Seconde MESURER LA TERRE Page 1 MESURER LA TERRE
|
|
- Christophe Métivier
- il y a 2 ans
- Total affichages :
Transcription
1 Seconde MESURER LA TERRE Page 1 TRAVAUX DIRIGES MESURER LA TERRE IX - XI siècles / /1743 THALES (-à Milet) considère la terre comme une grande galette, dans une bulle entourée d'eau. PYTHAGORE considère que la terre est ronde comme une boule, parce qu'il s'agit d'une forme "parfaite". ARISTOTE donne des preuves de la rotondité de la terre, en particulier son ombre sur la lune lors d'une éclipse de lune. ERATOSTHENE (à Alexandrie) mesure un méridien et donne une bonne valeur approchée du rayon terrestre. ST AUGUSTIN, en occident, rejette la sphéricité de la terre. C'est une régression jusqu'au X ème siècle. Les astronomes et géographes ARABES perfectionnent les instruments de mesure et prolongent la tradition grecque. PICARD mesure par triangulation un arc de méridien entre Amiens et Paris. Les CASSINI mesurent un arc de méridien entre Dunkerque et Collioure d'où il ressort que la terre serait aplatie à l'équateur. NEWTON déduit du mouvement du pendule à différentes lattitudes l'aplatissement aux pôles. MAUPERTUIS (en Laponie), BOUGUER et LA CONDAMINE (au Pérou) vérifient, par triangulation, l'aplatissement aux pôles. 1 LA "MESURE DE LA TERRE" PAR ERATOSTHENE Mesurer un angle et utiliser la proportionnalité Eratosthène (-275, -195), conservateur de la célèbre bibliothèque d'alexandrie, est le premier a obtenir une valeur du rayon terrestre par une méthode réellement scientifique, et ce avec une étonnante précision. L'idée, qui date de Thalès, est de mesurer un angle pour en déduire des rapports de distance. O C B A S L'expérience d'eratosthène : Eratosthène constata que, le jour du solstice d'été, les puits de Syène (ville de Haute-Egypte) sont, à midi, éclairés jusqu'au fond. Le Soleil est donc, à cet instant, à la verticale de Syène (point S). Au même instant, un obélisque ([AB]) situé sur une place d'alexandrie donne une ombre ([AC]) au sol. La mesure de l'angle a = ABC $ donne a = 7 12'. D'après les relevés cadastraux de la Bibliothèque, la mesure de l'arc de cercle AS (distance Alexandrie/Syène) est de stades (1 stade 157,5 m). A partir de ces mesures, Eratosthène put donner une estimation correcte du rayon terrestre. 1) En supposant que les rayons du soleil sont parallèles, montrer que SÔA = a.
2 Seconde MESURER LA TERRE Page 2 2) En complétant le tableau de proportionnalité suivant, en déduire la circonférence de la Terre (longueur L du tour de la Terre). angle SÔA = 7 12' 360 arc de cercle ,5 L 3) En déduire une estimation du rayon terrestre R. Comparer à la valeur réelle à l'équateur R = 6378 km. Quelle est, en pourcentage, l'erreur relative commise? 2 LA "MESURE DE LA TERRE" PAR L'ABBE PICARD Triangulation En 1666, COLBERT crée l'académie des sciences. Il est persuadé que de meilleures cartes permettraient d'améliorer la gestion et l'aménagement de la France. Dès 1668, l'abbe PICARD met en œuvre une opération géodésique de grande envergure. Selon son rapport à l'académie, "outre que par ce moyen on aurait une carte la plus exacte qui ait encore été faite, on en tirerait cet avantage de pouvoir déterminer la grandeur de la terre". Picard se servit des principes de la triangulation, méthode déjà appliquée par le hollandais SNELLIUS. Il construisit une chaîne de treize triangles en partant d'une base mesurée sur le terrain (une deuxième base permettra une vérification) et complétée par des mesures d'angles à partir de points visibles les uns des autres (tours, clochers,...). Ayant calculé la longueur totale d'un arc de méridien, il ne reste plus qu'à mesurer la latitude aux extrémités pour savoir de quelle fraction de méridien il s'agit. Picard conçoit lui même ses instruments de mesure et, le premier, va utiliser une lunette munie d'un réticule. Vous avez ci-jointe, une copie extraite du rapport de Picard "Mesure de la Terre". 1) Dans le triangle ABC, Picard mesure la "base" [AB] et les trois angles. Soit H le pied de la hauteur issue de A. Calculer AH (en toises). 2) En déduire la valeur de AC et comparer avec celle obtenue par Picard (il y a 6 pieds dans une toise) 3) Justifier l'affirmation finale de Picard "il a été facile de conclure la distance GE ". Effectuer le calcul, en sachant que la toise de Paris est égale à 1,949 m.
3 Seconde MESURER LA TERRE Page 3 CORRIGE I MESURE D'ERATOSTHENE : 1) Les droites (OS) et (BC) étant parallèles, elles sont sécantes à (OB) en formant le même angle interne-alterne : SÔA = ABC $ = a = 7 12'. 2) On a, par proportionnalité de l'angle au centre et de l'arc correspondant du cercle : L , 5 = , 2 D'où L = km. 3) On a 2πR = d'où R 6267 km. Cette valeur est très proche de la valeur réelle, l'erreur relative étant : ,017 soit moins de 2 % 6378 (encore qu'on ne soit pas certain de la valeur à attribuer au stade). II MESURE DE PICARD : 1) D'après le texte, on a : AB = 5663 toises, Â 54,076, $B 95,115 et $ C 30,808. Dans le triangle ABH, rectangle en H, on obtient : AH = AB sin A B $ H = 5663 sin(180-95,115) 5640,4 toises 2) Dans le triangle AHC, rectangle en H, on peut en déduire : AC = AH 5640, 4 sin C $ sin 30, 808. Ainsi AC ,9 toises. On retrouve donc bien les toises 5 pieds obtenus par Picard, à un pied près. 2) Pour le calcul de GE, on procède de façon analogue dans le triangle DGE. Les données sont: GD = toises, DE = 8870,5 toises et G D $ E = 128,158. Soit H le pied de la hauteur issue de G. On a GH = GD sin( ,158), puis DH = DG cos( ,158). Le théorème de Pythagore dans le triangle GHE, rectangle en H, donne alors GE ,5 toises c est à dire toises et 3 pieds. REFERENCES Michelle GREGOIRE et Marie-Françoise JOZEAU La mesure du méridien Revue Mnémosyne n 12 Groupe M:A.T.H. En vente par correspondance à : IREM Paris VII Tour 56/55 3 ème étage Case , place Jussieu Paris Cedex 05.
4 Seconde MESURER LA TERRE Page 4 PICARD "Mesure de la Terre"
5 Seconde MESURER LA TERRE Page 5 PICARD "Mesure de la Terre"
LX2U1 : Histoire des sciences XVIII e XX e siècles
LX2U1 : Histoire des sciences XVIII e XX e siècles Enseignant : Alexandre GUILBAUD E-mail : guilbaud@math.jussieu.fr Page web : http://www.math.jussieu.fr/~guilbaud 4 e séance - Newtonianisme et cartésianisme
3 ème Cours : géométrie dans l espace
I. La sphère : a) Définition : La sphère de centre et de rayon R est l ensemble de tous les points qui sont situés à la distance R du point. L intérieur de la sphère (l ensemble des points dont la distance
Forme de la Terre, de la Terre plate au GéoïdeG
Forme de la Terre, de la Terre plate au GéoïdeG Terre plate Première représentation de l'univers, Thalès (625-547 avant J.-C.). La Terre est supposée de forme géométrique plate. Notion de sphères célestes
Calcul de la distance Terre-Lune par des méthodes géométriques
Atelier Mathenjeans: collèges Paul Esquinance de La réole (Gironde) et de Mana (Guyane) Calcul de la distance Terre-Lune par des méthodes géométriques 1. Calcul du rayon de la Terre: méthode d'eratosthène.
Exercice 1 Le plan est muni d'un repère. On donne les points, et. 1/ Soit D le point tel que ABCD est un parallélogramme.
Devoir Maison A rendre le mercredi 2 mai 2nde 1 Le plan est muni d'un repère. On donne les points, et. 1/ Soit D le point tel que ABCD est un parallélogramme. Calculer les coordonnées du point D. 2/ a)
Calcul de longueurs :
Calcul de longueurs : Exercice : (Japon 96) C est un triangle rectangle en A. On donne 5 cm et A B ˆC 5. 1) Construire la figure en vraie grandeur. 2) Déterminer la longueur, arrondie au dixième de centimètre.
Brevet Amérique du sud novembre 2011
ACTIVITÉS NUMÉRIQUES (12 POINTS) Exercice 1 Cet exercice est un exercice à choix multiples (QCM). Pour chaque question, une seule réponse est exacte. Une réponse correcte rapportera 1 point. L absence
Comment a-t-on mesuré l'univers?
Comment a-t-on mesuré l'univers? Des corps célestes les plus proches, la Terre est celui dont la forme est la plus difficile à déterminer. Ayant le "nez dessus" on manque de recul pour l'observer : il
D = 5 2 4 0,5. 4 points. D = 5 2 2 D = 5 donc D est un nombre entier. 0,5
ACTIVITÉS NUMÉRIQUES (12 s) Montrer que D est un nombre entier. Ê D = 5 12 2 D = 5 2 Exercice n 1 : Toutes les étapes de calcul devront figurer sur la copie. 1. On donne A = + 1 + 2. Calculer et donner
Partie I : Activités numériques (12 points)
Correction du brevet blanc février 2011 Exercice n 1 (2 points) 8 + 1 A = 5 6 1 = 8 Partie I : Activités numériques (12 points) Calculer A en détaillant les étapes. Donner le résultat sous forme d une
REPRESENTER LA TERRE Cartographie et navigation
REPRESENTER LA TERRE Seconde Page 1 TRAVAUX DIRIGES REPRESENTER LA TERRE Cartographie et navigation Casterman TINTIN "Le trésor de Rackham Le Rouge" 1 TRIGONOMETRIE : Calcul du chemin le plus court. 1)
Angles orientés et trigonométrie
Chapitre Angles orientés et trigonométrie Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Trigonométrie Cercle trigonométrique. Radian. Mesure d un angle orienté, mesure principale.
Test de Mathématiques Fiche professeur 1 er partie (sans calculatrice)
Test de Mathématiques Fiche professeur 1 er partie (sans calculatrice) Exercice 1 : Activité mentale Temps estimé : 4 min Dicter chaque calcul deux fois, ou l écrire au tableau et l effacer après 10 secondes.
DURÉE DU JOUR EN FONCTION DE LA DATE ET DE LA LATITUDE
DURÉE DU JUR E FCTI DE LA DATE ET DE LA LATITUDE ous allons nous intéresser à la durée du jour, prise ici dans le sens de période d éclairement par le Soleil dans une journée de 4 h, en un lieu donné de
Mesures de distance sur la terre à partir de coordonnées géographiques.
Mesures de distance sur la terre à partir de coordonnées géographiques. Jusqu'à l'apparition des satellites et des systèmes de localisation GPS, le seules bases de localisation étaient le géoïde et les
Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé.
Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé. I- ACTIVITES NUMERIQUES (12 points) Exercice 1 (3 points) On considère
PARTIE 1 : ACTIVITÉS NUMÉRIQUES (12 points)
COLLÈGE LA PRÉSENTATION BREVET BLANC Février 2011 ÉPREUVE DE MATHÉMATIQUES Classe de 3 e Durée : 2 heures Présentation et orthographe : 4 points Les calculatrices sont autorisées, ainsi que les instruments
COLLÈGE LA PRÉSENTATION. BREVET BLANC Février 2014
COLLÈGE LA PRÉSENTATION BREVET BLANC Février 2014 ÉPREUVE DE MATHÉMATIQUES Classe de 3 e Durée : 2 heures Présentation et orthographe : 4 points Les calculatrices sont autorisées, ainsi que les instruments
Corrections preparation BB 2012
Corrections preparation BB 2012 Brevet 2007 - Solution Activités numériques 1 Les explications ne sont pas demandées mais nous vous les fournissons tout de même. 1) la bonne réponse est 9x 2 + 30x + 25
Les éclipses. Mesure des ombres de la Lune et de la Terre
Les éclipses Mesure des ombres de la Lune et de la Terre Vers. 1.0.1 Ce document est une première version, des erreurs peuvent être présentes. Merci de les signaler à Eric Chapelle eric.chapelle@emf.ccsti.eu
Brevet blanc de mathématiques
Brevet blanc de mathématiques avril 2011 L'usage de la calculatrice est autorisé. I Activités numériques 12 points II Activités géométriques 12 points III Problème 12 points Qualité de rédaction et présentation
Méthode du point lumineux
Méthode du point lumineux Nous avons commencé par la méthode du point lumineux avec un relief proche de la chaîne des Appenins, Abulfeda. La photo est jointe en fin de paragraphe avec son exploitation
FORMULAIRE DE MATHEMATIQUES CLASSE DE TROISIEME
2012 FORMULAIRE DE MATHEMATIQUES CLASSE DE TROISIEME NOUS VOUS PRESENTONS ICI UN FORMULAIRE CONTENANT LES DEFINITIONS, PROPRIETES ET THEOREMES VUS EN COURS DE MATHEMATIQUES TOUT AU LONG DE VOTRE SCOLARITE
Démonstration des propriétés géométriques du plan niveau collège
Démonstration des propriétés géométriques du plan niveau collège Propriété : Si un point est sur un segment et à égale distance de ses extrémités alors ce point est le milieu du segment. Si un point est
BREVET BLANC de MATHEMATIQUES n 2 mars 2011 - durée : 2 heures
BREVET BLANC de MATHEMATIQUES n 2 mars 2011 - durée : 2 heures Les calculatrices sont autorisées. L orthographe, le soin et la présentation sont notés sur 4 points. Activités numériques (12 points) Exercice
Première partie : les distances dans le système solaire
Mesurer des distances dans le système solaire Pierre Causeret(*) Après avoir rappelé les principales méthodes pour mesurer des distances dans le système solaire (dont plusieurs sont réalisables avec des
Diplôme National du Brevet. Épreuve blanche Proposition de corrigé. Externat Notre Dame
Diplôme National du Brevet Épreuve blanche Proposition de corrigé Externat Notre Dame Vendredi 9 décembre 2011 durée de l'épreuve : 2 h I - Activités numériques II - Activités géométriques III Problème
TRIGONOMETRIE ET CALCUL NUMERIQUE
TRIGONOMETRIE ET CALCUL NUMERIQUE Questions 2010-2013 Exercice 1 2 2 sin(4 x)cos( x) 2sin( x)cos (2 x) 1 2sin ( x) (valeurs numériques) x 45 k 90 ;10 k 120 ;50 k 120 k Exercice 2 tg x 3tg x 4 4 (valeurs
Un projet interdisciplinaire
Projet Eratosthène Ceci est une introduction au Guide de l Enseignant: il présente d'abord les observations faites par Eratosthène, ses hypothèses et ses conclusions, suivies par un aperçu de la façon
Univers : Détermination de distances dans le Système Solaire
Dossier de Physique Niveau 5 ème à 6 ème secondaire Univers : Détermination de distances dans le Système Solaire Bouquelle Véronique Faculté des Sciences Diffusé par Scienceinfuse, Antenne de Formation
Diplôme National du Brevet Métropole - La Réunion - Mayotte - Session 2009
Diplôme National du Brevet Métropole - La Réunion - Mayotte - Session 2009 L usage de la calculatrice est autorisé, dans le cadre de la réglementation en vigueur. I - Activités numériques II - Activités
Epreuve de mathématiques Durée de l épreuve : 2H00 Coefficient : 2
Cette épreuve comporte trois parties : A AGRAFER A LA COPIE D EXAMEN Epreuve de mathématiques Durée de l épreuve : 2H00 Coefficient : 2 Diplôme nationale du Brevet Session 1999 Série technologique Partie
COMPTE-RENDU «MATHS EN JEANS» LYCEE OZENNE Groupe 1 : Comment faire une carte juste de la Terre?
Claire FORGACZ Marion GALLART Hasnia GOUDJILI COMPTERENDU «MATHS EN JEANS» LYCEE OZENNE Groupe 1 : Comment faire une carte juste de la Terre? Si l on se pose la question de savoir comment on peut faire
c) Calculer MP. 3) Déterminer l'arrondi au degré de la mesure de Dˆ.
Exercice :(Amiens 1995) Les questions 2, 3 et 4 sont indépendantes. L'unité est le centimètre. 1) Construire un triangle MAI rectangle en A tel que AM = 8 et IM = 12. Indiquer brièvement les étapes de
PRODUIT SCALAIRE EXERCICES CORRIGES
Exercice n. (correction) Répondre par VRAI (V) ou FAUX (F) : Question Soient A, B et C trois points distincts du plan. PRODUIT SCALAIRE EXERCICES CORRIGES a) A, B et C sont alignés si et seulement si :
MATHÉMATIQUES & ASTRONOMIE CALCULS DE DISTANCES ASTRONOMIQUES NOM : Prénom :
MATHÉMATIQUES & ASTRONOMIE CALCULS DE DISTANCES ASTRONOMIQUES NOM : Prénom : 4 ème du collège, année 2006/2007 Plan des séquences : Séquence 1 : La mesure de la Terre par Eratosthène Séquence 2 : Détermination
Collège Henri Meck lundi 4 mai 2009 Molsheim BREVET BLANC DE MATHEMATIQUES N 2. ( Extraits d'épreuves du brevet de 2007 et 2008 ) PRESENTATION 4 pts
Collège Henri Meck lundi 4 mai 2009 Molsheim BREVET BLANC DE MATHEMATIQUES N 2 ( Extraits d'épreuves du brevet de 2007 et 2008 ) PRESENTATION 4 pts Rappel : Présenter les parties de l'épreuve sur feuilles
Correction : E = Soit E = -1,6. F = 12 Soit F = -6 3 + 45. y = 11. et G = -2z + 4y G = 2 6 = 3 G = G = -2 5 + 4 11
Correction : EXERCICE : Calculer en indiquant les étapes: (-6 +9) ( ) ( ) B = -4 (-) (-8) B = - 8 (+ 6) B = - 8 6 B = - 44 EXERCICE : La visite médicale Calcul de la part des élèves rencontrés lundi et
Mathématiques (10 points)
Mathématiques (10 points) Exercice 1 (3 points) Philippe achète 3 planches pour fabriquer une étagère. Le prix de chaque planche est de 5,40. 1. Calculer le prix total des 3 planches. 2. Il obtient une
Méthode d'exhaustion pour un calcul d'aire
Méthode d'exhaustion pour un calcul d'aire R. Danflous Niveau : Première et anticipation de la Terminale S Diculté : Dicile Durée : plus d'une heure Rubriques : Géométrie analytique plane, Suites La petite
Mathématiques et petites voitures
Mathématiques et petites voitures Thomas Lefebvre 10 avril 2015 Résumé Ce document présente diérentes applications des mathématiques dans le domaine du slot-racing. Table des matières 1 Périmètre et circuit
BREVET BLANC de MATHEMATIQUES n 2 Mars 2012 - durée : 2 heures
BREVET BLANC de MATHEMATIQUES n 2 Mars 2012 - durée : 2 heures Les calculatrices sont autorisées. L orthographe, le soin et la présentation sont notés sur 4 points. Activités numériques (12 points) Exercice
CORRECTION BREVET BLANC
Partie numérique Exercice 1 : CORRECTION BREVET BLANC Question 1 : on teste les trois valeurs en remplaçant x par la valeur. La solution est Question 2 : Les solutions sont et -2 Question 3 : on fait deux
PARTIE 1 : ACTIVITÉS NUMÉRIQUES (12 points)
COLLÈGE LA PRÉSENTATION BREVET BLANC Février 2010 ÉPREUVE DE MATHÉMATIQUES classe de 3 e Durée : 2 heures Présentation et orthographe : points Les calculatrices sont autorisées, ainsi que les instruments
Activités numériques
Sujet et correction Stéphane PASQUET, 25 juillet 2008 2008 Activités numériques Exercice On donne le programme de calcul suivant : Choisir un nombre. a) Multiplier ce nombre pas 3. b) Ajouter le carré
Exercice : (Rouen 1995) (3 points) On considère un cône de révolution de sommet S et de hauteur SH = 7 cm. Le disque de base a pour rayon 3 cm.
Exercice : (Rouen 995) ( points) On considère un cône de révolution de sommet S et de hauteur SH 7 cm. Le disque de base a pour rayon cm. ) Calculer, en arrondissant au degré près, la mesure de l'angle
CORRECTIONS. Consignes pour le déroulement de l épreuve d une durée de 2 heures
Consignes pour le déroulement de l épreuve d une durée de 2 heures * Calculatrice autorisée pour les deux parties mais en précisant les étapes des calculs. A] Nombres et Calculs : Exercice n 1 : Compléter
Anaximandre l imaginait comme un cylindre isolé dans l espace. L élément premier est le feu.
EPI : Maths français 3 ème Perception et représentation de l univers, des distances inaccessibles de la terre à la lune Au début des sciences grecques, les représentations de l univers étaient variées.
PROBLEME(12) Première partie : Peinture des murs et du plafond.
PROBLEME(12) Une entreprise doit rénover un local. Ce local a la forme d'un parallélépipède rectangle. La longueur est 6,40m, la largeur est 5,20m et la hauteur est 2,80m. Il comporte une porte de 2m de
DIPLOME NATIONAL DU BREVET BREVET BLANC N 2 EPREUVE DE MATHEMATIQUES
DIPLOME NATIONAL DU BREVET BREVET BLANC N 2 EPREUVE DE MATHEMATIQUES L usage de la calculatrice est autorisé. Durée : 2 heures. Le barème tient compte de la qualité de la rédaction et de la présentation
Le sujet est à rendre avec la copie.
NOM : Prénom : Classe : ACADEMIE DE BORDEAUX Collège Jean Moulin, COULOUNIEIX-CHAMIERS Durée : h DIPLOME NATIONAL DU BREET Série Collège Brevet BLANC Du janvier 01 Epreuve : MATHEMATIQUES Les calculatrices
Brevet Blanc n 1. Mathématiques
Brevet Blanc n 1 Novembre 2010 Mathématiques Durée de l'épreuve : 2h00 Le candidat répondra sur une copie L'usage de la calculatrice est autorisé, dans le cadre de la réglementation en vigueur. Activités
Problème : Session 2008 (fonctions affines) Partie I : Partie II :
Problème : Session 2008 (fonctions affines) Dans ce problème, on étudie deux méthodes permettant de déterminer si le poids d'une personne est adapté à sa taille. Partie I : Dans le graphique ci-dessous
Calcul de la distance de la Lune par parallaxe
Calcul de la distance de la Lune par parallaxe La Lune au 5 ème jour Sommaire Feuille de route p.3 I) Introduction 1) La Lune dans l Histoire p.4 2) Parallaxe de la Lune p.4 II) Expérience 1) Mise en situation
Brevet des collèges Amérique du Nord 7 juin 2011
Durée : 2 heures Brevet des collèges Amérique du Nord 7 juin 2011 Correction ACTIVITÉS NUMÉRIQUES Exercice 1 12 points Le professeur choisit trois nombres entiers relatifs consécutifs rangés dans l ordre
315 et 495 sont dans la table de 5. 5 est un diviseur commun. Leur PGCD n est pas 1. Il ne sont pas premiers entre eux
Exercice 1 : (3 points) Un sac contient 10 boules rouges, 6 boules noires et 4 boules jaunes. Chacune des boules a la même probabilité d'être tirée. On tire une boule au hasard. 1. Calculer la probabilité
Métropole juin 2009 Brevet Corrigés Page 1 sur 7
Métropole juin 2009 Brevet Corrigés Page 1 sur 7 Exercice 1 : sur 2 points 1. (1 pt) A = 8 + 3 4 1 + 2 1, A = 8 + 12 1 + 3 A = 20 4 A = 4 4 1 A = Activité numérique 2. (1 pt) En l absence de parenthèses,
BREVET BLANC de MATHEMATIQUES n 1 Janvier 2012 - durée : 2 heures
BREVET BLANC de MATHEMATIQUES n 1 Janvier 2012 - durée : 2 heures Les calculatrices sont autorisées. L orthographe, le soin et la présentation sont notés sur 4 points. Activités numériques (12 points)
Troisième E IE3 trigonométrie sujet 1 2014-2015. A l aide de points nommés de la figure, exprimer de deux façons différentes : a) Cos ( BAC) =
Troisième E IE3 trigonométrie sujet 1 2014-2015 NOM : Prénom : a) Cos ( BAC) = Cos ( BAC) = b) Sin( BAC) = Sin( BAC) = c) Tan( BAC) = Tan( BAC) = Eddy souhaite aménager le grenier de sa ferme. Mesurant
L observation du Soleil Classe de 4 ème 5, professeur M. Debackère 19/04/2001
L observation du Soleil Classe de 4 ème 5, professeur M. Debackère 19/04/2001 LES TACHES SOLAIRES En 1611, GALILEE et trois autres observateurs redécouvrent les taches solaires grâce à la lunette (elles
BREVET BLANC DES 5 et 6 février 2004 Corrigé MATHEMATIQUES
Collège LANGEVIN WALLON BREVET BLANC DES et 6 février 004 Corrigé MATHEMATIQUES PARTIE I : ACTIVITES NUMERIQUES (1 points) Exercice I :1 1. En faisant apparaître les différentes étapes de calcul, écrire
BREVET BLANC 2 SESSION DU 5 MAI 2009
BREVET BLANC 2 SESSION DU 5 MAI 2009 MATHÉMATIQUES SÉRIE COLLÈGE DURÉE DE L'ÉPREUVE : 2 h 00 Le candidat répondra sur une copie différente pour chaque partie. Ce sujet comporte 5 pages, numérotées de 1
E1 :aide E3 : les quotients (ON CITERA LES. puis calculer x et y
DM Devoir maison 4 lire une abscisse placer un point d'abscisse connu convertir un nombre dans une unité donnée le triangle isocèle construction à partir d'un dessin milieu d'un segment le cercle,construction
MathADoc Diplôme National du Brevet : Groupe Nord 2003
MathADoc Diplôme National du Brevet : Groupe Nord 2003 Activités numériques : 12 points (Amiens, Lille, Paris, Créteil, Versailles, Rouen) 1. Soit A = 8 3 5 3 20 21 Calculer A en détaillant les étapes
8 + 12 1 + 3 = 20 4 = 5. 2. Pour calculer A, un élève a tapé sur sa calculatrice la succession de touches suivantes
Exercice 1 3pts 1. Calculer le nombre A = 8 + 3 x 4 1 + 2 x 1,5 = 8 + 12 1 + 3 = 20 4 = 5 2. Pour calculer A, un élève a tapé sur sa calculatrice la succession de touches suivantes Expliquer pourquoi il
Exercice 1 : sur 2,5 points 1) Lire graphiquement les équations des droites D 1, D 2 et D 3 tracées dans le repère ci-dessous
NOM : Seconde A B C H J Mardi 19 janvier 010 Exercice 1 : sur,5 points 1) Lire graphiquement les équations des droites D 1, D et D tracées dans le repère ci-dessous ) Dans le même repère, tracer la droites
Exercice p 240, n 38 : MAG est un triangle rectangle en G tel que MA = 6,1cm et MG = 4,3 cm. Calculer la mesure de l angle AMG arrondie au degré près.
Exercice p 240, n 38 : MAG est un triangle rectangle en G tel que MA,1cm et MG 4,3 cm. Calculer la mesure de l angle AMG arrondie au degré près. Dans le triangle MAG rectangle en G, on a : MG cos( AMG)
MON CAHIER DE VACANCES n 1. MATHEMATIQUES 3 ème 2
MON CAHIER DE VACANCES n 1 MATHEMATIQUES 3 ème 2 Ce cahier appartient à. Ce cahier est à rapporter le vendredi 6 Novembre 201, à Mme Viault. Les exercices sont à rédiger, sur ce livret, le plus sérieusement
Ce cahier existe aussi en numérique avec les liens direct vers les cours nécessaires en fin de page lien : cahier numérique
Ce cahier existe aussi en numérique avec les liens direct vers les cours nécessaires en fin de page lien : cahier numérique Correction Deuxième partie du cahier-de-vacances Demande Si vous trouvez un lien
Correction du brevet blanc. Partie 1 : Activités numériques (12 points)
Correction du brevet blanc Eercice 1 (5 points) 3 Quelle est l'epression 1 5 développée de (5 3)? ( )( ) L'équation + 5 0 a pour solutions : Quelle est la valeur eacte de : 0+ 80? Quelle est la forme factorisée
TD d exercices de Géométrie dans l espace.
TD d exercices de Géométrie dans l espace. Exercice 1. (Brevet 2006) Pour la pyramide SABCD ci-contre : La base est le rectangle ABCD de centre O. AB = 3 cm et BD = 5cm. La hauteur [SO] mesure 6 cm. 1)
DNB, Mathématiques, correction
50 80 50 40 0 DNB, Mathématiques, correction juin 204 2 heures Exercice 5 points. Représentation d un agrandissement de cet octogone en l inscrivant dans un cercle de rayon 3 cm. B A 30 20 0 60 30 40 50
L éclipse de Soleil du 20 mars 2015 comme on la verra en région lyonnaise (et dans le reste de la France)
L éclipse de Soleil du 20 mars 2015 comme on la verra en région lyonnaise (et dans le reste de la France) Pierre Thomas, ENS Lyon Observatoire de Lyon 384 000 km Voici les orbites de la Terre et de la
Partie numérique Exercice 1 1) Les nombres 288 et 224 sont pairs donc ils sont divisibles par 2. Ils ne sont donc pas premiers
Partie numérique Eercice 1 1) Les nombres 88 et sont pairs donc ils sont divisibles par. Ils ne sont donc pas premiers entre eu car leur Plus Grand Commun Diviseur est supérieur ou égal à. ) Pour calculer
MATHEMATIQUES 1 partie. Activités numériques
NOM : Classe : Prénom : MATHEMATIQUES partie Les réponses seront justifiées. Le détail des calculs figurera sur la copie. Activités numériques Quel est le PGCD des nombres 185 et 444? 2 Un chef d orchestre
LA DÉTERMINATION DE LA LONGUEUR D` ONDE D`UNE RADIATION LUMINEUSE MONOCHROMATIQUE UTILISANT LES ANNEAUX DE NEWTON
LA DÉTERMINATION DE LA LONGUEUR D` ONDE D`UNE RADIATION LUMINEUSE MONOCHROMATIQUE UTILISANT LES ANNEAUX DE NEWTON 1. Les objectifs 1.1. La mise en évidence du phénomène d`interférence pour obtenir des
Devoir-maison, à rendre le lundi 4 novembre 2013
Devoir-maison, à rendre le lundi 4 novembre 2013 Ce devoir-maison donnera lieu à une note sur 20 qui sera intégrée dans la moyenne du premier trimestre. Soin et orthographe : 1 point. Exercice 1. Brevet
Chapitre 8 - Trigonométrie
Chapitre 8 - Trigonométrie A) Rappels et compléments ) Le cercle trigonométrique a) Définitions On appelle cercle trigonométrique le cercle de centre O et de rayon dans un repère orthonormal (O, I, J),
Trigonométrie. Guesmi.B. I) Déterminer une longueur... C 4 cm F 8. 5 cm. 5 m. 70 mm. II) Déterminer le cosinus d'un angle... B D
Trigonométrie I) Déterminer une longueur... C 4 cm D I 3) Déterminer GI au millième près A 5 cm 25 E 30 2) Déterminer DF au millimètre près F 8 1) Déterminer C au centième près P 4) Déterminer QR au centimètre
Module 8 : Périmètre et aire de figures planes
RÉDUCTION DES ÉCARTS DE RENDEMENT 9 e année Module 8 : Périmètre et aire de figures planes Guide de l élève Module 8 Périmètre et aire de figures planes Évaluation diagnostique...3 Aire de parallélogrammes,
Mesure d angles et trigonométrie
Thierry Ciblac Mesure d angles et trigonométrie Mesure de l angle de deux axes (ou de deux demi-droites) de même origine. - Mesures en degrés : Divisons un cercle en 360 parties égales définissant ainsi
Correction du brevet blanc du 12 Mai 2011. 1ère étape : 2 3 + 1 = 2 3 + 3 3 = 5 3. 2ème étape : 3ème étape : 25 9 ( 2 2
PARTIE NUMÉRIQUE (14 points) Correction du brevet blanc du 12 Mai 2011 Exercice 1 1.a. Le nombre de départ est 1 1ère étape : 1 + 1 = 2 2ème étape : 2² = 4 3ème étape : 4 1² 4-1²= 4 1 = 3 Le résultat final
Correction du Brevet Blanc Shanghai mars 2013
Correction exercice 1(4 points) Correction du Brevet Blanc Shanghai mars 2013 1. Calculer les expressions suivantes A et B et donner le résultat sous la forme d une fraction irréductible : 2. Calculer
BREVET BLANC de Mathématiques. Jeudi 16 mai 2013
BREVET BLANC de Mathématiques Jeudi 16 mai 2013 ********************************** Durée de l épreuve : 2 heures ********************************** Le sujet comporte 5 pages. Dès que ce sujet vous est
DIPLÔME NATIONAL DU BREVET SESSION 2009
DIPLÔME NATIONAL DU BREVET SESSION 2009 MATHÉMATIQUES SÉRIE COLLÈGE DURÉE DE L ÉPREUVE : 2 h 00 Le candidat répondra sur une copie EN. Ce sujet comporte 6 pages numérotées de 1/6 à 6/6. Dès que ce sujet
1- Ce que pensent beaucoup d adultes
LE MOUVEMENT APPARENT DU SOLEIL SOUS NOS LATITUDES ET SES CONSEQUENCES 1- Ce que pensent beaucoup d adultes Avec un tel modèle on ne peut avoir la durée du jour deux fois plus longue le 21 juin que le
PARTIE 1 : ACTIVITÉS NUMÉRIQUES (12 points)
COLLÈGE LA PRÉSENTATION BREVET BLANC Décembre 0 ÉPREUVE DE MATHÉMATIQUES classe de e Durée : heures Présentation et orthographe : points Les calculatrices sont autorisées, ainsi que les instruments usuels
On appelle H la projection orthogonale de A sur la droite (BC).
Première S 2010-2011 Exercices sur le produit scalaire, équations de droite et de cercles Exercice 1 : Distance d'un point à une droite. On se donne une droite ( ) dont l'équation cartésienne est de la
UNITÉS ET MESURES PÉRIMÈTRES. Dossier n 2 Juin 2005. Conçu et réalisé par : Marie-Christine LIEFOOGHE Bruno VANBAELINGHEM Annie VANDERSTRAELE
UNITÉS ET MESURES PÉRIMÈTRES Dossier n 2 Juin 2005 Tous droits réservés au réseau AGRIMÉDIA Conçu et réalisé par : Marie-Christine LIEFOOGHE Bruno VANBAELINGHEM Annie VANDERSTRAELE C. D. R. UNITÉS ET MESURES
CHAPITRE 2 CALCULS ALGEBRIQUES
Classe de Troisième CHAPITRE CALCULS ALGEBRIQUES UTILISER DES LETTRES... 34 EXPRESSIONS EQUIVALENTES... 36 VOCABULAIRE DU CALCUL LITTERAL... 37 REDUCTIONS D'ECRITURES... 39 DEVELOPPER UN PRODUIT... 40
Brevet blanc à rendre début mars. 1/7
Brevet blanc à rendre à la rentrée de mars 20 Partie Numérique Exercice 1. Cet exercice est un questionnaire à choix multiples (QCM). Pour chaque question une seule réponse est exacte. Aucune justification
CHAPITRE I TRIGONOMETRIE
CHAPITRE I TRIGONOMETRIE ) Le cercle trigonométrique Un cercle trigonométrique est un cercle C de rayon qui est orienté, ce qui veut dire qu on a choisi un sens positif (celui des ronds-points) et un sens
3 ème DNB 2001 NICE PARTIE NUMERIQUE CORRIGE. Exercice 1. 1. Donner l'égalité traduisant la division euclidienne de 1 512 par 21 1 512 = 21 72
3 ème DNB 001 NICE PARTIE NUMERIQUE CORRIGE Exercice 1 1. Donner l'égalité traduisant la division euclidienne de 1 51 par 1 1 51 = 1 7. Rendre irréductible la fraction 70 1 51 70 1 51 = 7 10 7 1 donc 70
Fiche d'exercices Mathématiques Troisième ( ) ( ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ( ) ) ( ( ) ) ( ) ( ) ( ) ( ) ( )
Fiche d'exercices Mathématiques Troisième Chapitre 0: Révisions de quatrième Révisions et préparation à l'évaluation diagnostique 1. Les nombres relatifs. Exercice 1. ( Exercice 2 : Calculer Exercice 3
Brevet Blanc de Mathématiques n 4
Collège français Sadi Carnot Diego Suarez 15/05/2015 Brevet Blanc de Mathématiques n 4 Série collège Durée de l épreuve : 2 h 00 Conseils au candidat : - Le sujet comporte quatre pages numérotées de 1/4
Activités numériques [13 Points]
N du candidat L emploi de la calculatrice est autorisé. Le soin, la qualité de la présentation entrent pour 2 points dans l appréciation des copies. Les résultats seront soulignés. La correction est disponible
Correction du Brevet Blanc de Mathématiques - Mai 2014
Correction du Brevet Blanc de Mathématiques - Mai 014 Exercice 1 Amérique du Sud 01 3 points Cet exercice est un questionnaire à choix multiple (QCM). Pour chaque ligne du tableau trois réponses sont proposées,
COURS : GÉOMÉTRIE DANS L ESPACE
CHAPITE 6 COUS : GÉOMÉTIE DANS L ESPACE Extrait du programme de la classe de 3 ème : Sphère CONTENU COMPÉTENCES EXIGIBLES COMMENTAIES - Savoir que la section d une sphère par un plan est un cercle. - Savoir
Si deux droites sont parallèles à une même troisième. alors les deux droites sont parallèles entre elles. alors
N I) Pour démontrer que deux droites (ou segments) sont parallèles (d) // (d ) (d) // (d ) deux droites sont parallèles à une même troisième les deux droites sont parallèles entre elles (d) // (d) deux
obs.4 Un modèle pour l œil exercices
obs.4 Un modèle pour l œil eercices Savoir son cours Mots manquants Les rayons de lumière en provenance d un objet pénètrent dans l œil, traversent plusieurs milieu transparents et forment l image de l