Démontrer qu'un point est le milieu d'un segment

Dimension: px
Commencer à balayer dès la page:

Download "Démontrer qu'un point est le milieu d'un segment"

Transcription

1 émntrer qu'un pint est le milieu d'un segment P 1 Si un pint est sur un segment et à égale distance de ses etrémités alrs ce pint est le milieu du segment. P 2 Si un quadrilatère est un alrs ses diagnales se cupent en leur milieu. ('est aussi vrai pur les lsanges, rectangles et carrés qui snt des s particuliers.) appartient à [] et = est le milieu de []. est un ses diagnales [] et [] se cupent en leur milieu. P 3 Si et ' snt smétriques par rapprt à un pint alrs est le milieu du segment [']. ' et ' snt smétriques par rapprt au pint le pint est le milieu de [']. P 4 Si une drite est la médiatrice d'un segment alrs elle cupe ce segment en sn milieu. est la médiatrice du segment [] cupe le segment [] en sn milieu. P 5 Si un triangle est rectangle alrs sn cercle circnscrit a pur centre le milieu de sn hpténuse. est un triangle rectangle d'hpténuse [] le centre de sn cercle circnscrit est le milieu de []. P 6 Si, dans un triangle, une drite passe par le milieu d'un côté et est parallèle à un deuième côté alrs elle passe par le milieu du trisième côté. I J ans le triangle, I est le milieu de [] et la parallèle à () cupe [] en J J est le milieu de []. émntrer que deu drites snt parallèles P 7 Si deu drites snt parallèles à une même trisième drite alrs elles snt parallèles entre elles. (d 1) (d 2) (d 3) (d 1) // (d 2) et (d 2) // (d 3) (d 1) // (d 3). P 8 Si deu drites snt perpendiculaires à une même trisième drite alrs elles snt parallèles entre elles. (d 3) (d 1) (d 2) (d 1) (d 3) et (d 2) (d 3) (d 1) // (d 2). P 9 Si un quadrilatère est un alrs ses côtés ppsés snt parallèles. ('est aussi vrai pur les lsanges, rectangles et carrés qui snt des s particuliers.) est un () // () et () // (). 246 L'SSNTIL S PRPRIÉTÉS UTILS UX ÉNSTRTINS

2 P 10 Si deu drites cupées par une sécante frment des angles alternes-internes de même mesure alrs ces drites snt parallèles. u v w G t Les drites (vt) et (u) snt cupées par la sécante (w), v G w et snt alternes-internes et de même mesure (vt) // (u). P 11 Si deu drites cupées par une sécante frment des angles crrespndants de même mesure alrs ces drites snt parallèles. u v w G t Les drites (vt) et (u) snt cupées par la sécante (w), Gt et snt crrespndants et de même mesure (vt) // (u). P 12 Si, dans un triangle, une drite passe par les milieu de deu côtés alrs elle est parallèle au trisième côté. I J ans le triangle, I est le milieu de [] et J est le milieu de [] (IJ) est parallèle à (). P 13 Si deu drites snt smétriques par rapprt à un pint alrs elles snt parallèles. P 14 Réciprque du thérème de Thalès : Sient et (d') deu drites sécantes en. et snt deu pints de distincts de. et N snt deu pints de (d') distincts de. Si les pints,, d'une part et les pints,, N d'autre part snt alignés dans le même rdre et si = N, alrs les drites () et (N) snt parallèles. ' (d') N ' (d') Les drites et (d') snt smétriques par rapprt au pint // (d'). Les pints,, d'une part et les pints N,, d'autre part snt alignés dans le même rdre. Si, de plus, = N, alrs, d'après la réciprque du thérème de Thalès, les drites (N) et () snt parallèles. émntrer que deu drites snt perpendiculaires P 15 Si deu drites snt parallèles et si une trisième drite est perpendiculaire à l'une alrs elle est perpendiculaire à l'autre. (d 3) (d 1) (d 2) (d 1) (d 3) et (d 1) // (d 2) (d 2) (d 3). P 16 Si un quadrilatère est un lsange alrs ses diagnales snt perpendiculaires. ('est aussi vrai pur le carré qui est un lsange particulier.) est un lsange () (). P 17 Si un quadrilatère est un rectangle alrs ses côtés cnsécutifs snt perpendiculaires. ('est aussi vrai pur le carré qui est un rectangle particulier.) est un rectangle () (), () (), () () et () (). L'SSNTIL S PRPRIÉTÉS UTILS UX ÉNSTRTINS 247

3 P 18 Si une drite est la médiatrice d'un segment alrs elle est perpendiculaire à ce segment. est la médiatrice du segment [] est perpendiculaire à []. P 19 Si une drite est tangente à un cercle en un pint alrs elle est perpendiculaire au ran de ce cercle qui a pur etrémité ce pint. est tangente en au cercle de centre est perpendiculaire à []. émntrer qu'un triangle est rectangle P 20 Réciprque du thérème de Pthagre : Si, dans un triangle, le carré de la lngueur du plus grand côté est égal à la smme des carrés des lngueurs des deu autres côtés alrs le triangle est rectangle et il admet ce plus grand côté pur hpténuse. ans le triangle, 2 = 2 2 le triangle est rectangle en. P 21 Si, dans un triangle, la lngueur de la médiane relative à un côté est égale à la mitié de la lngueur de ce côté alrs ce triangle est rectangle et il admet ce côté pur hpténuse. ans le triangle, est le milieu de [] et = 2 le triangle est rectangle en. P 22 Si un triangle est inscrit dans un cercle de diamètre l'un de ses côtés alrs il est rectangle et il admet ce diamètre pur hpténuse. appartient au cercle de diamètre [] est un triangle rectangle en. émntrer qu'un quadrilatère est un P 23 Si un quadrilatère a ses côtés ppsés parallèles deu à deu alrs c'est un ans le quadrilatère, () // () et () // () est un P 24 Si un quadrilatère a ses diagnales qui se cupent en leur milieu alrs c'est un ans le quadrilatère, les diagnales [] et [] se cupent en leur milieu. nc est un P 25 Si un quadrilatère nn crisé a deu côtés ppsés parallèles et de même lngueur alrs c'est un ans le quadrilatère nn crisé, () // () et = est un 248 L'SSNTIL S PRPRIÉTÉS UTILS UX ÉNSTRTINS

4 P 26 Si un quadrilatère nn crisé a ses côtés ppsés de la même lngueur deu à deu alrs c'est un ans le quadrilatère nn crisé, = et = est un P 27 Si un quadrilatère nn crisé a ses angles ppsés de la même mesure alrs c'est un ans le quadrilatère nn crisé, = et = est un P 28 Si un quadrilatère nn crisé a un centre de smétrie alrs c'est un est centre de smétrie du quadrilatère est un émntrer qu'un quadrilatère est un lsange P 29 Si un quadrilatère a ses quatre côtés de la même lngueur alrs c'est un lsange. ans le quadrilatère = = = est un lsange. P 30 Si un a ses diagnales perpendiculaires alrs c'est un lsange. est un et () () est un lsange. P 31 Si un a deu côtés cnsécutifs de la même lngueur alrs c'est un lsange. est un et = est un lsange. émntrer qu'un quadrilatère est un rectangle P 32 Si un quadrilatère pssède tris angles drits alrs c'est un rectangle. pssède tris angles drits est un rectangle. P 33 Si un a ses diagnales de la même lngueur alrs c'est un rectangle. est un et = est un rectangle. P 34 Si un pssède un angle drit alrs c'est un rectangle. est un et () () est un rectangle. L'SSNTIL S PRPRIÉTÉS UTILS UX ÉNSTRTINS 249

5 émntrer qu'un quadrilatère est un carré P 35 Si un quadrilatère vérifie à la fis les prpriétés du lsange et du rectangle alrs c'est un carré. éterminer la mesure d'un segment P 36 Si un triangle est iscèle alrs il a deu côtés de la même lngueur. est iscèle en =. P 37 Si un triangle est équilatéral alrs il a tus ses côtés de la même lngueur. est équilatéral = =. P 38 Si un quadrilatère est un alrs ses côtés ppsés nt la même lngueur. ('est également vrai pur les rectangles, les lsanges et les carrés qui snt des s particuliers.) est un = et =. P 39 Si un quadrilatère est un lsange alrs tus ses côtés snt de la même lngueur. ('est également vrai pur les carrés qui snt des lsanges particuliers.) est un lsange = = =. P 40 Si un quadrilatère est un rectangle alrs ses diagnales nt la même lngueur. ('est également vrai pur les carrés qui snt des rectangles particuliers.) est un rectangle =. P 41 Si deu pints appartiennent à un cercle alrs ils snt équidistants du centre de ce cercle. et appartiennent au cercle de centre =. P 42 Si un pint appartient à la médiatrice d'un segment alrs il est équidistant des etrémités de ce segment. appartient à la médiatrice de [] =. P 43 Si un pint appartient à la bissectrice d'un angle alrs il est situé à la même distance des côtés de cet angle. P N appartient à la bissectrice de l'angle N = P. 250 L'SSNTIL S PRPRIÉTÉS UTILS UX ÉNSTRTINS

6 P 44 Si deu segments snt smétriques par rapprt à une drite alrs ils nt la même lngueur. ' ' Les segments [] et [''] snt smétriques par rapprt à l'ae = ''. P 45 Si un cercle est l'image d'un autre cercle par une smétrie aiale u centrale alrs ils nt le même ran. ' Les cercles de centres et ' snt smétriques par rapprt à ils nt le même ran. P 46 Si deu segments snt smétriques par rapprt à un pint alrs ils nt la même lngueur. ' ' Les segments [] et [''] snt smétriques par rapprt au pint = ''. P 47 Si, dans un triangle, un segment jint les milieu de deu côtés alrs sa lngueur est égale à la mitié de celle du trisième côté. I J ans le triangle, I est le milieu de [] et J est le milieu de [] IJ = 2. P 48 Thérème de Thalès : Sient deu drites et (d') sécantes en. et snt deu pints de distincts de. et N snt deu pints de (d') distincts de. Si les drites () et (N) snt parallèles alrs = N = N. N (d') Les drites () et (N) snt sécantes en. (N) est parallèle à (). nc = N = N. P 49 Thérème de Pthagre : Si un triangle est rectangle alrs le carré de la lngueur de l'hpténuse est égal à la smme des carrés des lngueurs des deu autres côtés. est un triangle rectangle en 2 = 2 2. P 50 Si un triangle est rectangle alrs la lngueur de la médiane issue de l'angle drit a pur lngueur la mitié de la lngueur de l'hpténuse. I est un triangle rectangle en et I est le milieu de [] I = 2. L'SSNTIL S PRPRIÉTÉS UTILS UX ÉNSTRTINS 251

7 éterminer la mesure d'un angle P 51 Si deu angles snt smétriques par rapprt à une drite alrs ils nt la même mesure. ' ' ' et ' ' ' snt smétriques par rapprt à l'ae = ' ' '. P 52 Si deu angles snt smétriques par rapprt à un pint alrs ils nt la même mesure. ' et ' ' ' snt smétriques par rapprt au pint = ' ' '. ' ' P 53 Si un quadrilatère est un alrs ses angles ppsés nt la même mesure. ('est également vrai pur les lsanges, les rectangles et les carrés qui snt des s particuliers.) est un = et =. P 54 ans un triangle, la smme des mesures des angles est égale à 180. ans le triangle, = 180. P 55 Si un quadrilatère est un alrs deu de ses angles cnsécutifs snt supplémentaires. est un = 180. P 56 Si un triangle est rectangle alrs ses angles aigus snt cmplémentaires. est un triangle rectangle en = 90. P 57 Si un triangle est iscèle alrs ses angles à la base nt la même mesure. est un triangle iscèle en =. P 58 Si un triangle est équilatéral alrs ses angles mesurent 60. est un triangle équilatéral = = = 60. P 59 Si deu angles snt ppsés par le smmet alrs ils nt la même mesure. Les angles et snt ppsés par le smmet =. 252 L'SSNTIL S PRPRIÉTÉS UTILS UX ÉNSTRTINS

8 ) ) P 60 Si deu drites parallèles snt cupées par une sécante alrs les angles alternes-internes qu'elles frment snt de même mesure. v u w G t Les angles alternes-internes snt déterminés par les drites (vt) et (u) qui snt parallèles et la sécante (w) vgw =. P 61 Si deu drites parallèles snt cupées par une sécante alrs les angles crrespndants qu'elles frment snt de même mesure. P 62 Si une drite est la bissectrice d'un angle alrs elle partage l'angle en deu angles adjacents de même mesure. P 63 Si deu angles snt inscrits dans un même cercle et s'ils interceptent le même arc de cercle alrs ils nt la même mesure. P 64 Si un angle inscrit dans un cercle et un angle au centre interceptent le même arc de cercle, alrs l'angle au centre mesure le duble de l'angle inscrit. v G u w L T t c I c L Les angles crrespndants snt déterminés par les drites (vt) et (u) qui snt parallèles et la sécante (w) Gt =. La drite () est la bissectrice de l'angle =. Les angles T et L snt inscrits dans le cercle c. Ils interceptent tus les deu l'arc. nc ils nt la même mesure. ans le cercle c, l'angle inscrit IL et l'angle au centre L interceptent le même arc nc l'angle au centre L mesure le duble de l'angle inscrit IL. L = 2 IL. émntrer avec les drites remarquables du triangle P 65 Si deu pints snt smétriques par rapprt à une drite alrs cette drite est la médiatrice du segment aant pur etrémités ces deu pints. ' ' est le smétrique de par rapprt à la drite est la médiatrice du segment [']. P 66 Si un pint est équidistant des etrémités d'un segment alrs il est situé sur la médiatrice de ce segment. = appartient à la médiatrice du segment []. L'SSNTIL S PRPRIÉTÉS UTILS UX ÉNSTRTINS 253

9 P 67 Si, dans un triangle, une drite passe par un smmet et est perpendiculaire au côté ppsé alrs c'est une hauteur du triangle. ans le triangle, passe par le smmet et est perpendiculaire au côté ppsé [] est une hauteur du triangle. P 68 Si, dans un triangle, une drite passe par un smmet et par le milieu du côté ppsé alrs c'est une médiane du triangle. ans le triangle, passe par le smmet et par le milieu du côté ppsé [] est une médiane du triangle. P 69 Si une drite partage un angle en deu angles égau alrs cette drite est la bissectrice de l'angle. = () est la bissectrice de l'angle. P 70 Si un pint est situé à la même distance des côtés d'un angle alrs il appartient à la bissectrice de cet angle. P N P = N appartient à la bissectrice de l'angle. 254 L'SSNTIL S PRPRIÉTÉS UTILS UX ÉNSTRTINS

Démontrer qu'un point est le milieu d'un segment

Démontrer qu'un point est le milieu d'un segment émntrer qu'un pint est le milieu d'un segment P 1 Si un pint est sur un segment et à égale distance de ses etrémités alrs ce pint est le milieu du segment. P 2 Si un quadrilatère est un alrs ses diagnales

Plus en détail

Démonstration des propriétés géométriques du plan niveau collège

Démonstration des propriétés géométriques du plan niveau collège Démonstration des propriétés géométriques du plan niveau collège Propriété : Si un point est sur un segment et à égale distance de ses extrémités alors ce point est le milieu du segment. Si un point est

Plus en détail

Si deux droites sont parallèles à une même troisième. alors les deux droites sont parallèles entre elles. alors

Si deux droites sont parallèles à une même troisième. alors les deux droites sont parallèles entre elles. alors N I) Pour démontrer que deux droites (ou segments) sont parallèles (d) // (d ) (d) // (d ) deux droites sont parallèles à une même troisième les deux droites sont parallèles entre elles (d) // (d) deux

Plus en détail

La médiatrice d un segment

La médiatrice d un segment EXTRT DE CURS DE THS DE 4E 1 La médiatrice d un segment, la bissectrice d un angle La médiatrice d un segment Définition : La médiatrice d un segment est l ae de smétrie de ce segment ; c'est-à-dire que

Plus en détail

FORMULAIRE DE MATHEMATIQUES CLASSE DE TROISIEME

FORMULAIRE DE MATHEMATIQUES CLASSE DE TROISIEME 2012 FORMULAIRE DE MATHEMATIQUES CLASSE DE TROISIEME NOUS VOUS PRESENTONS ICI UN FORMULAIRE CONTENANT LES DEFINITIONS, PROPRIETES ET THEOREMES VUS EN COURS DE MATHEMATIQUES TOUT AU LONG DE VOTRE SCOLARITE

Plus en détail

Brevet Juin 2007 Métropole Réunion Corrige Page 1 sur 7

Brevet Juin 2007 Métropole Réunion Corrige Page 1 sur 7 Brevet Juin 2007 Métropole Réunion Corrige Page 1 sur 7 Exercice 1 : ACTIVITES NUMERIQUES (12 points) 1. (3x + 5)² = (3x) 2 + 2 3x 5 + 5 2 = 9x² + 30x + 25 2. 4(4 + 1) = 20 (4 + 1)(4 2) = 10 (4 + 1)² =

Plus en détail

Comment démontrer que deux droites sont perpendiculaires?

Comment démontrer que deux droites sont perpendiculaires? omment démontrer que deux droites sont perpendiculaires? Utilisons On sait que (hypothèses) or...(propriété, définition) donc...(conclusion) Réciproque de Pythagore,5 1,5 = + Si dans un triangle le carré

Plus en détail

ENSEIGNEMENT A DISTANCE

ENSEIGNEMENT A DISTANCE ours 269 Série 06 Mathématiques (2 ème degré) GEMETRIE ommunauté française de elgique ENSEIGNEMENT ISTNE (reproduction interdite sans autorisation) Plan de la série 06 Leçon 11 : Trois lieux géométriques

Plus en détail

Correction : E = Soit E = -1,6. F = 12 Soit F = -6 3 + 45. y = 11. et G = -2z + 4y G = 2 6 = 3 G = G = -2 5 + 4 11

Correction : E = Soit E = -1,6. F = 12 Soit F = -6 3 + 45. y = 11. et G = -2z + 4y G = 2 6 = 3 G = G = -2 5 + 4 11 Correction : EXERCICE : Calculer en indiquant les étapes: (-6 +9) ( ) ( ) B = -4 (-) (-8) B = - 8 (+ 6) B = - 8 6 B = - 44 EXERCICE : La visite médicale Calcul de la part des élèves rencontrés lundi et

Plus en détail

Envoi no. 6 : géométrie

Envoi no. 6 : géométrie Envoi no. 6 : géométrie Exercice 1. Soit un triangle rectangle isocèle en. Soit un point de l arc du cercle de centre passant par et, H son projeté orthogonal sur (). On note I le centre du cercle inscrit

Plus en détail

DISTANCE D UN POINT A UNE DROITE TANGENTE A UN CERCLE BISSECTRICE

DISTANCE D UN POINT A UNE DROITE TANGENTE A UN CERCLE BISSECTRICE DISTNE D UN PINT UNE DRITE TNGENTE UN ERLE ISSETRIE I) édiatrice d un segment : Soit et deux points distincts du plan. La médiatrice du segment [] est la droite perpendiculaire au segment [] passant par

Plus en détail

SOMMAIRE. Fiche 2 : Démontrer que deux droites sont perpendiculaires. Fiche 6 : Démontrer qu un quadrilatère est un parallélogramme

SOMMAIRE. Fiche 2 : Démontrer que deux droites sont perpendiculaires. Fiche 6 : Démontrer qu un quadrilatère est un parallélogramme SOMMAIRE Fiche 1 : Démontrer que deux droites sont parallèles Fiche 2 : Démontrer que deux droites sont perpendiculaires Fiche 3 : Démontrer qu un triangle est équilatéral Fiche 4 : Démontrer qu un triangle

Plus en détail

I) Activités numériques

I) Activités numériques revet 99 : ordeau I) ctivités numériques ercice : alculer les valeurs eactes des nombres suivants (on donnera les résultats sous forme fractionnaire irréductible) 8 Écrire les nombres suivants sous la

Plus en détail

THEOREMES DE GEOMETRIE

THEOREMES DE GEOMETRIE THEOREMES DE GEOMETRIE DROITES REMARQUABLES D'UN TRIANGLE Hauteurs : On appelle hauteur d'un triangle une droite qui passe par un sommet du triangle et qui est perpendiculaire au coté opposé à ce sommet.

Plus en détail

TRIANGLES Inégalité triangulaire : Th Dans un triangle, la longueur de chaque côté est inférieure à la somme des longueurs des deux autres côtés.

TRIANGLES Inégalité triangulaire : Th Dans un triangle, la longueur de chaque côté est inférieure à la somme des longueurs des deux autres côtés. TRIANGLES Inégalité triangulaire : Th Dans un triangle, la longueur de chaque côté est inférieure à la somme des longueurs des deux autres côtés. Th Trois longueurs étant données, Si la plus grande est

Plus en détail

Donc O est le milieu de segment [MM ] Donc I est le milieu de [AB] Donc I est le milieu de [BC] Donc O est le milieu de [AC] et [BD]

Donc O est le milieu de segment [MM ] Donc I est le milieu de [AB] Donc I est le milieu de [BC] Donc O est le milieu de [AC] et [BD] COMMENT DEMONTRER Pour démontrer qu'un point est le milieu d'un segment On sait que I appartient au segment [AB] et IA = IB Propriété :Si un point appartient à un segment et est équidistant des extrémités

Plus en détail

COMMENT DEMONTRER QUE DEUX DROITES SONT PARALLELES?

COMMENT DEMONTRER QUE DEUX DROITES SONT PARALLELES? 1 COMMENT DEMONTRER QUE DEUX DROITES SONT PARALLELES? 1) En utilisant les propriétés vues en 6 ème Si deux droites sont parallèles à une même droite alors elles sont parallèles entre elles On sait que

Plus en détail

Fiches de géométrie. Pour démontrer que deux droites sont parallèles. Pour démontrer...

Fiches de géométrie. Pour démontrer que deux droites sont parallèles. Pour démontrer... 3 Pr démontrer... Fiches de géométrie Niveau 3ème...que deux droites sont parallèles... Fiche...que deux droites sont perpendiculaires... Fiche 2...que deux longueurs sont égales... Fiche 3...que deux

Plus en détail

Trigonométrie. Guesmi.B. I) Déterminer une longueur... C 4 cm F 8. 5 cm. 5 m. 70 mm. II) Déterminer le cosinus d'un angle... B D

Trigonométrie. Guesmi.B. I) Déterminer une longueur... C 4 cm F 8. 5 cm. 5 m. 70 mm. II) Déterminer le cosinus d'un angle... B D Trigonométrie I) Déterminer une longueur... C 4 cm D I 3) Déterminer GI au millième près A 5 cm 25 E 30 2) Déterminer DF au millimètre près F 8 1) Déterminer C au centième près P 4) Déterminer QR au centimètre

Plus en détail

RAPPELS DE GÉOMETRIE (sans didactique)

RAPPELS DE GÉOMETRIE (sans didactique) RPPELS DE GÉOMETRIE (sans didactique) Des animations avec applets java illustrant différentes parties de ce document sont disponibles à cette adresse : http://dpernoux.free.fr/expe1/anim.htm Les constructions

Plus en détail

Exercice 1 Le plan est muni d'un repère. On donne les points, et. 1/ Soit D le point tel que ABCD est un parallélogramme.

Exercice 1 Le plan est muni d'un repère. On donne les points, et. 1/ Soit D le point tel que ABCD est un parallélogramme. Devoir Maison A rendre le mercredi 2 mai 2nde 1 Le plan est muni d'un repère. On donne les points, et. 1/ Soit D le point tel que ABCD est un parallélogramme. Calculer les coordonnées du point D. 2/ a)

Plus en détail

Sommaire de la séquence 5

Sommaire de la séquence 5 Sommaire de la séquence 5 Séance 1.................................................................................................... 111 Je revois et j enrichis mon vocabulaire sur les angles.............................................

Plus en détail

5 ème Chapitre 4 Triangles

5 ème Chapitre 4 Triangles 5 ème Chapitre 4 Triangles 1) Médiatrices Définition : la médiatrice d'un segment est l'ensemble des points équidistants des extrémités du segment (cours de 6 ème ). Si M appartient à la médiatrice du

Plus en détail

CINQUIEME PARTIE LA SYMETRIE CENTRALE. Cours de mathématique Classe de 5 ème

CINQUIEME PARTIE LA SYMETRIE CENTRALE. Cours de mathématique Classe de 5 ème INQUIEME PRTIE L SYMETRIE ENTRLE SYMETRIQUE D'UN PINT 120 FIGURES SYMETRIQUES 121 MPRER LES DEUX SYMETRIES 122 SYMETRIQUES DES DRITES 126 SEGMENTS SYMETRIQUES; LE PRLLELGRMME 128 ENTRE DE SYMETRIE D'UNE

Plus en détail

CBD =45 et comme ces angles sont adjacents, alors ABD = ABC + CBD =18+45=63.

CBD =45 et comme ces angles sont adjacents, alors ABD = ABC + CBD =18+45=63. Chapitre 6 Les angles 1) Définitions et premières propriétés a) Angles adjacents (rappel) : Deux angles sont dits "adjacents" si ils ont un côté en commun et qu'ils sont situés de part et d'autre de ce

Plus en détail

TRIANGLE RECTANGLE. Chapitre 10. Triangle rectangle et cercle circonscrit Triangle rectangle et médiane

TRIANGLE RECTANGLE. Chapitre 10. Triangle rectangle et cercle circonscrit Triangle rectangle et médiane hapitre 10 TNGL TNGL Triangle rectangle et cercle circonscrit Triangle rectangle et médiane «git -Prop-Tram #2» de Dennis John shbaugh, 1974 TVTÉ TNGL TNGL T L NT TVTÉ 1 Dans un triangle rectangle oit

Plus en détail

Chapitre n 10 : «Les triangles»

Chapitre n 10 : «Les triangles» Chapitre n 10 : «Les triangles» I. Rappels Vocabulaire A, B et C sont les sommets. [ AB], [ BC ] et [ AC ] sont les trois côtés du triangle. BAC, BCA et ABC sont les trois angles du triangle. Le point

Plus en détail

CORRECTION BREVET BLANC

CORRECTION BREVET BLANC Partie numérique Exercice 1 : CORRECTION BREVET BLANC Question 1 : on teste les trois valeurs en remplaçant x par la valeur. La solution est Question 2 : Les solutions sont et -2 Question 3 : on fait deux

Plus en détail

Les tas de sable Année 2013-2014

Les tas de sable Année 2013-2014 Cet article est rédigé par des élèves. Il peut comporter des oublis et imperfections, autant que possible signalés par nos relecteurs dans les notes d'édition. Année 2013-2014 Élèves : Gaspard COUSIN,

Plus en détail

Problème : Session 2008 (fonctions affines) Partie I : Partie II :

Problème : Session 2008 (fonctions affines) Partie I : Partie II : Problème : Session 2008 (fonctions affines) Dans ce problème, on étudie deux méthodes permettant de déterminer si le poids d'une personne est adapté à sa taille. Partie I : Dans le graphique ci-dessous

Plus en détail

Ch.G3 : Distances et tangentes

Ch.G3 : Distances et tangentes 4 e - programme 2011 mathématiques ch.g3 cahier élève Page 1 sur 14 1 DISTC D U PIT À U DRIT Ch.G3 : Distances et tangentes 1.1 Définition ex 1 DÉFIITI 1 : Soit une droite et un point n'appartenant pas

Plus en détail

LYCEE MICHEL-RODANGE LUXEMBOURG PROGRAMMES DE MATHEMATIQUES POUR LE CYCLE INFERIEUR

LYCEE MICHEL-RODANGE LUXEMBOURG PROGRAMMES DE MATHEMATIQUES POUR LE CYCLE INFERIEUR LYCEE MICHEL-RODANGE LUXEMBOURG PROGRAMMES DE MATHEMATIQUES POUR LE CYCLE INFERIEUR Introduction. page 2 Classe de septième.. page 3 Classe de sixième page 7-1 - INTRODUCTION D une manière générale on

Plus en détail

Contrôle C2 : TRCC-THEOREME DE PYTHAGORE (55 )

Contrôle C2 : TRCC-THEOREME DE PYTHAGORE (55 ) NOM et Prénm Classe de Quatrième Cntrat 2 Année 2012 2013 Cntrôle C2 : TRCC-THEOREME DE PYTHAGORE (55 ) Cmpte rendu : Si les 3 premiers exercices snt assez bien réussis grâce à une bnne préparatin (évaluatins

Plus en détail

Degrés Le radian ne serait qu une mesure de plus s il n avait la propriété suivante :

Degrés Le radian ne serait qu une mesure de plus s il n avait la propriété suivante : S ngles trignmétrie et repérage ctivité L bjectif est de se familiariser avec la mesure des angles en radian et le repérage d un pint sur le cercle trignmétrique l sera ensuite plus facile dans le curs

Plus en détail

Fragments de géométrie du triangle

Fragments de géométrie du triangle Fragments de géométrie du triangle Pierre Jammes (version préliminaire du 2 août 2013) 1. Dénitions On donne ici les dénitions des principaux objets mis en jeu dans le début du texte. Dans le plan euclidien,

Plus en détail

Aide mémoire Géométrie 3 è m e

Aide mémoire Géométrie 3 è m e Sinus d'un angle aigu: ide mémoire Géométrie è m e Sinus: est un triangle rectangle en. le sinus de l'angle, noté sin, est le rapport sin = longueur du côté opposé de l'angle longueur de 'hypoténuse côté

Plus en détail

Collège Henri Meck lundi 4 mai 2009 Molsheim BREVET BLANC DE MATHEMATIQUES N 2. ( Extraits d'épreuves du brevet de 2007 et 2008 ) PRESENTATION 4 pts

Collège Henri Meck lundi 4 mai 2009 Molsheim BREVET BLANC DE MATHEMATIQUES N 2. ( Extraits d'épreuves du brevet de 2007 et 2008 ) PRESENTATION 4 pts Collège Henri Meck lundi 4 mai 2009 Molsheim BREVET BLANC DE MATHEMATIQUES N 2 ( Extraits d'épreuves du brevet de 2007 et 2008 ) PRESENTATION 4 pts Rappel : Présenter les parties de l'épreuve sur feuilles

Plus en détail

Brevet Blanc n 1. Mathématiques

Brevet Blanc n 1. Mathématiques Brevet Blanc n 1 Novembre 2010 Mathématiques Durée de l'épreuve : 2h00 Le candidat répondra sur une copie L'usage de la calculatrice est autorisé, dans le cadre de la réglementation en vigueur. Activités

Plus en détail

géométrie analytique

géométrie analytique Faculté des Sciences ppliquées Géométrie et géométrie analytique Notes théoriques et applications à destination des étudiants préparant l examen d admission aux études d ingénieur civil de l Université

Plus en détail

Angles et droites. 1) Angles supplémentaires et complémentaires Définitions 1) Deux angles complémentaires sont deux angles dont..

Angles et droites. 1) Angles supplémentaires et complémentaires Définitions 1) Deux angles complémentaires sont deux angles dont.. I) Angles Angles et droites 1) Angles supplémentaires et complémentaires Définitions 1) Deux angles complémentaires sont deux angles dont.. Les angles et forment un angle droit : la somme de leurs mesures

Plus en détail

CHAPITRE 1 CONSTRUCTIONS GEOMETRIQUES

CHAPITRE 1 CONSTRUCTIONS GEOMETRIQUES CHAPITRE 1 CONSTRUCTIONS GEOMETRIQUES 1. La médiatrice d'un segment 2 2. La bissectrice d'un angle 3 3. Les triangles 4 4. Parallèles et perpendiculaires 6 5. Les parallélogrammes 7 6. Le problème de Napoléon

Plus en détail

BREVET BLANC Corrigé 15 avril 2013

BREVET BLANC Corrigé 15 avril 2013 REVET LN orrigé 15 avril 2013 *********************** Exercice 1 : On donne ci-dessous les représentations graphiques de trois fonctions. es représentations sont nommées 1, 2, 3. L une d entre elles est

Plus en détail

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES Théorème - Définition Soit un cercle (O,R) et un point. Une droite passant par coupe le cercle en deux points A et

Plus en détail

PROGRAMME DE MATHEMATIQUES ANNEE 5 DU SECONDAIRE

PROGRAMME DE MATHEMATIQUES ANNEE 5 DU SECONDAIRE Ecles eurpéennes Bureau du Secrétaire Général du Cnseil Supérieur Unité de dévelppement pédaggique Ref. : 011-01-D-8-fr- Orig. : EN PROGRAMME DE MATHEMATIQUES ANNEE 5 DU SECONDAIRE Curs à 6 pérides/semaine

Plus en détail

Les principaux triangles

Les principaux triangles un triangle équilatéral un triangle équilatéral un triangle équilatéral un triangle équilatéral un triangle équilatéral un triangle équilatéral un triangle équilatéral un triangle équilatéral un triangle

Plus en détail

Chapitre n 8 : «Parallélogrammes particuliers»

Chapitre n 8 : «Parallélogrammes particuliers» Chapitre n 8 : «Parallélogrammes particuliers» I. Rappels (parallélogramme) Un parallélogramme est un quadrilatère qui a ses côtés opposés parallèles. Construction Propriétés des parallélogrammes Dans

Plus en détail

Formulaire : Toute la Géométrie du Collège 2 nde

Formulaire : Toute la Géométrie du Collège 2 nde Formulaire : Toute la Géométrie du Collège nde Comment trouver la propriété dont vous avez besoin? Grâce à la table des matières bien sûr!! Table des matières I. Rappels sur la logique et les démonstrations

Plus en détail

b. Explique précisément comment tu as placé le point H sur ton schéma.

b. Explique précisément comment tu as placé le point H sur ton schéma. ctivité 1 : Trouve le plus court chemin 1. Conjecture a. De la rive gauche d'un fleuve, lexia crie à amid qui est assis de l'autre côté du fleuve qu'elle ne sait pas nager. Trop éloigné d'elle, amid l'entend

Plus en détail

Triangle rectangle : Cercle circonscrit et médiane

Triangle rectangle : Cercle circonscrit et médiane Triangle rectangle : Cercle circonscrit et médiane I) Vocabulaire 1) Hypoténuse Définition : Dans un triangle rectangle le côté opposé à l angle droit est appelé hypoténuse. 2) Hauteurs, médianes, médiatrices

Plus en détail

CHAPITRE 4 : LA SYMETRIE AXIALE ET FIGURES GEOMETRIQUES

CHAPITRE 4 : LA SYMETRIE AXIALE ET FIGURES GEOMETRIQUES HPITRE 4 : L SYMETRIE XILE ET FIGURES GEOMETRIQUES 1. La médiatrice d un segment On dit que est la médiatrice du segment [] si : - - Ex 1 : Trace la médiatrice de [IJ] et [MN] puis place G pour que soit

Plus en détail

Ce livret appartient à

Ce livret appartient à Ce livret appartient à N N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 N11 N12 N13 N14 N15 N16 N17 N18 N19 N20 N21 N22 N23 N24 N25 N26 N27 N28 N29 N30 N31 N32 N33 N34 Lire et écrire des nombres entiers Système de numération

Plus en détail

Exprimer ce coefficient de proportionnalité sous forme de pourcentage : 3,5 %

Exprimer ce coefficient de proportionnalité sous forme de pourcentage : 3,5 % 23 CALCUL DE L INTÉRÊT Tau d intérêt Paul et Rémi ont reçu pour Noël, respectivement, 20 et 80. Ils placent cet argent dans une banque, au même tau. Au bout d une année, ce placement leur rapportera une

Plus en détail

Si un quadrilatère a. Si un quadrilatère a. Si un quadrilatère a. Si un quadrilatère a. ses côtés opposés. ses côtés opposés de. deux côtés opposés

Si un quadrilatère a. Si un quadrilatère a. Si un quadrilatère a. Si un quadrilatère a. ses côtés opposés. ses côtés opposés de. deux côtés opposés P1 P2 P3 P4 a a a a ses côtés opposés ses côtés opposés de deux côtés opposés ses diagonales qui se parallèles, alors c est même longueur alors parallèles et de même coupent en leur un c est un longueur

Plus en détail

Exercice 2. Exercice 3

Exercice 2. Exercice 3 Feuille d eercices n 10 Eercice 1 Une voiture parcours 150 km. Elle effectue une première partie du trajet à la vitesse moyenne de 80 km/h. On notera la longueur de cette partie, eprimée en km Suite à

Plus en détail

ÉLÉMENTS DE GÉOMÉTRIE PLANE

ÉLÉMENTS DE GÉOMÉTRIE PLANE ÉLÉMENTS DE GÉOMÉTRIE PLANE I. DROITE ET SEGMENT 1. Généralités Il existe une droite et une seule passant par deux points A et B distincts donnés, on la note (AB). On peut dire que la droite passe par

Plus en détail

La géométrie du triangle III IV - V Cercles remarquables - Lieux géométriques - Relations métriques

La géométrie du triangle III IV - V Cercles remarquables - Lieux géométriques - Relations métriques La géométrie du triangle III IV - V Cercles remarquables - Lieux géométriques - Relations métriques III. Cercles 1. Cercle d'euler 2. Droite d'euler 3. Théorème de Feuerbach 4. Milieux des segments joignant

Plus en détail

EXERCICES DE GEOMETRIE BASES

EXERCICES DE GEOMETRIE BASES EXERES E GEETRE SES Exercice n 1 p. 222 Puisque et sont de même mesure, il en est de même pour les angles L et N. Notons x cet angle. Par suite, NL = N = 180 (90 + x) = 90 x. e même, NL = L = 180 (90 +

Plus en détail

- Rappels sur la résolution d une équation de la forme. " oeuil "

- Rappels sur la résolution d une équation de la forme.  oeuil - EE Thème N 6 : TRIGONOETRIE Equation () e que je dois savoir à la fin du thème : - Rappels sur la résolution d une équation de la forme a ou b b a - onnaître et utiliser dans le triangle rectangle des

Plus en détail

Triangle rectangle et cercle

Triangle rectangle et cercle Objectifs : 1 Savoir reconnaître et tracer une médiane. 2 Connaître et savoir utiliser la propriété qui caractérise le triangle rectangle par son inscription dans un demi-cercle. 3 Connaître et savoir

Plus en détail

L essentiel des propriétés utiles aux démonstrations

L essentiel des propriétés utiles aux démonstrations L essentiel des propriétés utiles aux démonstrations Sésamath Troisième L essentiel des propriétés utiles aux démonstrations http://www.sesamath.net/ Association Sésamath http://manuel.sesamath.net/ Illustrations

Plus en détail

Classeur de géométrie 3 ème

Classeur de géométrie 3 ème - 1 - lasseur de géométrie 3 ème Pour démontrer que. Un point est le milieu d un segment Un point est sur un cercle Un point est l image d un autre par es distances sont égales eux angles ont la même mesure

Plus en détail

Math A. 5 Utiliser la mesure pour décrire et comparer des phénomènes du monde réel. Triangles

Math A. 5 Utiliser la mesure pour décrire et comparer des phénomènes du monde réel. Triangles Blc 1-5.1 Gémétrie et mesure 5 Utiliser la mesure pur décrire et cmparer des phénmènes du mnde réel. Triangles RÉSULTATS D APPRENTISSAGE SPÉCIFIQUES 5.1 Utiliser les prpriétés de figures semblables dans

Plus en détail

Livret de connaissances et de compétences Nom :... Mathématiques Niveau 6eme Prénom :...

Livret de connaissances et de compétences Nom :... Mathématiques Niveau 6eme Prénom :... Livret de connaissances et de compétences Nom :... Mathématiques Niveau 6eme Prénom :... 6D1 6D10 6D11 6D12 6D2 6D20 6D21 6D22 Proportionnalité (situations problèmes) Reconnaître si une situation relève

Plus en détail

Livret d'évaluation et du socle commun en mathématiques

Livret d'évaluation et du socle commun en mathématiques Photo? Livret d'évaluation et du socle commun en mathématiques Niveau Cycle d'adaptation - 6ème Nom et prénom Classe Année scolaire 2... - 2... Il y a dans ce livret 4 grands thèmes : Nombres et Calculs

Plus en détail

COURS. Demi-droite d origine Segment d extrémités Droite A et B (AB) ou (d) [AB) [AB]

COURS. Demi-droite d origine Segment d extrémités Droite A et B (AB) ou (d) [AB) [AB] EC 4A : ELEMENTS DE MATHEMATIQUES PARALLELISME, PERPENDICULARITE, FIGURES PLANES ELEMENTAIRES COURS Objectifs du chapitre : Reconnaître et construire les figures de base de la géométrie Caractériser, reconnaître

Plus en détail

Cycle des approfondissements (CE2- CM1-CM2)

Cycle des approfondissements (CE2- CM1-CM2) Bulletin fficiel Hrs série n 3 du 19 juin 2008 Mathématiques Cycle des apprfndissements (CE2- CM1-CM2) Ministère de l Éducatin natinale Prgrammes de l enseignement de l écle primaire - 1 / 7 - BO HS n

Plus en détail

I. Les figures élémentaires :

I. Les figures élémentaires : I. Les figures élémentaires : A. Les triangles : Triangle isocèle Un triangle isocèle est un triangle qui a deux de ses côtés de. un triangle est isocèle les deux côtés issus du sommet principal ont. un

Plus en détail

Calcul de longueurs :

Calcul de longueurs : Calcul de longueurs : Exercice : (Japon 96) C est un triangle rectangle en A. On donne 5 cm et A B ˆC 5. 1) Construire la figure en vraie grandeur. 2) Déterminer la longueur, arrondie au dixième de centimètre.

Plus en détail

RAPPELS DE GÉOMETRIE

RAPPELS DE GÉOMETRIE RPPELS DE GÉOMETRIE Sommaire de ce document : Remarques préalables page 2 I Formules pour calculer des aires page 2 II Quelques propriétés utiles pour bâtir une démonstration page 3 III Formules permettant

Plus en détail

Comment pourrais-tu faire pour construire un triangle ABC si tu connais seulement : la mesure de deux angles : ABC = 40 et ACB = 110 ;

Comment pourrais-tu faire pour construire un triangle ABC si tu connais seulement : la mesure de deux angles : ABC = 40 et ACB = 110 ; omment pourrais-tu faire pour construire un triangle si tu connais seulement : la mesure de deux angles : = 40 et = 110 ; le périmètre du triangle : = 15 cm? 167 ctivité 1 : u côté des triangles... 1.

Plus en détail

PARTIE 1 : ACTIVITÉS NUMÉRIQUES (12 points)

PARTIE 1 : ACTIVITÉS NUMÉRIQUES (12 points) COLLÈGE LA PRÉSENTATION BREVET BLANC Février 2011 ÉPREUVE DE MATHÉMATIQUES Classe de 3 e Durée : 2 heures Présentation et orthographe : 4 points Les calculatrices sont autorisées, ainsi que les instruments

Plus en détail

DROITES SECANTES, PERPENDICULAIRES ET PARALLELES

DROITES SECANTES, PERPENDICULAIRES ET PARALLELES hapitre 05 roites sécantes, perpendiculaires et parallèles ROITES SENTES, PERPENIULIRES ET PRLLELES roites sécantes éfinition eux droites sécantes sont deux droites qui ont un seul point commun e point

Plus en détail

Angles orientés et trigonométrie

Angles orientés et trigonométrie Chapitre Angles orientés et trigonométrie Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Trigonométrie Cercle trigonométrique. Radian. Mesure d un angle orienté, mesure principale.

Plus en détail

TRIGONOMETRIE ET CALCUL NUMERIQUE

TRIGONOMETRIE ET CALCUL NUMERIQUE TRIGONOMETRIE ET CALCUL NUMERIQUE Questions 2010-2013 Exercice 1 2 2 sin(4 x)cos( x) 2sin( x)cos (2 x) 1 2sin ( x) (valeurs numériques) x 45 k 90 ;10 k 120 ;50 k 120 k Exercice 2 tg x 3tg x 4 4 (valeurs

Plus en détail

SYMETRIE AXIALE. 1 ) symétrie axiale. a) symétrique d'un point

SYMETRIE AXIALE. 1 ) symétrie axiale. a) symétrique d'un point 1 ) symétrie axiale SYMETRIE AXIALE a) symétrique d'un point Définition : A' est le symétrique du point A par rapport à la droite (d) si (d) est la médiatrice du segment [AA'] (C'est à dire si la droite

Plus en détail

Angle et parallèles. Si 2 droites sont perpendiculaires à une même droite, alors elles sont parallèles entre elles.

Angle et parallèles. Si 2 droites sont perpendiculaires à une même droite, alors elles sont parallèles entre elles. Angle et parallèles Si 2 droites sont perpendiculaires à une même droite, alors elles sont parallèles entre elles. Si 2 droites sont perpendiculaires, toute parallèle à l une est perpendiculaire à l autre.

Plus en détail

Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé.

Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé. Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé. I- ACTIVITES NUMERIQUES (12 points) Exercice 1 (3 points) On considère

Plus en détail

PROPRIETES, THEOREME DE GEOMETRIE

PROPRIETES, THEOREME DE GEOMETRIE PROPRIETES, THEOREME DE GEOMETRIE Droites Si deux droites sont parallèles à une même troisième, alors elles sont parallèles entre elles. (6ème) Si deux droites sont perpendiculaires à une même troisième,

Plus en détail

I/ Vocabulaire et définitions. 1 ) Mises au point

I/ Vocabulaire et définitions. 1 ) Mises au point Angles I/ Vocabulaire et définitions 1 ) Mises au point Remarques 1 2 ) Définition d un angle: Application Soit la figure ci-contre Compléter L angle dessiné a pour sommet E Ses côtés sont les deux Demi-droites

Plus en détail

ANNEXE. PREMIÈRE PARTIE : ÉNONCÉS EXTRAITS DU COURS MAT (N os 1 à 55)

ANNEXE. PREMIÈRE PARTIE : ÉNONCÉS EXTRAITS DU COURS MAT (N os 1 à 55) ANNEXE PREMIÈRE PARTIE : ÉNONCÉS EXTRAITS DU COURS MAT - 4111-2 (N os 1 à 55) ANGLES 1. Des angles adjacents qui ont leurs côtés extérieurs en ligne droite sont supplémentaires. 2. Les angles opposés par

Plus en détail

CHAPITRE IV. Utiliser la définition de la médiatrice d un segment ainsi que la caractérisation de ses points par la propriété d équidistance ( )

CHAPITRE IV. Utiliser la définition de la médiatrice d un segment ainsi que la caractérisation de ses points par la propriété d équidistance ( ) HPITRE IV TRINGLES OMPÉTENES ÉVLUÉES DNS E HPITRE : (T : compétences transversales, N : activités numériques, G : activités géométriques, F : gestion de données et fonctions) Intitulé des compétences Eval.1

Plus en détail

PARTIE 1 : ACTIVITÉS NUMÉRIQUES (12 points)

PARTIE 1 : ACTIVITÉS NUMÉRIQUES (12 points) COLLÈGE LA PRÉSENTATION BREVET BLANC Février 2010 ÉPREUVE DE MATHÉMATIQUES classe de 3 e Durée : 2 heures Présentation et orthographe : points Les calculatrices sont autorisées, ainsi que les instruments

Plus en détail

Glossaire de propriétés pour la démonstration

Glossaire de propriétés pour la démonstration Glossaire de propriétés pour la démonstration non exhaustif niveau sixième niveau cinquième niveau quatrième niveau troisième Démontrer qu'un point appartient à la médiatrice d'un segment ❶ propriété :

Plus en détail

Il suffit de tracer deux médiatrices pour obtenir le centre du cercle circonscrit..

Il suffit de tracer deux médiatrices pour obtenir le centre du cercle circonscrit.. Correction-Exercices sur les droites remarquables 1. Construire un triangle ABC tel que AB = 5cm, BC = 6cm et AC= 8 cm et le cercle circonscrit à ce triangle Il suffit de tracer deux médiatrices pour obtenir

Plus en détail

Exercices résolus de mathématiques. TRI 0 EXTRI000 EXTRI009. http://www.matheux.be.tf. Jacques Collot. 30 juillet 03. www.matheux.be.

Exercices résolus de mathématiques. TRI 0 EXTRI000 EXTRI009. http://www.matheux.be.tf. Jacques Collot. 30 juillet 03. www.matheux.be. xercices résolus de mathématiques. TRI 0 XTRI000 XTRI009 http://www.matheux.be.tf Jacques ollot 30 juillet 03 www.matheux.be.tf - TRI 0 - - XTRI00 Liège, septembre 000. éterminer la distance entre les

Plus en détail

Cours configurations du plan

Cours configurations du plan I Polygones a) Polygones particuliers triangles Propriété : La somme des angles d un triangle est égale à 180. Définition : Un triangle isocèle a deux côtés de même longueur. Propriétés caractéristiques

Plus en détail

Triangles Triangles.odt clicprof.free.fr 1/10

Triangles Triangles.odt clicprof.free.fr 1/10 Triangles Table des matières 1Quelques rappels sur les triangles...2 1Médiatrices...2 2Bissectrices...2 3Nature d'un Triangle...2 Triangle isocèle...2 Triangle équilatéral...2 Triangle rectangle...2 2Construction

Plus en détail

Partie numérique Exercice 1 1) Les nombres 288 et 224 sont pairs donc ils sont divisibles par 2. Ils ne sont donc pas premiers

Partie numérique Exercice 1 1) Les nombres 288 et 224 sont pairs donc ils sont divisibles par 2. Ils ne sont donc pas premiers Partie numérique Eercice 1 1) Les nombres 88 et sont pairs donc ils sont divisibles par. Ils ne sont donc pas premiers entre eu car leur Plus Grand Commun Diviseur est supérieur ou égal à. ) Pour calculer

Plus en détail

Module et argument d un nombre complexe. Interprétation géométrique, lignes de niveau associées. Applications

Module et argument d un nombre complexe. Interprétation géométrique, lignes de niveau associées. Applications Module et argument d un nombre complexe. Interprétation géométrique, lignes de niveau associées. Applications Introduction : Cette leçon s inscrit dans la continuité de la précédente. On supposera connu

Plus en détail

Exercice numéro 1 - L'escalier

Exercice numéro 1 - L'escalier Exercice numéro 1 - L'escalier On peut monter un escalier une ou deux marches à la fois. La figure de droite montre un exemple. 1. De combien de façons différentes peut-on monter un escalier de une marche?

Plus en détail

Les maths au collège : Cours, Techniques et Exercices. Denis LE FUR Collège Zéphir, Cayenne

Les maths au collège : Cours, Techniques et Exercices. Denis LE FUR Collège Zéphir, Cayenne Les maths au collège : ours, Techniques et Exercices Denis LE FUR ollège Zéphir, ayenne 11 mars 2004 L objet de ce document est de fournir aux élèves de niveau 3ème un recueil de cours, de techniques et

Plus en détail

Symétrie Centrale. Théorème admis: Le symétrique d'un segment est un segment de même longueur. On dit qu'une symétrie centrale conserve les longueurs.

Symétrie Centrale. Théorème admis: Le symétrique d'un segment est un segment de même longueur. On dit qu'une symétrie centrale conserve les longueurs. Symétrie entrale I.Définition 1) Symétrique d'une figure approche expérimentale Dans une symétrie centrale, deux figures sont symétriques par rapport à un point lorsqu'on passe d'une figure à l'autre en

Plus en détail

L17 : Médiatrice d un segment.

L17 : Médiatrice d un segment. L17 : édiatrice d un segment. édiatrice d un segment : Définition : La médiatrice d un segment [] est la droite (d) perpendiculaire à ce segment et passant par son milieu. d Construction d une médiatrice

Plus en détail

Thème N 2 : FIGURES PLANES (1)

Thème N 2 : FIGURES PLANES (1) Thème N 2 : FGURES PLNES (1) NTTN L EMNSTRTN TRNGLE ET RTES PRLLELES (1) : RTE ES MLEUX la fin du thème, tu dois savoir : Notion de émonstration : onnaître les Règles du débat mathématiques Savoir donner

Plus en détail

Chapitre 5 : Géométrie dans l'espace

Chapitre 5 : Géométrie dans l'espace Source : site Bacamahts (G.Constantini) et Mathématiques 2 nde (Terracher) I. Règles de base de la géométrie dans l'espace Il existe une et une seule droite de l'espace passant par deux points distincts.

Plus en détail

CONFIGURATIONS DU PLAN (quelques rappels)

CONFIGURATIONS DU PLAN (quelques rappels) CONFIGURATIONS DU PLAN (quelques rappels).1polygones.1.1.parallélogramme Un parallélogramme est un quadrilatère dont les côtés opposés sont parallèles deux à deux. S Un parallélogramme admet un centre

Plus en détail

DES ANGLES. Les angles des dessins suivants présentent des particularités. Mesure-les et indique ces particularités

DES ANGLES. Les angles des dessins suivants présentent des particularités. Mesure-les et indique ces particularités DES NGLES Les angles des dessins suivants présentent des particularités. Mesure-les et indique ces particularités Les deux droites sont sécantes en O... Deux droites sont parallèles...... est un triangle

Plus en détail

PROBLEME(12) Première partie : Peinture des murs et du plafond.

PROBLEME(12) Première partie : Peinture des murs et du plafond. PROBLEME(12) Une entreprise doit rénover un local. Ce local a la forme d'un parallélépipède rectangle. La longueur est 6,40m, la largeur est 5,20m et la hauteur est 2,80m. Il comporte une porte de 2m de

Plus en détail

Angles et polygones. Série 1 : Angles inscrits, angles au centre. Série 2 : Calculs. Série 3 : Polygones réguliers

Angles et polygones. Série 1 : Angles inscrits, angles au centre. Série 2 : Calculs. Série 3 : Polygones réguliers G4 ngles et polygones érie 1 : ngles inscrits, angles au centre érie 2 : alculs érie 3 : olygones réguliers 115 É 1 : NGL NT, NGL U NT Le cours avec les aides animées Q1. onne la définition d'un angle

Plus en détail

Utilisation de l outil numérique via «géogébra» pour la pratique de la géométrie au cycle 3. Déroulement de l animation :

Utilisation de l outil numérique via «géogébra» pour la pratique de la géométrie au cycle 3. Déroulement de l animation : Utilisation de l outil numérique via «géogébra» pour la pratique de la géométrie au cycle 3 Déroulement de l animation : - 0] Préambule (30 min) a) Introduction b) Programme du cycle 3 - I] Première prise

Plus en détail