Démontrer qu'un point est le milieu d'un segment

Dimension: px
Commencer à balayer dès la page:

Download "Démontrer qu'un point est le milieu d'un segment"

Transcription

1 émntrer qu'un pint est le milieu d'un segment P 1 Si un pint est sur un segment et à égale distance de ses etrémités alrs ce pint est le milieu du segment. P 2 Si un quadrilatère est un alrs ses diagnales se cupent en leur milieu. ('est aussi vrai pur les lsanges, rectangles et carrés qui snt des s particuliers.) appartient à [] et = est le milieu de []. est un ses diagnales [] et [] se cupent en leur milieu. P 3 Si et ' snt smétriques par rapprt à un pint alrs est le milieu du segment [']. ' et ' snt smétriques par rapprt au pint le pint est le milieu de [']. P 4 Si une drite est la médiatrice d'un segment alrs elle cupe ce segment en sn milieu. est la médiatrice du segment [] cupe le segment [] en sn milieu. P 5 Si un triangle est rectangle alrs sn cercle circnscrit a pur centre le milieu de sn hpténuse. est un triangle rectangle d'hpténuse [] le centre de sn cercle circnscrit est le milieu de []. P 6 Si, dans un triangle, une drite passe par le milieu d'un côté et est parallèle à un deuième côté alrs elle passe par le milieu du trisième côté. I J ans le triangle, I est le milieu de [] et la parallèle à () cupe [] en J J est le milieu de []. émntrer que deu drites snt parallèles P 7 Si deu drites snt parallèles à une même trisième drite alrs elles snt parallèles entre elles. (d 1) (d 2) (d 3) (d 1) // (d 2) et (d 2) // (d 3) (d 1) // (d 3). P 8 Si deu drites snt perpendiculaires à une même trisième drite alrs elles snt parallèles entre elles. (d 3) (d 1) (d 2) (d 1) (d 3) et (d 2) (d 3) (d 1) // (d 2). P 9 Si un quadrilatère est un alrs ses côtés ppsés snt parallèles. ('est aussi vrai pur les lsanges, rectangles et carrés qui snt des s particuliers.) est un () // () et () // (). 246 L'SSNTIL S PRPRIÉTÉS UTILS UX ÉNSTRTINS

2 P 10 Si deu drites cupées par une sécante frment des angles alternes-internes de même mesure alrs ces drites snt parallèles. u v w G t Les drites (vt) et (u) snt cupées par la sécante (w), v G w et snt alternes-internes et de même mesure (vt) // (u). P 11 Si deu drites cupées par une sécante frment des angles crrespndants de même mesure alrs ces drites snt parallèles. u v w G t Les drites (vt) et (u) snt cupées par la sécante (w), Gt et snt crrespndants et de même mesure (vt) // (u). P 12 Si, dans un triangle, une drite passe par les milieu de deu côtés alrs elle est parallèle au trisième côté. I J ans le triangle, I est le milieu de [] et J est le milieu de [] (IJ) est parallèle à (). P 13 Si deu drites snt smétriques par rapprt à un pint alrs elles snt parallèles. P 14 Réciprque du thérème de Thalès : Sient et (d') deu drites sécantes en. et snt deu pints de distincts de. et N snt deu pints de (d') distincts de. Si les pints,, d'une part et les pints,, N d'autre part snt alignés dans le même rdre et si = N, alrs les drites () et (N) snt parallèles. ' (d') N ' (d') Les drites et (d') snt smétriques par rapprt au pint // (d'). Les pints,, d'une part et les pints N,, d'autre part snt alignés dans le même rdre. Si, de plus, = N, alrs, d'après la réciprque du thérème de Thalès, les drites (N) et () snt parallèles. émntrer que deu drites snt perpendiculaires P 15 Si deu drites snt parallèles et si une trisième drite est perpendiculaire à l'une alrs elle est perpendiculaire à l'autre. (d 3) (d 1) (d 2) (d 1) (d 3) et (d 1) // (d 2) (d 2) (d 3). P 16 Si un quadrilatère est un lsange alrs ses diagnales snt perpendiculaires. ('est aussi vrai pur le carré qui est un lsange particulier.) est un lsange () (). P 17 Si un quadrilatère est un rectangle alrs ses côtés cnsécutifs snt perpendiculaires. ('est aussi vrai pur le carré qui est un rectangle particulier.) est un rectangle () (), () (), () () et () (). L'SSNTIL S PRPRIÉTÉS UTILS UX ÉNSTRTINS 247

3 P 18 Si une drite est la médiatrice d'un segment alrs elle est perpendiculaire à ce segment. est la médiatrice du segment [] est perpendiculaire à []. P 19 Si une drite est tangente à un cercle en un pint alrs elle est perpendiculaire au ran de ce cercle qui a pur etrémité ce pint. est tangente en au cercle de centre est perpendiculaire à []. émntrer qu'un triangle est rectangle P 20 Réciprque du thérème de Pthagre : Si, dans un triangle, le carré de la lngueur du plus grand côté est égal à la smme des carrés des lngueurs des deu autres côtés alrs le triangle est rectangle et il admet ce plus grand côté pur hpténuse. ans le triangle, 2 = 2 2 le triangle est rectangle en. P 21 Si, dans un triangle, la lngueur de la médiane relative à un côté est égale à la mitié de la lngueur de ce côté alrs ce triangle est rectangle et il admet ce côté pur hpténuse. ans le triangle, est le milieu de [] et = 2 le triangle est rectangle en. P 22 Si un triangle est inscrit dans un cercle de diamètre l'un de ses côtés alrs il est rectangle et il admet ce diamètre pur hpténuse. appartient au cercle de diamètre [] est un triangle rectangle en. émntrer qu'un quadrilatère est un P 23 Si un quadrilatère a ses côtés ppsés parallèles deu à deu alrs c'est un ans le quadrilatère, () // () et () // () est un P 24 Si un quadrilatère a ses diagnales qui se cupent en leur milieu alrs c'est un ans le quadrilatère, les diagnales [] et [] se cupent en leur milieu. nc est un P 25 Si un quadrilatère nn crisé a deu côtés ppsés parallèles et de même lngueur alrs c'est un ans le quadrilatère nn crisé, () // () et = est un 248 L'SSNTIL S PRPRIÉTÉS UTILS UX ÉNSTRTINS

4 P 26 Si un quadrilatère nn crisé a ses côtés ppsés de la même lngueur deu à deu alrs c'est un ans le quadrilatère nn crisé, = et = est un P 27 Si un quadrilatère nn crisé a ses angles ppsés de la même mesure alrs c'est un ans le quadrilatère nn crisé, = et = est un P 28 Si un quadrilatère nn crisé a un centre de smétrie alrs c'est un est centre de smétrie du quadrilatère est un émntrer qu'un quadrilatère est un lsange P 29 Si un quadrilatère a ses quatre côtés de la même lngueur alrs c'est un lsange. ans le quadrilatère = = = est un lsange. P 30 Si un a ses diagnales perpendiculaires alrs c'est un lsange. est un et () () est un lsange. P 31 Si un a deu côtés cnsécutifs de la même lngueur alrs c'est un lsange. est un et = est un lsange. émntrer qu'un quadrilatère est un rectangle P 32 Si un quadrilatère pssède tris angles drits alrs c'est un rectangle. pssède tris angles drits est un rectangle. P 33 Si un a ses diagnales de la même lngueur alrs c'est un rectangle. est un et = est un rectangle. P 34 Si un pssède un angle drit alrs c'est un rectangle. est un et () () est un rectangle. L'SSNTIL S PRPRIÉTÉS UTILS UX ÉNSTRTINS 249

5 émntrer qu'un quadrilatère est un carré P 35 Si un quadrilatère vérifie à la fis les prpriétés du lsange et du rectangle alrs c'est un carré. éterminer la mesure d'un segment P 36 Si un triangle est iscèle alrs il a deu côtés de la même lngueur. est iscèle en =. P 37 Si un triangle est équilatéral alrs il a tus ses côtés de la même lngueur. est équilatéral = =. P 38 Si un quadrilatère est un alrs ses côtés ppsés nt la même lngueur. ('est également vrai pur les rectangles, les lsanges et les carrés qui snt des s particuliers.) est un = et =. P 39 Si un quadrilatère est un lsange alrs tus ses côtés snt de la même lngueur. ('est également vrai pur les carrés qui snt des lsanges particuliers.) est un lsange = = =. P 40 Si un quadrilatère est un rectangle alrs ses diagnales nt la même lngueur. ('est également vrai pur les carrés qui snt des rectangles particuliers.) est un rectangle =. P 41 Si deu pints appartiennent à un cercle alrs ils snt équidistants du centre de ce cercle. et appartiennent au cercle de centre =. P 42 Si un pint appartient à la médiatrice d'un segment alrs il est équidistant des etrémités de ce segment. appartient à la médiatrice de [] =. P 43 Si un pint appartient à la bissectrice d'un angle alrs il est situé à la même distance des côtés de cet angle. P N appartient à la bissectrice de l'angle N = P. 250 L'SSNTIL S PRPRIÉTÉS UTILS UX ÉNSTRTINS

6 P 44 Si deu segments snt smétriques par rapprt à une drite alrs ils nt la même lngueur. ' ' Les segments [] et [''] snt smétriques par rapprt à l'ae = ''. P 45 Si un cercle est l'image d'un autre cercle par une smétrie aiale u centrale alrs ils nt le même ran. ' Les cercles de centres et ' snt smétriques par rapprt à ils nt le même ran. P 46 Si deu segments snt smétriques par rapprt à un pint alrs ils nt la même lngueur. ' ' Les segments [] et [''] snt smétriques par rapprt au pint = ''. P 47 Si, dans un triangle, un segment jint les milieu de deu côtés alrs sa lngueur est égale à la mitié de celle du trisième côté. I J ans le triangle, I est le milieu de [] et J est le milieu de [] IJ = 2. P 48 Thérème de Thalès : Sient deu drites et (d') sécantes en. et snt deu pints de distincts de. et N snt deu pints de (d') distincts de. Si les drites () et (N) snt parallèles alrs = N = N. N (d') Les drites () et (N) snt sécantes en. (N) est parallèle à (). nc = N = N. P 49 Thérème de Pthagre : Si un triangle est rectangle alrs le carré de la lngueur de l'hpténuse est égal à la smme des carrés des lngueurs des deu autres côtés. est un triangle rectangle en 2 = 2 2. P 50 Si un triangle est rectangle alrs la lngueur de la médiane issue de l'angle drit a pur lngueur la mitié de la lngueur de l'hpténuse. I est un triangle rectangle en et I est le milieu de [] I = 2. L'SSNTIL S PRPRIÉTÉS UTILS UX ÉNSTRTINS 251

7 éterminer la mesure d'un angle P 51 Si deu angles snt smétriques par rapprt à une drite alrs ils nt la même mesure. ' ' ' et ' ' ' snt smétriques par rapprt à l'ae = ' ' '. P 52 Si deu angles snt smétriques par rapprt à un pint alrs ils nt la même mesure. ' et ' ' ' snt smétriques par rapprt au pint = ' ' '. ' ' P 53 Si un quadrilatère est un alrs ses angles ppsés nt la même mesure. ('est également vrai pur les lsanges, les rectangles et les carrés qui snt des s particuliers.) est un = et =. P 54 ans un triangle, la smme des mesures des angles est égale à 180. ans le triangle, = 180. P 55 Si un quadrilatère est un alrs deu de ses angles cnsécutifs snt supplémentaires. est un = 180. P 56 Si un triangle est rectangle alrs ses angles aigus snt cmplémentaires. est un triangle rectangle en = 90. P 57 Si un triangle est iscèle alrs ses angles à la base nt la même mesure. est un triangle iscèle en =. P 58 Si un triangle est équilatéral alrs ses angles mesurent 60. est un triangle équilatéral = = = 60. P 59 Si deu angles snt ppsés par le smmet alrs ils nt la même mesure. Les angles et snt ppsés par le smmet =. 252 L'SSNTIL S PRPRIÉTÉS UTILS UX ÉNSTRTINS

8 ) ) P 60 Si deu drites parallèles snt cupées par une sécante alrs les angles alternes-internes qu'elles frment snt de même mesure. v u w G t Les angles alternes-internes snt déterminés par les drites (vt) et (u) qui snt parallèles et la sécante (w) vgw =. P 61 Si deu drites parallèles snt cupées par une sécante alrs les angles crrespndants qu'elles frment snt de même mesure. P 62 Si une drite est la bissectrice d'un angle alrs elle partage l'angle en deu angles adjacents de même mesure. P 63 Si deu angles snt inscrits dans un même cercle et s'ils interceptent le même arc de cercle alrs ils nt la même mesure. P 64 Si un angle inscrit dans un cercle et un angle au centre interceptent le même arc de cercle, alrs l'angle au centre mesure le duble de l'angle inscrit. v G u w L T t c I c L Les angles crrespndants snt déterminés par les drites (vt) et (u) qui snt parallèles et la sécante (w) Gt =. La drite () est la bissectrice de l'angle =. Les angles T et L snt inscrits dans le cercle c. Ils interceptent tus les deu l'arc. nc ils nt la même mesure. ans le cercle c, l'angle inscrit IL et l'angle au centre L interceptent le même arc nc l'angle au centre L mesure le duble de l'angle inscrit IL. L = 2 IL. émntrer avec les drites remarquables du triangle P 65 Si deu pints snt smétriques par rapprt à une drite alrs cette drite est la médiatrice du segment aant pur etrémités ces deu pints. ' ' est le smétrique de par rapprt à la drite est la médiatrice du segment [']. P 66 Si un pint est équidistant des etrémités d'un segment alrs il est situé sur la médiatrice de ce segment. = appartient à la médiatrice du segment []. L'SSNTIL S PRPRIÉTÉS UTILS UX ÉNSTRTINS 253

9 P 67 Si, dans un triangle, une drite passe par un smmet et est perpendiculaire au côté ppsé alrs c'est une hauteur du triangle. ans le triangle, passe par le smmet et est perpendiculaire au côté ppsé [] est une hauteur du triangle. P 68 Si, dans un triangle, une drite passe par un smmet et par le milieu du côté ppsé alrs c'est une médiane du triangle. ans le triangle, passe par le smmet et par le milieu du côté ppsé [] est une médiane du triangle. P 69 Si une drite partage un angle en deu angles égau alrs cette drite est la bissectrice de l'angle. = () est la bissectrice de l'angle. P 70 Si un pint est situé à la même distance des côtés d'un angle alrs il appartient à la bissectrice de cet angle. P N P = N appartient à la bissectrice de l'angle. 254 L'SSNTIL S PRPRIÉTÉS UTILS UX ÉNSTRTINS

Si deux droites sont parallèles à une même troisième. alors les deux droites sont parallèles entre elles. alors

Si deux droites sont parallèles à une même troisième. alors les deux droites sont parallèles entre elles. alors N I) Pour démontrer que deux droites (ou segments) sont parallèles (d) // (d ) (d) // (d ) deux droites sont parallèles à une même troisième les deux droites sont parallèles entre elles (d) // (d) deux

Plus en détail

La médiatrice d un segment

La médiatrice d un segment EXTRT DE CURS DE THS DE 4E 1 La médiatrice d un segment, la bissectrice d un angle La médiatrice d un segment Définition : La médiatrice d un segment est l ae de smétrie de ce segment ; c'est-à-dire que

Plus en détail

Exprimer ce coefficient de proportionnalité sous forme de pourcentage : 3,5 %

Exprimer ce coefficient de proportionnalité sous forme de pourcentage : 3,5 % 23 CALCUL DE L INTÉRÊT Tau d intérêt Paul et Rémi ont reçu pour Noël, respectivement, 20 et 80. Ils placent cet argent dans une banque, au même tau. Au bout d une année, ce placement leur rapportera une

Plus en détail

Comment démontrer que deux droites sont perpendiculaires?

Comment démontrer que deux droites sont perpendiculaires? omment démontrer que deux droites sont perpendiculaires? Utilisons On sait que (hypothèses) or...(propriété, définition) donc...(conclusion) Réciproque de Pythagore,5 1,5 = + Si dans un triangle le carré

Plus en détail

Correction : E = Soit E = -1,6. F = 12 Soit F = -6 3 + 45. y = 11. et G = -2z + 4y G = 2 6 = 3 G = G = -2 5 + 4 11

Correction : E = Soit E = -1,6. F = 12 Soit F = -6 3 + 45. y = 11. et G = -2z + 4y G = 2 6 = 3 G = G = -2 5 + 4 11 Correction : EXERCICE : Calculer en indiquant les étapes: (-6 +9) ( ) ( ) B = -4 (-) (-8) B = - 8 (+ 6) B = - 8 6 B = - 44 EXERCICE : La visite médicale Calcul de la part des élèves rencontrés lundi et

Plus en détail

Exercice 2. Exercice 3

Exercice 2. Exercice 3 Feuille d eercices n 10 Eercice 1 Une voiture parcours 150 km. Elle effectue une première partie du trajet à la vitesse moyenne de 80 km/h. On notera la longueur de cette partie, eprimée en km Suite à

Plus en détail

PROGRAMME DE MATHEMATIQUES ANNEE 5 DU SECONDAIRE

PROGRAMME DE MATHEMATIQUES ANNEE 5 DU SECONDAIRE Ecles eurpéennes Bureau du Secrétaire Général du Cnseil Supérieur Unité de dévelppement pédaggique Ref. : 011-01-D-8-fr- Orig. : EN PROGRAMME DE MATHEMATIQUES ANNEE 5 DU SECONDAIRE Curs à 6 pérides/semaine

Plus en détail

géométrie analytique

géométrie analytique Faculté des Sciences ppliquées Géométrie et géométrie analytique Notes théoriques et applications à destination des étudiants préparant l examen d admission aux études d ingénieur civil de l Université

Plus en détail

Ch.G3 : Distances et tangentes

Ch.G3 : Distances et tangentes 4 e - programme 2011 mathématiques ch.g3 cahier élève Page 1 sur 14 1 DISTC D U PIT À U DRIT Ch.G3 : Distances et tangentes 1.1 Définition ex 1 DÉFIITI 1 : Soit une droite et un point n'appartenant pas

Plus en détail

5 ème Chapitre 4 Triangles

5 ème Chapitre 4 Triangles 5 ème Chapitre 4 Triangles 1) Médiatrices Définition : la médiatrice d'un segment est l'ensemble des points équidistants des extrémités du segment (cours de 6 ème ). Si M appartient à la médiatrice du

Plus en détail

Logique binaire. Symbole européen. Table de vérité X R 0 0 1 1. Équation R = X

Logique binaire. Symbole européen. Table de vérité X R 0 0 1 1. Équation R = X Lgique binaire Définitin Une variable binaire est un élément qui ne peut prendre que deux valeurs ntées 1 et 0 (Oui et Nn). On dira que X est une variable binaire si X 0 X = 1 et si X 1 X = 0. Opératins

Plus en détail

La géométrie du triangle III IV - V Cercles remarquables - Lieux géométriques - Relations métriques

La géométrie du triangle III IV - V Cercles remarquables - Lieux géométriques - Relations métriques La géométrie du triangle III IV - V Cercles remarquables - Lieux géométriques - Relations métriques III. Cercles 1. Cercle d'euler 2. Droite d'euler 3. Théorème de Feuerbach 4. Milieux des segments joignant

Plus en détail

Triangle rectangle et cercle

Triangle rectangle et cercle Objectifs : 1 Savoir reconnaître et tracer une médiane. 2 Connaître et savoir utiliser la propriété qui caractérise le triangle rectangle par son inscription dans un demi-cercle. 3 Connaître et savoir

Plus en détail

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES Théorème - Définition Soit un cercle (O,R) et un point. Une droite passant par coupe le cercle en deux points A et

Plus en détail

Triangles isométriques Triangles semblables

Triangles isométriques Triangles semblables Triangles isométriques Triangles semblables Les transformations du plan ont permis de dégager des propriétés de figures superposables. Le théorème de Thalès a permis de s initier aux notions de réduction

Plus en détail

Exercice numéro 1 - L'escalier

Exercice numéro 1 - L'escalier Exercice numéro 1 - L'escalier On peut monter un escalier une ou deux marches à la fois. La figure de droite montre un exemple. 1. De combien de façons différentes peut-on monter un escalier de une marche?

Plus en détail

CORRECTIONS. Consignes pour le déroulement de l épreuve d une durée de 2 heures

CORRECTIONS. Consignes pour le déroulement de l épreuve d une durée de 2 heures Consignes pour le déroulement de l épreuve d une durée de 2 heures * Calculatrice autorisée pour les deux parties mais en précisant les étapes des calculs. A] Nombres et Calculs : Exercice n 1 : Compléter

Plus en détail

Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé.

Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé. Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé. I- ACTIVITES NUMERIQUES (12 points) Exercice 1 (3 points) On considère

Plus en détail

Le contexte. Le questionnement du P.E.R. :

Le contexte. Le questionnement du P.E.R. : Le contexte Ce travail a débuté en janvier. Le P.E.R. engagé depuis fin septembre a permis de faire émerger ou de réactiver : Des raisons d être de la géométrie : Calculer des grandeurs inaccessibles et

Plus en détail

Collège Henri Meck lundi 4 mai 2009 Molsheim BREVET BLANC DE MATHEMATIQUES N 2. ( Extraits d'épreuves du brevet de 2007 et 2008 ) PRESENTATION 4 pts

Collège Henri Meck lundi 4 mai 2009 Molsheim BREVET BLANC DE MATHEMATIQUES N 2. ( Extraits d'épreuves du brevet de 2007 et 2008 ) PRESENTATION 4 pts Collège Henri Meck lundi 4 mai 2009 Molsheim BREVET BLANC DE MATHEMATIQUES N 2 ( Extraits d'épreuves du brevet de 2007 et 2008 ) PRESENTATION 4 pts Rappel : Présenter les parties de l'épreuve sur feuilles

Plus en détail

Angles orientés et trigonométrie

Angles orientés et trigonométrie Chapitre Angles orientés et trigonométrie Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Trigonométrie Cercle trigonométrique. Radian. Mesure d un angle orienté, mesure principale.

Plus en détail

Paris et New-York sont-ils les sommets d'un carré?

Paris et New-York sont-ils les sommets d'un carré? page 95 Paris et New-York sont-ils les sommets d'un carré? par othi Mok (3 ), Michel Vongsavanh (3 ), Eric hin (3 ), iek-hor Lim ( ), Eric kbaraly ( ), élèves et anciens élèves du ollège Victor Hugo (2

Plus en détail

Baccalauréat S Nombres complexes Index des exercices sur les complexes de septembre 1999 à juin 2012 Tapuscrit : DENIS VERGÈS

Baccalauréat S Nombres complexes Index des exercices sur les complexes de septembre 1999 à juin 2012 Tapuscrit : DENIS VERGÈS Baccalauréat S Nombres complexes Index des exercices sur les complexes de septembre 1999 à juin 2012 Tapuscrit : DENIS VERGÈS N o Lieu et date Q.C.M. Algébrique Géométrie 1 Asie juin 2012 2 Métropole juin

Plus en détail

Utiliser les activités de cours de Moodle : le Questionnaire

Utiliser les activités de cours de Moodle : le Questionnaire Utiliser les activités de curs de Mdle : le Questinnaire CETTE PROCEDURE DÉCRIT LA MISE EN PLACE ET L UTILISATION DE L ACTIVITÉ DE COURS «QUESTIONNAIRE». PRE-REQUIS : Prcédure «Démarrer sur Mdle» DÉFINITION

Plus en détail

Chap.2 Gaz parfait, fluides réels et phases condensées

Chap.2 Gaz parfait, fluides réels et phases condensées Chap.2 Gaz parfait, fluides réels et phases cndensées 1. Cmprtement universel des gaz à basse pressin 1.1. Equatin d état de tus les gaz à basse pressin 1.2. Définitin expérimentale de la température abslue

Plus en détail

Corrigé du baccalauréat S Pondichéry 12 avril 2007

Corrigé du baccalauréat S Pondichéry 12 avril 2007 Corrigé du baccalauréat S Pondichéry 1 avril 7 EXERCICE 1 Commun à tous les candidats 4 points 1 a Les vecteurs AB et AC ont pour coordonnées AB ; ; ) et AC 1 ; 4 ; 1) Ils ne sont manifestement pas colinéaires

Plus en détail

PROBLEME(12) Première partie : Peinture des murs et du plafond.

PROBLEME(12) Première partie : Peinture des murs et du plafond. PROBLEME(12) Une entreprise doit rénover un local. Ce local a la forme d'un parallélépipède rectangle. La longueur est 6,40m, la largeur est 5,20m et la hauteur est 2,80m. Il comporte une porte de 2m de

Plus en détail

Brevet Amérique du sud novembre 2011

Brevet Amérique du sud novembre 2011 ACTIVITÉS NUMÉRIQUES (12 POINTS) Exercice 1 Cet exercice est un exercice à choix multiples (QCM). Pour chaque question, une seule réponse est exacte. Une réponse correcte rapportera 1 point. L absence

Plus en détail

ANADEF CHARTE DES GROUPES DE TRAVAIL

ANADEF CHARTE DES GROUPES DE TRAVAIL Charte des grupes de travail 1 ANADEF CHARTE DES GROUPES DE TRAVAIL Charte des grupes de travail 2 CHARTE DES GROUPES DE TRAVAIL SOMMAIRE PREAMBULE OBJET DES GROUPES DE TRAVAIL CREATION ET DISSOLUTION

Plus en détail

Deux disques dans un carré

Deux disques dans un carré Deux disques dans un carré Table des matières 1 Fiche résumé 2 2 Fiche élève Seconde - version 1 3 2.1 Le problème............................................... 3 2.2 Construction de la figure avec geogebra...............................

Plus en détail

point On obtient ainsi le ou les points d inter- entre deux objets».

point On obtient ainsi le ou les points d inter- entre deux objets». Déplacer un objet Cliquer sur le bouton «Déplacer». On peut ainsi rendre la figure dynamique. Attraper l objet à déplacer avec la souris. Ici, on veut déplacer le point A du triangle point ABC. A du triangle

Plus en détail

Résumé chapitre 3 Fiscalité et assurance vie

Résumé chapitre 3 Fiscalité et assurance vie Principes de fiscalité de l assurance de persnnes Résumé chapitre 3 Fiscalité et assurance vie Attentin : Des cmpléments d infrmatin nt été ajutés en vert dans le résumé. Ceux-ci n apparaissent pas dans

Plus en détail

MANUEL D UTILISATION DU SITE INTERNET (PUBLIER)

MANUEL D UTILISATION DU SITE INTERNET (PUBLIER) MANUEL D UTILISATION DU SITE INTERNET (PUBLIER) Chapitre 3 : Page d accueil La page d accueil est la page d entrée sur le site internet Que cntient-elle? Menu principal (haut gauche) Cmme pur tutes les

Plus en détail

COURS EULER: PROGRAMME DE LA PREMIÈRE ANNÉE

COURS EULER: PROGRAMME DE LA PREMIÈRE ANNÉE COURS EULER: PROGRAMME DE LA PREMIÈRE ANNÉE Le cours de la première année concerne les sujets de 9ème et 10ème années scolaires. Il y a bien sûr des différences puisque nous commençons par exemple par

Plus en détail

Utiliser les propriétés Savoir réduire un radical savoir +,-,x,: Utiliser les propriétés des puissances Calculer avec des puissances

Utiliser les propriétés Savoir réduire un radical savoir +,-,x,: Utiliser les propriétés des puissances Calculer avec des puissances ARITHMETIQUE 1 C B A Numération Ecrire en lettres et en chiffres Poser des questions fermées autour d un document simple (message, consigne, planning ) Connaître le système décimal Déterminer la position

Plus en détail

MAT2027 Activités sur Geogebra

MAT2027 Activités sur Geogebra MAT2027 Activités sur Geogebra NOTE: Il n est pas interdit d utiliser du papier et un crayon!! En particulier, quand vous demandez des informations sur les différentes mesures dans une construction, il

Plus en détail

NOMBRES RELATIFS Exercices 1/6

NOMBRES RELATIFS Exercices 1/6 NOMBRES RELATIFS Exercices 1/6 01 Effectuer les calculs suivants : - 6 + 10 = (- 5) + 8 = 9 + (- 7) = - 3 - (- 2) = -5 + (- 2) = -1 9 = 2 10 = (+ 9) + (+ 1) = 02 Effectuer les calculs suivants : - 6 +

Plus en détail

Exercices de géométrie

Exercices de géométrie Exercices de géométrie Stage olympique de Bois-le-Roi, avril 2006 Igor Kortchemski Exercices vus en cours Exercice 1. (IMO 2000) Soient Ω 1 et Ω 2 deux cercles qui se coupent en M et en N. Soit la tangente

Plus en détail

Devoir commun Décembre 2014 3 ème LV2

Devoir commun Décembre 2014 3 ème LV2 Devoir commun Décembre 2014 3 ème LV2 Collège OASIS Corrigé de l Epreuve de Mathématiques L usage de la calculatrice est autorisé, mais tout échange de matériel est interdit Les exercices sont indépendants

Plus en détail

Les droites (d 1 ) et (d 2 ) sont sécantes en A Le point A est le point d intersection des 2 droites

Les droites (d 1 ) et (d 2 ) sont sécantes en A Le point A est le point d intersection des 2 droites I Droites perpendiculaires Lorsque deux droites se coupent, on dit qu elles sont sécantes Les droites (d 1 ) et (d 2 ) sont sécantes en A Le point A est le point d intersection des 2 droites Lorsque deux

Plus en détail

Géométrie dans l espace

Géométrie dans l espace Géométrie dans l espace Mabrouk Brahim Université Virtuelle de Tunis 2007 Ce cours a pour objet la présentation des différents concepts de la géométrie de l espace comme une continuation de ceux vus en

Plus en détail

Notice d utilisation du site Internet de l Académie d Agriculture pour les Membres Responsables de Section ou Responsables de Groupe de Réflexion.

Notice d utilisation du site Internet de l Académie d Agriculture pour les Membres Responsables de Section ou Responsables de Groupe de Réflexion. Ntice d utilisatin du site Internet de l Académie d Agriculture pur les Membres Respnsables de Sectin u Respnsables de Grupe de Réflexin. Cette ntice tient lieu de mément. A. Présentatin... 2 B. Premiers

Plus en détail

Corrigé du baccalauréat S Polynésie juin 2004

Corrigé du baccalauréat S Polynésie juin 2004 Durée : 4 heures Corrigé du baccalauréat S Polynésie juin 4 EXERCICE Commun à tous les candidats 4 points. X suit la loi de durée de vie sans vieillissement ou encore loi eponentielle de paramètre λ ;

Plus en détail

Les Angles. I) Angles complémentaires, angles supplémentaires. 1) Angles complémentaires. 2 Angles supplémentaires. a) Définition.

Les Angles. I) Angles complémentaires, angles supplémentaires. 1) Angles complémentaires. 2 Angles supplémentaires. a) Définition. Les Angles I) Angles complémentaires, angles supplémentaires 1) Angles complémentaires Deux angles complémentaires sont deux angles dont la somme des mesures est égale à 90 41 et 49 41 49 90 donc Les angles

Plus en détail

SUCCESSION : DROITS ET FRAIS QUI PAIE QUOI?

SUCCESSION : DROITS ET FRAIS QUI PAIE QUOI? Cnférence-débat du jeudi 11 septembre 2014 SUCCESSION : DROITS ET FRAIS QUI PAIE QUOI? Lrs d un décès, il est nécessaire de régler la successin du défunt afin que sn patrimine puisse être transmis à ses

Plus en détail

VDI Vendeur à Domicile Indépendant

VDI Vendeur à Domicile Indépendant VDI Vendeur à Dmicile Indépendant Nte liminaire L'activité de vendeur à dmicile indépendant (VDI) désigne une frme de distributin réalisée auprès de particuliers, à leur dmicile u sur leur lieu de travail

Plus en détail

adifco Convention de formation N 20110550 Formation au référencement 3 jours

adifco Convention de formation N 20110550 Formation au référencement 3 jours 1 Cnventin de frmatin : référencement internet. adifc Cnventin de frmatin N 20110550 Frmatin au référencement 3 jurs Signature bligatire : ADIFCO, sarl au capital de 10 000, SIREN 451 292 544, RCS Dijn,

Plus en détail

5.3 Comment déplacer le repère?...27 5.4 Comment décaler le repère?...28 5.5 Comment centrer le repère?...28 5.6 Comment masquer ou afficher le

5.3 Comment déplacer le repère?...27 5.4 Comment décaler le repère?...28 5.5 Comment centrer le repère?...28 5.6 Comment masquer ou afficher le Table des matières 1 Présentation...6 1.1 À qui s'adresse le logiciel?...6 1.2 Quelle est la configuration requise?...6 2 Mes premiers pas...7 2.1 Comment se procurer la documentation et le logiciel?...7

Plus en détail

AC AB. A B C x 1. x + 1. d où. Avec un calcul vu au lycée, on démontre que cette solution admet deux solutions dont une seule nous intéresse : x =

AC AB. A B C x 1. x + 1. d où. Avec un calcul vu au lycée, on démontre que cette solution admet deux solutions dont une seule nous intéresse : x = LE NOMBRE D OR Présentation et calcul du nombre d or Euclide avait trouvé un moyen de partager en deu un segment selon en «etrême et moyenne raison» Soit un segment [AB]. Le partage d Euclide consiste

Plus en détail

«Aucune investigation humaine ne peut être qualifiée de science véritable si elle ne peut être démontrée mathématiquement.

«Aucune investigation humaine ne peut être qualifiée de science véritable si elle ne peut être démontrée mathématiquement. «Aucune investigation humaine ne peut être qualifiée de science véritable si elle ne peut être démontrée mathématiquement.» Léonard de Vinci MATHEMATIQUES Les mathématiques revêtaient un caractère particulier

Plus en détail

COLLÈGE LA PRÉSENTATION. BREVET BLANC Février 2014

COLLÈGE LA PRÉSENTATION. BREVET BLANC Février 2014 COLLÈGE LA PRÉSENTATION BREVET BLANC Février 2014 ÉPREUVE DE MATHÉMATIQUES Classe de 3 e Durée : 2 heures Présentation et orthographe : 4 points Les calculatrices sont autorisées, ainsi que les instruments

Plus en détail

TOUT CE QU IL FAUT SAVOIR POUR LE BREVET

TOUT CE QU IL FAUT SAVOIR POUR LE BREVET TOUT E QU IL FUT SVOIR POUR LE REVET NUMERIQUE / FONTIONS eci n est qu un rappel de tout ce qu il faut savoir en maths pour le brevet. I- Opérations sur les nombres et les fractions : Les priorités par

Plus en détail

Si un quadrilatère a. Si un quadrilatère a. Si un quadrilatère a. Si un quadrilatère a. ses côtés opposés. ses côtés opposés de. deux côtés opposés

Si un quadrilatère a. Si un quadrilatère a. Si un quadrilatère a. Si un quadrilatère a. ses côtés opposés. ses côtés opposés de. deux côtés opposés P1 P2 P3 P4 a a a a ses côtés opposés ses côtés opposés de deux côtés opposés ses diagonales qui se parallèles, alors c est même longueur alors parallèles et de même coupent en leur un c est un longueur

Plus en détail

Représentation géométrique d un nombre complexe

Représentation géométrique d un nombre complexe CHAPITRE 1 NOMBRES COMPLEXES 1 Représentation géométrique d un nombre complexe 1. Ensemble des nombres complexes Soit i le nombre tel que i = 1 L ensemble des nombres complexes est l ensemble des nombres

Plus en détail

Promotion Le défi des étoiles Aéroplan 2013. Q1. Qu est-ce que la promotion Le défi des étoiles Aéroplan?

Promotion Le défi des étoiles Aéroplan 2013. Q1. Qu est-ce que la promotion Le défi des étoiles Aéroplan? Prmtin Le défi des étiles Aérplan 2013 Q1. Qu est-ce que la prmtin Le défi des étiles Aérplan? La prmtin Le défi des étiles est une ffre de milles-bnis destinée à récmpenser les membres qui accumulent

Plus en détail

Séquence 2. Repérage dans le plan Équations de droites. Sommaire

Séquence 2. Repérage dans le plan Équations de droites. Sommaire Séquence Repérage dans le plan Équations de droites Sommaire 1 Prérequis Repérage dans le plan 3 Équations de droites 4 Synthèse de la séquence 5 Exercices d approfondissement Séquence MA0 1 1 Prérequis

Plus en détail

Épreuve pratique de mathématiques Printemps 2009. Descriptifs. (Page vide)

Épreuve pratique de mathématiques Printemps 2009. Descriptifs. (Page vide) Épreuve pratique de mathématiques Printemps 2009 Descriptifs (Page vide) Sujet 001 Épreuve pratique de mathématiques Descriptif Étude d une fonction dépendant d un paramètre Étant donné une fonction dépendant

Plus en détail

Eté 2015. LIVRET de RÉVISIONS en MATHÉMATIQUES

Eté 2015. LIVRET de RÉVISIONS en MATHÉMATIQUES Eté 2015 LIVRET de RÉVISIONS en MATHÉMATIQUES Destiné aux élèves entrant en Seconde au Lycée Honoré d Estienne d Orves Elaboré par les professeurs de mathématiques des collèges et lycées du secteur Une

Plus en détail

BREVET BLANC 2 - CORRECTION + BAREME Légende : Bleu=partie=12 points ; Vert=exercice ; Rouge = élément de réponse

BREVET BLANC 2 - CORRECTION + BAREME Légende : Bleu=partie=12 points ; Vert=exercice ; Rouge = élément de réponse BREVET BLANC 2 - CORRECTION + BAREME Légende : Bleu=partie=12 points ; Vert=exercice ; Rouge = élément de réponse ACTIVITES NUMERIQUES 30 min - 12 points EXERCICE 1 (extrait de brevet, Nouvelle-Calédonie,

Plus en détail

La géométrie du cercle. Durée suggérée: 3 semaines

La géométrie du cercle. Durée suggérée: 3 semaines La géométrie du cercle Durée suggérée: 3 semaines Aperçu du module Orientation et contexte Dans le présent module, les élèves étudieront les propriétés des cercles. Ils découvriront la relation entre la

Plus en détail

Cabri et le programme de géométrie au secondaire au Québec

Cabri et le programme de géométrie au secondaire au Québec Cabri et le programme de géométrie au secondaire au Québec Benoît Côté Département de mathématiques, UQAM, Québec cote.benoit@uqam.ca 1. Introduction - Exercice de didactique fiction Que signifie intégrer

Plus en détail

Inégalités. c a + b 3 2,

Inégalités. c a + b 3 2, DOMAINE : Géométrie AUTEUR : Margaret BILU NIVEAU : Avancé STAGE : Montpellier 03 CONTENU : Eercices Inégalités - Quelques inégalités secondaires, mais utiles - Proposition. (Inégalité de Nesbitt) Soient

Plus en détail

EXERCICES DE REVISIONS MATHEMATIQUES CM2

EXERCICES DE REVISIONS MATHEMATIQUES CM2 EXERCICES DE REVISIONS MATHEMATIQUES CM2 NOMBRES ET CALCUL Exercices FRACTIONS Nommer les fractions simples et décimales en utilisant le vocabulaire : 3 R1 demi, tiers, quart, dixième, centième. Utiliser

Plus en détail

CONJUGUÉ D'UN POINT PAR RAPPORT À UN TRIANGLE

CONJUGUÉ D'UN POINT PAR RAPPORT À UN TRIANGLE CONJUGUÉ D'UN POINT PAR RAPPORT À UN TRIANGLE Jean Luc Bovet, Auvernier L'article de Monsieur Jean Piquerez (Bulletin de la SSPMP No 86), consacré aux symédianes me paraît appeler une généralisation. En

Plus en détail

Construction de la bissectrice d un angle

Construction de la bissectrice d un angle onstruction de la bissectrice d un angle 1. Trace un angle. 1. 2. Trace un angle cercle. de centre (le sommet de l angle) et de rayon quelconque. 1. 2. 3. Trace Le cercle un angle cercle coupe. de la demi-droite

Plus en détail

Fiche de projet pour les institutions publiques

Fiche de projet pour les institutions publiques Fiche de prjet pur les institutins publiques Infrmatins pratiques Nm de l institutin publique ayant intrduit le prjet: SPF Technlgie de l'infrmatin et de la Cmmunicatin (Fedict). Nm du prjet : egv Mnitr

Plus en détail

Physique Chimie LA GRAVITATION

Physique Chimie LA GRAVITATION Dcument du prfesseur 1/6 Fiche prfesseur Physique Chimie LA GRAVITATION LA GRAVITATION Niveau 3 ème Sciences Physiques Prgramme C - De la gravitatin à l énergie mécanique Cnnaissances Capacités Cmmentaires

Plus en détail

COURS: TRIGONOMÉTRIE. 1 Relations trigonométriques CHAPITRE 4. Extrait du programme de la classe de troisième :

COURS: TRIGONOMÉTRIE. 1 Relations trigonométriques CHAPITRE 4. Extrait du programme de la classe de troisième : HPITRE 4 URS: TRIGNMÉTRIE Etrait du programme de la classe de troisième : NTENU MPÉTENES EXIGILES MMENTIRES Triangle rectangle : relations trigonométriques onnaître et utiliser dans le triangle rectangle

Plus en détail

(les caractères apparaissent en vidéo inversé : blanc sur fond

(les caractères apparaissent en vidéo inversé : blanc sur fond Editin d un dcument De l allumage du PC à sa sauvegarde et à sn impressin RF : PeMWrdSyst_0707/Tice/Web/DataSite Objet: Ntice d utilisatin d un traitement de texte pur la créatin d un dcument, de la mise

Plus en détail

Orange, leader des fournisseurs d accès à internet, progresse sur les applis

Orange, leader des fournisseurs d accès à internet, progresse sur les applis Tendances du web Orange, leader des furnisseurs d accès à internet, prgresse sur les applis Avec plus d un tiers des visites sur sites web et applis, Orange dmine le marché des furnisseurs d accès à internet

Plus en détail

Construction d un cercle tangent à deux cercles donnés.

Construction d un cercle tangent à deux cercles donnés. Préparation au CAPES Strasbourg, octobre 2008 Construction d un cercle tangent à deux cercles donnés. Le problème posé : On se donne deux cercles C et C de centres O et O distincts et de rayons R et R

Plus en détail

AOF. mini-guide. bourse. Comment choisir ses actions. Comment investir en Bourse? L analyse technique. Mars 2011

AOF. mini-guide. bourse. Comment choisir ses actions. Comment investir en Bourse? L analyse technique. Mars 2011 AOF mini-guide burse «Cmment investir en Burse? Cmment chisir ses actins L analyse technique Mars 2011 Cmment chisir ses actins L analyse technique SOMMAIRE Les lignes de tendance p. 4 Les myennes mbiles

Plus en détail

Brevet Juin 2007 Liban Corrigé Page 1 sur 6

Brevet Juin 2007 Liban Corrigé Page 1 sur 6 Brevet Juin 007 Liban Corrigé Page 1 sur 6 Exercice 1 : 1) A = 500 (10 3 ),4 10 7 8 10 4 = 500 10 6 4 10 1 10 7 8 10 4 500 4 = 8 = 500 3 8 8 = 500 3 100 10 4 = 1500 10 0 + 4 = 1500 10 4 = 1,5 10 3 10 4

Plus en détail

Une bien jolie curiosité

Une bien jolie curiosité Une bien jolie curiosité Roland Dassonval et Catherine Combelles Tracez un polygone régulier à n sommets inscrit dans un cercle de rayon 1, puis les cordes qui joignent un sommet donné aux n-1 autres.

Plus en détail

Ce que la Région et le STIF font pour les transports

Ce que la Région et le STIF font pour les transports Ce que la Régin et le STIF fnt pur les transprts Le Cnseil réginal a investi en 2008 plus de 1,2 milliards d eurs dans le dmaine des transprts, sit 31% de sn budget. C est désrmais le premier pste budgétaire!

Plus en détail

Hausse de plus de 40% pour le trafic des applis en mars 2014

Hausse de plus de 40% pour le trafic des applis en mars 2014 Tendances du web Hausse de plus de 40% pur le trafic des applis en mars 2014 Trafic des sites web en France : -10,5% en myenne en mars 2014 vs mars 2013 Etude publiée le 29 avril 2014 1 4/24/2014 Cnfidential

Plus en détail

Tâche complexe produite par l académie de Clermont-Ferrand. Mai 2012 LE TIR A L ARC. (d après une idée du collège des Portes du Midi de Maurs)

Tâche complexe produite par l académie de Clermont-Ferrand. Mai 2012 LE TIR A L ARC. (d après une idée du collège des Portes du Midi de Maurs) (d après une idée du collège des Portes du Midi de Maurs) Table des matières Fiche professeur... 2 Fiche élève... 5 1 Fiche professeur Niveaux et objectifs pédagogiques 5 e : introduction ou utilisation

Plus en détail

Vente de Capacités de Stockage de gaz du 13 mai 2015

Vente de Capacités de Stockage de gaz du 13 mai 2015 Vente de Capacités de Stckage de gaz Prduit & Quantité Prpsée SEDIANE NORD 120 90 JUIN 2015 1 TWh sur le Grupement Sediane Nrd. Type de prduit Capacité Nminale de Stckage : vlume dnnant drit à des capacités

Plus en détail

Master1 CCS. Université Paul Sabatier. Toulouse III. TPs RdM.6 + VBA. Michel SUDRE

Master1 CCS. Université Paul Sabatier. Toulouse III. TPs RdM.6 + VBA. Michel SUDRE Université Paul Sabatier Master1 CCS Toulouse III TPs RdM.6 + VBA Michel SUDRE Déc 2008 TP N 1 Poutre Fleion-Tranchant On considère 2 poutres droites identiques de longueur L dont la est un de hauteur

Plus en détail

Programme de Mathématiques Années 1-3 du Secondaire

Programme de Mathématiques Années 1-3 du Secondaire Schola Europaea Bureau du Secrétaire Général Ref. : 2007-D-3310-fr-3 Orig. : EN Programme de Mathématiques Années 1-3 du Secondaire APPROUVE PAR LE CONSEIL SUPERIEUR DES ECOLES EUROPÉENNES DES 22 ET 23

Plus en détail

ASSODESK.COM Aide en ligne

ASSODESK.COM Aide en ligne ASSODESK.COM Aide en ligne Reprductin même partielle interdite sans autrisatin Table des matières I But de l'applicatin... 3 II Lancement de l'applicatin... 3 III Frmulaire de pré-inscriptin... 3 IV Utilisatin

Plus en détail

1S Modèles de rédaction Enoncés

1S Modèles de rédaction Enoncés Par l équipe des professeurs de 1S du lycée Parc de Vilgénis 1S Modèles de rédaction Enoncés Produit scalaire & Corrigés Exercice 1 : définition du produit scalaire Soit ABC un triangle tel que AB, AC

Plus en détail

En collaboration avec la direction territoriale du MFA

En collaboration avec la direction territoriale du MFA Prpsitins pur faciliter l utilisatin de l Entente de services de garde à cntributin réduite. En cllabratin avec la directin territriale du MFA Nus recherchns des slutins visant à : Simplifier le prcessus;

Plus en détail

BREVET BLANC 2 SESSION DU 5 MAI 2009

BREVET BLANC 2 SESSION DU 5 MAI 2009 BREVET BLANC 2 SESSION DU 5 MAI 2009 MATHÉMATIQUES SÉRIE COLLÈGE DURÉE DE L'ÉPREUVE : 2 h 00 Le candidat répondra sur une copie différente pour chaque partie. Ce sujet comporte 5 pages, numérotées de 1

Plus en détail

NOTIONS ÉLÉMENTAIRES DE GÉOMÉTRIE

NOTIONS ÉLÉMENTAIRES DE GÉOMÉTRIE NOTIONS ÉLÉMENTIRES I) Les points : Un point est souvent représenté par une croix et noté avec des lettres majuscules. II) Les Droites : 1) La droite Une droite est illimitée des deux cotés, on ne peut

Plus en détail

Résumé Les particularités des machines à sous et leur incidence sur le comportement des joueurs compulsifs

Résumé Les particularités des machines à sous et leur incidence sur le comportement des joueurs compulsifs Résumé Les particularités des machines à sus et leur incidence sur le cmprtement des jueurs cmpulsifs K. Finlay 1 H. H. C. Marmurek V. Kanetkar J. Lnderville Sujet de la recherche Quelques recherches laissent

Plus en détail

Recueil des règles de vérification des rapports V de la «Collecte des données paiements» (CDDP) Banque centrale du Luxembourg

Recueil des règles de vérification des rapports V de la «Collecte des données paiements» (CDDP) Banque centrale du Luxembourg Recueil des règles de vérificatin des rapprts V de la «Cllecte des dnnées paiements» (CDDP) Banque centrale du Luxemburg 1 Smmaire Intrductin...3 Validatins cmmunes à tus les tableaux...4 Vlume u valeur

Plus en détail

Les quatre opérations sur les nombres entiers Statistiques et probabilités I. Code Unités Devoirs Code Unités Devoirs

Les quatre opérations sur les nombres entiers Statistiques et probabilités I. Code Unités Devoirs Code Unités Devoirs 1 re secondaire 2 e secondaire Les quatre opérations sur les nombres entiers Statistiques et probabilités I MAT-1005-2 2 3 MAT-2008-2 2 3 (+, -, x, ) dans l ensemble des entiers Z. Ce premier cours portant

Plus en détail

Lutter contre la précarité sur le marché du travail

Lutter contre la précarité sur le marché du travail Sécurisatin de l empli Dcument de travail pur la 2 ème séance de négciatin du 12 ctbre Lutter cntre la précarité sur le marché du travail Il existe déjà beaucup de flexibilité en France, et à côté des

Plus en détail

Guide du participant (Défi trio) 2015

Guide du participant (Défi trio) 2015 Guide du participant (Défi tri) 2015 INFORMATIONS GÉNÉRALES Se rendre sur le site de la cmpétitin L évènement se tiendra au Parc de la rivière Gentilly. Accueil de Sainte-Marie-de-Blandfrd : 1000, rute

Plus en détail

Seconde MESURER LA TERRE Page 1 MESURER LA TERRE

Seconde MESURER LA TERRE Page 1 MESURER LA TERRE Seconde MESURER LA TERRE Page 1 TRAVAUX DIRIGES MESURER LA TERRE -580-570 -335-230 +400 IX - XI siècles 1670 1669/1716 1736/1743 THALES (-à Milet) considère la terre comme une grande galette, dans une

Plus en détail

Pour répondre au besoin de sécurité juridique et de prévisibilité, la Loi type devrait traiter des questions suivantes:

Pour répondre au besoin de sécurité juridique et de prévisibilité, la Loi type devrait traiter des questions suivantes: Descriptin de la prpsitin du Canada cncernant l élabratin d une Li type sur les règles de cmpétence et de cnflits de lis en matière de cntrats de cnsmmatin dans le cadre de la CIDIP-VII Dans le cadre de

Plus en détail

LE RVER EN UN COUP D ŒIL

LE RVER EN UN COUP D ŒIL LE RVER EN UN COUP D ŒIL Le terme RVER est l acrnyme pur Régime Vlntaire d Epargne-Retraite. C est un nuveau régime de retraite régi par la Li sur les régimes vlntaires d'épargneretraite (Li sur les RVER)

Plus en détail

Dons des entreprises. Objet. Forme. Conditions

Dons des entreprises. Objet. Forme. Conditions Dns des entreprises Vus êtes une entreprise, relevant de l IS (impôt sur les sciétés) u de l IR (impôt sur le revenu)? Vus puvez apprter un sutien matériel à une assciatin u une fndatin à travers des pératins

Plus en détail

Fiches techniques illustrant le titre IV du R.R.U. du 21.11.2006 LES ESCALIERS

Fiches techniques illustrant le titre IV du R.R.U. du 21.11.2006 LES ESCALIERS Fiches techniques illustrant le titre IV du R.R.U. du 21.11.2006 LES ESCALIERS D après le Règlement Réginal d Urbanisme du 21.11.2006 TITRE IV - Chapitre IV - article 12 : - Les marches d escalier snt

Plus en détail

Sommaire de la séquence 10

Sommaire de la séquence 10 Sommaire de la séquence 10 Séance 1........................................................................................................ J étudie un problème concret................................................................................

Plus en détail

Notes de cours. Culture, société et technique (CST 4) Nom : groupe :

Notes de cours. Culture, société et technique (CST 4) Nom : groupe : Notes de cours Culture, société et technique (CST 4) Nom : groupe : Table des matières Module 1 : Les familles de fonctions... 5 1.1 Relations ou fonctions... 5 1.2 Quelques modèles mathématiques... 5

Plus en détail

COMPTE-RENDU «MATHS EN JEANS» LYCEE OZENNE Groupe 1 : Comment faire une carte juste de la Terre?

COMPTE-RENDU «MATHS EN JEANS» LYCEE OZENNE Groupe 1 : Comment faire une carte juste de la Terre? Claire FORGACZ Marion GALLART Hasnia GOUDJILI COMPTERENDU «MATHS EN JEANS» LYCEE OZENNE Groupe 1 : Comment faire une carte juste de la Terre? Si l on se pose la question de savoir comment on peut faire

Plus en détail

Concours de recrutement interne PLP 2009

Concours de recrutement interne PLP 2009 Concours de recrutement interne PLP 2009 Le sujet est constitué de quatre exercices indépendants. Le premier exercice, de nature pédagogique au niveau du baccalauréat professionnel, porte sur le flocon

Plus en détail

INCAPACITÉ Ŕ INVALIDITÉ LIGNES DIRECTRICES DE LA CONSTRUCTION DES LOIS DE MAINTIEN EN INCAPACITÉ ET EN INVALIDITÉ

INCAPACITÉ Ŕ INVALIDITÉ LIGNES DIRECTRICES DE LA CONSTRUCTION DES LOIS DE MAINTIEN EN INCAPACITÉ ET EN INVALIDITÉ INCAPACITÉ Ŕ INVALIDITÉ LIGNES DIRECTRICES DE LA CONSTRUCTION DES LOIS DE MAINTIEN EN INCAPACITÉ ET EN INVALIDITÉ Supervisé par Thierry Pincelin Écrit par : Igtz Aubin Anne Rlland Nvembre 2010-1 - TABLE

Plus en détail