arbres Binaire. PSI DAKHLA Prof Youssef El marzak. 1 Prof Youssef Elmarzak

Arbres Binaire. PSI DAKHLA Prof Youssef El marzak. 1 Prof Youssef Elmarzak Arbres Binaire PSI DAKHLA Prof Youssef El marzak 1 Prof Youssef Elmarzak 1.introduction: Les arbre sont très utilisées en informatique, d une part parce que les informations sont souvent hiérarchisées,

Plus en détail

DS Java 1. 19 novembre 2005

DS Java 1. 19 novembre 2005 DS Java 1 19 novembre 2005 Durée : 2 heures. Documents (notes et polycopiés) autorisés. La rigueur et la propreté seront prises en compte dans l évaluation. Le barème est indicatif. Vous rédigerez vos

Plus en détail

Chapitre 11. Séries de Fourier. Nous supposons connues les formules donnant les coefficients de Fourier d une fonction 2 - périodique :

Chapitre 11. Séries de Fourier. Nous supposons connues les formules donnant les coefficients de Fourier d une fonction 2 - périodique : Chapitre Chapitre. Séries de Fourier Nous supposons connues les formules donnant les coefficients de Fourier d une fonction - périodique : c c a0 f x dx c an f xcosnxdx c c bn f xsinn x dx c L objet de

Plus en détail

Architecture des ordinateurs TP 3

Architecture des ordinateurs TP 3 Architecture des ordinateurs ESIPE - IR1 TP 3 Objectif de cette séance L objectif de cette séance est d apprendre à utiliser la pile et à écrire des fonctions en assembleur En particulier, nous verrons

Plus en détail

SUJET + CORRIGE. Avertissement

SUJET + CORRIGE. Avertissement Année : 2012/2013 Semestre 2 DEVUIP Service scolarité PARCOURS : Licence LIMI201 & LIMI211 UE J1MI2013 : Algorithmes et Programmes Épreuve : Devoir Surveillé Terminal Date : Lundi 10 juin 2013 Heure :

Plus en détail

TP Sage. Yannick Renard.

TP Sage. Yannick Renard. TP Sage. Yannick Renard. 1. Introduction. Le logiciel Software for Algebra and Geometry Experimentation (Sage) est un logiciel de mathématiques qui rassemble de nombreux programmes et bibliothèques libres

Plus en détail

08/01/2013 www.toubkalit.ma

08/01/2013 www.toubkalit.ma 1 1 - La déclaration des chaînes 2 - Les opérations sur les chaînes 3 - Des exemples utiles 2 Pour déclarer une chaîne de caractères, vous pouvez utiliser les guillemets (") ou l'apostrophe ('). var chaine1="bonjour";

Plus en détail

Principes généraux de codage entropique d'une source. Cours : Compression d'images Master II: IASIG Dr. Mvogo Ngono Joseph

Principes généraux de codage entropique d'une source. Cours : Compression d'images Master II: IASIG Dr. Mvogo Ngono Joseph Principes généraux de codage entropique d'une source Cours : Compression d'images Master II: IASIG Dr. Mvogo Ngono Joseph Table des matières Objectifs 5 Introduction 7 I - Entropie d'une source 9 II -

Plus en détail

InitProg Python par l exemple

InitProg Python par l exemple InitProg Python par l exemple Martin Monperrus 26 octobre 2012 Ce document illustre le polycopié du cours Initiation à la programmation (InitProg) de l Université Lille 1 avec quelques programmes Python

Plus en détail

Algorithmique - Programmation 1. Cours 2

Algorithmique - Programmation 1. Cours 2 Algorithmique - Programmation 1 Cours 2 Université Henri Poincaré CESS Epinal Automne 2008 1/ 21 Plan Rappel: Caml en mode interactif Rappel: Caml en mode interactif Rappel: les types de base 2/ 21 Rappel:

Plus en détail

ECOLE POLYTECHNIQUE DE MONTREAL DEPARTEMENT DE GENIE ELECTRIQUE ET DE GENIE INFORMATIQUE Section informatique. Cours 3.307P: INFORMATIQUE EXAMEN FINAL

ECOLE POLYTECHNIQUE DE MONTREAL DEPARTEMENT DE GENIE ELECTRIQUE ET DE GENIE INFORMATIQUE Section informatique. Cours 3.307P: INFORMATIQUE EXAMEN FINAL ECOLE POLYTECHNIQUE DE MONTREAL DEPARTEMENT DE GENIE ELECTRIQUE ET DE GENIE INFORMATIQUE Section informatique Cours 3.307P: INFORMATIQUE EXAMEN FINAL DATE : Dimanche 8 décembre 1996 HEURE: DE 13h30 A 16h00

Plus en détail

1 Description du projet

1 Description du projet Implantation d'un OS multi-processus pour téléphone cellulaire à l'aide d'automates À travers ce projet vous découvrirez les bases du fonctionnement d'un OS (Operating System = système d'exploitation)

Plus en détail

Langages et Compilation. Analyse descendante prédictive

Langages et Compilation. Analyse descendante prédictive Langages et Compilation Analyse descendante prédictive 1 Introduction Grammaires LL(1) Une famille de grammaires analysables de façon ecace. Caractéristiques de l'analyse LL(1) analyse descendante Construction

Plus en détail

le triangle de Pascal - le binôme de Newton

le triangle de Pascal - le binôme de Newton 1 / 51 le triangle de Pascal - le binôme de Newton une introduction J-P SPRIET 2015 2 / 51 Plan Voici un exposé présentant le triangle de Pascal et une application au binôme de Newton. 1 2 3 / 51 Plan

Plus en détail

Cours 7 : fonctions recursives, arithmétique binaire, flottants 1

Cours 7 : fonctions recursives, arithmétique binaire, flottants 1 Cours 7 : fonctions recursives, arithmétique binaire, flottants 1 Les types énumérés On peut aussi définir des types qui ont un nombre fini de valeurs (ex: jours de la semaine, couleurs primaires, etc.)

Plus en détail

Cours d Analyse, Algorithmique Elements de programmation

Cours d Analyse, Algorithmique Elements de programmation 1 de 33 Cours d Analyse, Algorithmique Elements de programmation Florent Hivert Mél : Florent.Hivert@lri.fr Adresse universelle : http://www.lri.fr/ hivert 2 de 33 Données et instructions Un programme

Plus en détail

Structures de données, IMA S6

Structures de données, IMA S6 Structures de données, IMA S6 Arbres Binaires d après un cours de N. Devésa, Polytech Lille. Laure Gonnord http://laure.gonnord.org/pro/teaching/ Laure.Gonnord@polytech-lille.fr Université Lille 1 - Polytech

Plus en détail

Placement de centres logistiques

Placement de centres logistiques Master 1 - Spécialité Androide Année 2014/2015 Module RP Résolution de Problèmes Projet Placement de centres logistiques On considère dans ce projet la résolution du problème de placement de centres logistiques

Plus en détail

X2012 INF421 Examen de rattrapage / 25 novembre 2013. 1 Le compte est bon

X2012 INF421 Examen de rattrapage / 25 novembre 2013. 1 Le compte est bon X2012 INF421 Examen de rattrapage / 25 novembre 2013 Tous documents autorisés (poly, notes de cours, notes de PC). Dictionnaires électroniques autorisés pour les élèves étrangers. L'énoncé est composé

Plus en détail

CHAPITRE 3 : Types de base, Opérateurs et Expressions

CHAPITRE 3 : Types de base, Opérateurs et Expressions CHAPITRE 3 : Types de base, Opérateurs et Expressions 1. Types simples Un type définit l'ensemble des valeurs que peut prendre une variable, le nombre d'octets à réserver en mémoire et les opérateurs que

Plus en détail

Séance de TD 05 TD05. 1 Exercice 1. 1.1 Question 1 : dessins des ABR avec hauteurs différentes AG51

Séance de TD 05 TD05. 1 Exercice 1. 1.1 Question 1 : dessins des ABR avec hauteurs différentes AG51 Séance de TD 05 1 Exercice 1 1. Dessinez les arbres binaires de recherche de hauteur 2,3,4,5 et 6 pour le même ensemble de clés S = 1,4,5,10,16,17,21. 2. Donnez l algorithme de l opération ArbreRechercher(x,k)

Plus en détail

Gestion de la mémoire

Gestion de la mémoire Gestion de la mémoire ENSIIE : Programmation avancée 1/20 Langages et mémoire Différence principale entre langages de haut niveau : OCaml, Java, C# langages de bas niveau : C, C++ : Gestion de la mémoire

Plus en détail

La récursivité terminale. Méthode récursive calculant la factorielle d'un nombre

La récursivité terminale. Méthode récursive calculant la factorielle d'un nombre La récursivité terminale Qu'est-ce que la récursivité? En informatique, une fonction («méthode» en Java) ou plus généralement un algorithme qui contient un appel à elle-même est dite récursive. Cependant,

Plus en détail

TP n 5. XML et expressions symboliques. 1 Dénition de XML. L2 Math-Info/L3 Informatique/M1 Linguistique Année 2011-2012

TP n 5. XML et expressions symboliques. 1 Dénition de XML. L2 Math-Info/L3 Informatique/M1 Linguistique Année 2011-2012 Université Paris Diderot Programmation Fonctionnelle L2 Math-Info/L3 Informatique/M1 Linguistique Année 2011-2012 TP n 5 XML et expressions symboliques L'objectif de ce TP est double. En première partie

Plus en détail

Manuel M O D U L E D I M P O R T A T I O N

Manuel M O D U L E D I M P O R T A T I O N Manuel M O D U L E D I M P O R T A T I O N 1 Fonctionnement général Le module d importation de Wings a comme but de lire et d importer les données des clients, fournisseurs, produits et stock, ainsi que

Plus en détail

pedigree d'un cheval Zoe ; son père est Tonnerre et sa mère Belle ; mère de Belle est Rose et père de Belle est Eclair jean jean marc paul luc

pedigree d'un cheval Zoe ; son père est Tonnerre et sa mère Belle ; mère de Belle est Rose et père de Belle est Eclair jean jean marc paul luc Chap. 3 Les arbres binaires Un arbre est un ensemble de nœuds, organisés de façon hiérarchique, à partir d'un nœud distingué, appelé racine. La structure d'arbre est l'une des plus importantes et des plus

Plus en détail

Les types utilisateurs (VBA) Corrigé

Les types utilisateurs (VBA) Corrigé PAD INPT ALGORITHMIQUE ET PROGRAMMATION 1 Cours VBA, Semaine 2 avril mai 2013 Corrigé Résumé Ce document décrit comment traduire en VBA les types utilisateur du langage algorithmique. Table des matières

Plus en détail

Représentation d un entier en base b

Représentation d un entier en base b Représentation d un entier en base b 13 octobre 2012 1 Prérequis Les bases de la programmation en langage sont supposées avoir été travaillées L écriture en base b d un entier est ainsi défini à partir

Plus en détail

Programmation orientée objets avec Python

Programmation orientée objets avec Python Judicaël Courant 2013-05-06 Lycée La Martinière-Monplaisir Plan 1 Principes 1.1 POO : késako? 1.2 Apport sur le plan algorithmique 1.3 La quête du Graal Paradigme procédural Paradigme orienté objets 2

Plus en détail

Semaine 6 : La notation For

Semaine 6 : La notation For Semaine 6 : La notation For Les fonctions d'ordre supérieur telles que map, atmap ou lter fournissent des constructions puissantes pour manipuler les listes. Mais parfois le niveau d'abstraction requis

Plus en détail

II arbres binaires de recherche

II arbres binaires de recherche I arbres binaires On définit un arbre binaire par : type arbin=^noeud; noeud=record filsg,filsd:arbin; cle:longint Un arbre binaire a peut être vide (si a=nil). Sinon il est formé d un noeud (a^) contenant

Plus en détail

Les tableaux (ou vecteurs) (1/3) Cours numéro 3: Programmation impérative LI213 Types et Structures de données. Les tableaux (3/3) Les tableaux (2/3)

Les tableaux (ou vecteurs) (1/3) Cours numéro 3: Programmation impérative LI213 Types et Structures de données. Les tableaux (3/3) Les tableaux (2/3) Les tableaux (ou vecteurs) (1/3) Le type tableau est une des réponses à la question : LI213 Types et Structures de données Licence d Informatique Université Paris 6 comment agréger un très grand nombre

Plus en détail

C12. Les structures arborescentes. Août 2006

C12. Les structures arborescentes. Août 2006 Les structures arborescentes Août 2006 Objectifs du C12 Connaître le principe de la structure d arbre binaire Connaître les détails d implémentation de la structure d arbre binaire de recherche Les structures

Plus en détail

Feuille TD n 1 Exercices d algorithmique éléments de correction

Feuille TD n 1 Exercices d algorithmique éléments de correction Master Sciences, Technologies, Santé Mention Mathématiques, spécialité Enseignement des mathématiques Algorithmique et graphes, thèmes du second degré Feuille TD n 1 Exercices d algorithmique éléments

Plus en détail

Licence 2 MIEE Première session 2013-2014. GEN : Génie Logiciel

Licence 2 MIEE Première session 2013-2014. GEN : Génie Logiciel Licence 2 MIEE Première session 2013-2014 Le barème est donné à titre indicatif. GEN : Génie Logiciel 2 heures - Documents autorisés Question 1 (8 points). Vous indiquerez vos réponses sur votre copie

Plus en détail

SBE 30 rue de Penthièvre 75008 PARIS Tel : 01.42.25.23.23 Mail : contact@sbedirect.com Web : www.sbedirect.com QUESTIONS REPONSES

SBE 30 rue de Penthièvre 75008 PARIS Tel : 01.42.25.23.23 Mail : contact@sbedirect.com Web : www.sbedirect.com QUESTIONS REPONSES QUESTIONS REPONSES Q: Comment imprimer avec des imprimantes utilisant des étiquettes en rouleau (par exemple les imprimantes de type 'CAB') R: En fait pour ces imprimantes, une étiquette est considérée

Plus en détail

Base de données. Ensuite, on peut utiliser les fonctions length et setlength pour respectivement lire et changer la taille du tableau.

Base de données. Ensuite, on peut utiliser les fonctions length et setlength pour respectivement lire et changer la taille du tableau. Base de données Nouvelles notions Voici quelques nouvelles fonctionnalités du langage dont vous aurez à vous servir. Prenez le temps de bien comprendre et tester les exemples. Tableaux à taille dynamique

Plus en détail

Présentation du langage et premières fonctions

Présentation du langage et premières fonctions 1 Présentation de l interface logicielle Si les langages de haut niveau sont nombreux, nous allons travaillé cette année avec le langage Python, un langage de programmation très en vue sur internet en

Plus en détail

Exercices sur les Boucles

Exercices sur les Boucles Les Boucles Exercices - page 1 Exercices sur les Boucles Auteur: E. Thirion Exercice 1: Méthode coué Objectif: Afficher 10 fois la même phrase dans la zone de liste, tout d'abord en utilisant une boucle

Plus en détail

Représentation des nombres (2)

Représentation des nombres (2) Univ. Lille 1 - Licence Informatique 2ème année 2013-14 Codage de l'information Représentation des nombres (2) Objectifs du TP Ce TP a pour but 1. d'étudier la programmation des conversions entiers

Plus en détail

Année Universitaire 2013/2014 DST de Printemps

Année Universitaire 2013/2014 DST de Printemps Année Universitaire 2013/2014 DST de Printemps Parcours : Licence LIMI201 & LIMI211 Code UE : J1MI2013 Épreuve : Algorithmes et Programmes Date : Lundi 16 juin 2014 Heure : 16 heures 30 Durée : 2 heures

Plus en détail

Couples de variables aléatoires discrètes

Couples de variables aléatoires discrètes Couples de variables aléatoires discrètes ECE Lycée Carnot mai Dans ce dernier chapitre de probabilités de l'année, nous allons introduire l'étude de couples de variables aléatoires, c'est-à-dire l'étude

Plus en détail

Les structures de données. Rajae El Ouazzani

Les structures de données. Rajae El Ouazzani Les structures de données Rajae El Ouazzani Les arbres 2 1- Définition de l arborescence Une arborescence est une collection de nœuds reliés entre eux par des arcs. La collection peut être vide, cad l

Plus en détail

INF121: Algorithmique et Programmation Fonctionnelle

INF121: Algorithmique et Programmation Fonctionnelle INF121: Algorithmique et Programmation Fonctionnelle Cours 1: Identificateurs, types de base et fonctions Année 2013-2014 Identificateurs La notion d identificateur Un concept fondamental dans les langages

Plus en détail

Codage des données en machine.

Codage des données en machine. Codage des données en machine. 1 Entiers naturels Changements de base Codage en machine 2 Entiers relatifs : codage en complément à 2 Dénition Addition et calcul de l'opposé en complément à 2 3 Représentation

Plus en détail

OLYMPIADES FRANÇAISES DE MATHÉMATIQUES ÉPREUVE DE SÉLECTION 2012 CORRIGÉ EXERCICES POUR LES ÉLÈVES DE COLLÈGE ET DE SECONDE

OLYMPIADES FRANÇAISES DE MATHÉMATIQUES ÉPREUVE DE SÉLECTION 2012 CORRIGÉ EXERCICES POUR LES ÉLÈVES DE COLLÈGE ET DE SECONDE OLYMPIADES FRANÇAISES DE MATHÉMATIQUES ÉPREUVE DE SÉLECTION 2012 CORRIGÉ EXERCICES POUR LES ÉLÈVES DE COLLÈGE ET DE SECONDE Exercice 1. Fred et Sarah sont les aînés d une même et grande famille. Fred a

Plus en détail

Compilation séparée. ENSIIE: Programmation avancée, Compilation séparée, Modularité, Spécifications algébriques 1

Compilation séparée. ENSIIE: Programmation avancée, Compilation séparée, Modularité, Spécifications algébriques 1 Compilation séparée ENSIIE: Programmation avancée, Compilation séparée, Modularité, Spécifications algébriques 1 Modularité GCC : 4 millions de lignes de code Noyau Linux : 12 millions de lignes de code

Plus en détail