string) = function n -> "fib(" ^ (string_of_int" name="description"> string) = function n -> "fib(" ^ (string_of_int">

Correction Code nécessaire à la compilation : let bs ="\\" let nl = "\n" ;; let appliquer = List.map ;; (* affichage d'un noeud *)

Dimension: px
Commencer à balayer dès la page:

Download "Correction Code nécessaire à la compilation : let bs ="\\" let nl = "\n" ;; let appliquer = List.map ;; (* affichage d'un noeud *)"

Transcription

1 Correction Code nécessaire à la compilation : let bs ="\\" let nl = "\n" let appliquer = List.map (* affichage d'un noeud *) let (noeud_vers_ch : int -> string) = function n -> "fib(" ^ (string_of_int n) ^ ")" Étude expérimentale de la complexité de la fonction de Fibonacci (24 pt) L'objectif de ce problème est d'étudier le nombre d'appels récursifs eectués lors du calcul des nombres de Fibonacci. C'est un exemple classique qui montre qu'une fonction mal écrite peu engendrer un nombre gigantesque d'appels récursifs inutiles. Pour le voir, nous allons demander à la fonction de Fibonacci de construire l'arbre de ses appels récursifs. Dans la seconde partie du problème nous acherons cet arbre et dans la troisième partie nous écrirons une version plus ecace de la fonction de Fibonacci. Première partie du problème (8 pt) 1 Commençons par dénir la fonction de Fibonacci Q1. (1 pt) Donnez la réalisation de la fonction b qui prend en paramètre un entier n et retourne le n ieme nombre de Fibonacci. Prol b : N N Sémantique : b(n) est le n ieme terme de la suite de Fibonacci (u n ) n N dénie par u 0 = 1 u 1 = 1 u n = u n 1 + u n 2 Dénition récursive de la fonction par des équations (1) b( 0 ) = 1 (2) b( 1 ) = 1 (3) b( n ) = b(n 1) + b(n 2) pour n 2

2 Correction let rec (fib : int -> int) = function 0 -> 1 1 -> 1 n -> fib(n-1) + fib(n-2) Q2. (1 pt) Rédigez la preuve de terminaison de la fonction b. TERMINAISON preuve : (i) On dénit la fonction Mesure ( n ) def = n Justions que la mesure choisie retourne des valeurs dans N: n N (ii) Montrons que la mesure décroit strictement à chaque appel récursif. Pour (ii), on repère les équations qui comportent des appels récursifs et on prouve la décroissance de la mesure pour chaque appel récursif. Rédigez la preuve de terminaison ici (2) b(n) appelle b(n 1) Mesure (n) = n? < Mesure (n 1) ok < = n 1 (2) b(n) appelle aussi b(n 2) Mesure (n) = n? < Mesure (n 2) ok < = n 2 Q3. (.75 pt) Indiquez les appels récursifs engendrés par b(4) sous la forme d'un arbre. Utilisez l'espace libre pour prolonger les branches de l'arbre si nécessaire. b(5) appelle appelle b(4) b(3) appelle appelle appelle appelle b(3) b(2) b(2) b(1)

3 2 Dénition de l'arbre des appels récursifs Les appels récursifs engendrés par b(x) pour x 2 seront représentés sous la forme d'un arbre ar(ag, x, ad) où ar signigie Appel Récursif le n ud x indique qu'il s'agit du calcul de b(x) et qu'il a nécessité les appels récursifs rangés dans les arbres ag et ad ag est l'arbre des appels récursifs engendrés par b( x 1 ) ad est l'arbre des appels récursifs engendrés par b( x 2 ) Q4. (0.5 pt) Complétez les remarques précédentes et suivantes, ainsi que la dénition du type Abar (Arbre Binaire d'appels Récursifs). L'arbre des appels récursifs de la fonction de Fibonacci est un arbre binaire puisque la fonction fait deux appels récursifs. Lorsque le calcul de b(x) n'engendre pas d'appel récursif son arbre d'appel est représenté par rd(x) où rd signie Résultat Direct et x indique qu'il s'agit du calcul de b(x). Q5. (1 pt) Donnez la représentation à l'aide des constructeurs rd et ar de l'arbre d'appels de b(0) : rd(0) l'arbre d'appels de b(2) : ar( 2, rd(0) ) puis complétez la dénition de Abar. rd(1), DÉFINITION MATHÉMATIQUE D'UN ENSEMBLE déf Abar = { av(x) x {0, 1} } { ar(ag, x, ad) x N, ag, ad Abar } DÉFINITION INFORMATIQUE D'UN TYPE type nat = int (* >=0 *) type abar = Av RD of nat AR of abar * nat * abar Q6. (1.5 pt) Complétez la dénition de la fonction calcul-de-b qui calcule le terme de la suite de Fibonacci et construit simultanément l'arbre des appels récursifs de la fonction b. Prol calcul-de-b : N N Abar Sémantique : calcul-de-b(n) est un couple constitué du n ieme nombre de Fibonacci et de l'arbre des appels récursifs engendrés par le calcul de u n. Exemples 1. calcul-de-b(0) = ( (1, rd(0) ) 2. calcul-de-b(1) = ( (1, rd(1) )

4 3. calcul-de-b(2) = ( 2, ar(rd(1), 2, rd(0)) ) let rec (calcul_de_fib : int -> int * abar) = function 0 -> (1, RD(0) ) 1 -> (1, RD(1)) n -> let (r1,a1) = calcul_de_fib(n-1) and (r2,a2) = calcul_de_fib(n-2) in (r1+r2, AR(a1, n, a2) ) 3 Étude de l'arbre des appels récursifs On dispose maintenant d'une fonction calcul-de-b qui construit l'arbre d'appels récursifs de b. On aimerait par exemple compter le nombre de fois où le calcul de b(x) a demandé de calculer b(k). Pour cela on a besoin de compter le nombre d'apparitions d'un n ud dans un Abar. Q7. (1.5 pt) Complétez la fonction nb-occ qui compte le nombre d'apparitions du n ud k dans un Abar. Prol nb-occ : Z Abar N Sémantique : nb-occ(k, a) est le nombre d'occurences du n ud k dans l'arbre d'appel a Dénition récursive de la fonction par des équations (1) nb-occ( k, rd(n) ) = 0 si n k (1 ) nb-occ( k, rd(n) ) = 1 si n = k (2) nb-occ( k, ar(ag, n, ad) ) = nb-occ(k, ag) + nb-occ(k, ad) si n k (2 ) nb-occ( k, ar(ag, n, ad) ) = 1 + nb-occ(k, ag) + nb-occ(k, ad) si n = k bonus de 0.25 pour la factorisation du if ou pour une solution qui rend 1 sans appel récursif dans le cas AR(ag,n,ad) où n=k let rec (nb_occ : int * abar -> nat) = function (k,a) -> match a with Av -> 0 RD(n) -> if n=k then 1 else 0 AR(ag,n,ad) ->

5 (if n=k then 1 else 0) + nb_occ (k,ag) + nb_occ (k,ad)

6 Q8. (0.75 pt) a) À l'aide des fonctions calcul-de-b et nb-occ, donnez l'expression Ocaml qui permet de connaître le nombre de fois qu'est demandé le calcul de b(1) dans le calcul de b(121). let (_,a) = calcul_de_fib(121) in nb_occ(1,a) Le tableau suivant donne en fonction de n le nombre d'appels à b(1) dans le calcul de b(n). b) Complétez les premières cases du tableau nombre d'appels à b(1) dans le calcul de b(n) n n nombre d'appels à b(1) dans le calcul de b(n)

7 Seconde partie du problème (12 pt) 4 Achage de l'arbre des appels récursifs L'objectif de cette partie est de réaliser une fonction d'achage d'un arbre d'appel sous la forme suivante, avec les valeurs des appels à la place des (-). Notre objectif est d'acher un arbre fib(_) / \ fib(_) fib(_) / \ / \ fib(_) fib(_) fib(_) fib(_) / \ / \ / \ fib(_) fib(_) fib(_) fib(_) fib(_) fib(_) / \ fib(_) fib(_) ar(ag, n, ad) sous la forme fib(n) / \ ag ad et d'appliquer le même principe au sous-arbre gauche ag et au sous-arbre droit ad. Pour obtenir ce résultat nous devrons 1. transformer le sous-arbre ag en colonne de ligne colg 2. placer le symbole / centré au dessus de cette colonne colg 3. transformer le sous-arbre ad en colonne de ligne cold 4. placer le symbole \ centré au dessus de cette colonne cold 5. coller les colonnes obtenues aux étapes 2 et 4 (opération notée sur le schéma) 6. placer le titre fib(n) centré au dessous des deux colonnes collées an d'obtenir la colonne correspondant à l'arbre ar(ag, n, ad). Le principe de transformation d'un arbre en colonne est résumé par le schéma ci-après : (les êches indiquent que le titre doit être centré). "fib(n)" "/" sous arbre gauche } {{ } colg "\" sous arbre droit } {{ } cold Pour mettre en uvre ce principe nous allons dénir un type Colonne et des opérations de manipulations des colonnes. On décide représenter une colonne de ligne

8 "abcdefgh" "ijklmnop" "qrstuvwx" "yz" par une séquence de chaîne de caractère [ "abcdefgh" ; "ijklmnop" ; "qrstuvwx" ; "yz" ] Q9. (0.5 pt) Complétez la dénition du type Colonne. DÉFINITION MATHÉMATIQUE D'UN ENSEMBLE déf Colonne = Séq (Chaîne) DÉFINITION INFORMATIQUE D'UN TYPE type colonne = string list et indiquez l'opérateur qui permet d'ajouter une ligne au dessus d'une colonne :: Justiez votre réponse : ajouter une ligne en haut d'une colonne c'est ajouter une chaîne de caractère à gauche d'une séquence Q10. (1 pt) Utilisez l'opérateur Ocaml ( ˆ ) : Chaîne Chaîne Chaîne pour réaliser la fonction espace spéciée ainsi : Prol espace : Z Chaîne Sémantique : espace(n) est la chaînes de caractère consitutée de n espaces. Propriété n 0, espace(n) = "" Correction Dénition récursive de la fonction par des équations (1) espace( n ) = "" si n 0 (2) espace( n ) = " " ˆ espace(n 1) si n > 0 let rec (espace : int -> string) = function n -> if (n<=0) then "" else " " ^ (espace (n-1)) Q11. (1 pt) Utilisez la fonction length prédénie en Ocaml pour réaliser la fonction largeur. Prol length : Chaîne Séq (Élt) N Sémantique : length(ch) est la longueur de la chaîne ch, c'est-à-dire le nombre de caractères qu'elle contient. Notez que la fonction length s'applique aussi bien aux chaînes de caractère qu'aux séquences.

9 Prol largeur : Colonne N Sémantique : largeur(col) est la largeur de la colonne. Précisons que les lignes de la colonne n'ont pas nécessairement la même longueur. Algorithme : La largeur d'une colonne est la longueur de sa ligne la plus longue. Dénition récursive de la fonction par des équations (1) largeur( [ ] ) = 0 (2) largeur( ch :: s ) = max(length(ch), largeur(s)) ou bien length(ch) si length(ch) > largeur(s) largeur(s) sinon Correction let rec (largeur : colonne -> int) = function [] -> 0 ch::s -> max (String.length ch) (largeur s) Q12. (1 pt) Complétez la réalisation de la fonction titrer qui permet de placer un titre centré au sommet d'une colonne. Prol titrer : Chaîne Colonne Colonne Sémantique : titrer(titre, col) place le titre centré au haut de la colonne. Exemple titrer "titre", "abcdefghijklmnopqrs" "abcdefghijklmnopqrs" "abcdefghijklmnopqrs" "abcdef" = " titre" "abcdefghijklmnopqrs" "abcdefghijklmnopqrs" "abcdefghijklmnopqrs" "abcdef" Algorithme : Notons lc la largeur de la colonne et lt la taille du titre alors le nombre ne d'espaces qu'on doit ajouter à gauche du titre est : ne = lc lt 2 let (titrer : string * colonne -> colonne) = function (titre,col) -> let lc = largeur col in let lt = String.length titre in let ne = (lc - lt)/2 in ((espace ne) ^ titre) :: col

10 Q13. (0.5 pt) Donnez la réalisation en Ocaml de la fonction compléter-chaine. Prol compléter-chaine : N Chaîne Chaîne Sémantique : compléter-chaine(l, ch) est une chaîne de caractère de taille l constituée de ch suivie d'espaces Exemples 1. compléter-chaine(5, "ab") = "ab " 2. compléter-chaine(5, "abcde") = "abcde" 3. compléter-chaine(5, "") = " " let (completer_chaine : nat * string -> string) = function (larg,ch) -> let lch = (String.length ch) in ch ^ (espace (larg-lch)) Q14. (1 pt) Complétez la spécication de la fonction appliquer. Prol appliquer : (T 1 T 2 ) Séq (T 1 ) Séq ( T 2 ) Sémantique : appliquer f [e 1 ; e 2 ;... ; e n ] = [f(e 1 ) ; f(e 2 ) ;... ; f(e n )] Exemples On rappelle que (f unction x e) est une fonction qui à x associe la valeur de l'expression e. 1. appliquer (function x 2 x + 1) [0; 1; 2; 3] = [1 ; 3 ; 5 ; 7] 2. appliquer (f unction x (x, x x) ) [0; 3; 2; 5; 1] = [ (0, 0) ; (3, 9) ; (2, 4) ; (5, 25) ; (1, 1) ] 3. appliquer (f unction (x, y) y) [ (0, 0); (3, 9), (2, 4); (5, 25); (1, 1) ] = [0; 9; 4; 25; 1] Ajuster une colonne en ajoutant des espaces en n de lignes On appelle colonne ajustée une colonne dont toutes les lignes ont la même taille. On dénit ColonneAjustée comme l'ensemble des couples constitués d'une colonne et de sa largeur.

11 Q15. (0.25 pt) Complétez la déntion de type. DÉFINITION MATHÉMATIQUE D'UN ENSEMBLE déf ColonneAjustée = Colonne N DÉFINITION INFORMATIQUE D'UN TYPE type colonne_ajustée = colonne * nat Q16. (1.25 pt) Utilisez les fonctions appliquer et compléter-chaine pour réaliser en Ocaml la fonction ajuster-colonne qui complète les lignes d'une colonne par des espaces en n de ligne an que toutes les lignes aient la même taille. Prol ajuster-colonne : Colonne ColonneAjustée Sémantique : ajuster-colonne(col) est la colonne ajustée correspondant à col Exemple ajuster-colonne "abcdef" "abc" "abcdefgh" = "abcdef " "abc " "abcdefgh", 8 "a" "a " Algorithme : On rappelle qu'une colonne est une séquence de chaîne de caractère et qu'on peut donc utiliser la fonction appliquer avec les colonnes. let (ajuster_colonne : colonne -> colonne_ajustée) = function col -> let l = largeur col in let colaj = appliquer (fun ch -> completer_chaine (l,ch)) col in (colaj, l) Q17. (1.5 pt) Complétez la réalisation de la fonction coller qui prend en paramètre deux colonnes déjà ajustées et qui les colle ligne à ligne. Vous pouvez évidemment utiliser des fonctions écrites précédemment. Prol coller : ColonneAjustée ColonneAjustée Colonne Sémantique : coller(caj 1, caj 2 ) est la colonne ajustée obtenue en collant ligne par ligne la colonne ajustée caj 1 à la colonne ajustée caj 2. Précisons que les colonnes sont ajustées, par contre elles n'ont pas nécessairement le même nombre de ligne.

12 Exemples Vous remarquerez dans les exemples que les deux colonnes doivent être séparées par un espace. 1. coller 2. coller (( "abcdef" "abcdef" "ab " ( ( "abcdef" "ab ", 6 ), ( ) (, 6, "gh " "ghij" "ghi " "ligne 1" "ligne 2" "ligne 3", 4 )), 7 )) = "abcdef gh " "abcdef ghij" "ab ghi " = "abcdef ligne 1" "ab ligne 2" " ligne 3" Dénition récursive de la fonction par des équations (1) coller( ( [ ], l 1 ), ( [ ], l 2 ) ) = [ ] (2) coller( (ch 1 :: s 1, l 1 ), (ch 2 :: s 2, l 2 ) ) = (ch 1 ˆ " " ˆ ch 2 ) :: coller((s 1, l 1 ), (s 2, l 2 )) (3) coller( ([ ], l 1 ), (ch 2 :: s 2, l 2 ) ) = (espace(l 1 ) ˆ " " ˆ ch 2 ) :: coller(([ ], l 1 ), (s 2, l 2 )) (4) coller( (ch 1 :: s 1, l 1 ), (ch 2 :: s 2, l 2 ) ) = (ch 1 ˆ " " ˆ espace(l 2 )) :: coller((s 1, l 1 ), ([ ], l 2 )) Correction let rec (coller : colonne_ajustée * colonne_ajustée -> colonne) = function ((col1,l1),(col2,l2)) -> match (col1,col2) with ([],[]) -> [] (ch1::s1, ch2::s2) -> (ch1 ^ " " ^ ch2) :: (coller ((s1,l1),(s2,l2))) ([],ch2::s2) -> ((espace l1) ^ " " ^ ch2) :: (coller (([],l1),(s2,l2))) (ch1::s1,[]) -> (ch1 ^ " " ^ (espace l2)) :: (coller ((s1,l1),([],l2))) Q18. (0.5 pt) Complétez la réalisation Ocaml de la fonction coller-colonne. Prol coller-colonne : Colonne Colonne Colonne Sémantique : coller-colonne(col 1, col 2 ) est la colonne obtenue en collant les colonnes col 1 et col 2 après ajustement. Exemple coller-colonne ( "abcdef" "ab ", "ligne 1" "ligne 2" "ligne 3" ) = "abcdef ligne 1" "ab ligne 2" " ligne 3"

13 let (coller_colonne : colonne * colonne -> colonne) = function (col1,col2) -> coller (ajuster_colonne col1, ajuster_colonne col2) On dispose maintenant de toutes les fonctions nécessaires pour réaliser la fonction arbre-vers-colonne qui applique le principe présenté en Section?? pour transformer un arbre d'appel en colonne. Q19. (1.5 pt) Utilisez les fonctions des questions précédentes pour réaliser la fonction arbre-vers-colonne. Prol arbre-vers-colonne : Abar Colonne Sémantique : arbre-vers-colonne(a) est la colonne correspondant à l'arbre a construite selon le principe de la Section??. Dénition récursive de la fonction par des équations (1) arbre-vers-colonne( rd(n) ) = [titre] où titre = "fib(" ˆ string-of-int(n) ˆ ")" (2) arbre-vers-colonne( ar(ag, n, ad) ) = titrer( titre, coller-colonne(colg, cold) ) où colg = titrer( "/", arbre-vers-colonne(ag) ) où cold = titrer( "\\", arbre-vers-colonne(ag) ) où titre = "fib(" ˆ string-of-int(n) ˆ ")" Correction let rec (arbre_vers_colonne : abar -> colonne) = function RD(n) -> [ noeud_vers_ch n ] AR(ag,n,ad) -> let colg = arbre_vers_colonne ag in let cold = arbre_vers_colonne ad in let colgt = titrer ("/",colg) in let coldt = titrer (bs,cold) in let colgd = coller_colonne (colgt, coldt) in titrer (noeud_vers_ch n, colgd) Q20. (0.75 pt) Complétez la réalisation Ocaml de la fonction colonne-vers-chaîne.

14 Prol colonne-vers-chaîne : Colonne Chaîne Sémantique : colonne-vers-chaîne(col) est la chaîne de caractère construite par concaténation des lignes de la colonne en introduisant un saut de ligne entre les lignes. Algorithme : On obtient un saut de lignes en ajoutant le caractère \n en n de ligne. let rec (colonne_vers_chaine : colonne -> string) = function [] -> "" ch::s -> ch ^ nl ^ (colonne_vers_chaine s) Q21. (1 pt) Dénissez une fonction qui transforme un arbre en chaîne de caractère et donnez ensuite l'expression Ocaml qui permet d'acher à l'écran la chaîne de caractère qui correspond à l'arbre des appels de b(121). Prol arbre-vers-chaîne : Abar Chaîne Sémantique : arbre-vers-chaîne(a) est la chaînes de caractère correspondant à la mise en colonne de l'arbre a let rec (arbre_vers_chaine : abar -> string) = function a -> colonne_vers_chaine (arbre_vers_colonne a) (* let (r,a) = calcul_de_fib(121) in print_string (arbre_vers_chaine(a)) *)

15 Troisième partie du problème (4 pt) 5 Compter les appels engendrés par b(n) sans construire l'arbre d'appels L'arbre des appels est très utile pour comprendre comment se déroule l'évaluation de la fonction b ; en revanche il n'est pas nécessaire si on souhaite juste compter le nombre total d'appels récursifs engendrés par b(n). Pour eectuer ce décompte nous allons dénir la fonction nb-total-appel-de-b. Q22. (1.5 pt) Complétez la dénition de la fonction nb-total-appel-de-b. Prol nb-total-appel-de-b : N N N Sémantique : nb-total-appel-de-b(n) = (u n, nb) où u n est le n ieme terme de la suite de Fibonacci et nb le nombre total d'appels engendrés par l'appel à b(n) Dénition récursive de la fonction par des équations (1) nb-total-appel-de-b( 0 ) = (1, 1) (2) nb-total-appel-de-b( 0 ) = (1, 1) (3) nb-total-appel-de-b( 0 ) = (u n 1 + u n 2, nb 1 + nb 2 ) si où (u n 1, nb 1 ) = nb-total-appel-de-b(n 1) où (u n 2, nb 2 ) = nb-total-appel-de-b(n 2) n 2 Correction let rec (nb_appel_de_fib : nat -> nat * nat) = function 0 -> (1,1) 1 -> (1,1) n -> let (u_n_1, nb1) = nb_appel_de_fib(n-1) in let (u_n_2, nb2) = nb_appel_de_fib(n-2) in (u_n_2 + u_n_1, nb1 + nb_2) Coïncidence : D'après les équations récursives que pouvez-vous dire du nombre d'appels qu'engendre l'appel b(n)? Justiez votre réponse : C'est exactement le nombre de Fibonnacci puisque la fonction nb-total-appel-de-b retourne un couple dont les deux membres sont égaux d'après les équations). 6 Une version plus ecace de Fibonacci Q23. (2.5 pt) Complétez la dénition de la fonction b2 qui calcule les termes de la suite de Fibonacci sans faire de double appel récursif et montrez la terminaison de la fonction b2.

16 Prol b2 : N N N Sémantique : b2(n) = (u n, u n+1 ) où u n et u n+1 sont les n ieme et n + 1 ieme termes de la suite de Fibonacci. Dénition récursive de la fonction par des équations (1) b2(0) = (1, 1) (2) b2(n) = (u n, u n + u n 1 ) où (u n 1, u n ) = b2(n 1) let rec (fib2 : int -> int * int) = function 0 -> (1,1) n -> let (u_n_1,u_n) = fib2(n-1) in (u_n, u_n + u_n_1) TERMINAISON On dénit la fonction Mesure ( n ) def = n preuve : (i) Justions que la mesure choisie retourne des valeurs dans N: n N (ii) Montrons que la mesure décroit strictement à chaque appel récursif. Pour (ii), on repère les équations qui comportent des appels récursifs et on prouve la décroissance de la mesure pour chaque appel récursif. (2) f ib2(n) appelle f ib2(n 1) Mesure (n) = n? < Mesure (n 1) ok < = n 1

Problème : Calcul d'échéanciers de prêt bancaire (15 pt)

Problème : Calcul d'échéanciers de prêt bancaire (15 pt) Problème : Calcul d'échéanciers de prêt bancaire (15 pt) 1 Principe d'un prêt bancaire et dénitions Lorsque vous empruntez de l'argent dans une banque, cet argent (appelé capital) vous est loué. Chaque

Plus en détail

Université Laval Faculté des sciences et de génie Département d'informatique et de génie logiciel IFT-3101. Travail pratique #2

Université Laval Faculté des sciences et de génie Département d'informatique et de génie logiciel IFT-3101. Travail pratique #2 Université Laval Faculté des sciences et de génie Département d'informatique et de génie logiciel IFT-3101 Danny Dubé Hiver 2014 Version : 11 avril Questions Travail pratique #2 Traduction orientée-syntaxe

Plus en détail

x n = x x n 1 Exercice 3 Le but de cet exercice est de modéliser les suites définies par récurrence de la façon suivante :

x n = x x n 1 Exercice 3 Le but de cet exercice est de modéliser les suites définies par récurrence de la façon suivante : Ocaml - Exercices Exercice Définir en Ocaml les fonctions suivantes:. f : x sin x + cos x. g : x x 3x+ x x 5 3. Fonction h calculant la moyenne géométrique de deux float positifs ( xy) Exercice Ecrire

Plus en détail

Induction sur les arbres

Induction sur les arbres Induction sur les arbres Planning Motivations Comment définir les arbres? Équations récursives sur les arbres Complexité de fonctions sur les arbres Recherche dans un arbre binaire de recherche Recherche

Plus en détail

TP 8 : Arbres binaires de recherche

TP 8 : Arbres binaires de recherche TP 8 : Arbres binaires de recherche Semaine du 17 Mars 2008 Exercice 1 Dénir une structure struct noeud_s permettant de coder un n ud d'un arbre binaire contenant une valeur entière. Ajouter des typedef

Plus en détail

Recherche dans un tableau

Recherche dans un tableau Chapitre 3 Recherche dans un tableau 3.1 Introduction 3.1.1 Tranche On appelle tranche de tableau, la donnée d'un tableau t et de deux indices a et b. On note cette tranche t.(a..b). Exemple 3.1 : 3 6

Plus en détail

Arbres binaires Version prof Version prof

Arbres binaires Version prof Version prof Arbres binaires Version prof Version prof types /* déclaration du type t_element */ t_arbrebinaire = t_noeudbinaire t_noeudbinaire = enregistrement t_element cle t_arbrebinaire fg, fd n enregistrement

Plus en détail

Fiche de TD-TP no. 4

Fiche de TD-TP no. 4 Master 1 Informatique Programmation Fonctionnelle, p. 1 Fiche de TD-TP no. 4 Exercice 1. Voici trois façons différentes de définir le type Image : type Image = [[ Int ]] data Image = Image [[ Int ]] newtype

Plus en détail

chapitre 4 Nombres de Catalan

chapitre 4 Nombres de Catalan chapitre 4 Nombres de Catalan I Dénitions Dénition 1 La suite de Catalan (C n ) n est la suite dénie par C 0 = 1 et, pour tout n N, C n+1 = C k C n k. Exemple 2 On trouve rapidement C 0 = 1, C 1 = 1, C

Plus en détail

Les structures de données. Rajae El Ouazzani

Les structures de données. Rajae El Ouazzani Les structures de données Rajae El Ouazzani La récursivité 2 Définition Une procédure ou une fonction est dite récursive si elle fait appel à elle même, directement ou indirectement. 3 Exemple : Réalisation

Plus en détail

Arbres binaires et codage de Huffman

Arbres binaires et codage de Huffman MP Option Informatique Premier TP Caml Jeudi 8 octobre 2009 Arbres baires et codage de Huffman 1 Arbres baires Soit E un ensemble non vide. On défit la notion d arbre baire étiqueté (aux feuilles) par

Plus en détail

Projet de Programmation Fonctionnelle

Projet de Programmation Fonctionnelle Projet de Programmation Fonctionnelle L objectif de ce projet est de concevoir, en Objective Caml, un évaluateur pour le langage mini-ml (un sous ensemble du langage Objective Caml). Votre programme devra

Plus en détail

# let rec concat l1 l2 = match l1 with [] -> l2 x::l 1 -> x::(concat l 1 l2);; val concat : a list -> a list -> a list =

# let rec concat l1 l2 = match l1 with [] -> l2 x::l 1 -> x::(concat l 1 l2);; val concat : a list -> a list -> a list = <fun> 94 Programmation en OCaml 5.4.8. Concaténation de deux listes Définissons maintenant la fonction concat qui met bout à bout deux listes. Ainsi, si l1 et l2 sont deux listes quelconques, concat l1 l2 constitue

Plus en détail

λ-calcul et typage Qu est-ce qu une fonction?

λ-calcul et typage Qu est-ce qu une fonction? λ-calcul et typage Nicolas Barnier, Pascal Brisset ENAC Avril 2009 Nicolas Barnier, Pascal Brisset (ENAC) λ-calcul et typage Avril 2009 1 / 1 Qu est-ce qu une fonction? Classiquement Pas de notation uniforme/standard

Plus en détail

Structures de données non linéaires

Structures de données non linéaires Structures de données non linéaires I. Graphes Définition Un graphe (simple) orienté G est un couple (S, A), où : S est un ensemble dont les éléments sont appelés les sommets. A est un ensemble de couples

Plus en détail

Arbres binaires de recherche

Arbres binaires de recherche Chapitre 6 Arbres binaires de recherche 6.1 Introduction On a étudié le problème de la recherche dans une collection d éléments ordonnés entre eux : on a montré que Pour une liste contiguë, la recherche

Plus en détail

Arbres ordonnés, binaires, tassés, FAP, tri par FAP, tas, tri par tas

Arbres ordonnés, binaires, tassés, FAP, tri par FAP, tas, tri par tas Arbres ordonnés, binaires, tassés, FAP, tri par FAP, tas, tri par tas 1. Arbres ordonnés 1.1. Arbres ordonnés (Arbres O) On considère des arbres dont les nœuds sont étiquetés sur un ensemble muni d'un

Plus en détail

Structures de données, IMA S6

Structures de données, IMA S6 Structures de données, IMA S6 Arbres Binaires d après un cours de N. Devésa, Polytech Lille. Laure Gonnord http://laure.gonnord.org/pro/teaching/ Laure.Gonnord@polytech-lille.fr Université Lille 1 - Polytech

Plus en détail

Vers l'ordinateur quantique

Vers l'ordinateur quantique Cours A&G Vers l'ordinateur quantique Données innies On a vu dans les chapîtres précédents qu'un automate permet de représenter de manière nie (et même compacte) une innité de données. En eet, un automate

Plus en détail

Cours Algorithmique, 2ème partie AS IUT

Cours Algorithmique, 2ème partie AS IUT Cours Algorithmique, 2ème partie AS IUT Cours 2 : Arbres Binaires Anne Vilnat http://www.limsi.fr/individu/anne/coursalgo Plan 1 Représentations arborescentes 2 Définition d un arbre binaire récursive

Plus en détail

Programmation fonctionnelle avec OCaml

Programmation fonctionnelle avec OCaml Programmation fonctionnelle avec OCaml 1ère séance, 19 février 2015 6 séances de 1h30 de cours et 3h de TP 3 projets avec soutenance D autres transparents sont disponibles avec vidéo (intranet) Samuel

Plus en détail

Cours 3. La conditionnelle: instructions si et selon Les boucles Comment raisonner sur les boucles: les invariants de boucle

Cours 3. La conditionnelle: instructions si et selon Les boucles Comment raisonner sur les boucles: les invariants de boucle Cours 3 : Instructions qui changent l ordre d exécution séquentiel 1 Cours 3 Instructions qui changent l ordre d exécution séquentiel La conditionnelle: instructions si et selon Les boucles Comment raisonner

Plus en détail

Gestion de la mémoire

Gestion de la mémoire Gestion de la mémoire ENSIIE : Programmation avancée 1/20 Langages et mémoire Différence principale entre langages de haut niveau : OCaml, Java, C# langages de bas niveau : C, C++ : Gestion de la mémoire

Plus en détail

Travaux dirigés n o 6

Travaux dirigés n o 6 Travaux dirigés n o 6 Lycée Kléber MPSI, Option Info 2014/2015 Exercice 1 (Indexation d un arbre binaire) Ecrire une fonction Caml indexation : ( f, n) arbre_binaire -> (string,string) arbre_binaire qui

Plus en détail

Introduction à OCAML

Introduction à OCAML Introduction à OCAML Plan L interpréteur intéractif Ocaml Les types de base, et leurs opérations : int, float, char, string, bool Les n-uplets Conditionnelles : if... then... else et match... with... Déclarations

Plus en détail

Diagrammes de décisions binaires

Diagrammes de décisions binaires Diagrammes de décisions binaires Épreuve pratique d'algorithmique et de programmation Concours commun des écoles normales supérieures Durée de l'épreuve: 3 heures 30 minutes Juillet 2009 ATTENTION! N oubliez

Plus en détail

Arbres binaires de recherche

Arbres binaires de recherche Chapitre 1 Arbres binaires de recherche 1 Les arbre sont très utilisés en informatique, d une part parce que les informations sont souvent hiérarchisées, et peuvent être représentées naturellement sous

Plus en détail

Exercices «Programmation récursive» Deuxième saison UPMC Cycle L Revision: 1.21

Exercices «Programmation récursive» Deuxième saison UPMC Cycle L Revision: 1.21 Exercices «Programmation récursive» Deuxième saison UPMC Cycle L Revision: 1.21 Anne Brygoo, Maryse Pelletier, Christian Queinnec, Michèle Soria Université Paris 6 Pierre et Marie Curie septembre 2005

Plus en détail

Cours 1 : La compilation

Cours 1 : La compilation /38 Interprétation des programmes Cours 1 : La compilation Yann Régis-Gianas yrg@pps.univ-paris-diderot.fr PPS - Université Denis Diderot Paris 7 2/38 Qu est-ce que la compilation? Vous avez tous déjà

Plus en détail

Algorithmique P2. HeapSort et files de priorité Ulg, 2009-2010 Renaud Dumont

Algorithmique P2. HeapSort et files de priorité Ulg, 2009-2010 Renaud Dumont Algorithmique P2 HeapSort et files de priorité Ulg, 2009-2010 Renaud Dumont Structure de tas - arbre Un tas est une structure de données qui Permet un nouveau type de tri (Tri par tas) Permet l'implémentation

Plus en détail

Compilation séparée. Compilation séparée. ENSIIE: Programmation avancée, Compilation séparée, Modularité, Spécifications algébriques 1

Compilation séparée. Compilation séparée. ENSIIE: Programmation avancée, Compilation séparée, Modularité, Spécifications algébriques 1 Compilation séparée Compilation séparée ENSIIE: Programmation avancée, Compilation séparée, Modularité, Spécifications algébriques 1 Compilation séparée Modularité GCC : 4 millions de lignes de code Noyau

Plus en détail

Cours 7 : fonctions recursives, arithmétique binaire, flottants 1

Cours 7 : fonctions recursives, arithmétique binaire, flottants 1 Cours 7 : fonctions recursives, arithmétique binaire, flottants 1 Les types énumérés On peut aussi définir des types qui ont un nombre fini de valeurs (ex: jours de la semaine, couleurs primaires, etc.)

Plus en détail

Arbres binaires de recherche (ABR) Binary Search Trees (BST)

Arbres binaires de recherche (ABR) Binary Search Trees (BST) LSVIII-BIM Algorithmie, 2015 Arbres binaires de recherche (ABR) Binary Search Trees (BST) I. Arbres binaires 1. Structure 2. Parcours II. Arbres binaires de recherche 1. Définition 2. Opérations sur les

Plus en détail

Les structures de données. Rajae El Ouazzani

Les structures de données. Rajae El Ouazzani Les structures de données Rajae El Ouazzani Les arbres 2 1- Définition de l arborescence Une arborescence est une collection de nœuds reliés entre eux par des arcs. La collection peut être vide, cad l

Plus en détail

Arbres binaires en représentation chaînée

Arbres binaires en représentation chaînée Arbres binaires en représentation chaînée Construction Libération Opérations diverses 17/01/06 Bac2 - JMD - ArbrBin.ppt 1 Arbre n-aire Arbre binaire a b c d e f arbre n-aire e b a c f d arbre binaire 17/01/06

Plus en détail

RECURSIVITE ARBRES BINAIRES

RECURSIVITE ARBRES BINAIRES RECURSIVITE ARBRES BINAIRES Insertion, Parcours pré, post et in ordre, Recherche, Suppression. Ch. PAUL Algorithmique Arbres binaires 1 ARBRE BINAIRE DEFINITION RECURSIVE Les arbres binaires sont des arbres

Plus en détail

PROJET INFORMATIQUE RECHERCHE DE SOUS-CHAÎNE DE CARACTERES

PROJET INFORMATIQUE RECHERCHE DE SOUS-CHAÎNE DE CARACTERES PROJET INFORMATIQUE RECHERCHE DE SOUS-CHAÎNE DE CARACTERES I-Présentation Un algorithme de recherche de sous-chaine est un type d'algorithme de recherche qui a pour objectif de trouver une chaîne de caractères

Plus en détail

Feuille TD n 1 Exercices d algorithmique éléments de correction

Feuille TD n 1 Exercices d algorithmique éléments de correction Master Sciences, Technologies, Santé Mention Mathématiques, spécialité Enseignement des mathématiques Algorithmique et graphes, thèmes du second degré Feuille TD n 1 Exercices d algorithmique éléments

Plus en détail

Département Informatique Programmation objet. Cours n 8. Structures de données partie 3 Arbres binaires de calcul

Département Informatique Programmation objet. Cours n 8. Structures de données partie 3 Arbres binaires de calcul Programmation objet Cours n 8 Structures de données partie 3 Arbres binaires de calcul 1 Arbre binaire de calcul Nous avons vu l'utilisation des arbres binaires en tant que structure de données optimisée

Plus en détail

C12. Les structures arborescentes. Août 2006

C12. Les structures arborescentes. Août 2006 Les structures arborescentes Août 2006 Objectifs du C12 Connaître le principe de la structure d arbre binaire Connaître les détails d implémentation de la structure d arbre binaire de recherche Les structures

Plus en détail

Introduction à l Algorithmique

Introduction à l Algorithmique Introduction à l Algorithmique N. Jacon 1 Définition et exemples Un algorithme est une procédure de calcul qui prend en entier une valeur ou un ensemble de valeurs et qui donne en sortie une valeur ou

Plus en détail

length : A N add : Z Z Z (n 1, n 2 ) n 1 + n 2

length : A N add : Z Z Z (n 1, n 2 ) n 1 + n 2 1 Univ. Lille1 - Licence info 3ème année 2013-2014 Expression Logique et Fonctionnelle... Évidemment Cours n o 1 : Introduction à la programmation fonctionnelle 1 Introduction La programmation fonctionnelle

Plus en détail

Travaux pratiques. Compression en codage de Huffman. 1.3. Organisation d un projet de programmation

Travaux pratiques. Compression en codage de Huffman. 1.3. Organisation d un projet de programmation Université de Savoie Module ETRS711 Travaux pratiques Compression en codage de Huffman 1. Organisation du projet 1.1. Objectifs Le but de ce projet est d'écrire un programme permettant de compresser des

Plus en détail

1 Le code ASCII et le code Latin-1

1 Le code ASCII et le code Latin-1 USTL - Licence ST-A 1ère année 2006-2007 Algorithmes et Programmation Impérative 1 Objectifs du TP 1. travailler la mise en forme d'un achage. TP 1 : Table de caractères ASCII 1 Le code ASCII et le code

Plus en détail

Plan. Exemple: Application bancaire. Introduction. OCL Object Constraint Language Le langage de contraintes d'uml

Plan. Exemple: Application bancaire. Introduction. OCL Object Constraint Language Le langage de contraintes d'uml OCL Object Constraint Language Le langage de contraintes d'uml Plan 1. Introduction 2. Les principaux concepts d'ocl Object Constraint Language 1 Object Constraint Language 2 Exemple: une application bancaire

Plus en détail

Date : 18.11.2013 Tangram en carré page

Date : 18.11.2013 Tangram en carré page Date : 18.11.2013 Tangram en carré page Titre : Tangram en carré Numéro de la dernière page : 14 Degrés : 1 e 4 e du Collège Durée : 90 minutes Résumé : Le jeu de Tangram (appelé en chinois les sept planches

Plus en détail

Projet d informatique M1BI : Compression et décompression de texte. 1 Généralités sur la compression/décompression de texte

Projet d informatique M1BI : Compression et décompression de texte. 1 Généralités sur la compression/décompression de texte Projet d informatique M1BI : Compression et décompression de texte Le but de ce projet est de coder un programme réalisant de la compression et décompression de texte. On se proposera de coder deux algorithmes

Plus en détail

Partie 3. Gilles Lebrun (gilles.lebrun@unicaen.fr)

Partie 3. Gilles Lebrun (gilles.lebrun@unicaen.fr) Partie 3 Gilles Lebrun (gilles.lebrun@unicaen.fr) Les arbres binaires Définition : C est une structure arborescente ou hiérarchique ou récursive Chaque élément (nœud) constituant la structure de l arbre

Plus en détail

1 Généralités sur les arbres

1 Généralités sur les arbres 1 Généralités sur les arbres 1.1 Graphes et arbres Définition 1.1. On appelle graphe un couple G = (V, E) d un ensemble fini V (les sommets ou noeuds) et d une partie E de V V (les arêtes). Si x, y V,

Plus en détail

Arbres binaires de recherche

Arbres binaires de recherche 1 arbre des comparaisons 2 recherche dichotomique l'arbre est recalculé à chaque recherche 2 5 3 4 7 9 1 6 1 2 3 4 5 6 7 9 10 conserver la structure d'arbre au lieu de la reconstruire arbre binaire de

Plus en détail

L2 - Algorithmique et structures de données (Année 2010/2011) Examen (2 heures)

L2 - Algorithmique et structures de données (Année 2010/2011) Examen (2 heures) L2 - lgorithmique et structures de données (nnée 2010/2011) Delacourt, Phan Luong, Poupet xamen (2 heures) Les documents (cours, TD, TP) sont autorisés. Les quatre exercices sont indépendants. À la fin

Plus en détail

THÉORIE DE L'INFORMATION : RAPPELS

THÉORIE DE L'INFORMATION : RAPPELS THÉORIE DE L'INFORMATION : RAPPELS 1920 : premières tentatives de définition de mesure de l'information à partir de 1948 : travaux de Shannon Théorie de l'information discipline fondamentale qui s'applique

Plus en détail

Algorithmes d'apprentissage

Algorithmes d'apprentissage Algorithmes d'apprentissage 1 Agents qui apprennent à partir d'exemples La problématique : prise de décision automatisée à partir d'un ensemble d'exemples Diagnostic médical Réponse à une demande de prêt

Plus en détail

Arbres Binaire. PSI DAKHLA Prof Youssef El marzak. 1 Prof Youssef Elmarzak

Arbres Binaire. PSI DAKHLA Prof Youssef El marzak. 1 Prof Youssef Elmarzak Arbres Binaire PSI DAKHLA Prof Youssef El marzak 1 Prof Youssef Elmarzak 1.introduction: Les arbre sont très utilisées en informatique, d une part parce que les informations sont souvent hiérarchisées,

Plus en détail

Langage C/C++ TD 3-4 : Création dynamique d objets. Hubert Godfroy. 27 novembre 2014

Langage C/C++ TD 3-4 : Création dynamique d objets. Hubert Godfroy. 27 novembre 2014 Langage C/C++ TD 3-4 : Création dynamique d objets Hubert Godfroy 7 novembre 014 1 Tableaux Question 1 : Écrire une fonction prenant un paramètre n et créant un tableau de taille n (contenant des entiers).

Plus en détail

Tableaux (introduction) et types de base

Tableaux (introduction) et types de base Tableaux (introduction) et types de base A. Motivation..................................................... 4 B. Les tableaux.................................................... 5 C. Construction des tableaux.......................................

Plus en détail

Représentation d un entier en base b

Représentation d un entier en base b Représentation d un entier en base b 13 octobre 2012 1 Prérequis Les bases de la programmation en langage sont supposées avoir été travaillées L écriture en base b d un entier est ainsi défini à partir

Plus en détail

Algorithmique Travaux Dirigés

Algorithmique Travaux Dirigés Algorithmique Travaux Dirigés Master Technologie et Handicap : Intensifs 1 Corrigé Exercice 1 Affectations 1. Considérons les algorithmes ci-dessous. (a) Quel sera le contenu des variables a, b et éventuellement

Plus en détail

Algorithmique avancée en Python TDs

Algorithmique avancée en Python TDs Algorithmique avancée en Python TDs Denis Robilliard sept. 2014 1 TD 1 Révisions 1. Ecrire un programme qui saisit un entier, et détermine puis affiche si l entier est pair où impair. 2. Ecrire un programme

Plus en détail

BACCALAUREAT GENERAL MATHÉMATIQUES

BACCALAUREAT GENERAL MATHÉMATIQUES BACCALAUREAT GENERAL FEVRIER 2014 MATHÉMATIQUES SERIE : ES Durée de l épreuve : 3 heures Coefficient : 5 (ES), 4 (L) 7(spe ES) Les calculatrices électroniques de poche sont autorisées, conformement à la

Plus en détail

II MANIPULATIONS DE BASE

II MANIPULATIONS DE BASE II MANIPULATIONS DE BASE Nous allons résoudre l'équation x 3 4x+ 3= 0. Avant d'utiliser votre machine pour des études de fonctions, il pourra éventuellement être utile de vérifier qu'elle est bien configurée.

Plus en détail

Pour signifier qu'une classe fille hérite d'une classe mère, on utilise le mot clé extends class fille extends mère

Pour signifier qu'une classe fille hérite d'une classe mère, on utilise le mot clé extends class fille extends mère L'héritage et le polymorphisme en Java Pour signifier qu'une classe fille hérite d'une classe mère, on utilise le mot clé extends class fille extends mère En java, toutes les classes sont dérivée de la

Plus en détail

Rappel. Analyse de Données Structurées - Cours 12. Un langage avec des déclaration locales. Exemple d'un programme

Rappel. Analyse de Données Structurées - Cours 12. Un langage avec des déclaration locales. Exemple d'un programme Rappel Ralf Treinen Université Paris Diderot UFR Informatique Laboratoire Preuves, Programmes et Systèmes treinen@pps.univ-paris-diderot.fr 6 mai 2015 Jusqu'à maintenant : un petit langage de programmation

Plus en détail

Initiation à l algorithmique

Initiation à l algorithmique Informatique S1 Initiation à l algorithmique procédures et fonctions 2. Appel d une fonction Jacques TISSEAU Ecole Nationale d Ingénieurs de Brest Technopôle Brest-Iroise CS 73862-29238 Brest cedex 3 -

Plus en détail

Présentation du langage et premières fonctions

Présentation du langage et premières fonctions 1 Présentation de l interface logicielle Si les langages de haut niveau sont nombreux, nous allons travaillé cette année avec le langage Python, un langage de programmation très en vue sur internet en

Plus en détail

TP 4 -Arbres Binaires -

TP 4 -Arbres Binaires - L3 Informatique Programmation fonctionnelle OCaml Année 2013/2014 TP 4 -Arbres Binaires - Un arbre binaire est une structure de données qui peut se représenter sous la forme d une hiérarchie dont chaque

Plus en détail

La théorie des mouvements dans les formules Jean-François Nicaud Version initiale de Février 2013 jeanfrancois.nicaud@laposte.net

La théorie des mouvements dans les formules Jean-François Nicaud Version initiale de Février 2013 jeanfrancois.nicaud@laposte.net La théorie des mouvements dans les formules Jean-François Nicaud Version initiale de Février 2013 jeanfrancois.nicaud@laposte.net Article rédigé avec epsilonwriter puis copié dans Word La théorie des mouvements

Plus en détail

Séance de TD 05 TD05. 1 Exercice 1. 1.1 Question 1 : dessins des ABR avec hauteurs différentes AG51

Séance de TD 05 TD05. 1 Exercice 1. 1.1 Question 1 : dessins des ABR avec hauteurs différentes AG51 Séance de TD 05 1 Exercice 1 1. Dessinez les arbres binaires de recherche de hauteur 2,3,4,5 et 6 pour le même ensemble de clés S = 1,4,5,10,16,17,21. 2. Donnez l algorithme de l opération ArbreRechercher(x,k)

Plus en détail

TP n 2 Concepts de la programmation Objets Master 1 mention IL, semestre 2 Le type Abstrait Pile

TP n 2 Concepts de la programmation Objets Master 1 mention IL, semestre 2 Le type Abstrait Pile TP n 2 Concepts de la programmation Objets Master 1 mention IL, semestre 2 Le type Abstrait Pile Dans ce TP, vous apprendrez à définir le type abstrait Pile, à le programmer en Java à l aide d une interface

Plus en détail

Université du Littoral Master 1. PROJET Puissance 4

Université du Littoral Master 1. PROJET Puissance 4 Université du Littoral Master 1 PROJET Puissance 4 Le but de ce projet est de réaliser un programme permettant à l utilisateur de jouer au Puissance 4 contre l ordinateur. 1 Travail à Rendre Le travail

Plus en détail

Initiation aux algorithmes des arbres binaires

Initiation aux algorithmes des arbres binaires Initiation aux algorithmes des arbres binaires Plan I. Les arbres biniaires I. Définition II. Représentation graphique d un arbre III. Terminologie IV. Représentation en mémoire des arbres binaires V.

Plus en détail

INF601 : Algorithme et Structure de données

INF601 : Algorithme et Structure de données Cours 2 : TDA Arbre Binaire B. Jacob IC2/LIUM 27 février 2010 Plan 1 Introuction 2 Primitives u TDA Arbin 3 Réalisations u TDA Arbin par cellules chaînées par cellules contiguës par curseurs (faux pointeurs)

Plus en détail

Collège LANGEVIN WALLON CORRIGE du BREVET BLANC DES 25 et 26 mai 2004 SÉRIE COLLÈGE

Collège LANGEVIN WALLON CORRIGE du BREVET BLANC DES 25 et 26 mai 2004 SÉRIE COLLÈGE Collège LANGEVIN WALLON CORRIGE du BREVET BLANC DES 5 et 6 mai 004 SÉRIE COLLÈGE Durée heures MATHEMATIQUES Rédaction, présentation, orthographe (4 points) PARTIE I : ACTIVITES NUMERIQUES (1 points) Dans

Plus en détail

INF 232: Langages et Automates. Travaux Dirigés. Université Joseph Fourier, Université Grenoble 1 Licence Sciences et Technologies

INF 232: Langages et Automates. Travaux Dirigés. Université Joseph Fourier, Université Grenoble 1 Licence Sciences et Technologies INF 232: Langages et Automates Travaux Dirigés Université Joseph Fourier, Université Grenoble 1 Licence Sciences et Technologies Année Académique 2013-2014 Année Académique 2013-2014 UNIVERSITÉ JOSEPH

Plus en détail

Raisonnement par récurrence Suites numériques

Raisonnement par récurrence Suites numériques Chapitre 1 Raisonnement par récurrence Suites numériques Terminale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Raisonnement par récurrence. Limite finie ou infinie d une suite.

Plus en détail

AGASC / BUREAU INFORMATION JEUNESSE 06700 Saint Laurent du Var Tel : 04.93.07.00.66 E mail : bij@agasc.fr www.agasc.fr. Word: La présentation

AGASC / BUREAU INFORMATION JEUNESSE 06700 Saint Laurent du Var Tel : 04.93.07.00.66 E mail : bij@agasc.fr www.agasc.fr. Word: La présentation Word: La présentation Introduction 2 ième partie Bien que le contenu du document soit le plus important, Word vous offre plusieurs options pour améliorer la présentation du texte. Cette page va vous montrer

Plus en détail

Cours de compilation

Cours de compilation Cours de compilation 1 Introduction Un compilateur est un logiciel de traduction d un langage source vers un langage cible. D ordinaire le langage source est un langage de programmation évolué, comme C++

Plus en détail

Arbres binaires. Chapitre 1. 1. Introduction. option informatique. 1.1 Définition formelle d un arbre binaire

Arbres binaires. Chapitre 1. 1. Introduction. option informatique. 1.1 Définition formelle d un arbre binaire Chapitre option informatique Arbres binaires. Introduction Dans son acceptation la plus générale, un arbre est un graphe acyclique orienté enraciné : tous les sommets, à l exception de la racine, ont un

Plus en détail

212 année 2013/2014 DM de synthèse 2

212 année 2013/2014 DM de synthèse 2 22 année 20/204 DM de synthèse 2 Exercice Soit f la fonction représentée cicontre.. Donner l'ensemble de définition de la fonction f. 2. Donner l'image de 4 par f.. a. Donner un nombre qui n'a qu'un seul

Plus en détail

Calcul rapide des puissances

Calcul rapide des puissances Calcul rapide des puissances Par Mathtous Il s'agit de puissances à exposant entier naturel (avec la convention a 0 = 1, et a 1 = a). Si on applique la dénition pour calculer a n, on calcule de proche

Plus en détail

9. Implantations des arbres binaires par un tableau: les monceaux (les tas) - heap en anglais.

9. Implantations des arbres binaires par un tableau: les monceaux (les tas) - heap en anglais. 9. Implantations des arbres binaires par un tableau: les monceaux (les tas) - heap en anglais. Définition : Un monceau (tas) est un arbre binaire complet dans lequel il existe un ordre entre un nœud et

Plus en détail

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre :

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre : Terminale STSS 2 012 2 013 Pourcentages Synthèse 1) Définition : Calculer t % d'un nombre, c'est multiplier ce nombre par t 100. 2) Exemples de calcul : a) Calcul d un pourcentage : Un article coûtant

Plus en détail

Programmation générique des arbres binaires de recherche AVL et applications

Programmation générique des arbres binaires de recherche AVL et applications Introduction Programmation générique des arbres binaires de recherche AVL et applications Ce TP porte sur l étude d une structure de données appelée arbres binaires de recherche qui sert généralement à

Plus en détail

Algorithmes de recherche

Algorithmes de recherche Algorithmes de recherche 1 Résolution de problèmes par recherche On représente un problème par un espace d'états (arbre/graphe). Chaque état est une conguration possible du problème. Résoudre le problème

Plus en détail

Les arbres binaires de recherche

Les arbres binaires de recherche Institut Galilée Année 2010-2011 Algorithmique et arbres L2 TD 6 Les arbres binaires de recherche Type en C des arbres binaires (également utilisé pour les ABR) : typedef struct noeud_s { struct noeud_s

Plus en détail

Application 1- VBA : Test de comportements d'investissements

Application 1- VBA : Test de comportements d'investissements Application 1- VBA : Test de comportements d'investissements Notions mobilisées Chapitres 1 à 5 du cours - Exemple de récupération de cours en ligne 1ère approche des objets (feuilles et classeurs). Corps

Plus en détail

Algorithmique et Programmation, IMA

Algorithmique et Programmation, IMA Algorithmique et Programmation, IMA Cours 2 : C Premier Niveau / Algorithmique Université Lille 1 - Polytech Lille Notations, identificateurs Variables et Types de base Expressions Constantes Instructions

Plus en détail

Plan du cours : Zippers. Des fonctions sur les listes avec position. Des fonctions sur les listes avec position

Plan du cours : Zippers. Des fonctions sur les listes avec position. Des fonctions sur les listes avec position Plan du cours : Le problème : naviguer efficacement une structure de données Ce qui ne marche pas Ce qui marche : les de Huet Exemples Comment dériver des pour tout type de données Pour en savoir plus

Plus en détail

Cours d initiation à la programmation en C++ Johann Cuenin

Cours d initiation à la programmation en C++ Johann Cuenin Cours d initiation à la programmation en C++ Johann Cuenin 11 octobre 2014 2 Table des matières 1 Introduction 5 2 Bases de la programmation en C++ 7 3 Les types composés 9 3.1 Les tableaux.............................

Plus en détail

«Aucune investigation humaine ne peut être qualifiée de science véritable si elle ne peut être démontrée mathématiquement.

«Aucune investigation humaine ne peut être qualifiée de science véritable si elle ne peut être démontrée mathématiquement. «Aucune investigation humaine ne peut être qualifiée de science véritable si elle ne peut être démontrée mathématiquement.» Léonard de Vinci MATHEMATIQUES Les mathématiques revêtaient un caractère particulier

Plus en détail

I. Introduction aux fonctions : les fonctions standards

I. Introduction aux fonctions : les fonctions standards Chapitre 3 : Les fonctions en C++ I. Introduction aux fonctions : les fonctions standards A. Notion de Fonction Imaginons que dans un programme, vous ayez besoin de calculer une racine carrée. Rappelons

Plus en détail

LES ALGORITHMES ARITHMETIQUES

LES ALGORITHMES ARITHMETIQUES LES ALGORITHMES ARITHMETIQUES I- Introduction Dans ce chapitre nous allons étudier quelques algorithmes relatifs à l arithmétique qui est une branche des mathématiques qui étudie les relations entre les

Plus en détail

À propos des matrices échelonnées

À propos des matrices échelonnées À propos des matrices échelonnées Antoine Ducros appendice au cours de Géométrie affine et euclidienne dispensé à l Université Paris 6 Année universitaire 2011-2012 Introduction Soit k un corps, soit E

Plus en détail

1. Structure d'un programme FORTRAN 95

1. Structure d'un programme FORTRAN 95 FORTRAN se caractérise par la nécessité de compiler les scripts, c'est à dire transformer du texte en binaire.(transforme un fichier de texte en.f95 en un executable (non lisible par un éditeur) en.exe.)

Plus en détail

Ch. 1 : Bases de programmation en Visual Basic

Ch. 1 : Bases de programmation en Visual Basic Ch. 1 : Bases de programmation en Visual Basic 1 1 Variables 1.1 Définition Les variables permettent de stocker en mémoire des données. Elles sont représentées par des lettres ou des groupements de lettres

Plus en détail

PROBLEMES D'ORDONNANCEMENT AVEC RESSOURCES

PROBLEMES D'ORDONNANCEMENT AVEC RESSOURCES Leçon 11 PROBLEMES D'ORDONNANCEMENT AVEC RESSOURCES Dans cette leçon, nous retrouvons le problème d ordonnancement déjà vu mais en ajoutant la prise en compte de contraintes portant sur les ressources.

Plus en détail

Algorithmique P2. La complexité Ulg, 2009-2010 R.Dumont

Algorithmique P2. La complexité Ulg, 2009-2010 R.Dumont Algorithmique P2 La complexité Ulg, 2009-2010 R.Dumont Sources supplémentaires Ouvrages Data Structures in Java, T. Standish, 1998 Data Structures and Algorithms in Java (4th ed), Michael T. Goodrich &

Plus en détail

ReportBuilder. Pour EBP Bâtiment et EBP Devis et Facturation. Guide d initiation et de prise en main

ReportBuilder. Pour EBP Bâtiment et EBP Devis et Facturation. Guide d initiation et de prise en main ReportBuilder Pour EBP Bâtiment et EBP Devis et Facturation Guide d initiation et de prise en main Edité par EBP Informatique, Rue de Cutesson, BP 95 78513 Rambouillet Cedex Tél : 01 34 94 80 20, Fax :

Plus en détail

RapidMiner. Data Mining. 1 Introduction. 2 Prise en main. Master Maths Finances 2010/2011. 1.1 Présentation. 1.2 Ressources

RapidMiner. Data Mining. 1 Introduction. 2 Prise en main. Master Maths Finances 2010/2011. 1.1 Présentation. 1.2 Ressources Master Maths Finances 2010/2011 Data Mining janvier 2011 RapidMiner 1 Introduction 1.1 Présentation RapidMiner est un logiciel open source et gratuit dédié au data mining. Il contient de nombreux outils

Plus en détail

Marches, permutations et arbres binaires aléatoires

Marches, permutations et arbres binaires aléatoires Marches, permutations et arbres binaires aléatoires Épreuve pratique d algorithmique et de programmation Concours commun des Écoles Normales Supérieures Durée de l épreuve: 4 heures Cœfficient: 4 Juillet

Plus en détail