Cabri et le programme de géométrie au secondaire au Québec

Dimension: px
Commencer à balayer dès la page:

Download "Cabri et le programme de géométrie au secondaire au Québec"

Transcription

1 Cabri et le programme de géométrie au secondaire au Québec Benoît Côté Département de mathématiques, UQAM, Québec 1. Introduction - Exercice de didactique fiction Que signifie intégrer Cabri dans l enseignement des mathématiques au secondaire au Québec? Quels changements peut-on envisager au niveau du programme de mathématiques, ce cadre institutionnel qui régit l enseignement des mathématiques, et particulièrement en ce qui a trait à la géométrie? - Scénarios d intégration - Niveau 0 : Aucun scénario. Loi du marché. Initiatives locales. Grandes différences entre les écoles et à l intérieur des écoles. - Niveau 1 : On introduit une liste des logiciels approuvés, tout comme on a une liste des manuels approuvés. Pour des raisons inimaginables, Cabri n y apparaît pas! Ou bien, ce qui semble commencer à apparaître, on n accepte pas d imprimer des fenêtres Cabri dans les manuels, pour ne pas encourager un produit «commercial» - Niveau 1 : Accessibilité. On négocie une licence nationale, d où le logiciel devient disponible dans toutes les écoles. Mais on en laisse l utilisation libre. L utilisation risque d être sporadique. Ou bien elle dépend de l implication d une équipe d enseignants prêts à concevoir des séquences d enseignement, des fiches de travail - Niveau 2 : Utilisation ciblée. Tout en le rendant accessible à tous, on encourage son utilisation dans un contexte spécifique et on fournit aux intervenants un support réel (formation, documents ) Ce peut être lié à certains contenus ou compétences spé- 1

2 cifiques, ou faire partie par exemple d un ensemble de mesures visant à contrer le décrochage. Il y aurait à ce niveau une stratégie d implantation, avec des objectifs bien définis, et la mise en place de moyens appropriés. - Niveau 3 : Utilisation générale. On encourage l utilisation d un logiciel de géométrie dynamique, tel Cabri, à tous les niveaux. Est-ce que cela veut dire qu on va reformuler le curriculum autour de Cabri, comme on l a déjà fait, dans les années soixante, autour de la théorie des ensembles? NON. Mais, on est en train actuellement de reformuler les curriculums en termes de compétences. On examine ce que signifie intégrer des outils technologiques dans ce contexte. On réalise que ce n est pas neutre, que ça a nécessairement un effet sur les contenus. On accepte de formuler des contenus, compétences, situations, qui impliquent nécessairement et significativement l utilisation d un logiciel tel Cabri. - Trois thèmes - Enseigner la géométrie et non Cabri - Le rôle central des notions de construction et lieu géométriques - Une géométrie des variations liée à l algèbre 2. Enseigner la géométrie et non Cabri - Difficile de travailler avec Cabri sans faire de la géométrie??? - Logiciel de géométrie par excellence. Réactions spontanées enthousiastes de la plupart des mathématiciens. Réactions plus mitigées des étudiants. Faut-il connaître la géométrie pour faire de la géométrie avec Cabri? - Problèmes de débutants : Précision, habileté sensori-motrice : ignorer l outil sélection, points multiples, mal définis (fichier confus.fig) Construire un triangle avec l outil segment et ne pas pouvoir obtenir son aire D où se donner le temps d apprivoiser le logiciel et d une certaine façon «enseigner Cabri». 2

3 - Contexte institutionnel de la scolarité obligatoire - Enseigner c est négocier. Chacun des acteurs a un pouvoir et des obligations vis-à-vis l autre. «Qu est-ce qu il faut faire?» «J ai essayé et ça ne marche pas!» «Est-ce qu on va en avoir des comme ça dans l examen?» - D où création de fiches de travail de plus en plus précises : «Voici ce qu il faut faire pour construire un triangle isocèle.» Création d un contexte Cabri. On «fait du Cabri». - Penser la géométrie scolaire en y intégrant Cabri - Prendre une distance par rapport au niveau de l action. Passer à la formulation et à la validation. Insérer l utilisation de Cabri dans un contexte didactique plus large qui inclut les outils traditionnels et le papier-crayon, la communication orale et écrite - Intérioriser Cabri pour développer les capacités de pensée géométrique. - Voir les apports fondamentaux et originaux de ce type de logiciel à la nature même de la géométrie scolaire. 3. Le rôle central des notions de construction et de lieu géométriques - La notion de figure géométrique - Quatre statuts possibles des figures en géométrie scolaire : Objet physique, dessin, définition, configuration - Le triangle 4-7 : On choisit un point A sur un quadrillage. On compte 4 unités vers la droite, puis 7 vers le haut pour obtenir un point B ; on revient de 7 unités vers le bas, puis on en compte 4 autres vers la droite pour obtenir le point C. On mesure avec une règle les trois côtés du triangle ABC et on répond aux questions : 3

4 - Est-ce que le triangle ABC est équilatéral? - Pourquoi la réponse à la première question n a-t-elle rien à voir avec l utilisation d une règle à mesurer? - La géométrie du secondaire : Le passage d une géométrie empirique basée sur des observations à une géométrie déductive basée sur des définitions et des raisonnements - Statut des figures Cabri - Exemple des deux «carrés» : (fichier deuxcarres.fig) C B D C D A A B - Il faut agir sur la figure pour pouvoir l identifier, ou en connaître son historique. Les «actions» disponibles relèvent davantage de la communication que de la manipulation. Une nouvelle sphère de réalité de type «empirico-déductif». - Entrer en interaction avec une définition Construire les objets que l on étudie : une activité centrale dans un curriculum qui intègre Cabri. - La construction Cabri de figures géométriques - La notion de contrainte : - Construire un parallélogramme : Référer à une définition Produire des parallèles : L outil parallèle est une représentation de l axiome de la parallèle. Points libres et contraints 4

5 - Construire un triangle isocèle : La définition est insuffisante. Formuler ce que l on cherche et le chercher (outil trace) Construire la médiatrice et vérifier (outil distance) Point semi-contraint et lieu d un point : Raisonner en termes d ensembles de points - Les constructions géométriques en tant que situation didactique - Analyse du champ conceptuel - Classification des triangles et des quadrilatères Situation de formulation Intériorisation de la notion de contrainte - Travail avec les définitions et les propriétés Nouveau contenu : en dégager la structure - Une construction n est pas une figure mais une procédure, une série d instructions. Travail avec des descriptions symboliques, établissement d un langage commun, intériorisation de Cabri, nouveau type de situation problème, formulation et validation (empirique et déductive). - Passage à des constructions plus complexes, divers agencements de figures (carré avec cercles inscrit et circonscrit, deux cercles tangents), coniques.. Transformations géométriques abordées comme des problèmes de construction - Un contenu parmi d autres ou une compétence à développer? Faut prendre le temps. Se voit une seule fois ou place pour la répétition? Un fil conducteur? 5

6 4. Une géométrie des variations liée à l algèbre - Lieux géométriques et points variables (fichier lieux.fig) - Le lieu du point milieu M du segment formé d un point donné P et d un point variable V sur un cercle donné. Outil lieu, variables indépendante et dépendante, paramètres - Le lieu d un point à égale distance de deux points donnés. Le modèle des deux lieux (Polya) - Le lieu d un point dont la somme des distances à deux points donnés est invariante. - Le passage au numérique - Les configurations de Pythagore et de Thalès (fichier thales.fig) «Construire» une propriété Outils de mesure et de calcul - Construction d un repère cartésien : Le problème du repérage dans le plan - L équation associée à un lieu géométrique : Construire un lieu dans un plan cartésien et faire afficher son équation (fichier lieuetequation.fig) - Explorer l équation de l image d un lieu par une certaine transformation géométrique - Graphes de fonctions en tant que lieux géométriques (fichier parabole.fig) - Contenus et compétences à formuler dans le programme - Des concepts unificateurs : construction et lieu géométriques (Objets mathématiques, situations, schèmes de pensée) - Du pain (et des jeux) sur la planche 6

Si deux droites sont parallèles à une même troisième. alors les deux droites sont parallèles entre elles. alors

Si deux droites sont parallèles à une même troisième. alors les deux droites sont parallèles entre elles. alors N I) Pour démontrer que deux droites (ou segments) sont parallèles (d) // (d ) (d) // (d ) deux droites sont parallèles à une même troisième les deux droites sont parallèles entre elles (d) // (d) deux

Plus en détail

Les quatre opérations sur les nombres entiers Statistiques et probabilités I. Code Unités Devoirs Code Unités Devoirs

Les quatre opérations sur les nombres entiers Statistiques et probabilités I. Code Unités Devoirs Code Unités Devoirs 1 re secondaire 2 e secondaire Les quatre opérations sur les nombres entiers Statistiques et probabilités I MAT-1005-2 2 3 MAT-2008-2 2 3 (+, -, x, ) dans l ensemble des entiers Z. Ce premier cours portant

Plus en détail

MAT2027 Activités sur Geogebra

MAT2027 Activités sur Geogebra MAT2027 Activités sur Geogebra NOTE: Il n est pas interdit d utiliser du papier et un crayon!! En particulier, quand vous demandez des informations sur les différentes mesures dans une construction, il

Plus en détail

Tâche complexe produite par l académie de Clermont-Ferrand. Mai 2012 LE TIR A L ARC. (d après une idée du collège des Portes du Midi de Maurs)

Tâche complexe produite par l académie de Clermont-Ferrand. Mai 2012 LE TIR A L ARC. (d après une idée du collège des Portes du Midi de Maurs) (d après une idée du collège des Portes du Midi de Maurs) Table des matières Fiche professeur... 2 Fiche élève... 5 1 Fiche professeur Niveaux et objectifs pédagogiques 5 e : introduction ou utilisation

Plus en détail

CORRECTIONS. Consignes pour le déroulement de l épreuve d une durée de 2 heures

CORRECTIONS. Consignes pour le déroulement de l épreuve d une durée de 2 heures Consignes pour le déroulement de l épreuve d une durée de 2 heures * Calculatrice autorisée pour les deux parties mais en précisant les étapes des calculs. A] Nombres et Calculs : Exercice n 1 : Compléter

Plus en détail

Sites web éducatifs et ressources en mathématiques

Sites web éducatifs et ressources en mathématiques Sites web éducatifs et ressources en mathématiques Exercices en ligne pour le primaire Calcul mental élémentaire : http://www.csaffluents.qc.ca/wlamen/tables-sous.html Problèmes de soustraction/addition

Plus en détail

PRATIQUE DE LA GÉOMÉTRIE AU LYCÉE ET AU COLLÈGE AVEC UNE CALCULATRICE GRAPHIQUE INCLUANT CABRI JUNIOR Jean-Jacques DAHAN jjdahan@wanadoo.

PRATIQUE DE LA GÉOMÉTRIE AU LYCÉE ET AU COLLÈGE AVEC UNE CALCULATRICE GRAPHIQUE INCLUANT CABRI JUNIOR Jean-Jacques DAHAN jjdahan@wanadoo. PRATIQUE DE LA GÉOMÉTRIE AU LYCÉE ET AU COLLÈGE AVEC UNE CALCULATRICE GRAPHIQUE INCLUANT CABRI JUNIOR Jean-Jacques DAHAN jjdahan@wanadoo.fr I.A.M. de Grenoble et I.R.E.M. de Toulouse 1. UN ACCÈS RAPIDE

Plus en détail

Épreuve pratique de mathématiques Printemps 2009. Descriptifs. (Page vide)

Épreuve pratique de mathématiques Printemps 2009. Descriptifs. (Page vide) Épreuve pratique de mathématiques Printemps 2009 Descriptifs (Page vide) Sujet 001 Épreuve pratique de mathématiques Descriptif Étude d une fonction dépendant d un paramètre Étant donné une fonction dépendant

Plus en détail

Utilisation du logiciel Cabri 3D de géométrie dans l espace (*)

Utilisation du logiciel Cabri 3D de géométrie dans l espace (*) Dans nos classes 645 Utilisation du logiciel Cabri 3D de géométrie dans l espace (*) Jean-Jacques Dahan(**) Historiquement, la géométrie dynamique plane trouve ses racines chez les grands géomètres de

Plus en détail

Le contexte. Le questionnement du P.E.R. :

Le contexte. Le questionnement du P.E.R. : Le contexte Ce travail a débuté en janvier. Le P.E.R. engagé depuis fin septembre a permis de faire émerger ou de réactiver : Des raisons d être de la géométrie : Calculer des grandeurs inaccessibles et

Plus en détail

Brevet Juin 2007 Liban Corrigé Page 1 sur 6

Brevet Juin 2007 Liban Corrigé Page 1 sur 6 Brevet Juin 007 Liban Corrigé Page 1 sur 6 Exercice 1 : 1) A = 500 (10 3 ),4 10 7 8 10 4 = 500 10 6 4 10 1 10 7 8 10 4 500 4 = 8 = 500 3 8 8 = 500 3 100 10 4 = 1500 10 0 + 4 = 1500 10 4 = 1,5 10 3 10 4

Plus en détail

Brevet Amérique du sud novembre 2011

Brevet Amérique du sud novembre 2011 ACTIVITÉS NUMÉRIQUES (12 POINTS) Exercice 1 Cet exercice est un exercice à choix multiples (QCM). Pour chaque question, une seule réponse est exacte. Une réponse correcte rapportera 1 point. L absence

Plus en détail

Concours de recrutement interne PLP 2009

Concours de recrutement interne PLP 2009 Concours de recrutement interne PLP 2009 Le sujet est constitué de quatre exercices indépendants. Le premier exercice, de nature pédagogique au niveau du baccalauréat professionnel, porte sur le flocon

Plus en détail

Information aux parents. Les séquences en mathématique

Information aux parents. Les séquences en mathématique Information aux parents Les séquences en mathématique Un changement important La possibilité de choisir une séquence pour 4 e et 5 e secondaire n est plus un classement mais un véritable choix. Extrait

Plus en détail

Section «Maturité fédérale» EXAMENS D'ADMISSION Session de février 2014 RÉCAPITULATIFS DES MATIÈRES EXAMINÉES. Formation visée

Section «Maturité fédérale» EXAMENS D'ADMISSION Session de février 2014 RÉCAPITULATIFS DES MATIÈRES EXAMINÉES. Formation visée EXAMENS D'ADMISSION Admission RÉCAPITULATIFS DES MATIÈRES EXAMINÉES MATIÈRES Préparation en 3 ou 4 semestres Formation visée Préparation complète en 1 an 2 ème partiel (semestriel) Niveau Durée de l examen

Plus en détail

Colloque sur l'intégration des TIC. Outaouais 2005. Mathématique, TIC et Situations d'apprentissage ouvertes au secondaire

Colloque sur l'intégration des TIC. Outaouais 2005. Mathématique, TIC et Situations d'apprentissage ouvertes au secondaire Colloque sur l'intégration des TIC Outaouais 2005 Mathématique, TIC et Situations d'apprentissage ouvertes au secondaire 1. Présentation de la vision de l'intégration des TIC dans le domaine de la mathématique

Plus en détail

Algorithmes (2) Premiers programmes sur calculatrice. Programmation sur calculatrice TI. codage

Algorithmes (2) Premiers programmes sur calculatrice. Programmation sur calculatrice TI. codage Objectifs : lgorithmes () Premiers programmes sur calculatrice - passer de la notion d algorithme à la notion de programme - aborder la notion de langage de programmation - s initier à la programmation

Plus en détail

Représentation géométrique d un nombre complexe

Représentation géométrique d un nombre complexe CHAPITRE 1 NOMBRES COMPLEXES 1 Représentation géométrique d un nombre complexe 1. Ensemble des nombres complexes Soit i le nombre tel que i = 1 L ensemble des nombres complexes est l ensemble des nombres

Plus en détail

Introduction à. Version 4.4. Traduction et adaptation française. www.geogebra.org

Introduction à. Version 4.4. Traduction et adaptation française. www.geogebra.org Introduction à Version 4.4 www.geogebra.org Traduction et adaptation française Introduction à GeoGebra Dernière modification : 23 novembre 2013, adaptée à la version GeoGebra 4.4. Ce livre expose une introduction

Plus en détail

point On obtient ainsi le ou les points d inter- entre deux objets».

point On obtient ainsi le ou les points d inter- entre deux objets». Déplacer un objet Cliquer sur le bouton «Déplacer». On peut ainsi rendre la figure dynamique. Attraper l objet à déplacer avec la souris. Ici, on veut déplacer le point A du triangle point ABC. A du triangle

Plus en détail

Programme de Mathématiques Années 1-3 du Secondaire

Programme de Mathématiques Années 1-3 du Secondaire Schola Europaea Bureau du Secrétaire Général Ref. : 2007-D-3310-fr-3 Orig. : EN Programme de Mathématiques Années 1-3 du Secondaire APPROUVE PAR LE CONSEIL SUPERIEUR DES ECOLES EUROPÉENNES DES 22 ET 23

Plus en détail

PLAN DE COURS. TITRE DU COURS : Mise à niveau pour mathématique 536

PLAN DE COURS. TITRE DU COURS : Mise à niveau pour mathématique 536 100, rue Duquet, Sainte-Thérèse (Québec) J7E 3G6 Téléphone : (450) 430-3120 Télécopieur : (450) 971-7883 Internet : http://www.clg.qc.ca SESSION : H-2009 NO DE COURS : 201-009-50 PRÉALABLE(S) : Math 436

Plus en détail

COURS EULER: PROGRAMME DE LA PREMIÈRE ANNÉE

COURS EULER: PROGRAMME DE LA PREMIÈRE ANNÉE COURS EULER: PROGRAMME DE LA PREMIÈRE ANNÉE Le cours de la première année concerne les sujets de 9ème et 10ème années scolaires. Il y a bien sûr des différences puisque nous commençons par exemple par

Plus en détail

Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé.

Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé. Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé. I- ACTIVITES NUMERIQUES (12 points) Exercice 1 (3 points) On considère

Plus en détail

Séquence 2. Repérage dans le plan Équations de droites. Sommaire

Séquence 2. Repérage dans le plan Équations de droites. Sommaire Séquence Repérage dans le plan Équations de droites Sommaire 1 Prérequis Repérage dans le plan 3 Équations de droites 4 Synthèse de la séquence 5 Exercices d approfondissement Séquence MA0 1 1 Prérequis

Plus en détail

DOCUMENT D'INFORMATION

DOCUMENT D'INFORMATION DOCUMENT D'INFORMATION ÉPREUVES UNIQUES Mathématique 436 068-436 de quatrième année du secondaire Mathématique 514 068-514 de cinquième année du secondaire Juin 2003 Août 2003 Janvier 2004 Ce document

Plus en détail

Baccalauréat S Nombres complexes Index des exercices sur les complexes de septembre 1999 à juin 2012 Tapuscrit : DENIS VERGÈS

Baccalauréat S Nombres complexes Index des exercices sur les complexes de septembre 1999 à juin 2012 Tapuscrit : DENIS VERGÈS Baccalauréat S Nombres complexes Index des exercices sur les complexes de septembre 1999 à juin 2012 Tapuscrit : DENIS VERGÈS N o Lieu et date Q.C.M. Algébrique Géométrie 1 Asie juin 2012 2 Métropole juin

Plus en détail

Maths et socle commun : Quelle articulation entre «socle» et «programmes»? Alfred BARTOLUCCI ()

Maths et socle commun : Quelle articulation entre «socle» et «programmes»? Alfred BARTOLUCCI () Maths et socle commun : Quelle articulation entre «socle» et «programmes»? Alfred BARTOLUCCI () I. Se donner une compréhension de ce qu est ou pourrait être le socle. A. Une lecture critique de ces 50

Plus en détail

Eléments de Choix d Utilisation de l Informatique dans l Enseignement des Mathématiques en Classe de Cinquième

Eléments de Choix d Utilisation de l Informatique dans l Enseignement des Mathématiques en Classe de Cinquième GUYOT Stéphanie Professeur stagiaire en mathématiques au collège Lo Trentanel de GIGNAC I.U.F.M. de l académie de Montpellier Site de Montpellier Eléments de Choix d Utilisation de l Informatique dans

Plus en détail

Paris et New-York sont-ils les sommets d'un carré?

Paris et New-York sont-ils les sommets d'un carré? page 95 Paris et New-York sont-ils les sommets d'un carré? par othi Mok (3 ), Michel Vongsavanh (3 ), Eric hin (3 ), iek-hor Lim ( ), Eric kbaraly ( ), élèves et anciens élèves du ollège Victor Hugo (2

Plus en détail

PROBLEME(12) Première partie : Peinture des murs et du plafond.

PROBLEME(12) Première partie : Peinture des murs et du plafond. PROBLEME(12) Une entreprise doit rénover un local. Ce local a la forme d'un parallélépipède rectangle. La longueur est 6,40m, la largeur est 5,20m et la hauteur est 2,80m. Il comporte une porte de 2m de

Plus en détail

La dyspraxie visuo-spatiale

La dyspraxie visuo-spatiale 1 La dyspraxie visuo-spatiale 2 Définition Dyspraxie visuo-spatiale Introduction La plus fréquente des dyspraxies Association d un trouble du geste de nature dyspraxique et d un trouble visuo-spatial Pathologie

Plus en détail

La géométrie du cercle. Durée suggérée: 3 semaines

La géométrie du cercle. Durée suggérée: 3 semaines La géométrie du cercle Durée suggérée: 3 semaines Aperçu du module Orientation et contexte Dans le présent module, les élèves étudieront les propriétés des cercles. Ils découvriront la relation entre la

Plus en détail

10 REPÈRES «PLUS DE MAÎTRES QUE DE CLASSES» JUIN 2013 POUR LA MISE EN ŒUVRE DU DISPOSITIF

10 REPÈRES «PLUS DE MAÎTRES QUE DE CLASSES» JUIN 2013 POUR LA MISE EN ŒUVRE DU DISPOSITIF 10 REPÈRES POUR LA MISE EN ŒUVRE DU DISPOSITIF «PLUS DE MAÎTRES QUE DE CLASSES» JUIN 2013 MEN-DGESCO 2013 Sommaire 1. LES OBJECTIFS DU DISPOSITIF 2. LES ACQUISITIONS PRIORITAIREMENT VISÉES 3. LES LIEUX

Plus en détail

Date : 18.11.2013 Tangram en carré page

Date : 18.11.2013 Tangram en carré page Date : 18.11.2013 Tangram en carré page Titre : Tangram en carré Numéro de la dernière page : 14 Degrés : 1 e 4 e du Collège Durée : 90 minutes Résumé : Le jeu de Tangram (appelé en chinois les sept planches

Plus en détail

Triangles isométriques Triangles semblables

Triangles isométriques Triangles semblables Triangles isométriques Triangles semblables Les transformations du plan ont permis de dégager des propriétés de figures superposables. Le théorème de Thalès a permis de s initier aux notions de réduction

Plus en détail

Deux disques dans un carré

Deux disques dans un carré Deux disques dans un carré Table des matières 1 Fiche résumé 2 2 Fiche élève Seconde - version 1 3 2.1 Le problème............................................... 3 2.2 Construction de la figure avec geogebra...............................

Plus en détail

Utiliser les propriétés Savoir réduire un radical savoir +,-,x,: Utiliser les propriétés des puissances Calculer avec des puissances

Utiliser les propriétés Savoir réduire un radical savoir +,-,x,: Utiliser les propriétés des puissances Calculer avec des puissances ARITHMETIQUE 1 C B A Numération Ecrire en lettres et en chiffres Poser des questions fermées autour d un document simple (message, consigne, planning ) Connaître le système décimal Déterminer la position

Plus en détail

Programme de mathématiques TSI1

Programme de mathématiques TSI1 Programme de mathématiques TSI1 1. PROGRAMME DE DÉBUT D ANNÉE I. Nombres complexes et géométrie élémentaire 1. Nombres complexes 1 2. Géométrie élémentaire du plan 3 3. Géométrie élémentaire de l espace

Plus en détail

Exercices Alternatifs. Quelqu un aurait-il vu passer un polynôme?

Exercices Alternatifs. Quelqu un aurait-il vu passer un polynôme? Exercices Alternatifs Quelqu un aurait-il vu passer un polynôme? c 2004 Frédéric Le Roux, François Béguin (copyleft LDL : Licence pour Documents Libres). Sources et figures: polynome-lagrange/. Version

Plus en détail

Exercices Alternatifs. Quelqu un aurait-il vu passer un polynôme?

Exercices Alternatifs. Quelqu un aurait-il vu passer un polynôme? Exercices Alternatifs Quelqu un aurait-il vu passer un polynôme? c 2004 Frédéric Le Roux, François Béguin (copyleft LDL : Licence pour Documents Libres). Sources et figures: polynome-lagrange/. Version

Plus en détail

PRÉPARATION AUX COURS DE MATHÉMATIQUES 10

PRÉPARATION AUX COURS DE MATHÉMATIQUES 10 PRÉPARATION AUX COURS DE MATHÉMATIQUES 10 Programme d études 2002 Direction de l éducation française DONNÉES DE CATALOGAGE AVANT PUBLICATION (ALBERTA LEARNING) Alberta. Alberta Learning. Direction de l

Plus en détail

Correction : E = Soit E = -1,6. F = 12 Soit F = -6 3 + 45. y = 11. et G = -2z + 4y G = 2 6 = 3 G = G = -2 5 + 4 11

Correction : E = Soit E = -1,6. F = 12 Soit F = -6 3 + 45. y = 11. et G = -2z + 4y G = 2 6 = 3 G = G = -2 5 + 4 11 Correction : EXERCICE : Calculer en indiquant les étapes: (-6 +9) ( ) ( ) B = -4 (-) (-8) B = - 8 (+ 6) B = - 8 6 B = - 44 EXERCICE : La visite médicale Calcul de la part des élèves rencontrés lundi et

Plus en détail

BREVET BLANC 2 SESSION DU 5 MAI 2009

BREVET BLANC 2 SESSION DU 5 MAI 2009 BREVET BLANC 2 SESSION DU 5 MAI 2009 MATHÉMATIQUES SÉRIE COLLÈGE DURÉE DE L'ÉPREUVE : 2 h 00 Le candidat répondra sur une copie différente pour chaque partie. Ce sujet comporte 5 pages, numérotées de 1

Plus en détail

Angles orientés et trigonométrie

Angles orientés et trigonométrie Chapitre Angles orientés et trigonométrie Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Trigonométrie Cercle trigonométrique. Radian. Mesure d un angle orienté, mesure principale.

Plus en détail

CONCOURS D ADJOINT ADMINISTRATIF DE 1 ÈRE CLASSE DE CHANCELLERIE NATURE DES ÉPREUVES

CONCOURS D ADJOINT ADMINISTRATIF DE 1 ÈRE CLASSE DE CHANCELLERIE NATURE DES ÉPREUVES CONCOURS D ADJOINT ADMINISTRATIF DE 1 ÈRE CLASSE DE CHANCELLERIE NATURE DES ÉPREUVES CONCOURS EXTERNE : I - Épreuves écrites d'admissibilité : 1 Epreuve consistant à partir d'un texte d'ordre général d

Plus en détail

Représentations et transformations géométriques. Version évaluation formative. Livraison de cellulaire. Cahier de l adulte. Commission scolaire

Représentations et transformations géométriques. Version évaluation formative. Livraison de cellulaire. Cahier de l adulte. Commission scolaire Représentations et transformations géométriques 2102 Version évaluation formative Livraison de cellulaire Cahier de l adulte Nom de l élève Numéro de fiche Nom de l'enseignant Date de naissance Centre

Plus en détail

Math 5 Dallage Tâche d évaluation

Math 5 Dallage Tâche d évaluation Math 5 Dallage Tâche d évaluation Résultat d apprentissage spécifique La forme et l espace (les transformations) FE 21 Reconnaître des mosaïques de figures régulières et irrégulières de l environnement.

Plus en détail

SOUS TITRAGE DE LA WEBÉMISSION DU PROGRAMME DE MATHÉMATIQUES 11 e ET 12 e ANNÉE

SOUS TITRAGE DE LA WEBÉMISSION DU PROGRAMME DE MATHÉMATIQUES 11 e ET 12 e ANNÉE SOUS TITRAGE DE LA WEBÉMISSION DU PROGRAMME DE MATHÉMATIQUES 11 e ET 12 e ANNÉE Table de matières INTRODUCTION 2 ITINÉRAIRE MEL3E/MEL4E 6 ITINÉRAIRE MBF3C/MAP4C 9 ITINÉRAIRE MCF3M/MCT4C 12 ITINÉRAIRE MCR3U/MHF4U

Plus en détail

Activités à faire à la maison pour renforcer le concept de formes géométriques

Activités à faire à la maison pour renforcer le concept de formes géométriques pour renforcer le concept de formes géométriques Une œuvre en figures planes Crée une œuvre qui comprend toutes les figures planes décrites ci-dessous. Un cercle jaune Deux triangles isocèles rouges non

Plus en détail

1S Modèles de rédaction Enoncés

1S Modèles de rédaction Enoncés Par l équipe des professeurs de 1S du lycée Parc de Vilgénis 1S Modèles de rédaction Enoncés Produit scalaire & Corrigés Exercice 1 : définition du produit scalaire Soit ABC un triangle tel que AB, AC

Plus en détail

Evolution d un scénario dans l expérience e-colab. EMF, Dakar avril 2009 Gilles Aldon, Eductice, INRP Dominique Raymond-Baroux, IREM Paris 7

Evolution d un scénario dans l expérience e-colab. EMF, Dakar avril 2009 Gilles Aldon, Eductice, INRP Dominique Raymond-Baroux, IREM Paris 7 Evolution d un scénario dans l expérience e-colab EMF, Dakar avril 2009 Gilles Aldon, Eductice, INRP Dominique Raymond-Baroux, IREM Paris 7 Cadre général Groupe e-colab au sein de l INRP Collaboration

Plus en détail

Exercice 2. Exercice 3

Exercice 2. Exercice 3 Feuille d eercices n 10 Eercice 1 Une voiture parcours 150 km. Elle effectue une première partie du trajet à la vitesse moyenne de 80 km/h. On notera la longueur de cette partie, eprimée en km Suite à

Plus en détail

EVALUATIONS MI-PARCOURS CM2

EVALUATIONS MI-PARCOURS CM2 Les enseignants de CM2 de la circonscription de METZ-SUD proposent EVALUATIONS MI-PARCOURS CM2 Mathématiques Livret enseignant NOMBRES ET CALCUL Circonscription de METZ-SUD Page 1 Séquence 1 : Exercice

Plus en détail

UTILISATION DES TABLETTES DANS DES ACTIVITES MATHEMATIQUES : EXEMPLE ACTIVITES DE GEOMETRIE DYNAMIQUE APPLICATION : GEOGEBRA

UTILISATION DES TABLETTES DANS DES ACTIVITES MATHEMATIQUES : EXEMPLE ACTIVITES DE GEOMETRIE DYNAMIQUE APPLICATION : GEOGEBRA UTILISATION DES TABLETTES DANS DES ACTIVITES MATHEMATIQUES : EXEMPLE ACTIVITES DE GEOMETRIE DYNAMIQUE APPLICATION : GEOGEBRA MY-Lhassan RIOUCH * Résumé : Dans cette contribution, on s intéresse à l introduction

Plus en détail

LOGICIELS De Géométrie

LOGICIELS De Géométrie LOGICIELS De Géométrie Gratuits Tous les logiciels proposés ci-dessous sont gratuits -freeware- ou libres de droit -GPL- pour l'usage personnel ou collectif. Il est par exemple autorisé de les installer

Plus en détail

ÉPREUVE EXTERNE COMMUNE. Mathématiques DOSSIER DE L'ENSEIGNANT

ÉPREUVE EXTERNE COMMUNE. Mathématiques DOSSIER DE L'ENSEIGNANT ÉPREUVE EXTERNE COMMUNE Mathématiques CE1D2011 DOSSIER DE L'ENSEIGNANT Ministère de la Communauté française Administration générale de l Enseignement et de la Recherche scientifique Service général du

Plus en détail

PROGRESSION TIC AU PRIMAIRE. Document de référence. Commission scolaire des Découvreurs

PROGRESSION TIC AU PRIMAIRE. Document de référence. Commission scolaire des Découvreurs PROGRESSION TIC AU PRIMAIRE Document de référence Commission scolaire des Découvreurs Les tableaux que vous trouverez aux pages suivantes présentent les quatre niveaux des Carnets TIC et leur progression

Plus en détail

Collège Henri Meck lundi 4 mai 2009 Molsheim BREVET BLANC DE MATHEMATIQUES N 2. ( Extraits d'épreuves du brevet de 2007 et 2008 ) PRESENTATION 4 pts

Collège Henri Meck lundi 4 mai 2009 Molsheim BREVET BLANC DE MATHEMATIQUES N 2. ( Extraits d'épreuves du brevet de 2007 et 2008 ) PRESENTATION 4 pts Collège Henri Meck lundi 4 mai 2009 Molsheim BREVET BLANC DE MATHEMATIQUES N 2 ( Extraits d'épreuves du brevet de 2007 et 2008 ) PRESENTATION 4 pts Rappel : Présenter les parties de l'épreuve sur feuilles

Plus en détail

Éditorial. Tangente ÉDUCATION. Scratch, AlgoBox, Python. Trimestriel - n 15 - janvier 2011 Numéro spécial 16 activités TICE pour le lycée

Éditorial. Tangente ÉDUCATION. Scratch, AlgoBox, Python. Trimestriel - n 15 - janvier 2011 Numéro spécial 16 activités TICE pour le lycée Tangente ÉDUCATION Trimestriel - n 15 - janvier 2011 Numéro spécial 16 activités TICE pour le lycée et leurs programmes dans les trois langages les plus utilisés : Scratch, AlgoBox, Python Python Éditorial

Plus en détail

Un cours d introduction à la démarche mathématique. Martine De Vleeschouwer, Suzanne Thiry

Un cours d introduction à la démarche mathématique. Martine De Vleeschouwer, Suzanne Thiry Aide à la transition dans une formation universitaire d un mathématicien en Belgique Un cours d introduction à la démarche mathématique Martine De Vleeschouwer, Suzanne Thiry Université de Namur, Unité

Plus en détail

Ch.G3 : Distances et tangentes

Ch.G3 : Distances et tangentes 4 e - programme 2011 mathématiques ch.g3 cahier élève Page 1 sur 14 1 DISTC D U PIT À U DRIT Ch.G3 : Distances et tangentes 1.1 Définition ex 1 DÉFIITI 1 : Soit une droite et un point n'appartenant pas

Plus en détail

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES Théorème - Définition Soit un cercle (O,R) et un point. Une droite passant par coupe le cercle en deux points A et

Plus en détail

Quelques contrôle de Première S

Quelques contrôle de Première S Quelques contrôle de Première S Gilles Auriol auriolg@free.fr http ://auriolg.free.fr Voici l énoncé de 7 devoirs de Première S, intégralement corrigés. Malgré tout les devoirs et 5 nécessitent l usage

Plus en détail

Vision industrielle et télédétection - Détection d ellipses. Guillaume Martinez 17 décembre 2007

Vision industrielle et télédétection - Détection d ellipses. Guillaume Martinez 17 décembre 2007 Vision industrielle et télédétection - Détection d ellipses Guillaume Martinez 17 décembre 2007 1 Table des matières 1 Le projet 3 1.1 Objectif................................ 3 1.2 Les choix techniques.........................

Plus en détail

Exprimer ce coefficient de proportionnalité sous forme de pourcentage : 3,5 %

Exprimer ce coefficient de proportionnalité sous forme de pourcentage : 3,5 % 23 CALCUL DE L INTÉRÊT Tau d intérêt Paul et Rémi ont reçu pour Noël, respectivement, 20 et 80. Ils placent cet argent dans une banque, au même tau. Au bout d une année, ce placement leur rapportera une

Plus en détail

CONJUGUÉ D'UN POINT PAR RAPPORT À UN TRIANGLE

CONJUGUÉ D'UN POINT PAR RAPPORT À UN TRIANGLE CONJUGUÉ D'UN POINT PAR RAPPORT À UN TRIANGLE Jean Luc Bovet, Auvernier L'article de Monsieur Jean Piquerez (Bulletin de la SSPMP No 86), consacré aux symédianes me paraît appeler une généralisation. En

Plus en détail

Chapitre 2 : Vecteurs

Chapitre 2 : Vecteurs 1 Chapitre 2 : Vecteurs Nous allons définir ce qu'est un vecteur grâce à une figure (le parallélogramme), mais au préalable nous allons aussi définir une nouvelle transformation (la translation). Nous

Plus en détail

Le trésor du pirate (4 e )

Le trésor du pirate (4 e ) Le trésor du pirate (4 e ) Cyril MICHAU Collège R. Descartes, 93 Le-Blanc-Mesnil. Niveau Concerné Quatrième. Modalité Il est possible de réaliser ce travail en salle informatique par binôme, ou bien en

Plus en détail

LICENCE DE MATHÉMATIQUES

LICENCE DE MATHÉMATIQUES COLLEGIUM SCIENCES ET TECHNOLOGIES LICENCE DE MATHÉMATIQUES Parcours Mathématiques (Metz et Nancy) Parcours Mathématiques-Économie (Metz) OBJECTIFS DE LA FORMATION La licence de Mathématiques vise à donner

Plus en détail

Activité 11 : Nuage de points ou diagramme de dispersion

Activité 11 : Nuage de points ou diagramme de dispersion Activité 11 : Nuage de points ou diagramme de dispersion Un nuage de points, ou diagramme de dispersion, représente des coordonnées dans un plan cartésien. Chaque point dans le plan représente deux quantités.

Plus en détail

MATHÉMATIQUES. Les préalables pour l algèbre MAT-P020-1 DÉFINITION DU DOMAINE D EXAMEN

MATHÉMATIQUES. Les préalables pour l algèbre MAT-P020-1 DÉFINITION DU DOMAINE D EXAMEN MATHÉMATIQUES Les préalables pour l algèbre MAT-P020-1 DÉFINITION DU DOMAINE D EXAMEN Mars 2001 MATHÉMATIQUES Les préalables pour l algèbre MAT-P020-1 DÉFINITION DU DOMAINE D EXAMEN Mars 2001 Direction

Plus en détail

MATHÉMATIQUES 10 e 12 e ANNÉE

MATHÉMATIQUES 10 e 12 e ANNÉE MATHÉMATIQUES 10 e 12 e ANNÉE INTRODUCTION Le programme d études de mathématiques de l Alberta de la 10 e à la 12 e année est basé sur le Cadre commun du programme d études de mathématiques 10-12 du Protocole

Plus en détail

Concevoir sa stratégie de recherche d information

Concevoir sa stratégie de recherche d information Concevoir sa stratégie de recherche d information Réalisé : mars 2007 Dernière mise à jour : mars 2011 Bibliothèque HEC Paris Contact : biblio@hec.fr 01 39 67 94 78 Cette création est mise à disposition

Plus en détail

Que faire en algorithmique en classe de seconde? ElHassan FADILI Lycée Salvador Allende

Que faire en algorithmique en classe de seconde? ElHassan FADILI Lycée Salvador Allende Que faire en algorithmique en classe de seconde? BEGIN Que dit le programme? Algorithmique (objectifs pour le lycée) La démarche algorithmique est, depuis les origines, une composante essentielle de l

Plus en détail

Exercice numéro 1 - L'escalier

Exercice numéro 1 - L'escalier Exercice numéro 1 - L'escalier On peut monter un escalier une ou deux marches à la fois. La figure de droite montre un exemple. 1. De combien de façons différentes peut-on monter un escalier de une marche?

Plus en détail

Ministère de l Éducation. Le curriculum de l Ontario 9 e et 10 e année R É V I S É. Mathématiques

Ministère de l Éducation. Le curriculum de l Ontario 9 e et 10 e année R É V I S É. Mathématiques Ministère de l Éducation Le curriculum de l Ontario 9 e et 10 e année R É V I S É Mathématiques 2 0 0 5 Table des matières Introduction....................................................... 3 La place

Plus en détail

Traceur de courbes planes

Traceur de courbes planes Traceur de courbes planes Version 2.5 Manuel d utilisation Patrice Rabiller Lycée Notre Dame Fontenay le Comte Mise à jour de Janvier 2008 Téléchargement : http://perso.orange.fr/patrice.rabiller/sinequanon/menusqn.htm

Plus en détail

Triangle rectangle et cercle

Triangle rectangle et cercle Objectifs : 1 Savoir reconnaître et tracer une médiane. 2 Connaître et savoir utiliser la propriété qui caractérise le triangle rectangle par son inscription dans un demi-cercle. 3 Connaître et savoir

Plus en détail

Mathématiques (10 points)

Mathématiques (10 points) Mathématiques (10 points) Exercice 1 (3 points) Philippe achète 3 planches pour fabriquer une étagère. Le prix de chaque planche est de 5,40. 1. Calculer le prix total des 3 planches. 2. Il obtient une

Plus en détail

Master 2 : Didactique des disciplines. Spécialité Mathématiques. Parcours Professionnel

Master 2 : Didactique des disciplines. Spécialité Mathématiques. Parcours Professionnel Master 2 : Didactique des disciplines Spécialité Mathématiques Parcours Professionnel Année 2010-2011 M2 : Didactique des disciplines Spécialité : Mathématiques Parcours Professionnel Année 2010-2011 PRESENTATION

Plus en détail

Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire

Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire CHAPITRE N5 FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION Code item D0 D2 N30[S] Items étudiés dans le CHAPITRE N5 Déterminer l'image

Plus en détail

Bachelier - AESI en sciences

Bachelier - AESI en sciences Haute Ecole Léonard de Vinci Programme du Bachelier - AESI en sciences Année académique 2015-2016 Contenu 1. Identification de la formation... 2 2. Référentiel de compétences... 3 3. Profil d enseignement...

Plus en détail

TROISI` EME PARTIE L ALG` EBRE

TROISI` EME PARTIE L ALG` EBRE TROISIÈME PARTIE L ALGÈBRE Chapitre 8 L algèbre babylonienne Sommaire 8.1 Présentation..................... 135 8.2 Résolution d équations du second degré..... 135 8.3 Bibliographie.....................

Plus en détail

Une bien jolie curiosité

Une bien jolie curiosité Une bien jolie curiosité Roland Dassonval et Catherine Combelles Tracez un polygone régulier à n sommets inscrit dans un cercle de rayon 1, puis les cordes qui joignent un sommet donné aux n-1 autres.

Plus en détail

SOCLE COMMUN - La Compétence 3 Les principaux éléments de mathématiques et la culture scientifique et technologique

SOCLE COMMUN - La Compétence 3 Les principaux éléments de mathématiques et la culture scientifique et technologique SOCLE COMMUN - La Compétence 3 Les principaux éléments de mathématiques et la culture scientifique et technologique DOMAINE P3.C3.D1. Pratiquer une démarche scientifique et technologique, résoudre des

Plus en détail

Comment démontrer que deux droites sont perpendiculaires?

Comment démontrer que deux droites sont perpendiculaires? omment démontrer que deux droites sont perpendiculaires? Utilisons On sait que (hypothèses) or...(propriété, définition) donc...(conclusion) Réciproque de Pythagore,5 1,5 = + Si dans un triangle le carré

Plus en détail

2/ DIFFICULTES A L ECRIT

2/ DIFFICULTES A L ECRIT Adaptations Primaire Difficultés repérées Adaptations et aménagements possibles (non exhaustifs) 1/ DIFFICULTES EN LECTURE - Lenteur en lecture - Erreurs de lecture - Compréhension difficile du texte lu

Plus en détail

Rencontre des personnes-ressources en déficience motrice et organique RÉCIT MST - RÉCIT Adaptation scolaire Pierre Couillard

Rencontre des personnes-ressources en déficience motrice et organique RÉCIT MST - RÉCIT Adaptation scolaire Pierre Couillard Rencontre des personnes-ressources en déficience motrice et organique RÉCIT MST - RÉCIT Adaptation scolaire Pierre Couillard Pylote (http://pascal.peter.free.fr/?17/pylote) Logiciels d aide en mathématique

Plus en détail

Situation d apprentissage Les traits vivants avec le logiciel LopArt DUO (#P002)

Situation d apprentissage Les traits vivants avec le logiciel LopArt DUO (#P002) (#P002) Situation Description... 2 Compétences visées... 2 Préparation (Environ 30 minutes)... 3 Réalisation (Environ 45 minutes)... 4 Intégration (Environ 15 minutes)... 5 Réinvestissement... 5 Fiche

Plus en détail

Les TICE en cours de Mathématiques au collège. Quelques pistes de travail pour les classes de 6 ème, 5 ème et 4 ème

Les TICE en cours de Mathématiques au collège. Quelques pistes de travail pour les classes de 6 ème, 5 ème et 4 ème Les TICE en cours de Mathématiques au collège Quelques pistes de travail pour les classes de 6 ème, 5 ème et 4 ème Généralités page 2 Différents outils page 4 Classe de 6 ème page 5 Classe de 5 ème page

Plus en détail

Guide d enseignement efficace des mathématiques, de la maternelle à la 3 e année Modélisation et algèbre

Guide d enseignement efficace des mathématiques, de la maternelle à la 3 e année Modélisation et algèbre Guide d enseignement efficace des mathématiques, de la maternelle à la 3 e année Modélisation et algèbre Fascicule 1 : Régularités et relations Le Guide d enseignement efficace des mathématiques, de la

Plus en détail

Mathématiques 2 ième secondaire

Mathématiques 2 ième secondaire Mathématiques 2 ième secondaire Temps d`étude ou de travail minimum : 15 à 20 minutes par soir Cela implique : de terminer ses devoirs et/ou de revoir des exercices faits en classe (même s`ils ont été

Plus en détail

Étapes pour utiliser une calculatrice à capacité graphique

Étapes pour utiliser une calculatrice à capacité graphique Étapes pour utiliser une calculatrice à capacité graphique Contexte Les bénévoles d une association locale, responsable, de l installation de jeux pour les jeunes dans les parcs de la ville ont récemment

Plus en détail

Corrigé du baccalauréat S Pondichéry 12 avril 2007

Corrigé du baccalauréat S Pondichéry 12 avril 2007 Corrigé du baccalauréat S Pondichéry 1 avril 7 EXERCICE 1 Commun à tous les candidats 4 points 1 a Les vecteurs AB et AC ont pour coordonnées AB ; ; ) et AC 1 ; 4 ; 1) Ils ne sont manifestement pas colinéaires

Plus en détail

Découverte du logiciel ordinateur TI-n spire / TI-n spire CAS

Découverte du logiciel ordinateur TI-n spire / TI-n spire CAS Découverte du logiciel ordinateur TI-n spire / TI-n spire CAS Mémento Ouvrir TI-Nspire CAS. Voici la barre d outils : L insertion d une page, d une activité, d une page où l application est choisie, pourra

Plus en détail

6. Les différents types de démonstrations

6. Les différents types de démonstrations LES DIFFÉRENTS TYPES DE DÉMONSTRATIONS 33 6. Les différents types de démonstrations 6.1. Un peu de logique En mathématiques, une démonstration est un raisonnement qui permet, à partir de certains axiomes,

Plus en détail

Programme de calcul et résolution d équation

Programme de calcul et résolution d équation Programme de calcul et résolution d équation On appelle «programme de calcul» tout procédé mathématique qui permet de passer d un nombre à un autre suivant une suite d opérations déterminée. Un programme

Plus en détail

Corrigé du baccalauréat S Asie 21 juin 2010

Corrigé du baccalauréat S Asie 21 juin 2010 Corrigé du baccalauréat S Asie juin 00 EXERCICE Commun à tous les candidats 4 points. Question : Le triangle GBI est : Réponse a : isocèle. Réponse b : équilatéral. Réponse c : rectangle. On a GB = + =

Plus en détail

Sommaire de la séquence 10

Sommaire de la séquence 10 Sommaire de la séquence 10 Séance 1........................................................................................................ J étudie un problème concret................................................................................

Plus en détail