Comment démontrer que deux droites sont perpendiculaires?

Dimension: px
Commencer à balayer dès la page:

Download "Comment démontrer que deux droites sont perpendiculaires?"

Transcription

1 omment démontrer que deux droites sont perpendiculaires? Utilisons On sait que (hypothèses) or...(propriété, définition) donc...(conclusion) Réciproque de Pythagore,5 1,5 = + Si dans un triangle le carré de la longueur de plus grand côté est égale à la somme des carrés des longueurs des deux autres côtés alors ce triangle est rectangle et l angle droit est l angle opposé au plus grand côté. Le triangle est rectangle en. orthocentre H H est le point d intersection de deux hauteurs du triangle. H est donc l orthocentre Si une droite passe par un sommet du triangle et l orthocentre alors elle est perpendiculaire au côté opposé à ce sommet. les droites (H) et () sont perpendiculaires ercle circonscrit est un point du cercle de diamètre [] Si un triangle est inscrit dans un cercle et a pour côtéun diamètre de ce cercle alors ce triangle est rectangle et l angle droit est opposé au diamètre du cercle. Le triangle est rectangle en édiane [] est une médiane du triangle Sidansun trianglelamédianeissued unsommetmesurelamoitié du côté opposé Le triangle est rectangle en et = = = lors ce triangle est rectangle. édiatrice = Si un point est équidistant des extrémités d un segment () est la médiatrice de [] = alors il est sur la médiatrice d un segment donc () est perpendiculaire à () 1

2 omment démontrer que deux droites sont perpendiculaires? tangente à un cercle La droite D est tangente au cercle Si une droite est tangente en à un cercle de centre O (D) et () sont perpendiculaires D au point. alors elle est perpendiculaire à la droite (O) Les droites et sont pa- Si deux droites sont parallèles et si une troisième est perpendicu- Les droites et sont perpen- // rallèles. laire à l une diculaires. La droite est perpendiculaire à alors elle est perpendiculaire à l autre. bissectrice d un angle est un point sur la bissectrice de Si un point est surla bissectrice d un angle alors il est équidistant OH=OK D K1 l angle des côtés de cet angle (OH) et (H) sont perpendiculaires (OK) et (H) sont perpendiculaires

3 omment démontrer que deux droites sont parallèles? Utilisons On sait que (hypothèses) or...(propriété, définition) donc...(conclusion) parallèle à si deux droites sont parallèles à une même troisième, etsontparallèlesentreelles // // et est parallèle à alors elles sont parallèles perpendiculaire à si deux droites sont perpendiculaires à une même troisième, et sont parallèles et est perpendiculaire à alors elles sont parallèles entre elles réciproque de Thales Si et N sont deux tri- D après la réciproque du théorème de Thales. lors on a ( N)//() 1,5 N 0.8,5 angles avec : est un sommet commun [],N [] = N On peut aussi remplacer la dernière condition par = N

4 1 Le théorème de Pythagore Théorème : Dans un triangle rectangle, le carré de l hypoténuse est égal à la somme des carrés des côtés de l angle droit. Si est rectangle en alors = +. est un sommet commun [],N [] lors on a (N)//() = N On peut aussi remplacer la dernière condition par = N La trigonométrie Utilisation : alculer la longueur d un côté connaissant les deux autres. Réciproque : Si le carré du plus grand côté est égal à la somme des carrés des deux autres, alors le triangle est rectangle. Si est égal à + alors est rectangle en. Utilisation : Démontrer qu un triangle est rectangle.,5 1,5 Dans un triangle rectangle, on a les relations trigonométriques suivantes : ôté opposé de α sin(α) = Hypothénuse ôté adjacent de α cos(α) = Hypothénuse ôté opposé de α tan(α) = ôté adjacent de α Exemple : sinâ = Exemple : cosâ = Exemple : tanâ = Le théorème de Thalès Théorème : Si deux triangles ont un sommet commun et des côtés appartenant à la même droite ou parallèles, alors les mesures des côtés des deux triangles sont proportionnels. Si et N sont deux triangles avec : est un sommet commun [],N [] lors on a = N = N (N)//() N (N)//() Réciproque : Si deux triangles ont un sommet commun, deux côtés respectivement appartenant à la même droite et de longueur proportionnelles, alors les deux autres côtés sont parallèles. Si et N sont deux triangles avec : 1,5 N 0.8,5

5 Les droites remarquables dans un triangle. Les hauteurs..1 édiatrices La médiatrice d un segment passe par le milieu de ce segment et est perpendiculaire à ce segment. H La hauteur d un triangle est une droite qui passe par un sommet et qui est perpendiculaire à son côté opposé. H Les trois médiatrices d un triangle sont concourantes. L intersection des médiatrices est le centre du cercle circonscrit. Les trois hauteurs d un triangle sont concourantes. L intersection des hauteurs est l orthocentre. Le cercle circonscrit à un triangle est le cercle qui passe par ses trois sommets.. Les bissectrices. Les médianes La médiane d un triangle est une droite qui passe par un sommet du triangle et le milieu de son côté opposé. J K G La bissectrice d un angle est la droite qui coupe l angle en deux angles de même mesure. Ω L // Propriétés dans le triangle : Les trois médianes d un triangle sont concourantes. Les trois bissectrices d un triangle sont concourantes. L intersection des bissectrices est le centre du cercle inscrit. L intersection des médianes est le centre de gravité du triangle. 5

Si deux droites sont parallèles à une même troisième. alors les deux droites sont parallèles entre elles. alors

Si deux droites sont parallèles à une même troisième. alors les deux droites sont parallèles entre elles. alors N I) Pour démontrer que deux droites (ou segments) sont parallèles (d) // (d ) (d) // (d ) deux droites sont parallèles à une même troisième les deux droites sont parallèles entre elles (d) // (d) deux

Plus en détail

Démonstration des propriétés géométriques du plan niveau collège

Démonstration des propriétés géométriques du plan niveau collège Démonstration des propriétés géométriques du plan niveau collège Propriété : Si un point est sur un segment et à égale distance de ses extrémités alors ce point est le milieu du segment. Si un point est

Plus en détail

Triangle rectangle : Cercle circonscrit et médiane

Triangle rectangle : Cercle circonscrit et médiane Triangle rectangle : Cercle circonscrit et médiane I) Vocabulaire 1) Hypoténuse Définition : Dans un triangle rectangle le côté opposé à l angle droit est appelé hypoténuse. 2) Hauteurs, médianes, médiatrices

Plus en détail

BREVET BLANC Corrigé 15 avril 2013

BREVET BLANC Corrigé 15 avril 2013 REVET LN orrigé 15 avril 2013 *********************** Exercice 1 : On donne ci-dessous les représentations graphiques de trois fonctions. es représentations sont nommées 1, 2, 3. L une d entre elles est

Plus en détail

FORMULAIRE DE MATHEMATIQUES CLASSE DE TROISIEME

FORMULAIRE DE MATHEMATIQUES CLASSE DE TROISIEME 2012 FORMULAIRE DE MATHEMATIQUES CLASSE DE TROISIEME NOUS VOUS PRESENTONS ICI UN FORMULAIRE CONTENANT LES DEFINITIONS, PROPRIETES ET THEOREMES VUS EN COURS DE MATHEMATIQUES TOUT AU LONG DE VOTRE SCOLARITE

Plus en détail

CORRECTIONS. Consignes pour le déroulement de l épreuve d une durée de 2 heures

CORRECTIONS. Consignes pour le déroulement de l épreuve d une durée de 2 heures Consignes pour le déroulement de l épreuve d une durée de 2 heures * Calculatrice autorisée pour les deux parties mais en précisant les étapes des calculs. A] Nombres et Calculs : Exercice n 1 : Compléter

Plus en détail

Mesure d angles et trigonométrie

Mesure d angles et trigonométrie Thierry Ciblac Mesure d angles et trigonométrie Mesure de l angle de deux axes (ou de deux demi-droites) de même origine. - Mesures en degrés : Divisons un cercle en 360 parties égales définissant ainsi

Plus en détail

D = 5 2 4 0,5. 4 points. D = 5 2 2 D = 5 donc D est un nombre entier. 0,5

D = 5 2 4 0,5. 4 points. D = 5 2 2 D = 5 donc D est un nombre entier. 0,5 ACTIVITÉS NUMÉRIQUES (12 s) Montrer que D est un nombre entier. Ê D = 5 12 2 D = 5 2 Exercice n 1 : Toutes les étapes de calcul devront figurer sur la copie. 1. On donne A = + 1 + 2. Calculer et donner

Plus en détail

Il suffit de tracer deux médiatrices pour obtenir le centre du cercle circonscrit..

Il suffit de tracer deux médiatrices pour obtenir le centre du cercle circonscrit.. Correction-Exercices sur les droites remarquables 1. Construire un triangle ABC tel que AB = 5cm, BC = 6cm et AC= 8 cm et le cercle circonscrit à ce triangle Il suffit de tracer deux médiatrices pour obtenir

Plus en détail

Brevet Juin 2007 Métropole Réunion Corrige Page 1 sur 7

Brevet Juin 2007 Métropole Réunion Corrige Page 1 sur 7 Brevet Juin 2007 Métropole Réunion Corrige Page 1 sur 7 Exercice 1 : ACTIVITES NUMERIQUES (12 points) 1. (3x + 5)² = (3x) 2 + 2 3x 5 + 5 2 = 9x² + 30x + 25 2. 4(4 + 1) = 20 (4 + 1)(4 2) = 10 (4 + 1)² =

Plus en détail

CORRECTION BREVET BLANC

CORRECTION BREVET BLANC Partie numérique Exercice 1 : CORRECTION BREVET BLANC Question 1 : on teste les trois valeurs en remplaçant x par la valeur. La solution est Question 2 : Les solutions sont et -2 Question 3 : on fait deux

Plus en détail

Correction : E = Soit E = -1,6. F = 12 Soit F = -6 3 + 45. y = 11. et G = -2z + 4y G = 2 6 = 3 G = G = -2 5 + 4 11

Correction : E = Soit E = -1,6. F = 12 Soit F = -6 3 + 45. y = 11. et G = -2z + 4y G = 2 6 = 3 G = G = -2 5 + 4 11 Correction : EXERCICE : Calculer en indiquant les étapes: (-6 +9) ( ) ( ) B = -4 (-) (-8) B = - 8 (+ 6) B = - 8 6 B = - 44 EXERCICE : La visite médicale Calcul de la part des élèves rencontrés lundi et

Plus en détail

Calculs dans le triangle rectangle

Calculs dans le triangle rectangle alculs dans le triangle rectangle 10 De nombreuses situations de la vie professionnelle nécessitent le calcul de longueurs ou d angles. itons par exemple : pour une charpente, le calcul de la longueur

Plus en détail

Chapitre V. Polygones semblables

Chapitre V. Polygones semblables hapitre V Polygones semblables 1. Photocopieuse. Sur la photocopieuse du collège, on peut lire les pourcentages d agrandissement ou de réduction préprogrammés : 141%, 115%, 100%, 93%, 82%, 75%, 71%, et

Plus en détail

Le contexte. Le questionnement du P.E.R. :

Le contexte. Le questionnement du P.E.R. : Le contexte Ce travail a débuté en janvier. Le P.E.R. engagé depuis fin septembre a permis de faire émerger ou de réactiver : Des raisons d être de la géométrie : Calculer des grandeurs inaccessibles et

Plus en détail

JUIN : EXERCICES DE REVISIONS

JUIN : EXERCICES DE REVISIONS . Les fonctions JUIN : EXERCICES DE REVISIONS y 30 0 0-8 -7-6 - - 0 3 4 6 7 8 x -0 - -0 0 Fonction n : f(x) = y = 30x Fonction n : f(x) = y = -x³ + 3x² + x - 3 Fonction n 3 : f3(x) = y = -x + 30 Fonction

Plus en détail

TRIANGLE RECTANGLE. Chapitre 10. Triangle rectangle et cercle circonscrit Triangle rectangle et médiane

TRIANGLE RECTANGLE. Chapitre 10. Triangle rectangle et cercle circonscrit Triangle rectangle et médiane hapitre 10 TNGL TNGL Triangle rectangle et cercle circonscrit Triangle rectangle et médiane «git -Prop-Tram #2» de Dennis John shbaugh, 1974 TVTÉ TNGL TNGL T L NT TVTÉ 1 Dans un triangle rectangle oit

Plus en détail

géométrie analytique

géométrie analytique Faculté des Sciences ppliquées Géométrie et géométrie analytique Notes théoriques et applications à destination des étudiants préparant l examen d admission aux études d ingénieur civil de l Université

Plus en détail

Problème : Session 2008 (fonctions affines) Partie I : Partie II :

Problème : Session 2008 (fonctions affines) Partie I : Partie II : Problème : Session 2008 (fonctions affines) Dans ce problème, on étudie deux méthodes permettant de déterminer si le poids d'une personne est adapté à sa taille. Partie I : Dans le graphique ci-dessous

Plus en détail

L17 : Médiatrice d un segment.

L17 : Médiatrice d un segment. L17 : édiatrice d un segment. édiatrice d un segment : Définition : La médiatrice d un segment [] est la droite (d) perpendiculaire à ce segment et passant par son milieu. d Construction d une médiatrice

Plus en détail

ENSEIGNEMENT A DISTANCE

ENSEIGNEMENT A DISTANCE ours 269 Série 06 Mathématiques (2 ème degré) GEMETRIE ommunauté française de elgique ENSEIGNEMENT ISTNE (reproduction interdite sans autorisation) Plan de la série 06 Leçon 11 : Trois lieux géométriques

Plus en détail

Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé.

Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé. Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé. I- ACTIVITES NUMERIQUES (12 points) Exercice 1 (3 points) On considère

Plus en détail

Fragments de géométrie du triangle

Fragments de géométrie du triangle Fragments de géométrie du triangle Pierre Jammes (version préliminaire du 2 août 2013) 1. Dénitions On donne ici les dénitions des principaux objets mis en jeu dans le début du texte. Dans le plan euclidien,

Plus en détail

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES Théorème - Définition Soit un cercle (O,R) et un point. Une droite passant par coupe le cercle en deux points A et

Plus en détail

- Rappels sur la résolution d une équation de la forme. " oeuil "

- Rappels sur la résolution d une équation de la forme.  oeuil - EE Thème N 6 : TRIGONOETRIE Equation () e que je dois savoir à la fin du thème : - Rappels sur la résolution d une équation de la forme a ou b b a - onnaître et utiliser dans le triangle rectangle des

Plus en détail

I) Activités numériques

I) Activités numériques revet 99 : ordeau I) ctivités numériques ercice : alculer les valeurs eactes des nombres suivants (on donnera les résultats sous forme fractionnaire irréductible) 8 Écrire les nombres suivants sous la

Plus en détail

Les maths au collège : Cours, Techniques et Exercices. Denis LE FUR Collège Zéphir, Cayenne

Les maths au collège : Cours, Techniques et Exercices. Denis LE FUR Collège Zéphir, Cayenne Les maths au collège : ours, Techniques et Exercices Denis LE FUR ollège Zéphir, ayenne 11 mars 2004 L objet de ce document est de fournir aux élèves de niveau 3ème un recueil de cours, de techniques et

Plus en détail

Triangle rectangle et cercle

Triangle rectangle et cercle Objectifs : 1 Savoir reconnaître et tracer une médiane. 2 Connaître et savoir utiliser la propriété qui caractérise le triangle rectangle par son inscription dans un demi-cercle. 3 Connaître et savoir

Plus en détail

13. Géométrie analytique

13. Géométrie analytique 13. Géométrie analytique La géométrie analytique permet de résoudre par le calcul des problèmes de géométrie. Il convient toutefois de ne pas perdre de vue que la géométrie analytique est d abord de la

Plus en détail

Programmes du collège

Programmes du collège Bulletin officiel spécial n 6 du 28 août 2008 Programmes du collège Programmes de l enseignement de mathématiques Ministère de l Éducation nationale Classe de quatrième Note : les points du programme (connaissances,

Plus en détail

Solutions. Exercice 470-1 (Corol aire n 41) Démontrer que, pour tout ensemble {x, y, z} de trois nombres réels quelconques, on a :

Solutions. Exercice 470-1 (Corol aire n 41) Démontrer que, pour tout ensemble {x, y, z} de trois nombres réels quelconques, on a : 888 Pour chercher et approfondir PEP Exercice 473-4 (ichel Lafond - ijon) ans le plan, un triangle a une aire de 344 m Un point P du plan vérifie P = 5 m, P = 33 et P = 39 m alculer les côtés de Solutions

Plus en détail

TOUT CE QU IL FAUT SAVOIR POUR LE BREVET

TOUT CE QU IL FAUT SAVOIR POUR LE BREVET TOUT E QU IL FUT SVOIR POUR LE REVET NUMERIQUE / FONTIONS eci n est qu un rappel de tout ce qu il faut savoir en maths pour le brevet. I- Opérations sur les nombres et les fractions : Les priorités par

Plus en détail

La géométrie du triangle III IV - V Cercles remarquables - Lieux géométriques - Relations métriques

La géométrie du triangle III IV - V Cercles remarquables - Lieux géométriques - Relations métriques La géométrie du triangle III IV - V Cercles remarquables - Lieux géométriques - Relations métriques III. Cercles 1. Cercle d'euler 2. Droite d'euler 3. Théorème de Feuerbach 4. Milieux des segments joignant

Plus en détail

Triangles isométriques Triangles semblables

Triangles isométriques Triangles semblables Triangles isométriques Triangles semblables Les transformations du plan ont permis de dégager des propriétés de figures superposables. Le théorème de Thalès a permis de s initier aux notions de réduction

Plus en détail

LYCEE MICHEL-RODANGE LUXEMBOURG PROGRAMMES DE MATHEMATIQUES POUR LE CYCLE INFERIEUR

LYCEE MICHEL-RODANGE LUXEMBOURG PROGRAMMES DE MATHEMATIQUES POUR LE CYCLE INFERIEUR LYCEE MICHEL-RODANGE LUXEMBOURG PROGRAMMES DE MATHEMATIQUES POUR LE CYCLE INFERIEUR Introduction. page 2 Classe de septième.. page 3 Classe de sixième page 7-1 - INTRODUCTION D une manière générale on

Plus en détail

Démontrer qu'un point est le milieu d'un segment

Démontrer qu'un point est le milieu d'un segment émntrer qu'un pint est le milieu d'un segment P 1 Si un pint est sur un segment et à égale distance de ses etrémités alrs ce pint est le milieu du segment. P 2 Si un quadrilatère est un alrs ses diagnales

Plus en détail

Envoi no. 6 : géométrie

Envoi no. 6 : géométrie Envoi no. 6 : géométrie Exercice 1. Soit un triangle rectangle isocèle en. Soit un point de l arc du cercle de centre passant par et, H son projeté orthogonal sur (). On note I le centre du cercle inscrit

Plus en détail

Trigonométrie. Guesmi.B. I) Déterminer une longueur... C 4 cm F 8. 5 cm. 5 m. 70 mm. II) Déterminer le cosinus d'un angle... B D

Trigonométrie. Guesmi.B. I) Déterminer une longueur... C 4 cm F 8. 5 cm. 5 m. 70 mm. II) Déterminer le cosinus d'un angle... B D Trigonométrie I) Déterminer une longueur... C 4 cm D I 3) Déterminer GI au millième près A 5 cm 25 E 30 2) Déterminer DF au millimètre près F 8 1) Déterminer C au centième près P 4) Déterminer QR au centimètre

Plus en détail

MON CAHIER DE VACANCES n 1. MATHEMATIQUES 3 ème 2

MON CAHIER DE VACANCES n 1. MATHEMATIQUES 3 ème 2 MON CAHIER DE VACANCES n 1 MATHEMATIQUES 3 ème 2 Ce cahier appartient à. Ce cahier est à rapporter le vendredi 6 Novembre 201, à Mme Viault. Les exercices sont à rédiger, sur ce livret, le plus sérieusement

Plus en détail

PRODUIT SCALAIRE EXERCICES CORRIGES

PRODUIT SCALAIRE EXERCICES CORRIGES Exercice n. (correction) Répondre par VRAI (V) ou FAUX (F) : Question Soient A, B et C trois points distincts du plan. PRODUIT SCALAIRE EXERCICES CORRIGES a) A, B et C sont alignés si et seulement si :

Plus en détail

Exercice 1 Le plan est muni d'un repère. On donne les points, et. 1/ Soit D le point tel que ABCD est un parallélogramme.

Exercice 1 Le plan est muni d'un repère. On donne les points, et. 1/ Soit D le point tel que ABCD est un parallélogramme. Devoir Maison A rendre le mercredi 2 mai 2nde 1 Le plan est muni d'un repère. On donne les points, et. 1/ Soit D le point tel que ABCD est un parallélogramme. Calculer les coordonnées du point D. 2/ a)

Plus en détail

BREVET BLANC DE MAI 2012

BREVET BLANC DE MAI 2012 COLLEGE GASPARD DES MONTAGNES BREVET BLANC DE MAI 2012 Ce sujet comporte 8 pages numérotées de 1/8 à 8/8, dont une feuille annexe à remettre avec la copie. L usage de la calculatrice est autorisé. Notation

Plus en détail

Emilien Suquet, suquet@automaths.com

Emilien Suquet, suquet@automaths.com THEOREE DE THLES Emilien Suquet, suquet@automaths.com I Le théorème de Thalès? Thalès est un mathématicien grec qui aurait vécu au VI ème siècle avant Jésus hrist. ous ne le connaissons qu à travers les

Plus en détail

Ce cahier existe aussi en numérique avec les liens direct vers les cours nécessaires en fin de page lien : cahier numérique

Ce cahier existe aussi en numérique avec les liens direct vers les cours nécessaires en fin de page lien : cahier numérique Ce cahier existe aussi en numérique avec les liens direct vers les cours nécessaires en fin de page lien : cahier numérique Correction Deuxième partie du cahier-de-vacances Demande Si vous trouvez un lien

Plus en détail

Thierry JOFFREDO. Mémo DNB. Première partie : calcul, fonctions. Année 2006-07

Thierry JOFFREDO. Mémo DNB. Première partie : calcul, fonctions. Année 2006-07 Thierry JFFRED ØØÔ»»ÛÛÛºÑØÓÒÙØ ºÖ Mémo DN Première partie : calcul, fonctions nnée 006-07 CLCUL SUR LES FRCTINS Fractions égales n obtient une fraction égale en multipliant (ou en divisant) numérateur

Plus en détail

5 ème Chapitre 4 Triangles

5 ème Chapitre 4 Triangles 5 ème Chapitre 4 Triangles 1) Médiatrices Définition : la médiatrice d'un segment est l'ensemble des points équidistants des extrémités du segment (cours de 6 ème ). Si M appartient à la médiatrice du

Plus en détail

COURS DE MATHÉMATIQUES Seconde

COURS DE MATHÉMATIQUES Seconde OURS DE MTHÉMTIQUES Seconde Valère ONNET (postmaster@mathsaulycee.info) 20 décembre 2006 Lycée PONTUS DE TYRD 13 rue des Gaillardons 71100 HLON SUR SÔNE Tél. : (33) 03 85 46 85 40 Fax : (33) 03 85 46 85

Plus en détail

SUJET DE BREVET METROPOLE JUIN 2014

SUJET DE BREVET METROPOLE JUIN 2014 SUJET DE BREVET METROPOLE JUIN 2014 SERIE GENERALE Exercice n 1 : (5 points) Voici un octogone régulier ABCDEFGH. 1) Représenter un agrandissement de cet octogone en l inscrivant dans un cercle de rayon

Plus en détail

THEOREME DE PYTHAGORE

THEOREME DE PYTHAGORE 1 FHE 9 THEOREME DE PYTHGORE Dans ce chapitre, - nous découvrirons le théorème de Pythagore - nous apprendrons à calculer la mesure de l un des côtés d un triangle connaissant les deux autres - nous apprendrons

Plus en détail

MATHEMATIQUES. Premier Cycle TROISIEME

MATHEMATIQUES. Premier Cycle TROISIEME MATHEMATIQUES Premier Cycle TROISIEME 79 INTRODUCTION Le programme de la classe de troisième, dernier niveau de l enseignement moyen, vise à doter l élève de savoirs faire pratiques par une intégration

Plus en détail

Exercice 1 : sur 2,5 points 1) Lire graphiquement les équations des droites D 1, D 2 et D 3 tracées dans le repère ci-dessous

Exercice 1 : sur 2,5 points 1) Lire graphiquement les équations des droites D 1, D 2 et D 3 tracées dans le repère ci-dessous NOM : Seconde A B C H J Mardi 19 janvier 010 Exercice 1 : sur,5 points 1) Lire graphiquement les équations des droites D 1, D et D tracées dans le repère ci-dessous ) Dans le même repère, tracer la droites

Plus en détail

COURS EULER: PROGRAMME DE LA PREMIÈRE ANNÉE

COURS EULER: PROGRAMME DE LA PREMIÈRE ANNÉE COURS EULER: PROGRAMME DE LA PREMIÈRE ANNÉE Le cours de la première année concerne les sujets de 9ème et 10ème années scolaires. Il y a bien sûr des différences puisque nous commençons par exemple par

Plus en détail

exercices travail autonome

exercices travail autonome travail autonome 1 On considère les quatre figures suivantes : 6 On considère les quatre figures suivantes : R R R T Fig. 1 Fig. 2 (d) R T Fig. 1 Fig. 2 T Fig. 3 Fig. 4 À l aide du codage des figures,

Plus en détail

Nombres complexes et géométrie euclidienne

Nombres complexes et géométrie euclidienne 19 Nombres complexes et géométrie euclidienne Le corps C des nombres complexes est supposé construit voir le chapitre 7. On rappelle que C est un corps commutatif et un R-espace vectoriel de dimension,

Plus en détail

Diplôme National du Brevet Métropole - La Réunion - Mayotte - Session 2009

Diplôme National du Brevet Métropole - La Réunion - Mayotte - Session 2009 Diplôme National du Brevet Métropole - La Réunion - Mayotte - Session 2009 L usage de la calculatrice est autorisé, dans le cadre de la réglementation en vigueur. I - Activités numériques II - Activités

Plus en détail

x 8 = 0 3x - 6 = 2x + 2 3x² 6 = 2x² + 2

x 8 = 0 3x - 6 = 2x + 2 3x² 6 = 2x² + 2 Partie numérique : 16 points Exercice n 1 (4 points) : Pour chaque ligne du tableau ci-dessous, 3 réponses sont proposées, mais une seule est exacte. Aucune justification n'est demandée. Écrire le numéro

Plus en détail

Si un quadrilatère a. Si un quadrilatère a. Si un quadrilatère a. Si un quadrilatère a. ses côtés opposés. ses côtés opposés de. deux côtés opposés

Si un quadrilatère a. Si un quadrilatère a. Si un quadrilatère a. Si un quadrilatère a. ses côtés opposés. ses côtés opposés de. deux côtés opposés P1 P2 P3 P4 a a a a ses côtés opposés ses côtés opposés de deux côtés opposés ses diagonales qui se parallèles, alors c est même longueur alors parallèles et de même coupent en leur un c est un longueur

Plus en détail

Fiche descriptive - Clip vidéo anglais : Observation des formes tridimensionnelles en vue de résoudre des problèmes trigonométriques

Fiche descriptive - Clip vidéo anglais : Observation des formes tridimensionnelles en vue de résoudre des problèmes trigonométriques Fiche descriptive - Clip vidéo anglais : Observation des formes tridimensionnelles en vue de résoudre des problèmes trigonométriques Informations générales Année de production : 2009 Pays : Langue : Age

Plus en détail

ACTIVITES NUMERIQUES ( 18 points )

ACTIVITES NUMERIQUES ( 18 points ) Copie numéro :.. 4 points sont attribués pour l orthographe, le soin, les notations et la rédaction. L utilisation de la calculatrice est autorisée. NE PAS OUBLIER DE RENDRE L ANNEXE AVEC LA COPIE! ACTIVITES

Plus en détail

Collège Henri Meck lundi 4 mai 2009 Molsheim BREVET BLANC DE MATHEMATIQUES N 2. ( Extraits d'épreuves du brevet de 2007 et 2008 ) PRESENTATION 4 pts

Collège Henri Meck lundi 4 mai 2009 Molsheim BREVET BLANC DE MATHEMATIQUES N 2. ( Extraits d'épreuves du brevet de 2007 et 2008 ) PRESENTATION 4 pts Collège Henri Meck lundi 4 mai 2009 Molsheim BREVET BLANC DE MATHEMATIQUES N 2 ( Extraits d'épreuves du brevet de 2007 et 2008 ) PRESENTATION 4 pts Rappel : Présenter les parties de l'épreuve sur feuilles

Plus en détail

Brevet Amérique du sud novembre 2011

Brevet Amérique du sud novembre 2011 ACTIVITÉS NUMÉRIQUES (12 POINTS) Exercice 1 Cet exercice est un exercice à choix multiples (QCM). Pour chaque question, une seule réponse est exacte. Une réponse correcte rapportera 1 point. L absence

Plus en détail

Livret de connaissances et de compétences Nom :... Mathématiques Niveau 6eme Prénom :...

Livret de connaissances et de compétences Nom :... Mathématiques Niveau 6eme Prénom :... Livret de connaissances et de compétences Nom :... Mathématiques Niveau 6eme Prénom :... 6D1 6D10 6D11 6D12 6D2 6D20 6D21 6D22 Proportionnalité (situations problèmes) Reconnaître si une situation relève

Plus en détail

PARTIE 1 : ACTIVITÉS NUMÉRIQUES (12 points)

PARTIE 1 : ACTIVITÉS NUMÉRIQUES (12 points) COLLÈGE LA PRÉSENTATION BREVET BLANC Février 2011 ÉPREUVE DE MATHÉMATIQUES Classe de 3 e Durée : 2 heures Présentation et orthographe : 4 points Les calculatrices sont autorisées, ainsi que les instruments

Plus en détail

EXAMEN D ADMISSION POUR CANDIDATS SANS MATURITE FEDERALE

EXAMEN D ADMISSION POUR CANDIDATS SANS MATURITE FEDERALE EXAMEN D ADMISSION POUR CANDIDATS SANS MATURITE FEDERALE 1 1 Conformément à l article 43 du Règlement de la Faculté des Hautes Etudes Commerciales, les personnes qui sont de nationalité suisse ou domiciliées

Plus en détail

Professeur des écoles Mathématiques

Professeur des écoles Mathématiques ENSEIGNEMENT CONCOURS 2014/2015 Concours NOUVEAU CRPE Professeur des écoles Mathématiques Cours et exercices opérations fonctions équations géométrie proportionnalité probabilités L essentiel en 35 fiches

Plus en détail

La médiatrice d un segment

La médiatrice d un segment EXTRT DE CURS DE THS DE 4E 1 La médiatrice d un segment, la bissectrice d un angle La médiatrice d un segment Définition : La médiatrice d un segment est l ae de smétrie de ce segment ; c'est-à-dire que

Plus en détail

Géométrie synthétique : Juillet 2005 (première série) Nom. Question 3 : (25%) Numéro

Géométrie synthétique : Juillet 2005 (première série) Nom. Question 3 : (25%) Numéro Géométrie synthétique : Juillet 2005 (première série) Question 3 : (25%) On donne dans le même plan, un point fixe F, et un cercle fixe de centre O et de rayon R. Par F, on mène une droite qui intersecte

Plus en détail

TRIGONOMETRIE ET CALCUL NUMERIQUE

TRIGONOMETRIE ET CALCUL NUMERIQUE TRIGONOMETRIE ET CALCUL NUMERIQUE Questions 2010-2013 Exercice 1 2 2 sin(4 x)cos( x) 2sin( x)cos (2 x) 1 2sin ( x) (valeurs numériques) x 45 k 90 ;10 k 120 ;50 k 120 k Exercice 2 tg x 3tg x 4 4 (valeurs

Plus en détail

Nombres et calculs. Ex 1 Assimilons un fil de cuivre à un cylindre de diamètre d et de longueur l.

Nombres et calculs. Ex 1 Assimilons un fil de cuivre à un cylindre de diamètre d et de longueur l. Nombres et calculs Objectifs : u travers de quelques exercices nous allons évoquer les nombres et leurs propriétés. - quels ensembles particuliers appartiennent -ils? - Quelles sont les différentes formes

Plus en détail

Projection orthogonale sur une droite du plan, projection vectorielle associée. Applications (calculs de distances et d angles, optimisation )

Projection orthogonale sur une droite du plan, projection vectorielle associée. Applications (calculs de distances et d angles, optimisation ) Projection orthogonale sur une droite du plan, projection vectorielle associée. Applications (calculs de distances et d angles, optimisation ) Introduction : On se place dans plan affine euclidien muni

Plus en détail

3 ème Cours : géométrie dans l espace

3 ème Cours : géométrie dans l espace I. La sphère : a) Définition : La sphère de centre et de rayon R est l ensemble de tous les points qui sont situés à la distance R du point. L intérieur de la sphère (l ensemble des points dont la distance

Plus en détail

Sujet de mathématiques du brevet des collèges

Sujet de mathématiques du brevet des collèges Sujet de mathématiques du brevet des collèges POLYNÉSIE Septembre 014 Durée : h00 Calculatrice autorisée Indication portant sur l ensemble du sujet. Toutes les réponses doivent être justifiées, sauf si

Plus en détail

Transformations géométriques

Transformations géométriques Transformations géométriques Thomas udzinski Table des matières 1 Symétries centrales et axiales, translations 1 2 Homothéties 4 2.1 Définitions et propriétés de base :........................... 4 2.2

Plus en détail

BREVET BLANC MATHEMATIQUES

BREVET BLANC MATHEMATIQUES BREVET BLANC MATHEMATIQUES Avril 2014 ---------- Durée de l épreuve : 2 heures ---------- Ce sujet comporte 4 pages numérotées de 1/4 à 4/4. Le sujet est à rendre avec la copie L usage de la calculatrice

Plus en détail

RECHERCHE DE CHEMIN MINIMAL

RECHERCHE DE CHEMIN MINIMAL REHERHE DE HEIN INIL par Yvon KWLSK, Sofiane SERUTU et Jérémy VEIRN, élèves de troisième au collège dulphe DELEGRGUE de ourcelles lès Lens (Pas de alais) 2003 Enseignant : Stéphane RERT (collège DELEGRGUE

Plus en détail

Calcul de longueurs :

Calcul de longueurs : Calcul de longueurs : Exercice : (Japon 96) C est un triangle rectangle en A. On donne 5 cm et A B ˆC 5. 1) Construire la figure en vraie grandeur. 2) Déterminer la longueur, arrondie au dixième de centimètre.

Plus en détail

Ch.G3 : Distances et tangentes

Ch.G3 : Distances et tangentes 4 e - programme 2011 mathématiques ch.g3 cahier élève Page 1 sur 14 1 DISTC D U PIT À U DRIT Ch.G3 : Distances et tangentes 1.1 Définition ex 1 DÉFIITI 1 : Soit une droite et un point n'appartenant pas

Plus en détail

Brevet Blanc n 1. Mathématiques

Brevet Blanc n 1. Mathématiques Brevet Blanc n 1 Novembre 2010 Mathématiques Durée de l'épreuve : 2h00 Le candidat répondra sur une copie L'usage de la calculatrice est autorisé, dans le cadre de la réglementation en vigueur. Activités

Plus en détail

Olympiades Françaises de Mathématiques 2012-2013. Test du mercredi 9 janvier Corrigé

Olympiades Françaises de Mathématiques 2012-2013. Test du mercredi 9 janvier Corrigé Olympiades Françaises de Mathématiques 202-203 Test du mercredi 9 janvier Corrigé Exercice. Soit ABC un triangle isocèle en A. On note O le centre de son cercle circonscrit. Soit D un point de [BC]. La

Plus en détail

Brevet blanc de mathématiques

Brevet blanc de mathématiques Brevet blanc de mathématiques avril 2011 L'usage de la calculatrice est autorisé. I Activités numériques 12 points II Activités géométriques 12 points III Problème 12 points Qualité de rédaction et présentation

Plus en détail

Devoir commun Décembre 2014 3 ème LV2

Devoir commun Décembre 2014 3 ème LV2 Devoir commun Décembre 2014 3 ème LV2 Collège OASIS Corrigé de l Epreuve de Mathématiques L usage de la calculatrice est autorisé, mais tout échange de matériel est interdit Les exercices sont indépendants

Plus en détail

BREVET BLANC de MATHEMATIQUES n 1 Janvier 2012 - durée : 2 heures

BREVET BLANC de MATHEMATIQUES n 1 Janvier 2012 - durée : 2 heures BREVET BLANC de MATHEMATIQUES n 1 Janvier 2012 - durée : 2 heures Les calculatrices sont autorisées. L orthographe, le soin et la présentation sont notés sur 4 points. Activités numériques (12 points)

Plus en détail

Partie numérique Exercice 1 1) Les nombres 288 et 224 sont pairs donc ils sont divisibles par 2. Ils ne sont donc pas premiers

Partie numérique Exercice 1 1) Les nombres 288 et 224 sont pairs donc ils sont divisibles par 2. Ils ne sont donc pas premiers Partie numérique Eercice 1 1) Les nombres 88 et sont pairs donc ils sont divisibles par. Ils ne sont donc pas premiers entre eu car leur Plus Grand Commun Diviseur est supérieur ou égal à. ) Pour calculer

Plus en détail

COURS AUTOCAD DESSINER

COURS AUTOCAD DESSINER COURS AUTOCAD DESSINER Commandes de dessin Commandes relatives aux blocs Commande Hachures Commande région Commandes de texte La commande ligne Elle permet de tracer des segments Il faut indiquer : Le

Plus en détail

PROGRAMMES DE MATHEMATIQUES

PROGRAMMES DE MATHEMATIQUES RÉPUBLIQUE TUNISIENNE MINISTÈRE DE L ÉDUCATION & DE LA FORMATION DIRECTION GÉNÉRALE DU CYCLE PREPARATOIRE & DE L'ENSEIGNEMENT SECONDAIRE Direction de la Pédagogie & des Normes Du cycle préparatoire et

Plus en détail

MATHEMATIQUES BREVET BLANC. Vendredi 3 Avril 2015

MATHEMATIQUES BREVET BLANC. Vendredi 3 Avril 2015 MATHEMATIQUES BREVET BLANC Vendredi 3 Avril 2015 Exercice 1 : ( 2,5 points) Un sac contient 5 boules noires numérotées de 1 à 5 et 3 boules blanches numérotées de 1 à 3. Chacune de ces boules a la même

Plus en détail

Comment pourrais-tu faire pour construire un triangle ABC si tu connais seulement : la mesure de deux angles : ABC = 40 et ACB = 110 ;

Comment pourrais-tu faire pour construire un triangle ABC si tu connais seulement : la mesure de deux angles : ABC = 40 et ACB = 110 ; omment pourrais-tu faire pour construire un triangle si tu connais seulement : la mesure de deux angles : = 40 et = 110 ; le périmètre du triangle : = 15 cm? 167 ctivité 1 : u côté des triangles... 1.

Plus en détail

Deux disques dans un carré

Deux disques dans un carré Deux disques dans un carré Table des matières 1 Fiche résumé 2 2 Fiche élève Seconde - version 1 3 2.1 Le problème............................................... 3 2.2 Construction de la figure avec geogebra...............................

Plus en détail

Activités numériques

Activités numériques Sujet et correction Stéphane PASQUET, 25 juillet 2008 2008 Activités numériques Exercice On donne le programme de calcul suivant : Choisir un nombre. a) Multiplier ce nombre pas 3. b) Ajouter le carré

Plus en détail

La géométrie du cercle. Durée suggérée: 3 semaines

La géométrie du cercle. Durée suggérée: 3 semaines La géométrie du cercle Durée suggérée: 3 semaines Aperçu du module Orientation et contexte Dans le présent module, les élèves étudieront les propriétés des cercles. Ils découvriront la relation entre la

Plus en détail

TRIGONOMETRIE - EXERCICES CORRIGES

TRIGONOMETRIE - EXERCICES CORRIGES Cours et eercices de mathématiques TRIGONOMETRIE - EXERCICES CORRIGES Trigonométrie rectangle Eercice n. Compléter les égalités en respectant bien les notations de l énoncé cos ABC = sin ABC = tan ABC

Plus en détail

Brevet Blanc de Mathématiques ** Corrigé **

Brevet Blanc de Mathématiques ** Corrigé ** Brevet Blanc de Mathématiques ** Corrigé ** Collège Goscinny de Valdoie Le soin et la qualité de la rédaction comptent pour 4 points. L usage de la calculatrice est autorisé. Sujet et corrigé écrits avec

Plus en détail

Ce livret appartient à

Ce livret appartient à Ce livret appartient à N N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 N11 N12 N13 N14 N15 N16 N17 N18 N19 N20 N21 N22 N23 N24 N25 N26 N27 N28 N29 N30 N31 N32 N33 N34 Lire et écrire des nombres entiers Système de numération

Plus en détail

Utiliser les propriétés Savoir réduire un radical savoir +,-,x,: Utiliser les propriétés des puissances Calculer avec des puissances

Utiliser les propriétés Savoir réduire un radical savoir +,-,x,: Utiliser les propriétés des puissances Calculer avec des puissances ARITHMETIQUE 1 C B A Numération Ecrire en lettres et en chiffres Poser des questions fermées autour d un document simple (message, consigne, planning ) Connaître le système décimal Déterminer la position

Plus en détail

1 S Le produit scalaire Exercices. Diverses expressions du produit scalaire et calcul de grandeurs.

1 S Le produit scalaire Exercices. Diverses expressions du produit scalaire et calcul de grandeurs. S e produit scalaire Eercices Diverses epressions du produit scalaire et calcul de grandeurs. Eercice. est un triangle et I est le milieu de []. Données : I 6, I I et I. alculer : ) (introduire le point

Plus en détail

Paris et New-York sont-ils les sommets d'un carré?

Paris et New-York sont-ils les sommets d'un carré? page 95 Paris et New-York sont-ils les sommets d'un carré? par othi Mok (3 ), Michel Vongsavanh (3 ), Eric hin (3 ), iek-hor Lim ( ), Eric kbaraly ( ), élèves et anciens élèves du ollège Victor Hugo (2

Plus en détail

Une bien jolie curiosité

Une bien jolie curiosité Une bien jolie curiosité Roland Dassonval et Catherine Combelles Tracez un polygone régulier à n sommets inscrit dans un cercle de rayon 1, puis les cordes qui joignent un sommet donné aux n-1 autres.

Plus en détail

Collège Jean-Baptiste Clément

Collège Jean-Baptiste Clément Collège Jean-Baptiste Clément 5-7, rue Albert Chardavoine 93440 DUGNY réalisés par M. LENZEN. Également disponibles en consultation sur son site internet http://www.capes-de-maths.com/ 01.43.11.11.40 01.48.37.46.59

Plus en détail

LE PRODUIT SCALAIRE ( En première S )

LE PRODUIT SCALAIRE ( En première S ) LE PRODUIT SCALAIRE ( En première S ) Dernière mise à jour : Jeudi 4 Janvier 007 Vincent OBATON, Enseignant au lycée Stendhal de Grenoble ( Année 006-007 ) 1 Table des matières 1 Grille d autoévaluation

Plus en détail

Géométrie. Itinéraire de visite

Géométrie. Itinéraire de visite Itinéraire de visite Géométrie Niveau collège Mathématiques : 5e, 4e, 3 e et seconde Disciplines concernées : géométrie du triangle, solides platoniciens Temps de visite : 1 heure Cet itinéraire de visite

Plus en détail