TD: Cadran solaire. 1 Position du problème

Dimension: px
Commencer à balayer dès la page:

Download "TD: Cadran solaire. 1 Position du problème"

Transcription

1 Position du problème On souhaite réaliser un cadran solaire à l aide d un stylet, de longueur a, perpendiculaire à un plan. (Le stylet n est donc pas orienté vers le pôle nord céleste). Ce cadran solaire a les caractéristiques suivantes: ϕ la latitude du lieu. D la déclinaison gnomonique c.-à-d. l azimut du stylet, mesuré à partir du sud et compté vers l ouest. Si D = 0, alors le cadran est orienté plein sud; si D = 70, le cadran est orienté plein est,... z la distance zénithale du stylet. Si z = 0, le cadran est horizontal (D est alors indéfini ); si z = 90, le cadran est vertical. On prend l origine cartésienne O du repère à la base du stylet et l on appelle (x, y) les coordonnées de l extrémité de l ombre du stylet. On choisit comme axe (Ox) l horizontale et comme axe (Oy) la direction de plus grande pente du cadran. x est compté positivement vers la droite et y positivement vers le haut. L angle horaire du Soleil H est mesuré à partir de midi pour le Soleil vrai; H augmente de 5 par heure. Par exemple H = 5 correspond à 9 h du matin (heure solaire vraie), H = +5 correspond à h de l après-midi. Dans les formules suivantes, pour chaque angle horaire H, la déclinaison δ du Soleil prendra successivement. (solstice d hiver), 0.5,.7, 0 (équinoxe), +.7, +0.5 et +. (solstice d été), ce qui correspond aux dates où la longitude du Soleil est un multiple de 0. Au cours de la journée, l extrémité de l ombre du stylet décrira une conique sur le cadran (cercle, ellipse, parabole ou hyperbole). Toutefois, si δ = 0, la courbe sera toujours une droite. Le plan représente la surface du cadran solaire. OP est le stylet, de longueur a, placé en O(0, 0), perpendiculaire à ce plan. Le point I est le centre du cadran de coordonnées (x 0, y 0 ). IP est le stylet polaire de longueur u. P est l extrémité de l ombre sur le cadran de coordonnées (x, y).. Pour un angle horaire H, calculer: P = sin ϕ. cos z cos ϕ. sin z. cos D Q = sin D. sin z. sin H + (cos ϕ. cos z + sin ϕ. sin z. cos D). cos H + P. tan δ On peut alors choisir les directions (Ox) et (Oy) comme l on veut. Dans ce cas, on prendra D = 0, (Ox) vers l est et (Oy) vers le nord.

2 N x = cos D. sin H sin D.(sin ϕ. cos H cos ϕ. tan δ) N y = cos z. sin D. sin H (cos ϕ. sin z sin ϕ. cos z. cos D). cos H (sin ϕ. sin z+cos ϕ. cos z. cos D). tan δ Les coordonnées x et y sont alors données par: x = a.n x /Q et y = a.n y /Q On obtient ainsi une série de points. En reliant ces points, on obtient une droite correspondant à une certaine heure (en temps local vrai).. Réitérer l opération pour différentes valeurs de H. (On prendra des pas de 5 ). Former l intersection des droites des heures (en temps local vrai); ce point (s il existe) est le centre du cadran; il correspond au point de fixation d un stylet polaire (qui serait parallèle à l axe de rotation de la Terre). Ces coordonnées x 0 et y 0 sont données par: x 0 = a P. cos ϕ. sin D et y 0 = a P.(sin ϕ. sin z + cos ϕ. cos z. cos D). Soit u la longueur du stylet polaire entre son point de fixation en (x 0, y 0 ) et l extrémité du stylet perpendiculaire au cadran (de longueur a). On a: u = a P ; l angle Ψ que le stylet polaire fait avec le plan du cadran est donné par: sin Ψ = P. N.B. (x 0, y 0 ) n est défini que si P 0 (i.e. cos D. tan z tan ϕ), sinon le stylet polaire est parallèle au plan du cadran. Il faut ensuite limiter le tracé du cadran à des valeurs vraiment utiles. Par exemple, un cadran vertical orienté plein nord (D = 80 ), à une latitude de +0, n indiquera jamais h du matin (Soleil vrai). À cette même latitude, un cadran vertical orienté plein sud n indiquera jamais 9 h aux alentours du solstice d été. Pour être sur que le cadran solaire fonctionne vraiment, deux conditions doivent être simultanément remplies: que le Soleil soit au-dessus de l horizon et que le cadran soit éclairé. En pratique, pour une déclinaison δ donnée, l angle horaire H 0 du Soleil au lever et au coucher est donné par: cos H 0 = tan ϕ. tan δ où H 0 < 0 au lever et H 0 > 0 au coucher du Soleil. Pour chaque valeur de H, il faut vérifier que Q > 0 (sinon, le cadran n est pas éclairé). N.B. Il est possible qu à une date donnée Q soit positif, puis négatif et redevienne positif plus tard! a. Construire un cadran solaire, à une latitude de ϕ = +0 nord, avec D = 70, z = 50 et a =. On précisera notamment x 0, y 0 et Ψ. Calculer en particulier (x, y) pour H = +0 et δ = +. (solstice d été) ainsi que (x, y) pour H = 5 et δ =.7 b. Construire un cadran solaire vertical à une latitude de ϕ = 5, avec D = 60, z = 90 et a =. On précisera notamment x 0, y 0 et Ψ. Calculer en particulier (x, y) pour H = +5 et δ = 0 ainsi que (x, y) pour H = 0 et δ = +0.5 c. Construire un cadran solaire incliné à une latitude de ϕ = +0 nord, avec D = 60, z = 75 et a =. On précisera notamment x 0, y 0 et Ψ. d. Construire un cadran solaire horizontal (z = 0 et D = 0 ) pour Brest ϕ = 8. nord et.5 ouest. On précisera notamment x 0, y 0 et Ψ.. Adapter les calculs pour tracer les droites des heures en temps local moyen en utilisant l équation du temps. 5. Adapter les calculs pour tracer les droites des heures en temps civil.

3 Code avec Mathematica Cadran Solaire Entrées [] à [6] inchangés par rapport au TD Equation du temps Cadran Solaire In[7]:= P[phi,DD,z ]:=Sin[phi] Cos[z]-Cos[phi] Sin[z] Cos[DD]; Q[phi,DD,z,delta,H ]:=Sin[DD] Sin[z] Sin[H]+ (Cos[phi] Cos[z]+Sin[phi] Sin[z] Cos[DD]) Cos[H] + P[phi,DD,z] Tan[delta]; Nx[phi,DD,z,delta,H ]:=Cos[DD] Sin[H]-Sin[DD] (Sin[phi] Cos[H] - Cos[phi] Tan[delta]); Ny[phi,DD,z,delta,H ]:=Cos[z] Sin[DD] Sin[H]- (Cos[phi] Sin[z] - Sin[phi] Cos[z] Cos[DD]) Cos[H]- (Sin[phi] Sin[z] + Cos[phi] Cos[z] Cos[DD]) Tan[delta]; x[phi,dd,z,delta,h,a ]:=a Nx[phi, DD, z, delta, H]/ Q[phi, DD, z, delta, H]; y[phi,d,z,delta,h,a ]:=a Ny[phi, DD, z, delta, H]/ Q[phi, DD, z, delta, H]; x0[phi,dd,z,a ]:=a Cos[phi] Sin[DD]/ P[phi, DD, z]; y0[phi,dd,z,a ]:=-a (Sin[phi] Sin[z]+Cos[phi] Cos[z] Cos[DD])/P[phi,DD,z]; Psi[phi,DD,z ]:=N[ArcSin[Abs[P[phi,DD,z]]]/Degree]; In[6]:= AffichageCadran[Details,Auto,Range ]:=( delta=.;h=.; NbreDelta=7;NbreHeure=5; DataDelta={ -. Degree,-0.5 Degree,-.7 Degree, 0,.7 Degree,0.5 Degree,. Degree}; DataCadran=Table[{xx0,yy0},{NbreDelta NbreHeure}]; For[d=,d<=NbreDelta,d++, delta=n[datadelta[[d]]]; For[h=,h<=NbreHeure,h++, H=N[(80-(h-) 60/(NbreHeure-)) Degree]; If[Q[phi,DD,z,delta,H]>0, DataCadran[[h+ (d-)]]={x[phi,dd,z,delta,h,a],y[phi,dd,z,delta,h,a]}; If[Details, Print["déclinaison: ",N[delta/Degree],"; heure vraie: ", N[(H/Degree)/5],"; coordonnees: ", x[phi,dd,z,delta,h,a]," ; ", y[phi,dd,z,delta,h,a]]] ]]]; DataCadran=Join[DataCadran,{{xx0,yy0}}]; ListPlot[DataCadran, AspectRatio->, AxesOrigin->{0,0}, PlotRange->If[Auto,Automatic,{{-Range,Range},{-Range,Range}}]]) Exemple In[7]:= phi=n[0 Degree]; DD=N[70 Degree]; z=n[50 Degree]; H=N[0 Degree]; delta=n[+. Degree]; a=; xx0=x0[phi,dd,z,a] yy0=y0[phi,dd,z,a] Psi[phi,DD,z] x[phi,dd,z,delta,h,a] y[phi,dd,z,delta,h,a] H=N[-5 Degree]; delta=n[-.7 Degree]; x[phi,dd,z,delta,h,a] y[phi,dd,z,delta,h,a] Out[]=.8799 Out[]= -.06 Out[5]=.67 Out[6]= Out[7]= Out[50]= Out[5]= In[5]:= AffichageCadran[False,False,]

4 Out[5]= -Graphics- Exemple In[5]:= phi=n[-5 Degree]; DD=N[60 Degree]; z=n[90 Degree]; H=N[5 Degree]; delta=n[0 Degree]; a=; xx0=x0[phi,dd,z,a] yy0=y0[phi,dd,z,a] Psi[phi,DD,z] x[phi,dd,z,delta,h,a] y[phi,dd,z,delta,h,a] H=N[0 Degree]; delta=n[0.5 Degree]; x[phi,dd,z,delta,h,a] y[phi,dd,z,delta,h,a] Out[59]= Out[60]= Out[6]= 50.5 Out[6]= Out[6]= Out[66]= Out[67]= In[68]:= AffichageCadran[False,False,]

5 Out[68]= -Graphics- Exemple In[69]:= phi=n[+0 Degree]; DD=N[60 Degree]; z=n[75 Degree]; a=; xx0=x0[phi,dd,z,a] yy0=y0[phi,dd,z,a] Psi[phi,DD,z] Out[7]= Out[7]= Out[75]= In[76]:= AffichageCadran[False,False,] Out[76]= -Graphics- Exemple In[77]:= phi=n[+8. Degree]; DD=N[0 Degree]; z=n[0 Degree]; a=; xx0=x0[phi,dd,z,a] yy0=y0[phi,dd,z,a] Psi[phi,DD,z] 5

6 Out[8]= 0 Out[8]= Out[8]= 8. In[8]:= AffichageCadran[False,False,] Out[8]= -Graphics- 6

7 Cadran analemmique In[85]:= NbreDelta=;delta=.; DataT={ CalculT[0,0,000], CalculT[0,0,000], CalculT[,0,000], CalculT[9,0,000], CalculT[09,0,000], CalculT[,0,000], CalculT[09,0,000], CalculT[,0,000], CalculT[0,0,000], CalculT[6,0,000], CalculT[0,05,000], CalculT[,05,000], CalculT[,05,000], CalculT[0,06,000], CalculT[,06,000], CalculT[,06,000], CalculT[0,07,000], CalculT[,07,000], CalculT[,07,000], CalculT[0,08,000], CalculT[,08,000], CalculT[8,08,000], CalculT[,09,000], CalculT[,09,000], CalculT[07,0,000], CalculT[0,0,000], CalculT[0,,000], CalculT[,,000], CalculT[,,000], CalculT[0,,000], CalculT[,,000], CalculT[,,000]}; DataDelta=delta[DataT]; DataEquTemps=EquTemps[DataT]; In[89]:= Analemmique[DecalageOuest,Details,Auto,Range ]:=( delta=.;h=.; NbreDelta=; NbreHeure=5; DataCadran=Table[{xx0,yy0},{NbreDelta NbreHeure}]; For[d=,d<=NbreDelta,d++, delta=n[datadelta[[d]] Degree]; DecalageET=N[DataEquTemps[[d]]]; For[h=,h<=NbreHeure,h++, H=N[(80 -(h-) 60/(NbreHeure-) -(DecalageOuest+DecalageET)) Degree]; If[Q[phi,DD,z,delta,H]>0, DataCadran[[h+ (d-)]]={x[phi,dd,z,delta,h,a],y[phi,dd,z,delta,h,a]}; If[Details, Print["déclinaison: ",N[delta/Degree],"; heure vraie: ", N[(H/Degree)/5],"; coordonnees: ", x[phi,dd,z,delta,h,a]," ; ", y[phi,dd,z,delta,h,a]]] ]]]; DataCadran=Join[DataCadran,{{xx0,yy0}}]; ListPlot[DataCadran, AspectRatio->, AxesOrigin->{0,0}, PlotRange->If[Auto,Automatic,{{-Range,Range},{-Range,Range}}]]) 7

8 Exemple 5 In[90]:= phi=n[+5 Degree]; DD=N[0 Degree]; z=n[0 Degree]; a=; xx0=x0[phi,dd,z,a] yy0=y0[phi,dd,z,a] Psi[phi,DD,z] Out[9]= 0 Out[95]= -.85 Out[96]= 5 In[97]:= Analemmique[.8,False,False,7] Out[97]= -Graphics- Pour Brest, taper: phi=n[+8. Degree];yy0=y0[phi,DD,z,a];Analemmique[.5,False,False,7] 8

9 Code avec Python # -*- coding: utf-8 -*

10

La hauteur du Soleil et la durée d une journée

La hauteur du Soleil et la durée d une journée La hauteur du Soleil et la durée d une journée On dit que le Soleil se lève à l Est pour se coucher à l Ouest ou encore que le Soleil est au zénith à midi. Cela n est pas vrai ou plus exactement pas toujours

Plus en détail

1- Ce que pensent beaucoup d adultes

1- Ce que pensent beaucoup d adultes LE MOUVEMENT APPARENT DU SOLEIL SOUS NOS LATITUDES ET SES CONSEQUENCES 1- Ce que pensent beaucoup d adultes Avec un tel modèle on ne peut avoir la durée du jour deux fois plus longue le 21 juin que le

Plus en détail

DURÉE DU JOUR EN FONCTION DE LA DATE ET DE LA LATITUDE

DURÉE DU JOUR EN FONCTION DE LA DATE ET DE LA LATITUDE DURÉE DU JUR E FCTI DE LA DATE ET DE LA LATITUDE ous allons nous intéresser à la durée du jour, prise ici dans le sens de période d éclairement par le Soleil dans une journée de 4 h, en un lieu donné de

Plus en détail

Logiciel de calcul des paramètres astronomiques à l usage des installations solaires

Logiciel de calcul des paramètres astronomiques à l usage des installations solaires Revue des Energies Renouvelables ICRESD-07 Tlemcen (2007) 343 348 Logiciel de calcul des paramètres astronomiques à l usage des installations solaires R. Yaiche * Centre de Développement des Energies renouvelables

Plus en détail

Les Cadrans Solaires

Les Cadrans Solaires Les Cadrans Solaires Travail de Maturité Michel Di Salvo 3M7 Gymnase Auguste Piccard Lundi 13 Novembre 006 Florentin Acker Table des matières Travail de maturité Michel Di Salvo Résumé - page Liste des

Plus en détail

«Sextant» expérimental papier (mais c est plutôt un «quadrant»!) principes de mise en œuvre de la navigation astro.

«Sextant» expérimental papier (mais c est plutôt un «quadrant»!) principes de mise en œuvre de la navigation astro. «Sextant» expérimental papier (mais c est plutôt un «quadrant»!) principes de mise en œuvre de la navigation astro. Traçage 1 Matériel nécessaire : un réglet gradué en mm un crayon à mine très fine (0.5

Plus en détail

Projet Cadran Solaire Lycée Chevalier d Eon de Tonnerre

Projet Cadran Solaire Lycée Chevalier d Eon de Tonnerre Lycée Chevalier d Eon de Tonnerre Année 2007 2008 Projet : Cadran Solaire Nicolas Maury Lycée Chevalier d Eon de Tonnerre Année 2007 2008 Projet : Cadran Solaire Nicolas Maury page II Avant-propos Tonnerre

Plus en détail

Orbites et coniques : Constructions à la ficelle

Orbites et coniques : Constructions à la ficelle Orbites et coniques : Constructions à la ficelle Yves A. Delhaye 10 mai 2015 15 :21 Résumé Le lien entre les orbites des astres dans le système solaire et les coniques est établi. La définition des coniques

Plus en détail

Savoir lire une carte, se situer et s orienter en randonnée

Savoir lire une carte, se situer et s orienter en randonnée Savoir lire une carte, se situer et s orienter en randonnée Le b.a.-ba du randonneur Fiche 2 Lire une carte topographique Mais c est où le nord? Quel Nord Le magnétisme terrestre attire systématiquement

Plus en détail

Chapitre I. Calcul vectoriel. Nous nous placerons dorénavant toujours dans une base orthonormée directe.

Chapitre I. Calcul vectoriel. Nous nous placerons dorénavant toujours dans une base orthonormée directe. Chapitre I INTRODUCTION ATHÉATIQUE I.A. I.A.1. Calcul vectoriel Produit vectoriel Plaçons-nous dans un espace vectoriel euclidien à trois dimensions. En faisant subir des rotations identiques aux trois

Plus en détail

Préliminaire : Observation et simulation de l évolution des ombres au cours de la journée

Préliminaire : Observation et simulation de l évolution des ombres au cours de la journée SEQUENCE 1 - LE MIDI SOLAIRE ET LA MERIDIENNE Préliminaire : Observation et simulation de l évolution des ombres au cours de la journée Durée : moments d observations et de tracés assez courts mais renouvelés

Plus en détail

Chapitre 0 Introduction à la cinématique

Chapitre 0 Introduction à la cinématique Chapitre 0 Introduction à la cinématique Plan Vitesse, accélération Coordonnées polaires Exercices corrigés Vitesse, Accélération La cinématique est l étude du mouvement Elle suppose donc l existence à

Plus en détail

La Mesure du Temps. et Temps Solaire Moyen H m.

La Mesure du Temps. et Temps Solaire Moyen H m. La Mesure du Temps Unité de temps du Système International. C est la seconde, de symbole s. Sa définition actuelle a été établie en 1967 par la 13 ème Conférence des Poids et Mesures : la seconde est la

Plus en détail

Logiciel cadrans horizontaux bifilaires

Logiciel cadrans horizontaux bifilaires Logiciel cadrans horizontaux bifilaires Eric MERCIER et Dominique COLLIN Nous présentons un logiciel permettant de dessiner les cadrans solaires horizontaux bifilaires à fils quelconques. Ce programme

Plus en détail

Cours de Mécanique du point matériel

Cours de Mécanique du point matériel Cours de Mécanique du point matériel SMPC1 Module 1 : Mécanique 1 Session : Automne 2014 Prof. M. EL BAZ Cours de Mécanique du Point matériel Chapitre 1 : Complément Mathématique SMPC1 Chapitre 1: Rappels

Plus en détail

Poursuite du soleil pour panneau solaire. Système de positionnement automatique de panneaux solaires.

Poursuite du soleil pour panneau solaire. Système de positionnement automatique de panneaux solaires. Poursuite du soleil pour panneau solaire Système de positionnement automatique de panneaux solaires. 1.1. Introduction. Le positionnent d un panneau face au soleil par rapport au même panneau positionné

Plus en détail

Système des satellites de Jupiter sous Géogébra Partie II - vu de la Terre

Système des satellites de Jupiter sous Géogébra Partie II - vu de la Terre ystème des satellites de upiter sous Géogébra Partie II - vu de la Terre Les satellites de upiter représentent une très bonne illustration d un système képlérien simple si l on ne prend pas en compte les

Plus en détail

Résumé de cours sur les coniques. Lycée Brizeux - PCSI B. Année 2010-2011

Résumé de cours sur les coniques. Lycée Brizeux - PCSI B. Année 2010-2011 Résumé de cours sur les coniques. Lycée Brizeux - PCSI B. Année 010-011 novembre 010 I Définition d une conique en terme d équation cartésienne On se place dans le repère orthonormé direct (0, i, j ).

Plus en détail

Chapitre 3: Dynamique

Chapitre 3: Dynamique Introduction Le mot dynamique désigne ou qualifie ce qui est relatif au mouvement. Il est l opposé du mot statique. Le mouvement d un point matériel est liée à son interaction avec le monde extérieur ce

Plus en détail

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES Théorème - Définition Soit un cercle (O,R) et un point. Une droite passant par coupe le cercle en deux points A et

Plus en détail

COMPTE-RENDU «MATHS EN JEANS» LYCEE OZENNE Groupe 1 : Comment faire une carte juste de la Terre?

COMPTE-RENDU «MATHS EN JEANS» LYCEE OZENNE Groupe 1 : Comment faire une carte juste de la Terre? Claire FORGACZ Marion GALLART Hasnia GOUDJILI COMPTERENDU «MATHS EN JEANS» LYCEE OZENNE Groupe 1 : Comment faire une carte juste de la Terre? Si l on se pose la question de savoir comment on peut faire

Plus en détail

Dessins géométriques avec L A TEX

Dessins géométriques avec L A TEX Dessins géométriques avec L A TEX J. Parizet 13 mai 2014 Montrons sur des exemples que L A TEX permet de dessiner correctement droites et coniques approximées par des arcs de paraboles se raccordant (Bezier.

Plus en détail

F411 - Courbes Paramétrées, Polaires

F411 - Courbes Paramétrées, Polaires 1/43 Courbes Paramétrées Courbes polaires Longueur d un arc, Courbure F411 - Courbes Paramétrées, Polaires Michel Fournié michel.fournie@iut-tlse3.fr http://www.math.univ-toulouse.fr/ fournie/ Année 2012/2013

Plus en détail

Observatoire astronomique de la Pointe du diable

Observatoire astronomique de la Pointe du diable Observatoire astronomique de la Pointe du diable 3. Pointage et suivi automatiques Les instruments sont portés par une monture équatoriale dite à l allemande dont chacun des deux axes est solidaire d une

Plus en détail

Calcul de longueurs :

Calcul de longueurs : Calcul de longueurs : Exercice : (Japon 96) C est un triangle rectangle en A. On donne 5 cm et A B ˆC 5. 1) Construire la figure en vraie grandeur. 2) Déterminer la longueur, arrondie au dixième de centimètre.

Plus en détail

Une classe Astronomie

Une classe Astronomie Organisation prévue : Une classe Astronomie L'encadrement de l'activité «Astronomie» par un intervenant spécialisé. Du CALA (Centre d Astronomie de Lyon Ampère) Chaque classe est scindée en 2 groupes qui

Plus en détail

Jour sidéral, jour solaire Équation de temps

Jour sidéral, jour solaire Équation de temps 1 Jour sidéral, jour solaire 1.1 Durée du jour sidéral : Jour sidéral, jour solaire Équation de temps Observations: Lancer le logiciel et enlever l atmosphère. On voit alors les étoiles en plein jour.

Plus en détail

FORCE MAGNÉTIQUE SUR UN COURANT

FORCE MAGNÉTIQUE SUR UN COURANT PHYSQ 126: F M sur I 1 FORCE MAGNÉTIQUE SUR UN COURANT 1 Théorie Lorsqu un courant électrique circule dans un fil conducteur, et que ce dernier est plongé dans un champ magnétique, il subira l action de

Plus en détail

Le diagramme solaire. Benoit Beckers

Le diagramme solaire. Benoit Beckers Le diagramme solaire Benoit Beckers 2 1. Notions fondamentales Pour bien comprendre le mouvement apparent du soleil sur la voûte céleste, il faut d=abord se rappeler le mouvement réel de la terre dans

Plus en détail

Voyez la réponse à cette question dans ce chapitre. www.hometownroofingcontractors.com/blog/9-reasons-diy-rednecks-should-never-fix-their-own-roof

Voyez la réponse à cette question dans ce chapitre. www.hometownroofingcontractors.com/blog/9-reasons-diy-rednecks-should-never-fix-their-own-roof Une échelle est appuyée sur un mur. S il n y a que la friction statique avec le sol, quel est l angle minimum possible entre le sol et l échelle pour que l échelle ne glisse pas et tombe au sol? www.hometownroofingcontractors.com/blog/9-reasons-diy-rednecks-should-never-fix-their-own-roof

Plus en détail

Trigonométrie dans le cercle

Trigonométrie dans le cercle DERNIÈRE IMPRESSIN LE 8 août 0 à :5 Trigonométrie dans le cercle Table des matières Angles dans un cercle. Cercle trigonométrique........................... Le radian...................................

Plus en détail

3 ème Cours : géométrie dans l espace

3 ème Cours : géométrie dans l espace I. La sphère : a) Définition : La sphère de centre et de rayon R est l ensemble de tous les points qui sont situés à la distance R du point. L intérieur de la sphère (l ensemble des points dont la distance

Plus en détail

La sphère Terrestre. Circonférence de la sphère terrestre = 40 000 Km

La sphère Terrestre. Circonférence de la sphère terrestre = 40 000 Km Navigation La sphère Terrestre Circonférence de la sphère terrestre = 40 000 Km Notion de grand cercle et de petit cercle Petit cercle Grand cercle Méridiens et Longitude Le méridien d origine est le méridien

Plus en détail

La détermination de l accélération d une sphère métallique à l aide de 21 mesures pendant un parcours dans le plan incliné enregistré par le MOTU 828

La détermination de l accélération d une sphère métallique à l aide de 21 mesures pendant un parcours dans le plan incliné enregistré par le MOTU 828 La détermination de l accélération d une sphère métallique à l aide de 21 mesures pendant un parcours dans le plan incliné enregistré par le MOTU 828 de Dr Franz Raemy septembre 2010 Introduction de l

Plus en détail

Angles orientés et fonctions circulaires ( En première S )

Angles orientés et fonctions circulaires ( En première S ) Angles orientés et fonctions circulaires ( En première S ) Dernière mise à jour : Jeudi 01 Septembre 010 Vincent OBATON, Enseignant au lycée Stendhal de Grenoble (Année 006-007) Lycée Stendhal, Grenoble

Plus en détail

Repérage d un point - Vitesse et

Repérage d un point - Vitesse et PSI - écanique I - Repérage d un point - Vitesse et accélération page 1/6 Repérage d un point - Vitesse et accélération Table des matières 1 Espace et temps - Référentiel d observation 1 2 Coordonnées

Plus en détail

L éclairage naturel première partie : Principes de base

L éclairage naturel première partie : Principes de base Suzel BALEZ L5C 2007-08 L éclairage naturel première partie : Principes de base Hertzog et Partner Bât. De bureaux à Wiesbaden Plan Notions préliminaires La vision Grandeurs photométriques Le flux lumineux

Plus en détail

LE JOUR ET LA NUIT SUR LA TERRE LES ECLIPSES Réaliser des simulations simples pour mieux comprendre et schématiser

LE JOUR ET LA NUIT SUR LA TERRE LES ECLIPSES Réaliser des simulations simples pour mieux comprendre et schématiser E JU ET NUIT U TEE E ECIPE éaliser des simulations simples pour mieux comprendre et schématiser vec quel matériel? Une boule de polystyrène placée au soleil est éclairée pour moitié, exactement comme n

Plus en détail

Mesure d angles et trigonométrie

Mesure d angles et trigonométrie Thierry Ciblac Mesure d angles et trigonométrie Mesure de l angle de deux axes (ou de deux demi-droites) de même origine. - Mesures en degrés : Divisons un cercle en 360 parties égales définissant ainsi

Plus en détail

Chafa Azzedine - Faculté de Physique U.S.T.H.B 1

Chafa Azzedine - Faculté de Physique U.S.T.H.B 1 Chafa Azzedine - Faculté de Physique U.S.T.H.B 1 Définition: La cinématique est une branche de la mécanique qui étudie les mouements des corps dans l espace en fonction du temps indépendamment des causes

Plus en détail

Réglages et mise en station avec un viseur polaire

Réglages et mise en station avec un viseur polaire Réglages et mise en station avec un viseur polaire Le viseur polaire est un accessoire optique réticulé pour monture équatoriale (EQ) permettant de faire une mise en station avec précision, autrement dit,

Plus en détail

Calcul intégral élémentaire en plusieurs variables

Calcul intégral élémentaire en plusieurs variables Calcul intégral élémentaire en plusieurs variables PC*2 2 septembre 2009 Avant-propos À part le théorème de Fubini qui sera démontré dans le cours sur les intégrales à paramètres et qui ne semble pas explicitement

Plus en détail

Optimisation du rendement d un système photovoltaïque par poursuite du soleil

Optimisation du rendement d un système photovoltaïque par poursuite du soleil Revue des Energies Renouvelables Vol. 12 N 2 (2009) 299 306 Optimisation du rendement d un système photovoltaïque par poursuite du soleil R. Rezoug et A. Zaatri 1 Département de Mécanique, Faculté des

Plus en détail

LES TEMPS DES PRIERES

LES TEMPS DES PRIERES COMMENT CALCULER LES TEMPS DES PRIERES LES TEMPS DES PRIERES Un hadith-i sharîf rapporté dans les livres intitulés Mukaddimat-as-salât, Tafsîr-i Mazharî et Halabî al-kebîr est comme le suivant: Jabraîl

Plus en détail

Éléments de perspective et tracés des ombres

Éléments de perspective et tracés des ombres DROIT TECHNIQUES GENERAUX chapitre 1 - GÉnÉralitÉs 2. le champ visuel du Spectateur Champ visuel du spectateur 2.1. Ouverture des angles optiques Angle optique : 28 La hauteur du tableau tient deux fois

Plus en détail

Questions. Le système Soleil-Terre-Lune. I] Les mouvements dans le système Soleil Terre Lune

Questions. Le système Soleil-Terre-Lune. I] Les mouvements dans le système Soleil Terre Lune Chapitre III Le système Soleil-Terre-Lune I] Les mouvements dans le système Soleil Terre Lune Questions 1) Quel est le mouvement de la Terre sur elle-même et autour du soleil? Que représente la Terre pour

Plus en détail

Techniques de modélisations de l irradiation solaire sur un plan incliné

Techniques de modélisations de l irradiation solaire sur un plan incliné Techniques de modélisations de l irradiation solaire sur un plan incliné S. Benkaciali #, K. Gairaa * # Unité de recherche appliquée aux énergies renouvelables, Centre de développement des énergies renouvelables,

Plus en détail

TRIGONOMETRIE ET CALCUL NUMERIQUE

TRIGONOMETRIE ET CALCUL NUMERIQUE TRIGONOMETRIE ET CALCUL NUMERIQUE Questions 2010-2013 Exercice 1 2 2 sin(4 x)cos( x) 2sin( x)cos (2 x) 1 2sin ( x) (valeurs numériques) x 45 k 90 ;10 k 120 ;50 k 120 k Exercice 2 tg x 3tg x 4 4 (valeurs

Plus en détail

Le Soleil. Structure, données astronomiques, insolation.

Le Soleil. Structure, données astronomiques, insolation. Le Soleil Structure, données astronomiques, insolation. Le Soleil, une formidable centrale à Fusion Nucléaire Le Soleil a pris naissance au sein d un nuage d hydrogène de composition relative en moles

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme

Plus en détail

Tirer le maximum de son cherche-étoiles

Tirer le maximum de son cherche-étoiles Tirer le maximum de son cherche-étoiles Michèle Aubin Février 2012 I. Origine et définition L auteur du cherche-étoiles québécois Qu est-ce que c est? II. Description des composantes La carte Les cercles

Plus en détail

Géométrie en trois dimensions

Géométrie en trois dimensions 1 Géométrie en trois dimensions Il s agit de visualiser des objets en trois dimensions sur un plan, pour nous l écran de l ordinateur. Pour ce faire, nous allons simplifier les choses au maximum. Nous

Plus en détail

Les phases de la Lune Description de la face visible de la Lune dans le ciel

Les phases de la Lune Description de la face visible de la Lune dans le ciel Les phases de la Lune Description de la face visible de la Lune dans le ciel Nicolas Rambaux Nicolas.Rambaux@imcce.fr (Crédit : Antonio Cidadao) 1 Résumé Ce document décrit le mouvement de la Lune autour

Plus en détail

Rappel du Plan du cours

Rappel du Plan du cours Rappel du Plan du cours 1. Généralités et données climatiques 3. Rappels sur les transferts de chaleur 4. Capteur Solaire Plan 5. Application à la production d eau chaude sanitaire (ECS) 6. Bibliographie

Plus en détail

ANALYSE DU GAIN DE PRODUCTION DES TRACKERS

ANALYSE DU GAIN DE PRODUCTION DES TRACKERS ANALYSE DU GAIN DE PRODUCTION DES TRACKERS Site pilote de démonstration à EVREUX dans l Eure. 3 trackers R T I type DST 12x18Wc monocristallins Date du rapport : 12/7/212 Date de mise en service de l installation

Plus en détail

Engrenages et développantes de cercle. G. Cuisinier et M.-F. Guissard

Engrenages et développantes de cercle. G. Cuisinier et M.-F. Guissard Engrenages et développantes de cercle 2011 G. Cuisinier et M.-F. Guissard Avant-propos Les activités proposées dans ce texte sont présentées selon un plan 1 comportant les rubriques suivantes : De quoi

Plus en détail

Les générateurs photovoltaïques

Les générateurs photovoltaïques Les générateurs photovoltaïques 1 Par Mr Valentini Philippe - enseignant en Génie Electrique Lycée Jean Prouvé - Nancy Objectifs : Mesurer la production d énergie électrique d un générateur photovoltaïque,

Plus en détail

Les quatre opérations sur les nombres entiers Statistiques et probabilités I. Code Unités Devoirs Code Unités Devoirs

Les quatre opérations sur les nombres entiers Statistiques et probabilités I. Code Unités Devoirs Code Unités Devoirs 1 re secondaire 2 e secondaire Les quatre opérations sur les nombres entiers Statistiques et probabilités I MAT-1005-2 2 3 MAT-2008-2 2 3 (+, -, x, ) dans l ensemble des entiers Z. Ce premier cours portant

Plus en détail

Chapitre 1. Cinématique et Dynamique. 1.1 Grandeurs cinématiques. 1.1.1 Base cartésienne

Chapitre 1. Cinématique et Dynamique. 1.1 Grandeurs cinématiques. 1.1.1 Base cartésienne Chapitre 1 Cinématique et Dynamique 1.1 Grandeurs cinématiques En classe de 2 e nous avons introduit les grandeurs cinématiques utilisées pour décrire le mouvement d un point matériel : l abscisse curviligne,

Plus en détail

Transport et distribution de l énergie électrique-tableau de pose

Transport et distribution de l énergie électrique-tableau de pose Transport et distribution de l énergie électrique-tableau de pose 1 Courbe d équilibre d un conducteur 1.1 Equation d équilibre et flèche d un conducteur La mécanique rationnelle nous apprend que l équation

Plus en détail

CHAPITRE 5 : LIMITE ET ORDRE ASYMPTOTES

CHAPITRE 5 : LIMITE ET ORDRE ASYMPTOTES CHAPITRE 5 : LIMITE ET ORDRE ASYMPTOTES La lettre grecque α désigne soit, soit, soit a un réel fini ( a R ) Le plan est muni d un repère ( O; i ; j), et on note C f la courbe représentative de la fonction

Plus en détail

Stellarium. Stellarium. 1. Introduction à Stellarium (2/4) 1. Introduction à Stellarium (1/4) Université du Temps Libre - 08 avril 2008

Stellarium. Stellarium. 1. Introduction à Stellarium (2/4) 1. Introduction à Stellarium (1/4) Université du Temps Libre - 08 avril 2008 Stellarium Stellarium 1. Introduction à Stellarium 1.1 Généralités 1.2 Ecran d Ouverture 2. Commandes Principales du Menu 2.1 Outils de repérage dans le ciel 2.2 Outils de sélection 2.3 Fenêtre de configuration

Plus en détail

Un projet interdisciplinaire

Un projet interdisciplinaire Projet Eratosthène Ceci est une introduction au Guide de l Enseignant: il présente d'abord les observations faites par Eratosthène, ses hypothèses et ses conclusions, suivies par un aperçu de la façon

Plus en détail

ANALYSE IV 29-06-2009. Informations. (5) Pour rendre l examen il faut signer une feuille de présence disponible avec les assistants responsables.

ANALYSE IV 29-06-2009. Informations. (5) Pour rendre l examen il faut signer une feuille de présence disponible avec les assistants responsables. EXAMEN CORRIGE ANALYSE IV 9-6-9 informations: http://cag.epfl.ch sections IN + SC Prénom : Nom : Sciper : Section : Informations () L épreuve a une durée de 3 heures et 45 minutes. () Les feuilles jaunes

Plus en détail

MOUVEMENT de la LUNE sur la SPHERE. Debelle M 23 01 2007

MOUVEMENT de la LUNE sur la SPHERE. Debelle M 23 01 2007 MOUVEMENT de la LUNE sur la SPHERE Debelle M 23 01 2007 1 Dimensions de la Lune Rayon équatorial : 1740 km Masse : 7,348.10²² kg Distance Moyenne : 384403 km, (60 rayons terrestres) Densité moyenne : 3,34333

Plus en détail

Présenté Pour Obtenir Le Diplôme De Magistère En Physique. Spécialité : Energies Renouvelables THEME

Présenté Pour Obtenir Le Diplôme De Magistère En Physique. Spécialité : Energies Renouvelables THEME REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE MINISTERE DE L ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE UNIVERSITE MENTOURI DE CONSTANTINE FACULTE DES SCIENCES EXACTES DEPARTEMENT DE PHYSIQUE

Plus en détail

Présentation Générale :... 3 I Présentation... 4 I 1 Problématique :... 4 I 2 Le système d exploitation :... 4 I 3 Cahier des charges :...

Présentation Générale :... 3 I Présentation... 4 I 1 Problématique :... 4 I 2 Le système d exploitation :... 4 I 3 Cahier des charges :... 1 Présentation Générale :... 3 I Présentation... 4 I 1 Problématique :... 4 I 2 Le système d exploitation :... 4 I 3 Cahier des charges :... 4 I 3 1 Les contraintes :... 4 I 3 3 La pieuvre :... 4 I 4 Détails

Plus en détail

ÉPREUVE COMMUNE DE TIPE 2012 - Partie D. Prévision énergétique des centrales photovoltaïques GUIDE POUR LE CANDIDAT :

ÉPREUVE COMMUNE DE TIPE 2012 - Partie D. Prévision énergétique des centrales photovoltaïques GUIDE POUR LE CANDIDAT : ÉPREUVE COMMUNE DE TIPE 2012 - Partie D S01 TITRE : Prévision énergétique des centrales photovoltaïques Temps de préparation :...2 h 15 minutes Temps de présentation devant les examinateurs :.10 minutes

Plus en détail

Chapitre 8 - Trigonométrie

Chapitre 8 - Trigonométrie Chapitre 8 - Trigonométrie A) Rappels et compléments ) Le cercle trigonométrique a) Définitions On appelle cercle trigonométrique le cercle de centre O et de rayon dans un repère orthonormal (O, I, J),

Plus en détail

Système hybride thermique photovoltaïque pour la production de l eau distillée

Système hybride thermique photovoltaïque pour la production de l eau distillée REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE N d ordre:.. Série:... MINISTERE DE L ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE UNIVERSITE MENTOURI-CONSTANTINE FACULTE DES SCIENCES EXACTES

Plus en détail

Vision industrielle et télédétection - Détection d ellipses. Guillaume Martinez 17 décembre 2007

Vision industrielle et télédétection - Détection d ellipses. Guillaume Martinez 17 décembre 2007 Vision industrielle et télédétection - Détection d ellipses Guillaume Martinez 17 décembre 2007 1 Table des matières 1 Le projet 3 1.1 Objectif................................ 3 1.2 Les choix techniques.........................

Plus en détail

PREMIERE PARTIE LA PLANETE TERRE ET SON ENVIRONNEMENT

PREMIERE PARTIE LA PLANETE TERRE ET SON ENVIRONNEMENT PREMIERE PARTIE LA PLANETE TERRE ET SON ENVIRONNEMENT II LE RAYONNEMENT SOLAIRE Introduction : Le soleil est une étoile. La fusion thermonucléaire de l hydrogène en hélium lui fournit toute son énergie,

Plus en détail

Phénomènes vibratoires et optique

Phénomènes vibratoires et optique Travaux dirigés Phénomènes vibratoires et optique K. F. Ren L3 IUP ME 2015 1 Oscillations 1.1 Etude d un oscillateur harmonique Un oscillateur harmonique est décrit par l équation : u(t) = 0, 4 cos(5πt

Plus en détail

GUIDE D UTILISATION «MECA PRO» Etude de l équilibre d un solide soumis à trois forces

GUIDE D UTILISATION «MECA PRO» Etude de l équilibre d un solide soumis à trois forces GUIDE D UTILISATION «MECA PRO» Etude de l équilibre d un solide soumis à trois forces Etude de l équilibre d un solide soumis à trois forces non parallèles Si un solide soumis à l'action de 3 forces A

Plus en détail

Astronomie. Activité N 1 : Fiche de recherche. Réponses : - Le diamètre de la Lune est près de 4 fois (3,7 fois) plus petit que celui de la Terre.

Astronomie. Activité N 1 : Fiche de recherche. Réponses : - Le diamètre de la Lune est près de 4 fois (3,7 fois) plus petit que celui de la Terre. Activité N 1 : Fiche de recherche Réponses : - Le diamètre de la Lune est près de 4 fois (3,7 fois) plus petit que celui de la Terre. - La distance de la Terre à la Lune est environ 384 000 Km en moyenne.

Plus en détail

Chapitre 1 Cinématique du point matériel

Chapitre 1 Cinématique du point matériel Chapitre 1 Cinématique du point matériel 7 1.1. Introduction 1.1.1. Domaine d étude Le programme de mécanique de math sup se limite à l étude de la mécanique classique. Sont exclus : la relativité et la

Plus en détail

PROGRAMME D HABILETÉS EN FAUTEUIL ROULANT (WSP-F)

PROGRAMME D HABILETÉS EN FAUTEUIL ROULANT (WSP-F) PROGRAMME D HABILETÉS EN FAUTEUIL ROULANT (WSP-F) LIGNES DIRECTRICES POUR LE PARCOURS À OBSTACLES VERSION 4.1 CANADIENNE-FRANÇAISE Les activités d entraînement et d évaluation du WSP-F 4.1 peuvent se dérouler

Plus en détail

SINE QUA NON. Découverte et Prise en main du logiciel Utilisation de bases

SINE QUA NON. Découverte et Prise en main du logiciel Utilisation de bases SINE QUA NON Découverte et Prise en main du logiciel Utilisation de bases Sine qua non est un logiciel «traceur de courbes planes» mais il possède aussi bien d autres fonctionnalités que nous verrons tout

Plus en détail

Exercices. Sirius 1 ère S - Livre du professeur Chapitre 15. Champs et forces. Exercices d application. 5 minutes chrono!

Exercices. Sirius 1 ère S - Livre du professeur Chapitre 15. Champs et forces. Exercices d application. 5 minutes chrono! Exercices Exercices d application 5 minutes chrono 1. Mots manquants a. scalaire b. aimants/courants c. aiguille aimantée d. électrostatique. e. uniforme/ parallèles. f. la verticale/la Terre g. gravitation/la

Plus en détail

«De la modélisation à la maquettisation» ou «Comment passer du modèle en 3D à la maquette en 2D.»

«De la modélisation à la maquettisation» ou «Comment passer du modèle en 3D à la maquette en 2D.» ANIMATION SCIENCES DU 06/02/13 : «De la modélisation à la maquettisation» ou «Comment passer du modèle en 3D à la maquette en 2D.» Points des IO : (Annexe 1) Comprendre le phénomène d alternance du jour

Plus en détail

L observation du Soleil Classe de 4 ème 5, professeur M. Debackère 19/04/2001

L observation du Soleil Classe de 4 ème 5, professeur M. Debackère 19/04/2001 L observation du Soleil Classe de 4 ème 5, professeur M. Debackère 19/04/2001 LES TACHES SOLAIRES En 1611, GALILEE et trois autres observateurs redécouvrent les taches solaires grâce à la lunette (elles

Plus en détail

CONSTRUCTION DES PROJECTIONS TYPES DE PROJECTION. Projection => distorsions. Orientations des projections

CONSTRUCTION DES PROJECTIONS TYPES DE PROJECTION. Projection => distorsions. Orientations des projections A.Charbonnel SYNTHÈSE SUR LES PROJECTIONS CARTOGRAPHIQUES SIMPLES 1/6 TYPES DE PROJECTION Pour passer de la représentation en 3D de la terre (globe terrestre) à une représentation en 2D (la carte), on

Plus en détail

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4)

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) Bernard Le Stum Université de Rennes 1 Version du 13 mars 2009 Table des matières 1 Fonctions partielles, courbes de niveau 1 2 Limites et continuité

Plus en détail

Prénom Nom Classe. Voyage au coeur du temps. avec Pierrot l'horlo

Prénom Nom Classe. Voyage au coeur du temps. avec Pierrot l'horlo Prénom Nom lasse oyage au coeur du temps avec Pierrot l'horlo Qu est-ce que le temps? iens le découvrir avec Pierrot l Horlo Pour toi, qu est-ce-que le temps? Ecris en une phrase ce que cela représente

Plus en détail

Chapitre 2 : Géométrie des images radar et effets du relief (Cours Télédétection Radar Jean-Paul Rudant ERAIFT Avril-Mai 2011)

Chapitre 2 : Géométrie des images radar et effets du relief (Cours Télédétection Radar Jean-Paul Rudant ERAIFT Avril-Mai 2011) Télédétection Radar Chapitre 2 : Géométrie des images radar et effets du relief (Cours Télédétection Radar Jean-Paul Rudant ERAIFT Avril-Mai 2011) Ce chapitre présente successivement les effets du relief

Plus en détail

OFPPT ROYAUME DU MAROC RESUME THEORIQUE & GUIDE DE TRAVAUX PRATIQUES TRAVAUX PUBLICS PROJET ROUTIER MODULE N 16 SECTEUR :

OFPPT ROYAUME DU MAROC RESUME THEORIQUE & GUIDE DE TRAVAUX PRATIQUES TRAVAUX PUBLICS PROJET ROUTIER MODULE N 16 SECTEUR : OFPPT ROYAUME DU MAROC Office de la Formation Professionnelle et de la Promotion du Travail DIRECTION RECHERCHE ET INGENIERIE DE FORMATION RESUME THEORIQUE & GUIDE DE TRAVAUX PRATIQUES MODULE N 16 TRAVAUX

Plus en détail

Communication graphique

Communication graphique Introduction générale Partie I. La projection parallèle 1. Le dessin multivue 2. La méthode de Monge 3. L axonométrie 4. Courbes de Bézier 5. La projection cotée (topographie) Projection cotée Méthode

Plus en détail

O 2 Formation d images par un système optique.

O 2 Formation d images par un système optique. par un système optique. PCS 2015 2016 Définitions Système optique : un système optique est formé par une succession de milieux homogènes, transparents et isotropes (MHT) séparés par des dioptres (et /

Plus en détail

Cours de tracés de Charpente, Le TRAIT

Cours de tracés de Charpente, Le TRAIT Page 1/5 Cours de tracés de Charpente, Le TRAIT Recherches de vraies grandeurs, angles de coupes, surfaces. Les Méthodes : Le tracé et les calculs Chaque chapitre ou fichier comportent une explication

Plus en détail

septembre 2013, Le Ciel - 299 Instruments anciens Mesures d angles Yaël Nazé

septembre 2013, Le Ciel - 299 Instruments anciens Mesures d angles Yaël Nazé septembre 2013, Le Ciel - 299 Instruments anciens Mesures d angles Yaël Nazé 300 - Le Ciel, septembre 2013 Ah, les angles, une unité de base en astronomie... Par le passé, mesurer le ciel voulait bien

Plus en détail

Cours de physique. Classes 1B et 1C. Athénée de Luxembourg

Cours de physique. Classes 1B et 1C. Athénée de Luxembourg Cours de physique Classes 1B et 1C Athénée de Luxembourg Table des matières 1 Cinématique et Dynamique 5 1.1 Grandeurs cinématiques.............................. 5 1.1.1 Base cartésienne..............................

Plus en détail

Rapport de stage Mise à plat d'un polygone

Rapport de stage Mise à plat d'un polygone Rapport de stage Mise à plat d'un polygone Stagiaire : Sejjil Olfa Tuteurs de stage: Luc BIARD et Bernard LACOLLE Laboratoire: Jean Kuntzmann (LJK) Equipe: Modélisation Géométrique & Multirésolution pour

Plus en détail

«A l heure des cadrans»

«A l heure des cadrans» Association Patrimoniale «Les Compagnons de Volvredo» 20, Chemin de l Orme 38210 VOUREY N préfectoral : 1/23522 SIRET : 753 754 860 00017 www.les-compagnons-de-volvredo.com «A l heure des cadrans» Dimanche

Plus en détail

CHAPITRE 7 Fonction carré et fonction inverse

CHAPITRE 7 Fonction carré et fonction inverse CHAPITRE 7 Fonction carré et fonction inverse A) La fonction "carré" : f() = ² ) Domaine de définition Elle est définie sur ℝ complet (on peut toujours multiplier deu nombres entre eu). 2) Sens de variation

Plus en détail

Cours IV Mise en orbite

Cours IV Mise en orbite Introduction au vol spatial Cours IV Mise en orbite If you don t know where you re going, you ll probably end up somewhere else. Yogi Berra, NY Yankees catcher v1.2.8 by-sa Olivier Cleynen Introduction

Plus en détail

Quadrature n 74 (2009) 10 22. Online Material

Quadrature n 74 (2009) 10 22. Online Material Quadrature n 74 (009) 10 Online Material E. Brugallé, Online Material Un peu de géométrie tropicale Solutions des exercices Erwan Brugallé Université Pierre et Marie Curie, Paris 6, 175 rue du Chevaleret,

Plus en détail

G.P. DNS02 Septembre 2012. Réfraction...1 I.Préliminaires...1 II.Première partie...1 III.Deuxième partie...3. Réfraction

G.P. DNS02 Septembre 2012. Réfraction...1 I.Préliminaires...1 II.Première partie...1 III.Deuxième partie...3. Réfraction DNS Sujet Réfraction...1 I.Préliminaires...1 II.Première partie...1 III.Deuxième partie...3 Réfraction I. Préliminaires 1. Rappeler la valeur et l'unité de la perméabilité magnétique du vide µ 0. Donner

Plus en détail

Mécanique des solides déformables

Mécanique des solides déformables Mécanique des solides déformables Auteur Michel MAYA 1 Descriptions 2 Représentations graphiques Ce cours est mis à disposition selon les termes de la licence Creative Commons Paternité + Pas d utilisation

Plus en détail

Éclipse de Lune. qu est-ce qu une éclipse de lune?

Éclipse de Lune. qu est-ce qu une éclipse de lune? ACCUEIL Éclipse de Lune Frédéric Élie, août 2010 La reproduction des articles, images ou graphiques de ce site, pour usage collectif, y compris dans le cadre des études scolaires et supérieures, est INTERDITE.

Plus en détail

Méthode du point lumineux

Méthode du point lumineux Méthode du point lumineux Nous avons commencé par la méthode du point lumineux avec un relief proche de la chaîne des Appenins, Abulfeda. La photo est jointe en fin de paragraphe avec son exploitation

Plus en détail