TD: Cadran solaire. 1 Position du problème

Dimension: px
Commencer à balayer dès la page:

Download "TD: Cadran solaire. 1 Position du problème"

Transcription

1 Position du problème On souhaite réaliser un cadran solaire à l aide d un stylet, de longueur a, perpendiculaire à un plan. (Le stylet n est donc pas orienté vers le pôle nord céleste). Ce cadran solaire a les caractéristiques suivantes: ϕ la latitude du lieu. D la déclinaison gnomonique c.-à-d. l azimut du stylet, mesuré à partir du sud et compté vers l ouest. Si D = 0, alors le cadran est orienté plein sud; si D = 70, le cadran est orienté plein est,... z la distance zénithale du stylet. Si z = 0, le cadran est horizontal (D est alors indéfini ); si z = 90, le cadran est vertical. On prend l origine cartésienne O du repère à la base du stylet et l on appelle (x, y) les coordonnées de l extrémité de l ombre du stylet. On choisit comme axe (Ox) l horizontale et comme axe (Oy) la direction de plus grande pente du cadran. x est compté positivement vers la droite et y positivement vers le haut. L angle horaire du Soleil H est mesuré à partir de midi pour le Soleil vrai; H augmente de 5 par heure. Par exemple H = 5 correspond à 9 h du matin (heure solaire vraie), H = +5 correspond à h de l après-midi. Dans les formules suivantes, pour chaque angle horaire H, la déclinaison δ du Soleil prendra successivement. (solstice d hiver), 0.5,.7, 0 (équinoxe), +.7, +0.5 et +. (solstice d été), ce qui correspond aux dates où la longitude du Soleil est un multiple de 0. Au cours de la journée, l extrémité de l ombre du stylet décrira une conique sur le cadran (cercle, ellipse, parabole ou hyperbole). Toutefois, si δ = 0, la courbe sera toujours une droite. Le plan représente la surface du cadran solaire. OP est le stylet, de longueur a, placé en O(0, 0), perpendiculaire à ce plan. Le point I est le centre du cadran de coordonnées (x 0, y 0 ). IP est le stylet polaire de longueur u. P est l extrémité de l ombre sur le cadran de coordonnées (x, y).. Pour un angle horaire H, calculer: P = sin ϕ. cos z cos ϕ. sin z. cos D Q = sin D. sin z. sin H + (cos ϕ. cos z + sin ϕ. sin z. cos D). cos H + P. tan δ On peut alors choisir les directions (Ox) et (Oy) comme l on veut. Dans ce cas, on prendra D = 0, (Ox) vers l est et (Oy) vers le nord.

2 N x = cos D. sin H sin D.(sin ϕ. cos H cos ϕ. tan δ) N y = cos z. sin D. sin H (cos ϕ. sin z sin ϕ. cos z. cos D). cos H (sin ϕ. sin z+cos ϕ. cos z. cos D). tan δ Les coordonnées x et y sont alors données par: x = a.n x /Q et y = a.n y /Q On obtient ainsi une série de points. En reliant ces points, on obtient une droite correspondant à une certaine heure (en temps local vrai).. Réitérer l opération pour différentes valeurs de H. (On prendra des pas de 5 ). Former l intersection des droites des heures (en temps local vrai); ce point (s il existe) est le centre du cadran; il correspond au point de fixation d un stylet polaire (qui serait parallèle à l axe de rotation de la Terre). Ces coordonnées x 0 et y 0 sont données par: x 0 = a P. cos ϕ. sin D et y 0 = a P.(sin ϕ. sin z + cos ϕ. cos z. cos D). Soit u la longueur du stylet polaire entre son point de fixation en (x 0, y 0 ) et l extrémité du stylet perpendiculaire au cadran (de longueur a). On a: u = a P ; l angle Ψ que le stylet polaire fait avec le plan du cadran est donné par: sin Ψ = P. N.B. (x 0, y 0 ) n est défini que si P 0 (i.e. cos D. tan z tan ϕ), sinon le stylet polaire est parallèle au plan du cadran. Il faut ensuite limiter le tracé du cadran à des valeurs vraiment utiles. Par exemple, un cadran vertical orienté plein nord (D = 80 ), à une latitude de +0, n indiquera jamais h du matin (Soleil vrai). À cette même latitude, un cadran vertical orienté plein sud n indiquera jamais 9 h aux alentours du solstice d été. Pour être sur que le cadran solaire fonctionne vraiment, deux conditions doivent être simultanément remplies: que le Soleil soit au-dessus de l horizon et que le cadran soit éclairé. En pratique, pour une déclinaison δ donnée, l angle horaire H 0 du Soleil au lever et au coucher est donné par: cos H 0 = tan ϕ. tan δ où H 0 < 0 au lever et H 0 > 0 au coucher du Soleil. Pour chaque valeur de H, il faut vérifier que Q > 0 (sinon, le cadran n est pas éclairé). N.B. Il est possible qu à une date donnée Q soit positif, puis négatif et redevienne positif plus tard! a. Construire un cadran solaire, à une latitude de ϕ = +0 nord, avec D = 70, z = 50 et a =. On précisera notamment x 0, y 0 et Ψ. Calculer en particulier (x, y) pour H = +0 et δ = +. (solstice d été) ainsi que (x, y) pour H = 5 et δ =.7 b. Construire un cadran solaire vertical à une latitude de ϕ = 5, avec D = 60, z = 90 et a =. On précisera notamment x 0, y 0 et Ψ. Calculer en particulier (x, y) pour H = +5 et δ = 0 ainsi que (x, y) pour H = 0 et δ = +0.5 c. Construire un cadran solaire incliné à une latitude de ϕ = +0 nord, avec D = 60, z = 75 et a =. On précisera notamment x 0, y 0 et Ψ. d. Construire un cadran solaire horizontal (z = 0 et D = 0 ) pour Brest ϕ = 8. nord et.5 ouest. On précisera notamment x 0, y 0 et Ψ.. Adapter les calculs pour tracer les droites des heures en temps local moyen en utilisant l équation du temps. 5. Adapter les calculs pour tracer les droites des heures en temps civil.

3 Code avec Mathematica Cadran Solaire Entrées [] à [6] inchangés par rapport au TD Equation du temps Cadran Solaire In[7]:= P[phi,DD,z ]:=Sin[phi] Cos[z]-Cos[phi] Sin[z] Cos[DD]; Q[phi,DD,z,delta,H ]:=Sin[DD] Sin[z] Sin[H]+ (Cos[phi] Cos[z]+Sin[phi] Sin[z] Cos[DD]) Cos[H] + P[phi,DD,z] Tan[delta]; Nx[phi,DD,z,delta,H ]:=Cos[DD] Sin[H]-Sin[DD] (Sin[phi] Cos[H] - Cos[phi] Tan[delta]); Ny[phi,DD,z,delta,H ]:=Cos[z] Sin[DD] Sin[H]- (Cos[phi] Sin[z] - Sin[phi] Cos[z] Cos[DD]) Cos[H]- (Sin[phi] Sin[z] + Cos[phi] Cos[z] Cos[DD]) Tan[delta]; x[phi,dd,z,delta,h,a ]:=a Nx[phi, DD, z, delta, H]/ Q[phi, DD, z, delta, H]; y[phi,d,z,delta,h,a ]:=a Ny[phi, DD, z, delta, H]/ Q[phi, DD, z, delta, H]; x0[phi,dd,z,a ]:=a Cos[phi] Sin[DD]/ P[phi, DD, z]; y0[phi,dd,z,a ]:=-a (Sin[phi] Sin[z]+Cos[phi] Cos[z] Cos[DD])/P[phi,DD,z]; Psi[phi,DD,z ]:=N[ArcSin[Abs[P[phi,DD,z]]]/Degree]; In[6]:= AffichageCadran[Details,Auto,Range ]:=( delta=.;h=.; NbreDelta=7;NbreHeure=5; DataDelta={ -. Degree,-0.5 Degree,-.7 Degree, 0,.7 Degree,0.5 Degree,. Degree}; DataCadran=Table[{xx0,yy0},{NbreDelta NbreHeure}]; For[d=,d<=NbreDelta,d++, delta=n[datadelta[[d]]]; For[h=,h<=NbreHeure,h++, H=N[(80-(h-) 60/(NbreHeure-)) Degree]; If[Q[phi,DD,z,delta,H]>0, DataCadran[[h+ (d-)]]={x[phi,dd,z,delta,h,a],y[phi,dd,z,delta,h,a]}; If[Details, Print["déclinaison: ",N[delta/Degree],"; heure vraie: ", N[(H/Degree)/5],"; coordonnees: ", x[phi,dd,z,delta,h,a]," ; ", y[phi,dd,z,delta,h,a]]] ]]]; DataCadran=Join[DataCadran,{{xx0,yy0}}]; ListPlot[DataCadran, AspectRatio->, AxesOrigin->{0,0}, PlotRange->If[Auto,Automatic,{{-Range,Range},{-Range,Range}}]]) Exemple In[7]:= phi=n[0 Degree]; DD=N[70 Degree]; z=n[50 Degree]; H=N[0 Degree]; delta=n[+. Degree]; a=; xx0=x0[phi,dd,z,a] yy0=y0[phi,dd,z,a] Psi[phi,DD,z] x[phi,dd,z,delta,h,a] y[phi,dd,z,delta,h,a] H=N[-5 Degree]; delta=n[-.7 Degree]; x[phi,dd,z,delta,h,a] y[phi,dd,z,delta,h,a] Out[]=.8799 Out[]= -.06 Out[5]=.67 Out[6]= Out[7]= Out[50]= Out[5]= In[5]:= AffichageCadran[False,False,]

4 Out[5]= -Graphics- Exemple In[5]:= phi=n[-5 Degree]; DD=N[60 Degree]; z=n[90 Degree]; H=N[5 Degree]; delta=n[0 Degree]; a=; xx0=x0[phi,dd,z,a] yy0=y0[phi,dd,z,a] Psi[phi,DD,z] x[phi,dd,z,delta,h,a] y[phi,dd,z,delta,h,a] H=N[0 Degree]; delta=n[0.5 Degree]; x[phi,dd,z,delta,h,a] y[phi,dd,z,delta,h,a] Out[59]= Out[60]= Out[6]= 50.5 Out[6]= Out[6]= Out[66]= Out[67]= In[68]:= AffichageCadran[False,False,]

5 Out[68]= -Graphics- Exemple In[69]:= phi=n[+0 Degree]; DD=N[60 Degree]; z=n[75 Degree]; a=; xx0=x0[phi,dd,z,a] yy0=y0[phi,dd,z,a] Psi[phi,DD,z] Out[7]= Out[7]= Out[75]= In[76]:= AffichageCadran[False,False,] Out[76]= -Graphics- Exemple In[77]:= phi=n[+8. Degree]; DD=N[0 Degree]; z=n[0 Degree]; a=; xx0=x0[phi,dd,z,a] yy0=y0[phi,dd,z,a] Psi[phi,DD,z] 5

6 Out[8]= 0 Out[8]= Out[8]= 8. In[8]:= AffichageCadran[False,False,] Out[8]= -Graphics- 6

7 Cadran analemmique In[85]:= NbreDelta=;delta=.; DataT={ CalculT[0,0,000], CalculT[0,0,000], CalculT[,0,000], CalculT[9,0,000], CalculT[09,0,000], CalculT[,0,000], CalculT[09,0,000], CalculT[,0,000], CalculT[0,0,000], CalculT[6,0,000], CalculT[0,05,000], CalculT[,05,000], CalculT[,05,000], CalculT[0,06,000], CalculT[,06,000], CalculT[,06,000], CalculT[0,07,000], CalculT[,07,000], CalculT[,07,000], CalculT[0,08,000], CalculT[,08,000], CalculT[8,08,000], CalculT[,09,000], CalculT[,09,000], CalculT[07,0,000], CalculT[0,0,000], CalculT[0,,000], CalculT[,,000], CalculT[,,000], CalculT[0,,000], CalculT[,,000], CalculT[,,000]}; DataDelta=delta[DataT]; DataEquTemps=EquTemps[DataT]; In[89]:= Analemmique[DecalageOuest,Details,Auto,Range ]:=( delta=.;h=.; NbreDelta=; NbreHeure=5; DataCadran=Table[{xx0,yy0},{NbreDelta NbreHeure}]; For[d=,d<=NbreDelta,d++, delta=n[datadelta[[d]] Degree]; DecalageET=N[DataEquTemps[[d]]]; For[h=,h<=NbreHeure,h++, H=N[(80 -(h-) 60/(NbreHeure-) -(DecalageOuest+DecalageET)) Degree]; If[Q[phi,DD,z,delta,H]>0, DataCadran[[h+ (d-)]]={x[phi,dd,z,delta,h,a],y[phi,dd,z,delta,h,a]}; If[Details, Print["déclinaison: ",N[delta/Degree],"; heure vraie: ", N[(H/Degree)/5],"; coordonnees: ", x[phi,dd,z,delta,h,a]," ; ", y[phi,dd,z,delta,h,a]]] ]]]; DataCadran=Join[DataCadran,{{xx0,yy0}}]; ListPlot[DataCadran, AspectRatio->, AxesOrigin->{0,0}, PlotRange->If[Auto,Automatic,{{-Range,Range},{-Range,Range}}]]) 7

8 Exemple 5 In[90]:= phi=n[+5 Degree]; DD=N[0 Degree]; z=n[0 Degree]; a=; xx0=x0[phi,dd,z,a] yy0=y0[phi,dd,z,a] Psi[phi,DD,z] Out[9]= 0 Out[95]= -.85 Out[96]= 5 In[97]:= Analemmique[.8,False,False,7] Out[97]= -Graphics- Pour Brest, taper: phi=n[+8. Degree];yy0=y0[phi,DD,z,a];Analemmique[.5,False,False,7] 8

9 Code avec Python # -*- coding: utf-8 -*

10

DURÉE DU JOUR EN FONCTION DE LA DATE ET DE LA LATITUDE

DURÉE DU JOUR EN FONCTION DE LA DATE ET DE LA LATITUDE DURÉE DU JUR E FCTI DE LA DATE ET DE LA LATITUDE ous allons nous intéresser à la durée du jour, prise ici dans le sens de période d éclairement par le Soleil dans une journée de 4 h, en un lieu donné de

Plus en détail

Préliminaire : Observation et simulation de l évolution des ombres au cours de la journée

Préliminaire : Observation et simulation de l évolution des ombres au cours de la journée SEQUENCE 1 - LE MIDI SOLAIRE ET LA MERIDIENNE Préliminaire : Observation et simulation de l évolution des ombres au cours de la journée Durée : moments d observations et de tracés assez courts mais renouvelés

Plus en détail

Orbites et coniques : Constructions à la ficelle

Orbites et coniques : Constructions à la ficelle Orbites et coniques : Constructions à la ficelle Yves A. Delhaye 10 mai 2015 15 :21 Résumé Le lien entre les orbites des astres dans le système solaire et les coniques est établi. La définition des coniques

Plus en détail

Savoir lire une carte, se situer et s orienter en randonnée

Savoir lire une carte, se situer et s orienter en randonnée Savoir lire une carte, se situer et s orienter en randonnée Le b.a.-ba du randonneur Fiche 2 Lire une carte topographique Mais c est où le nord? Quel Nord Le magnétisme terrestre attire systématiquement

Plus en détail

Chapitre 0 Introduction à la cinématique

Chapitre 0 Introduction à la cinématique Chapitre 0 Introduction à la cinématique Plan Vitesse, accélération Coordonnées polaires Exercices corrigés Vitesse, Accélération La cinématique est l étude du mouvement Elle suppose donc l existence à

Plus en détail

Logiciel cadrans horizontaux bifilaires

Logiciel cadrans horizontaux bifilaires Logiciel cadrans horizontaux bifilaires Eric MERCIER et Dominique COLLIN Nous présentons un logiciel permettant de dessiner les cadrans solaires horizontaux bifilaires à fils quelconques. Ce programme

Plus en détail

La Mesure du Temps. et Temps Solaire Moyen H m.

La Mesure du Temps. et Temps Solaire Moyen H m. La Mesure du Temps Unité de temps du Système International. C est la seconde, de symbole s. Sa définition actuelle a été établie en 1967 par la 13 ème Conférence des Poids et Mesures : la seconde est la

Plus en détail

Cours de Mécanique du point matériel

Cours de Mécanique du point matériel Cours de Mécanique du point matériel SMPC1 Module 1 : Mécanique 1 Session : Automne 2014 Prof. M. EL BAZ Cours de Mécanique du Point matériel Chapitre 1 : Complément Mathématique SMPC1 Chapitre 1: Rappels

Plus en détail

F411 - Courbes Paramétrées, Polaires

F411 - Courbes Paramétrées, Polaires 1/43 Courbes Paramétrées Courbes polaires Longueur d un arc, Courbure F411 - Courbes Paramétrées, Polaires Michel Fournié michel.fournie@iut-tlse3.fr http://www.math.univ-toulouse.fr/ fournie/ Année 2012/2013

Plus en détail

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES Théorème - Définition Soit un cercle (O,R) et un point. Une droite passant par coupe le cercle en deux points A et

Plus en détail

COMPTE-RENDU «MATHS EN JEANS» LYCEE OZENNE Groupe 1 : Comment faire une carte juste de la Terre?

COMPTE-RENDU «MATHS EN JEANS» LYCEE OZENNE Groupe 1 : Comment faire une carte juste de la Terre? Claire FORGACZ Marion GALLART Hasnia GOUDJILI COMPTERENDU «MATHS EN JEANS» LYCEE OZENNE Groupe 1 : Comment faire une carte juste de la Terre? Si l on se pose la question de savoir comment on peut faire

Plus en détail

Voyez la réponse à cette question dans ce chapitre. www.hometownroofingcontractors.com/blog/9-reasons-diy-rednecks-should-never-fix-their-own-roof

Voyez la réponse à cette question dans ce chapitre. www.hometownroofingcontractors.com/blog/9-reasons-diy-rednecks-should-never-fix-their-own-roof Une échelle est appuyée sur un mur. S il n y a que la friction statique avec le sol, quel est l angle minimum possible entre le sol et l échelle pour que l échelle ne glisse pas et tombe au sol? www.hometownroofingcontractors.com/blog/9-reasons-diy-rednecks-should-never-fix-their-own-roof

Plus en détail

La détermination de l accélération d une sphère métallique à l aide de 21 mesures pendant un parcours dans le plan incliné enregistré par le MOTU 828

La détermination de l accélération d une sphère métallique à l aide de 21 mesures pendant un parcours dans le plan incliné enregistré par le MOTU 828 La détermination de l accélération d une sphère métallique à l aide de 21 mesures pendant un parcours dans le plan incliné enregistré par le MOTU 828 de Dr Franz Raemy septembre 2010 Introduction de l

Plus en détail

Angles orientés et fonctions circulaires ( En première S )

Angles orientés et fonctions circulaires ( En première S ) Angles orientés et fonctions circulaires ( En première S ) Dernière mise à jour : Jeudi 01 Septembre 010 Vincent OBATON, Enseignant au lycée Stendhal de Grenoble (Année 006-007) Lycée Stendhal, Grenoble

Plus en détail

L éclairage naturel première partie : Principes de base

L éclairage naturel première partie : Principes de base Suzel BALEZ L5C 2007-08 L éclairage naturel première partie : Principes de base Hertzog et Partner Bât. De bureaux à Wiesbaden Plan Notions préliminaires La vision Grandeurs photométriques Le flux lumineux

Plus en détail

Calcul intégral élémentaire en plusieurs variables

Calcul intégral élémentaire en plusieurs variables Calcul intégral élémentaire en plusieurs variables PC*2 2 septembre 2009 Avant-propos À part le théorème de Fubini qui sera démontré dans le cours sur les intégrales à paramètres et qui ne semble pas explicitement

Plus en détail

Repérage d un point - Vitesse et

Repérage d un point - Vitesse et PSI - écanique I - Repérage d un point - Vitesse et accélération page 1/6 Repérage d un point - Vitesse et accélération Table des matières 1 Espace et temps - Référentiel d observation 1 2 Coordonnées

Plus en détail

Mesure d angles et trigonométrie

Mesure d angles et trigonométrie Thierry Ciblac Mesure d angles et trigonométrie Mesure de l angle de deux axes (ou de deux demi-droites) de même origine. - Mesures en degrés : Divisons un cercle en 360 parties égales définissant ainsi

Plus en détail

Chafa Azzedine - Faculté de Physique U.S.T.H.B 1

Chafa Azzedine - Faculté de Physique U.S.T.H.B 1 Chafa Azzedine - Faculté de Physique U.S.T.H.B 1 Définition: La cinématique est une branche de la mécanique qui étudie les mouements des corps dans l espace en fonction du temps indépendamment des causes

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme

Plus en détail

Astronomie. Activité N 1 : Fiche de recherche. Réponses : - Le diamètre de la Lune est près de 4 fois (3,7 fois) plus petit que celui de la Terre.

Astronomie. Activité N 1 : Fiche de recherche. Réponses : - Le diamètre de la Lune est près de 4 fois (3,7 fois) plus petit que celui de la Terre. Activité N 1 : Fiche de recherche Réponses : - Le diamètre de la Lune est près de 4 fois (3,7 fois) plus petit que celui de la Terre. - La distance de la Terre à la Lune est environ 384 000 Km en moyenne.

Plus en détail

Géométrie en trois dimensions

Géométrie en trois dimensions 1 Géométrie en trois dimensions Il s agit de visualiser des objets en trois dimensions sur un plan, pour nous l écran de l ordinateur. Pour ce faire, nous allons simplifier les choses au maximum. Nous

Plus en détail

Le Soleil. Structure, données astronomiques, insolation.

Le Soleil. Structure, données astronomiques, insolation. Le Soleil Structure, données astronomiques, insolation. Le Soleil, une formidable centrale à Fusion Nucléaire Le Soleil a pris naissance au sein d un nuage d hydrogène de composition relative en moles

Plus en détail

ANALYSE IV 29-06-2009. Informations. (5) Pour rendre l examen il faut signer une feuille de présence disponible avec les assistants responsables.

ANALYSE IV 29-06-2009. Informations. (5) Pour rendre l examen il faut signer une feuille de présence disponible avec les assistants responsables. EXAMEN CORRIGE ANALYSE IV 9-6-9 informations: http://cag.epfl.ch sections IN + SC Prénom : Nom : Sciper : Section : Informations () L épreuve a une durée de 3 heures et 45 minutes. () Les feuilles jaunes

Plus en détail

SINE QUA NON. Découverte et Prise en main du logiciel Utilisation de bases

SINE QUA NON. Découverte et Prise en main du logiciel Utilisation de bases SINE QUA NON Découverte et Prise en main du logiciel Utilisation de bases Sine qua non est un logiciel «traceur de courbes planes» mais il possède aussi bien d autres fonctionnalités que nous verrons tout

Plus en détail

Les quatre opérations sur les nombres entiers Statistiques et probabilités I. Code Unités Devoirs Code Unités Devoirs

Les quatre opérations sur les nombres entiers Statistiques et probabilités I. Code Unités Devoirs Code Unités Devoirs 1 re secondaire 2 e secondaire Les quatre opérations sur les nombres entiers Statistiques et probabilités I MAT-1005-2 2 3 MAT-2008-2 2 3 (+, -, x, ) dans l ensemble des entiers Z. Ce premier cours portant

Plus en détail

Vision industrielle et télédétection - Détection d ellipses. Guillaume Martinez 17 décembre 2007

Vision industrielle et télédétection - Détection d ellipses. Guillaume Martinez 17 décembre 2007 Vision industrielle et télédétection - Détection d ellipses Guillaume Martinez 17 décembre 2007 1 Table des matières 1 Le projet 3 1.1 Objectif................................ 3 1.2 Les choix techniques.........................

Plus en détail

Chapitre 1 Cinématique du point matériel

Chapitre 1 Cinématique du point matériel Chapitre 1 Cinématique du point matériel 7 1.1. Introduction 1.1.1. Domaine d étude Le programme de mécanique de math sup se limite à l étude de la mécanique classique. Sont exclus : la relativité et la

Plus en détail

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4)

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) Bernard Le Stum Université de Rennes 1 Version du 13 mars 2009 Table des matières 1 Fonctions partielles, courbes de niveau 1 2 Limites et continuité

Plus en détail

GUIDE D UTILISATION «MECA PRO» Etude de l équilibre d un solide soumis à trois forces

GUIDE D UTILISATION «MECA PRO» Etude de l équilibre d un solide soumis à trois forces GUIDE D UTILISATION «MECA PRO» Etude de l équilibre d un solide soumis à trois forces Etude de l équilibre d un solide soumis à trois forces non parallèles Si un solide soumis à l'action de 3 forces A

Plus en détail

Cours IV Mise en orbite

Cours IV Mise en orbite Introduction au vol spatial Cours IV Mise en orbite If you don t know where you re going, you ll probably end up somewhere else. Yogi Berra, NY Yankees catcher v1.2.8 by-sa Olivier Cleynen Introduction

Plus en détail

Quadrature n 74 (2009) 10 22. Online Material

Quadrature n 74 (2009) 10 22. Online Material Quadrature n 74 (009) 10 Online Material E. Brugallé, Online Material Un peu de géométrie tropicale Solutions des exercices Erwan Brugallé Université Pierre et Marie Curie, Paris 6, 175 rue du Chevaleret,

Plus en détail

PROGRAMME D HABILETÉS EN FAUTEUIL ROULANT (WSP-F)

PROGRAMME D HABILETÉS EN FAUTEUIL ROULANT (WSP-F) PROGRAMME D HABILETÉS EN FAUTEUIL ROULANT (WSP-F) LIGNES DIRECTRICES POUR LE PARCOURS À OBSTACLES VERSION 4.1 CANADIENNE-FRANÇAISE Les activités d entraînement et d évaluation du WSP-F 4.1 peuvent se dérouler

Plus en détail

Oscillations libres des systèmes à deux degrés de liberté

Oscillations libres des systèmes à deux degrés de liberté Chapitre 4 Oscillations libres des systèmes à deux degrés de liberté 4.1 Introduction Les systèmes qui nécessitent deux coordonnées indépendantes pour spécifier leurs positions sont appelés systèmes à

Plus en détail

Chapitre 2 : Géométrie des images radar et effets du relief (Cours Télédétection Radar Jean-Paul Rudant ERAIFT Avril-Mai 2011)

Chapitre 2 : Géométrie des images radar et effets du relief (Cours Télédétection Radar Jean-Paul Rudant ERAIFT Avril-Mai 2011) Télédétection Radar Chapitre 2 : Géométrie des images radar et effets du relief (Cours Télédétection Radar Jean-Paul Rudant ERAIFT Avril-Mai 2011) Ce chapitre présente successivement les effets du relief

Plus en détail

Exercices. Sirius 1 ère S - Livre du professeur Chapitre 15. Champs et forces. Exercices d application. 5 minutes chrono!

Exercices. Sirius 1 ère S - Livre du professeur Chapitre 15. Champs et forces. Exercices d application. 5 minutes chrono! Exercices Exercices d application 5 minutes chrono 1. Mots manquants a. scalaire b. aimants/courants c. aiguille aimantée d. électrostatique. e. uniforme/ parallèles. f. la verticale/la Terre g. gravitation/la

Plus en détail

3 - Description et orbite d'un satellite d'observation

3 - Description et orbite d'un satellite d'observation Introduction à la télédétection 3 - Description et orbite d'un satellite d'observation OLIVIER DE JOINVILLE Table des matières I - Description d'un satellite d'observation 5 A. Schéma d'un satellite...5

Plus en détail

SEANCE 4 : MECANIQUE THEOREMES FONDAMENTAUX

SEANCE 4 : MECANIQUE THEOREMES FONDAMENTAUX SEANCE 4 : MECANIQUE THEOREMES FONDAMENTAUX 1. EXPERIENCE 1 : APPLICATION DE LA LOI FONDAMENTALE DE LA DYNAMIQUE a) On incline d un angle α la table à digitaliser (deuxième ou troisième cran de la table).

Plus en détail

CONSTRUCTION DES PROJECTIONS TYPES DE PROJECTION. Projection => distorsions. Orientations des projections

CONSTRUCTION DES PROJECTIONS TYPES DE PROJECTION. Projection => distorsions. Orientations des projections A.Charbonnel SYNTHÈSE SUR LES PROJECTIONS CARTOGRAPHIQUES SIMPLES 1/6 TYPES DE PROJECTION Pour passer de la représentation en 3D de la terre (globe terrestre) à une représentation en 2D (la carte), on

Plus en détail

Bien lire l énoncé 2 fois avant de continuer - Méthodes et/ou Explications Réponses. Antécédents d un nombre par une fonction

Bien lire l énoncé 2 fois avant de continuer - Méthodes et/ou Explications Réponses. Antécédents d un nombre par une fonction Antécédents d un nombre par une fonction 1) Par lecture graphique Méthode / Explications : Pour déterminer le ou les antécédents d un nombre a donné, on trace la droite (d) d équation. On lit les abscisses

Plus en détail

Éclairage naturel L5C 2009/2010. Aurore BONNET

Éclairage naturel L5C 2009/2010. Aurore BONNET Éclairage naturel L5C 2009/2010 Aurore BONNET Introduction : Les 2 aspects de l éclairage naturel : Introduction : Les 2 aspects de l éclairage naturel : l ensoleillement et l éclairage diffus L ENSOLEILLEMENT

Plus en détail

ISTIQBÂL-AL QIBLA [SE DIRIGER VERS LA QIBLA; S ORIENTER VERS LA KA BA]

ISTIQBÂL-AL QIBLA [SE DIRIGER VERS LA QIBLA; S ORIENTER VERS LA KA BA] COMMENT CALCULER et VERIFIER LA DIRECTION DE QIBLA ISTIQBÂL-AL QIBLA [SE DIRIGER VERS LA QIBLA; S ORIENTER VERS LA KA BA] Istiqbâl-al qibla, c est effectuer la prière rituelle de salât (namâz) le corps

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Maths MP Exercices Fonctions de plusieurs variables Les indications ne sont ici que pour être consultées après le T (pour les exercices non traités). Avant et pendant le T, tenez bon et n allez pas les

Plus en détail

G.P. DNS02 Septembre 2012. Réfraction...1 I.Préliminaires...1 II.Première partie...1 III.Deuxième partie...3. Réfraction

G.P. DNS02 Septembre 2012. Réfraction...1 I.Préliminaires...1 II.Première partie...1 III.Deuxième partie...3. Réfraction DNS Sujet Réfraction...1 I.Préliminaires...1 II.Première partie...1 III.Deuxième partie...3 Réfraction I. Préliminaires 1. Rappeler la valeur et l'unité de la perméabilité magnétique du vide µ 0. Donner

Plus en détail

Cours de tracés de Charpente, Le TRAIT

Cours de tracés de Charpente, Le TRAIT Page 1/5 Cours de tracés de Charpente, Le TRAIT Recherches de vraies grandeurs, angles de coupes, surfaces. Les Méthodes : Le tracé et les calculs Chaque chapitre ou fichier comportent une explication

Plus en détail

SYSTEME DE PARTICULES. DYNAMIQUE DU SOLIDE (suite) Table des matières

SYSTEME DE PARTICULES. DYNAMIQUE DU SOLIDE (suite) Table des matières Physique Générale SYSTEME DE PARTICULES DYNAMIQUE DU SOLIDE (suite) TRAN Minh Tâm Table des matières Applications de la loi de Newton pour la rotation 93 Le gyroscope........................ 93 L orbite

Plus en détail

L éclairage naturel 2ème partie : Stratégies et prédétermination

L éclairage naturel 2ème partie : Stratégies et prédétermination L éclairage naturel 2ème partie : Stratégies et prédétermination Suzel BALEZ L5C 2007-08 Cathédrale de Chartres (1240) Transept nord Plan Notions préliminaires La vision Grandeurs photométriques Le flux

Plus en détail

TP 7 : oscillateur de torsion

TP 7 : oscillateur de torsion TP 7 : oscillateur de torsion Objectif : étude des oscillations libres et forcées d un pendule de torsion 1 Principe général 1.1 Définition Un pendule de torsion est constitué par un fil large (métallique)

Plus en détail

Courbes paramétriques et équations différentielles pour la physique (Mat237)

Courbes paramétriques et équations différentielles pour la physique (Mat237) Courbes paramétriques et équations différentielles pour la physique (Mat237) Bernard.Parisse@ujf-grenoble.fr 2015 Remarque : dans la version PDF de ce cours, le lecteur pourra s étonner de ne voir aucune

Plus en détail

Utilisation du logiciel Cabri 3D de géométrie dans l espace (*)

Utilisation du logiciel Cabri 3D de géométrie dans l espace (*) Dans nos classes 645 Utilisation du logiciel Cabri 3D de géométrie dans l espace (*) Jean-Jacques Dahan(**) Historiquement, la géométrie dynamique plane trouve ses racines chez les grands géomètres de

Plus en détail

LA PHYSIQUE DES MATERIAUX. Chapitre 1 LES RESEAUX DIRECT ET RECIPROQUE

LA PHYSIQUE DES MATERIAUX. Chapitre 1 LES RESEAUX DIRECT ET RECIPROQUE LA PHYSIQUE DES MATERIAUX Chapitre 1 LES RESEAUX DIRECT ET RECIPROQUE Pr. A. Belayachi Université Mohammed V Agdal Faculté des Sciences Rabat Département de Physique - L.P.M belayach@fsr.ac.ma 1 1.Le réseau

Plus en détail

Mathématiques I Section Architecture, EPFL

Mathématiques I Section Architecture, EPFL Examen, semestre d hiver 2011 2012 Mathématiques I Section Architecture, EPFL Chargé de cours: Gavin Seal Instructions: Mettez votre nom et votre numéro Sciper sur chaque page de l examen. Faites de même

Plus en détail

S'orienter et se repérer sur le terrain avec une carte

S'orienter et se repérer sur le terrain avec une carte www.ign.fr > Espace éducatif > Les fiches thématiques > Lecture de la carte S'orienter et se repérer sur le terrain avec une carte Il s'agit d'effectuer une correspondance entre le lieu où l'on se trouve

Plus en détail

Famille continue de courbes terminales du spiral réglant pouvant être construites par points et par tangentes

Famille continue de courbes terminales du spiral réglant pouvant être construites par points et par tangentes Famille continue de courbes terminales du spiral réglant pouvant être construites par points et par tangentes M. Aubert To cite this version: M. Aubert. Famille continue de courbes terminales du spiral

Plus en détail

STATIQUE GRAPHIQUE ET STATIQUE ANALYTIQUE

STATIQUE GRAPHIQUE ET STATIQUE ANALYTIQUE ÉCOLE D'INGÉNIEURS DE FRIBOURG (E.I.F.) SECTION DE MÉCANIQUE G.R. Nicolet, revu en 2006 STATIQUE GRAPHIQUE ET STATIQUE ANALYTIQUE Eléments de calcul vectoriel Opérations avec les forces Equilibre du point

Plus en détail

Ludovic Grossard. Chapitre VI Polarisation de la lumière. Chapitre VI. Département Mesures Physiques, IUT du Limousin Université de Limoges

Ludovic Grossard. Chapitre VI Polarisation de la lumière. Chapitre VI. Département Mesures Physiques, IUT du Limousin Université de Limoges Chapitre VI Polarisation de la lumière Ludovic Grossard Département Mesures Physiques, IUT du Limousin Université de Limoges 1 Dénition 2 Types de polarisation 3 Polariseurs / analyseurs 4 Les lames de

Plus en détail

Créer des figures dynamiques en 3 dimensions avec GeoGebra 5

Créer des figures dynamiques en 3 dimensions avec GeoGebra 5 Créer des figures dynamiques en 3 dimensions avec GeoGebra 5, 1/46 I. Pour débuter...3 IV. 9. Obtenir une sphère ou un cône tronqué...21 I. 1. Téléchargement...3 V. Illustration d'exercices...22 I. 2.

Plus en détail

Fonctions de deux variables. Mai 2011

Fonctions de deux variables. Mai 2011 Fonctions de deux variables Dédou Mai 2011 D une à deux variables Les fonctions modèlisent de l information dépendant d un paramètre. On a aussi besoin de modéliser de l information dépendant de plusieurs

Plus en détail

Seconde MESURER LA TERRE Page 1 MESURER LA TERRE

Seconde MESURER LA TERRE Page 1 MESURER LA TERRE Seconde MESURER LA TERRE Page 1 TRAVAUX DIRIGES MESURER LA TERRE -580-570 -335-230 +400 IX - XI siècles 1670 1669/1716 1736/1743 THALES (-à Milet) considère la terre comme une grande galette, dans une

Plus en détail

Mathématiques et petites voitures

Mathématiques et petites voitures Mathématiques et petites voitures Thomas Lefebvre 10 avril 2015 Résumé Ce document présente diérentes applications des mathématiques dans le domaine du slot-racing. Table des matières 1 Périmètre et circuit

Plus en détail

NOTICE TECHNIQUE SSC : Système Solaire Combiné eau chaude sanitaire / appui chauffage maison / appui eau chaude piscine

NOTICE TECHNIQUE SSC : Système Solaire Combiné eau chaude sanitaire / appui chauffage maison / appui eau chaude piscine NOTICE TECHNIQUE SSC : Système Solaire Combiné eau chaude sanitaire / appui chauffage maison / appui eau chaude piscine «Capteur autonome eau chaude» Choix de la gamme ECOAUTONOME a retenu un capteur solaire

Plus en détail

Les travaux doivent être remis sous forme papier.

Les travaux doivent être remis sous forme papier. Physique mathématique II Calendrier: Date Pondération/note nale Matériel couvert ExercicesSérie 1 : 25 septembre 2014 5% RH&B: Ch. 3 ExercicesSérie 2 : 23 octobre 2014 5% RH&B: Ch. 12-13 Examen 1 : 24

Plus en détail

Traceur de courbes planes

Traceur de courbes planes Traceur de courbes planes Version 2.5 Manuel d utilisation Patrice Rabiller Lycée Notre Dame Fontenay le Comte Mise à jour de Janvier 2008 Téléchargement : http://perso.orange.fr/patrice.rabiller/sinequanon/menusqn.htm

Plus en détail

Présentation d un télescope, de ses composants et de quelques consignes d utilisation

Présentation d un télescope, de ses composants et de quelques consignes d utilisation Présentation d un télescope, de ses composants et de quelques consignes d utilisation Nous vous présentons ici très brièvement les différentes parties d un télescope, en prenant l exemple d un type de

Plus en détail

Celestia. 1. Introduction à Celestia (2/7) 1. Introduction à Celestia (1/7) Université du Temps Libre - 08 avril 2008

Celestia. 1. Introduction à Celestia (2/7) 1. Introduction à Celestia (1/7) Université du Temps Libre - 08 avril 2008 GMPI*EZVI0EFSVEXSMVIH%WXVSTL]WMUYIHI&SVHIEY\ 1. Introduction à Celestia Celestia 1.1 Généralités 1.2 Ecran d Ouverture 2. Commandes Principales du Menu 3. Exemples d Applications 3.1 Effet de l atmosphère

Plus en détail

Optimisation du rendement d un panneau solaire par héliotropisme. Emmanuel Chambon - PSI* - Lycée aux Lazaristes

Optimisation du rendement d un panneau solaire par héliotropisme. Emmanuel Chambon - PSI* - Lycée aux Lazaristes Optimisation du rendement d un panneau solaire par héliotropisme Emmanuel Chambon - PSI* - Lycée aux Lazaristes Année scolaire 2009/2010 - Fin de rédaction le 23 mai 2010 Table des matières 1 L énergie

Plus en détail

Cours Fonctions de deux variables

Cours Fonctions de deux variables Cours Fonctions de deux variables par Pierre Veuillez 1 Support théorique 1.1 Représentation Plan et espace : Grâce à un repère cartésien ( ) O, i, j du plan, les couples (x, y) de R 2 peuvent être représenté

Plus en détail

Révision d algèbre et d analyse

Révision d algèbre et d analyse Révision d algèbre et d analyse Chapitre 9 : Intégrales triples Équipe de Mathématiques Appliquées UTC Mai 2013 suivant Chapitre 9 Intégrales triples 9.1 Motivation, définition et calcul de l intégrale

Plus en détail

FORMATION DES PERSONNES-RESSOURCES EN SCIENCE ET TECHNOLOGIE LE CYCLE DU JOUR ET DE LA NUIT (CYCLE DIURNE)

FORMATION DES PERSONNES-RESSOURCES EN SCIENCE ET TECHNOLOGIE LE CYCLE DU JOUR ET DE LA NUIT (CYCLE DIURNE) FORMATION DES PERSONNES-RESSOURCES EN SCIENCE ET TECHNOLOGIE LE CYCLE DU JOUR ET DE LA NUIT (CYCLE DIURNE) Pierre Chastenay astronome Planétarium de Montréal Source : nia.ecsu.edu/onr/ocean/teampages/rs/daynight.jpg

Plus en détail

LIMITES EXERCICES CORRIGES

LIMITES EXERCICES CORRIGES ours et eercices de mathématiques LIMITES EXERIES ORRIGES M UAZ, http://mathscyrreer Eercice n Déterminer la ite éventuelle en de chacune des onctions suivantes : ) ) ) 4 ( ) Déterminer la ite éventuelle

Plus en détail

Fonctions linéaires et affines. 1 Fonctions linéaires. 1.1 Vocabulaire. 1.2 Représentation graphique. 3eme

Fonctions linéaires et affines. 1 Fonctions linéaires. 1.1 Vocabulaire. 1.2 Représentation graphique. 3eme Fonctions linéaires et affines 3eme 1 Fonctions linéaires 1.1 Vocabulaire Définition 1 Soit a un nombre quelconque «fixe». Une fonction linéaire associe à un nombre x quelconque le nombre a x. a s appelle

Plus en détail

Activités numériques [13 Points]

Activités numériques [13 Points] N du candidat L emploi de la calculatrice est autorisé. Le soin, la qualité de la présentation entrent pour 2 points dans l appréciation des copies. Les résultats seront soulignés. La correction est disponible

Plus en détail

PRATIQUE DU COMPAS ou

PRATIQUE DU COMPAS ou PRTQU U OMPS ou Traité élémentaire de tous les traits servant aux rts et Métiers et à la construction des âtiments ZR, éomètre ii Reproduction de l édition de 1833, VNN, imprimerie TMON Père et ils, par

Plus en détail

REPRESENTER LA TERRE Cartographie et navigation

REPRESENTER LA TERRE Cartographie et navigation REPRESENTER LA TERRE Seconde Page 1 TRAVAUX DIRIGES REPRESENTER LA TERRE Cartographie et navigation Casterman TINTIN "Le trésor de Rackham Le Rouge" 1 TRIGONOMETRIE : Calcul du chemin le plus court. 1)

Plus en détail

Michel Henry Nicolas Delorme

Michel Henry Nicolas Delorme Michel Henry Nicolas Delorme Mécanique du point Cours + Exos Michel Henry Maître de conférences à l IUFM des Pays de Loire (Le Mans) Agrégé de physique Nicolas Delorme Maître de conférences à l université

Plus en détail

Utiliser les propriétés Savoir réduire un radical savoir +,-,x,: Utiliser les propriétés des puissances Calculer avec des puissances

Utiliser les propriétés Savoir réduire un radical savoir +,-,x,: Utiliser les propriétés des puissances Calculer avec des puissances ARITHMETIQUE 1 C B A Numération Ecrire en lettres et en chiffres Poser des questions fermées autour d un document simple (message, consigne, planning ) Connaître le système décimal Déterminer la position

Plus en détail

Lecture graphique. Table des matières

Lecture graphique. Table des matières Lecture graphique Table des matières 1 Lecture d une courbe 2 1.1 Définition d une fonction.......................... 2 1.2 Exemple d une courbe........................... 2 1.3 Coût, recette et bénéfice...........................

Plus en détail

TOUT CE QU IL FAUT SAVOIR POUR LE BREVET

TOUT CE QU IL FAUT SAVOIR POUR LE BREVET TOUT E QU IL FUT SVOIR POUR LE REVET NUMERIQUE / FONTIONS eci n est qu un rappel de tout ce qu il faut savoir en maths pour le brevet. I- Opérations sur les nombres et les fractions : Les priorités par

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable Eo7 Fonctions de plusieurs variables Eercices de Jean-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-francefr * très facile ** facile *** difficulté moenne **** difficile ***** très difficile I

Plus en détail

Structure interne simplifiée d un oscilloscope

Structure interne simplifiée d un oscilloscope Structure interne simplifiée d un oscilloscope 1 Méthodologie d utilisation et mesure Avant de visualiser n importe quel signal { l oscilloscope il faut d abord : Faire apparaître les deux traces lumineuses

Plus en détail

TD de Physique n o 1 : Mécanique du point

TD de Physique n o 1 : Mécanique du point E.N.S. de Cachan Département E.E.A. M FE 3 e année Phsique appliquée 011-01 TD de Phsique n o 1 : Mécanique du point Exercice n o 1 : Trajectoire d un ballon-sonde Un ballon-sonde M, lâché au niveau du

Plus en détail

L énergie solaire DOSSIER RESSOURCE

L énergie solaire DOSSIER RESSOURCE DOSSIER RESSOURCE SOMMAIRE 1. Pourquoi les énergies renouvelables?... 3 2. L'énergie solaire... 4 3. Principe de fonctionnement du panneau solaire... 5 4. Pourquoi orienter les panneaux solaires?... 6-2

Plus en détail

Développements limités, équivalents et calculs de limites

Développements limités, équivalents et calculs de limites Développements ités, équivalents et calculs de ites Eercice. Déterminer le développement ité en 0 à l ordre n des fonctions suivantes :. f() e (+) 3 n. g() sin() +ln(+) n 3 3. h() e sh() n 4. i() sin(

Plus en détail

Représentation géométrique d un nombre complexe

Représentation géométrique d un nombre complexe CHAPITRE 1 NOMBRES COMPLEXES 1 Représentation géométrique d un nombre complexe 1. Ensemble des nombres complexes Soit i le nombre tel que i = 1 L ensemble des nombres complexes est l ensemble des nombres

Plus en détail

LOGICIEL DRONETRACE v2 Collection EDUCADRONE

LOGICIEL DRONETRACE v2 Collection EDUCADRONE LOGICIEL DRONETRACE v2 Collection EDUCADRONE Le logiciel DroneTrace est un utilitaire permettant de récupérer des données télémétriques incrustées sur une vidéo enregistrée à partir d une station télémétrique

Plus en détail

Ce document a été mis en ligne par le Canopé de l académie de Strasbourg pour la Base Nationale des Sujets d Examens de l enseignement professionnel.

Ce document a été mis en ligne par le Canopé de l académie de Strasbourg pour la Base Nationale des Sujets d Examens de l enseignement professionnel. Ce document a été mis en ligne par le Canopé de l académie de Strasbourg pour la Base Nationale des Sujets d Examens de l enseignement professionnel. Ce fichier numérique ne peut être reproduit, représenté,

Plus en détail

1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R.

1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R. Angles orientés Trigonométrie I. Préliminaires. Le radian Définition B R AB =R C O radian R A Soit C un cercle de centre O. Dire que l angle géométrique AOB a pour mesure radian signifie que la longueur

Plus en détail

Le contexte. Le questionnement du P.E.R. :

Le contexte. Le questionnement du P.E.R. : Le contexte Ce travail a débuté en janvier. Le P.E.R. engagé depuis fin septembre a permis de faire émerger ou de réactiver : Des raisons d être de la géométrie : Calculer des grandeurs inaccessibles et

Plus en détail

Les repères de temps familiers

Les repères de temps familiers séquence 1 2 3 4 5 6 7 8 9 10 Les repères de temps familiers Je me repère dans le temps séance 1 A. Observe bien chacune de ces séries de deux photographies. À chaque fois, indique dans quel ordre elles

Plus en détail

Deux disques dans un carré

Deux disques dans un carré Deux disques dans un carré Table des matières 1 Fiche résumé 2 2 Fiche élève Seconde - version 1 3 2.1 Le problème............................................... 3 2.2 Construction de la figure avec geogebra...............................

Plus en détail

Panneau solaire ALDEN

Panneau solaire ALDEN SOMMAIRE 1. Présentation... 1.1. Mise en situation... 1.2. Analyse du besoin... 4 1.. Problématique... 4 1.4. Expression du besoin... 5 1.5. Validation du besoin... 5 2. Analyse fonctionnelle... 2.1. Définition

Plus en détail

BTS Mécanique et Automatismes Industriels. Équations différentielles d ordre 2

BTS Mécanique et Automatismes Industriels. Équations différentielles d ordre 2 BTS Mécanique et Automatismes Industriels Équations différentielles d ordre, Année scolaire 005 006 . Définition Notation Dans tout ce paragraphe, y désigne une fonction de la variable réelle x. On suppose

Plus en détail

Notion de fonction. Résolution graphique. Fonction affine.

Notion de fonction. Résolution graphique. Fonction affine. TABLE DES MATIÈRES 1 Notion de fonction. Résolution graphique. Fonction affine. Paul Milan LMA Seconde le 12 décembre 2011 Table des matières 1 Fonction numérique 2 1.1 Introduction.................................

Plus en détail

Découvrir la voûte céleste c est avant tout une balade dans le ciel qui nous entoure. Mais pour se promener d une étoile ou d une galaxie à une

Découvrir la voûte céleste c est avant tout une balade dans le ciel qui nous entoure. Mais pour se promener d une étoile ou d une galaxie à une Patrice Octobre 2012 Découvrir la voûte céleste c est avant tout une balade dans le ciel qui nous entoure. Mais pour se promener d une étoile ou d une galaxie à une autre, il faut savoir où regarder dans

Plus en détail

METEOROLOGIE CAEA 1990

METEOROLOGIE CAEA 1990 METEOROLOGIE CAEA 1990 1) Les météorologistes mesurent et prévoient le vent en attitude à des niveaux exprimés en pressions atmosphériques. Entre le niveau de la mer et 6000 m d'altitude, quels sont les

Plus en détail

Tutoriel Mathematica Les graphiques

Tutoriel Mathematica Les graphiques Tutoriel Mathematica Les graphiques Adaptation du tutoriel gratuit sur le Web par Éric Gaul, Dominic Boire et Issa Lizon (voir Médiagraphie). Modifié pour Mathematica 7 par Jean-Philippe Samson. Maintenant

Plus en détail

Cours3. Applications continues et homéomorphismes. 1 Rappel sur les images réciproques

Cours3. Applications continues et homéomorphismes. 1 Rappel sur les images réciproques Université de Provence Topologie 2 Cours3. Applications continues et homéomorphismes 1 Rappel sur les images réciproques Soit une application f d un ensemble X vers un ensemble Y et soit une partie P de

Plus en détail

a et b étant deux nombres relatifs donnés, une fonction affine est une fonction qui a un nombre x associe le nombre ax + b

a et b étant deux nombres relatifs donnés, une fonction affine est une fonction qui a un nombre x associe le nombre ax + b I Définition d une fonction affine Faire l activité 1 «une nouvelle fonction» 1. définition générale a et b étant deux nombres relatifs donnés, une fonction affine est une fonction qui a un nombre x associe

Plus en détail

Chapitre 6. Fonction réelle d une variable réelle

Chapitre 6. Fonction réelle d une variable réelle Chapitre 6 Fonction réelle d une variable réelle 6. Généralités et plan d étude Une application de I dans R est une correspondance entre les éléments de I et ceu de R telle que tout élément de I admette

Plus en détail

Fonction inverse Fonctions homographiques

Fonction inverse Fonctions homographiques Fonction inverse Fonctions homographiques Année scolaire 203/204 Table des matières Fonction inverse 2. Définition Parité............................................ 2.2 Variations Courbe représentative...................................

Plus en détail