Cabri et le programme de géométrie au secondaire au Québec

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Cabri et le programme de géométrie au secondaire au Québec"

Transcription

1 Cabri et le programme de géométrie au secondaire au Québec Benoît Côté Département de mathématiques, UQAM, Québec 1. Introduction - Exercice de didactique fiction Que signifie intégrer Cabri dans l enseignement des mathématiques au secondaire au Québec? Quels changements peut-on envisager au niveau du programme de mathématiques, ce cadre institutionnel qui régit l enseignement des mathématiques, et particulièrement en ce qui a trait à la géométrie? - Scénarios d intégration - Niveau 0 : Aucun scénario. Loi du marché. Initiatives locales. Grandes différences entre les écoles et à l intérieur des écoles. - Niveau 1 : On introduit une liste des logiciels approuvés, tout comme on a une liste des manuels approuvés. Pour des raisons inimaginables, Cabri n y apparaît pas! Ou bien, ce qui semble commencer à apparaître, on n accepte pas d imprimer des fenêtres Cabri dans les manuels, pour ne pas encourager un produit «commercial» - Niveau 1 : Accessibilité. On négocie une licence nationale, d où le logiciel devient disponible dans toutes les écoles. Mais on en laisse l utilisation libre. L utilisation risque d être sporadique. Ou bien elle dépend de l implication d une équipe d enseignants prêts à concevoir des séquences d enseignement, des fiches de travail - Niveau 2 : Utilisation ciblée. Tout en le rendant accessible à tous, on encourage son utilisation dans un contexte spécifique et on fournit aux intervenants un support réel (formation, documents ) Ce peut être lié à certains contenus ou compétences spé- 1

2 cifiques, ou faire partie par exemple d un ensemble de mesures visant à contrer le décrochage. Il y aurait à ce niveau une stratégie d implantation, avec des objectifs bien définis, et la mise en place de moyens appropriés. - Niveau 3 : Utilisation générale. On encourage l utilisation d un logiciel de géométrie dynamique, tel Cabri, à tous les niveaux. Est-ce que cela veut dire qu on va reformuler le curriculum autour de Cabri, comme on l a déjà fait, dans les années soixante, autour de la théorie des ensembles? NON. Mais, on est en train actuellement de reformuler les curriculums en termes de compétences. On examine ce que signifie intégrer des outils technologiques dans ce contexte. On réalise que ce n est pas neutre, que ça a nécessairement un effet sur les contenus. On accepte de formuler des contenus, compétences, situations, qui impliquent nécessairement et significativement l utilisation d un logiciel tel Cabri. - Trois thèmes - Enseigner la géométrie et non Cabri - Le rôle central des notions de construction et lieu géométriques - Une géométrie des variations liée à l algèbre 2. Enseigner la géométrie et non Cabri - Difficile de travailler avec Cabri sans faire de la géométrie??? - Logiciel de géométrie par excellence. Réactions spontanées enthousiastes de la plupart des mathématiciens. Réactions plus mitigées des étudiants. Faut-il connaître la géométrie pour faire de la géométrie avec Cabri? - Problèmes de débutants : Précision, habileté sensori-motrice : ignorer l outil sélection, points multiples, mal définis (fichier confus.fig) Construire un triangle avec l outil segment et ne pas pouvoir obtenir son aire D où se donner le temps d apprivoiser le logiciel et d une certaine façon «enseigner Cabri». 2

3 - Contexte institutionnel de la scolarité obligatoire - Enseigner c est négocier. Chacun des acteurs a un pouvoir et des obligations vis-à-vis l autre. «Qu est-ce qu il faut faire?» «J ai essayé et ça ne marche pas!» «Est-ce qu on va en avoir des comme ça dans l examen?» - D où création de fiches de travail de plus en plus précises : «Voici ce qu il faut faire pour construire un triangle isocèle.» Création d un contexte Cabri. On «fait du Cabri». - Penser la géométrie scolaire en y intégrant Cabri - Prendre une distance par rapport au niveau de l action. Passer à la formulation et à la validation. Insérer l utilisation de Cabri dans un contexte didactique plus large qui inclut les outils traditionnels et le papier-crayon, la communication orale et écrite - Intérioriser Cabri pour développer les capacités de pensée géométrique. - Voir les apports fondamentaux et originaux de ce type de logiciel à la nature même de la géométrie scolaire. 3. Le rôle central des notions de construction et de lieu géométriques - La notion de figure géométrique - Quatre statuts possibles des figures en géométrie scolaire : Objet physique, dessin, définition, configuration - Le triangle 4-7 : On choisit un point A sur un quadrillage. On compte 4 unités vers la droite, puis 7 vers le haut pour obtenir un point B ; on revient de 7 unités vers le bas, puis on en compte 4 autres vers la droite pour obtenir le point C. On mesure avec une règle les trois côtés du triangle ABC et on répond aux questions : 3

4 - Est-ce que le triangle ABC est équilatéral? - Pourquoi la réponse à la première question n a-t-elle rien à voir avec l utilisation d une règle à mesurer? - La géométrie du secondaire : Le passage d une géométrie empirique basée sur des observations à une géométrie déductive basée sur des définitions et des raisonnements - Statut des figures Cabri - Exemple des deux «carrés» : (fichier deuxcarres.fig) C B D C D A A B - Il faut agir sur la figure pour pouvoir l identifier, ou en connaître son historique. Les «actions» disponibles relèvent davantage de la communication que de la manipulation. Une nouvelle sphère de réalité de type «empirico-déductif». - Entrer en interaction avec une définition Construire les objets que l on étudie : une activité centrale dans un curriculum qui intègre Cabri. - La construction Cabri de figures géométriques - La notion de contrainte : - Construire un parallélogramme : Référer à une définition Produire des parallèles : L outil parallèle est une représentation de l axiome de la parallèle. Points libres et contraints 4

5 - Construire un triangle isocèle : La définition est insuffisante. Formuler ce que l on cherche et le chercher (outil trace) Construire la médiatrice et vérifier (outil distance) Point semi-contraint et lieu d un point : Raisonner en termes d ensembles de points - Les constructions géométriques en tant que situation didactique - Analyse du champ conceptuel - Classification des triangles et des quadrilatères Situation de formulation Intériorisation de la notion de contrainte - Travail avec les définitions et les propriétés Nouveau contenu : en dégager la structure - Une construction n est pas une figure mais une procédure, une série d instructions. Travail avec des descriptions symboliques, établissement d un langage commun, intériorisation de Cabri, nouveau type de situation problème, formulation et validation (empirique et déductive). - Passage à des constructions plus complexes, divers agencements de figures (carré avec cercles inscrit et circonscrit, deux cercles tangents), coniques.. Transformations géométriques abordées comme des problèmes de construction - Un contenu parmi d autres ou une compétence à développer? Faut prendre le temps. Se voit une seule fois ou place pour la répétition? Un fil conducteur? 5

6 4. Une géométrie des variations liée à l algèbre - Lieux géométriques et points variables (fichier lieux.fig) - Le lieu du point milieu M du segment formé d un point donné P et d un point variable V sur un cercle donné. Outil lieu, variables indépendante et dépendante, paramètres - Le lieu d un point à égale distance de deux points donnés. Le modèle des deux lieux (Polya) - Le lieu d un point dont la somme des distances à deux points donnés est invariante. - Le passage au numérique - Les configurations de Pythagore et de Thalès (fichier thales.fig) «Construire» une propriété Outils de mesure et de calcul - Construction d un repère cartésien : Le problème du repérage dans le plan - L équation associée à un lieu géométrique : Construire un lieu dans un plan cartésien et faire afficher son équation (fichier lieuetequation.fig) - Explorer l équation de l image d un lieu par une certaine transformation géométrique - Graphes de fonctions en tant que lieux géométriques (fichier parabole.fig) - Contenus et compétences à formuler dans le programme - Des concepts unificateurs : construction et lieu géométriques (Objets mathématiques, situations, schèmes de pensée) - Du pain (et des jeux) sur la planche 6

Tâche complexe produite par l académie de Clermont-Ferrand. Mai 2012 LE TIR A L ARC. (d après une idée du collège des Portes du Midi de Maurs)

Tâche complexe produite par l académie de Clermont-Ferrand. Mai 2012 LE TIR A L ARC. (d après une idée du collège des Portes du Midi de Maurs) (d après une idée du collège des Portes du Midi de Maurs) Table des matières Fiche professeur... 2 Fiche élève... 5 1 Fiche professeur Niveaux et objectifs pédagogiques 5 e : introduction ou utilisation

Plus en détail

GEOGEBRA : Les indispensables

GEOGEBRA : Les indispensables Préambule GeoGebra est un logiciel de géométrie dynamique dans le plan qui permet de créer des figures dans lesquelles il sera possible de déplacer des objets afin de vérifier si certaines conjectures

Plus en détail

Le contexte. Le questionnement du P.E.R. :

Le contexte. Le questionnement du P.E.R. : Le contexte Ce travail a débuté en janvier. Le P.E.R. engagé depuis fin septembre a permis de faire émerger ou de réactiver : Des raisons d être de la géométrie : Calculer des grandeurs inaccessibles et

Plus en détail

Fiche No 1. Figures élémentaires

Fiche No 1. Figures élémentaires Fiche No 1 Figures élémentaires 1) Mise en route Pour travailler avec le programme GeoGebra en ligne tapez : www.geogebra.org, puis Téléchargement et enfin Webstart : Dans la feuille GeoGebra qui s ouvre

Plus en détail

MAT2027 Activités sur Geogebra

MAT2027 Activités sur Geogebra MAT2027 Activités sur Geogebra NOTE: Il n est pas interdit d utiliser du papier et un crayon!! En particulier, quand vous demandez des informations sur les différentes mesures dans une construction, il

Plus en détail

Une histoire de boîte (F Estevens) Ou comment faire évoluer la notion de fonction du collège au lycée à partir. d une même problématique?

Une histoire de boîte (F Estevens) Ou comment faire évoluer la notion de fonction du collège au lycée à partir. d une même problématique? Une histoire de boîte (F Estevens) Ou comment faire évoluer la notion de fonction du collège au lycée à partir Enoncé : d une même problématique? Une histoire de boîtes (cinquième) On dispose d une feuille

Plus en détail

Les quatre opérations sur les nombres entiers Statistiques et probabilités I. Code Unités Devoirs Code Unités Devoirs

Les quatre opérations sur les nombres entiers Statistiques et probabilités I. Code Unités Devoirs Code Unités Devoirs 1 re secondaire 2 e secondaire Les quatre opérations sur les nombres entiers Statistiques et probabilités I MAT-1005-2 2 3 MAT-2008-2 2 3 (+, -, x, ) dans l ensemble des entiers Z. Ce premier cours portant

Plus en détail

Le mot «algorithme» vient du nom de l auteur persan Al-Khuwarizmi (né vers 780 - mort vers 850) Une définition: «un algorithme est une suite finie de

Le mot «algorithme» vient du nom de l auteur persan Al-Khuwarizmi (né vers 780 - mort vers 850) Une définition: «un algorithme est une suite finie de Le mot «algorithme» vient du nom de l auteur persan Al-Khuwarizmi (né vers 780 - mort vers 850) Une définition: «un algorithme est une suite finie de règles à appliquer dans un ordre déterminé à un nombre

Plus en détail

Observatoire des ressources numériques adaptées

Observatoire des ressources numériques adaptées Observatoire des ressources numériques adaptées INS HEA 58-60 avenue des Landes 92150 Suresnes orna@inshea.fr IDENTIFIANT DE LA FICHE Geonext : un logiciel de géométrie dynamique DATE DE PUBLICATION DE

Plus en détail

Eléments de logique et de raisonnement dans les nouveaux programmes de mathématiques

Eléments de logique et de raisonnement dans les nouveaux programmes de mathématiques Eléments de logique et de raisonnement dans les nouveaux programmes de mathématiques Les programmes de collège Utilisation des propriétés et définitions Propriétés caractéristiques Équivalence (théorème

Plus en détail

JEU DU MANCHON. On peut augmenter le nombre d enfants, mais il faut augmenter le nombre de manchons (un manchon par enfant).

JEU DU MANCHON. On peut augmenter le nombre d enfants, mais il faut augmenter le nombre de manchons (un manchon par enfant). JEU DU MANCHON Ce jeu "tactile" est prévu pour 1 à 4 enfants à partir de 4 ans. On peut augmenter le nombre d enfants, mais il faut augmenter le nombre de manchons (un manchon par enfant). Contenu : 25

Plus en détail

Diplôme National du Brevet Métropole - La Réunion - Mayotte - Session 2009

Diplôme National du Brevet Métropole - La Réunion - Mayotte - Session 2009 Diplôme National du Brevet Métropole - La Réunion - Mayotte - Session 2009 L usage de la calculatrice est autorisé, dans le cadre de la réglementation en vigueur. I - Activités numériques II - Activités

Plus en détail

Si deux droites sont parallèles à une même troisième. alors les deux droites sont parallèles entre elles. alors

Si deux droites sont parallèles à une même troisième. alors les deux droites sont parallèles entre elles. alors N I) Pour démontrer que deux droites (ou segments) sont parallèles (d) // (d ) (d) // (d ) deux droites sont parallèles à une même troisième les deux droites sont parallèles entre elles (d) // (d) deux

Plus en détail

MON CAHIER DE VACANCES n 1. MATHEMATIQUES 3 ème 2

MON CAHIER DE VACANCES n 1. MATHEMATIQUES 3 ème 2 MON CAHIER DE VACANCES n 1 MATHEMATIQUES 3 ème 2 Ce cahier appartient à. Ce cahier est à rapporter le vendredi 6 Novembre 201, à Mme Viault. Les exercices sont à rédiger, sur ce livret, le plus sérieusement

Plus en détail

ANNEXE 1 BTS AGENCEMENT DE L'ENVIRONNEMENT ARCHITECTURAL Programme de mathématiques

ANNEXE 1 BTS AGENCEMENT DE L'ENVIRONNEMENT ARCHITECTURAL Programme de mathématiques ANNEXE BTS AGENCEMENT DE L'ENVIRONNEMENT ARCHITECTURAL Programme de mathématiques L'enseignement des mathématiques dans les sections de techniciens supérieurs Agencement de l'environnement architectural

Plus en détail

Épreuve pratique de mathématiques Printemps 2009. Descriptifs. (Page vide)

Épreuve pratique de mathématiques Printemps 2009. Descriptifs. (Page vide) Épreuve pratique de mathématiques Printemps 2009 Descriptifs (Page vide) Sujet 001 Épreuve pratique de mathématiques Descriptif Étude d une fonction dépendant d un paramètre Étant donné une fonction dépendant

Plus en détail

Information aux parents. Les séquences en mathématique

Information aux parents. Les séquences en mathématique Information aux parents Les séquences en mathématique Un changement important La possibilité de choisir une séquence pour 4 e et 5 e secondaire n est plus un classement mais un véritable choix. Extrait

Plus en détail

Utilisation de l outil numérique via «géogébra» pour la pratique de la géométrie au cycle 3. Déroulement de l animation :

Utilisation de l outil numérique via «géogébra» pour la pratique de la géométrie au cycle 3. Déroulement de l animation : Utilisation de l outil numérique via «géogébra» pour la pratique de la géométrie au cycle 3 Déroulement de l animation : - 0] Préambule (30 min) a) Introduction b) Programme du cycle 3 - I] Première prise

Plus en détail

Réseau Départemental de Ressources Informatiques 2010

Réseau Départemental de Ressources Informatiques 2010 IA du Rhône Séquences : 3 séances Géométrie plane Géométrie Niveau : Cm1 / Cm2 Résumé Les élèves mettent en évidence les régularités de dessins géométriques qui permettront de pointer certaines notions

Plus en détail

Les dimensions de la tablette

Les dimensions de la tablette Les dimensions de la tablette Niveau d enseignement Type d activité Durée Outils Compétences mathématiques Prérequis TICE Place dans la progression, moment de l étude Forme de calcul favorisée Commentaires

Plus en détail

Démonstration des propriétés géométriques du plan niveau collège

Démonstration des propriétés géométriques du plan niveau collège Démonstration des propriétés géométriques du plan niveau collège Propriété : Si un point est sur un segment et à égale distance de ses extrémités alors ce point est le milieu du segment. Si un point est

Plus en détail

RECHERCHE DE CHEMIN MINIMAL

RECHERCHE DE CHEMIN MINIMAL REHERHE DE HEIN INIL par Yvon KWLSK, Sofiane SERUTU et Jérémy VEIRN, élèves de troisième au collège dulphe DELEGRGUE de ourcelles lès Lens (Pas de alais) 2003 Enseignant : Stéphane RERT (collège DELEGRGUE

Plus en détail

Classe(s) : 3 ème / 2 nde

Classe(s) : 3 ème / 2 nde Le toit de René Classe(s) : 3 ème / 2 nde Approche de la notion de fonction à l aide d une situation concrète 1) Objectifs Mathématiques : - Notion de variable et notion de fonction. - Réinvestissement

Plus en détail

Introduction au Dessin Vectoriel

Introduction au Dessin Vectoriel Introduction au Dessin Vectoriel Introduction Lorsque l'on affiche une image sur l'écran d'un ordinateur, ce que l'on voit n'est qu'une succession de points. Il existe pourtant deux manières différentes

Plus en détail

Programmes du collège

Programmes du collège Bulletin officiel spécial n 6 du 28 août 2008 Programmes du collège Programmes de l enseignement de mathématiques Ministère de l Éducation nationale Classe de quatrième Note : les points du programme (connaissances,

Plus en détail

Atelier de programmation en python

Atelier de programmation en python Atelier de programmation en python Kévin Chewie Sztern et Christophe Sagane Vermorel Contents Introduction 2 L environnement de développement 2 Démarrer l IDE............................... 2 Premiers

Plus en détail

Agent-e de maintenance nautique

Agent-e de maintenance nautique Agent-e de maintenance nautique Document pour les professeurs/es Objectif général Faire découvrir un métier en utilisant le site de l Onisep et des mises en situation validées par un professionnel. Compétences

Plus en détail

PHYSIQUE. 5 e secondaire. Optique PHY-5041-2 DÉFINITION DU DOMAINE D EXAMEN

PHYSIQUE. 5 e secondaire. Optique PHY-5041-2 DÉFINITION DU DOMAINE D EXAMEN PHYSIQUE 5 e secondaire Optique PHY-5041-2 DÉFINITION DU DOMAINE D EXAMEN MAI 1999 Quebec PHYSIQUE 5 e secondaire Optique PHY-5041-2 DÉFINITION DU DOMAINE D EXAMEN MAI 1999 Direction de la formation générale

Plus en détail

Utilisation de Cabri-Géomètre à l école élémentaire en cycle II et III. Massola Jean-Pierre. massola@paris.iufm.fr. IUFM de Paris - France

Utilisation de Cabri-Géomètre à l école élémentaire en cycle II et III. Massola Jean-Pierre. massola@paris.iufm.fr. IUFM de Paris - France 1 Utilisation de Cabri-Géomètre à l école élémentaire en cycle II et III Massola Jean-Pierre massola@paris.iufm.fr IUFM de Paris - France 2 1-Historique Les écoles élémentaires de Paris, plutôt sous-équipées

Plus en détail

Le langage oral dans les APC à l'école maternelle

Le langage oral dans les APC à l'école maternelle éduscol Ressources pour l'école primaire Ressources pour l'école primaire Le langage oral dans les APC à l'école maternelle Fiches d'accompagnement, enseignant-chercheur à l'université de Toulouse II Le

Plus en détail

LYCEE MICHEL-RODANGE LUXEMBOURG PROGRAMMES DE MATHEMATIQUES POUR LE CYCLE INFERIEUR

LYCEE MICHEL-RODANGE LUXEMBOURG PROGRAMMES DE MATHEMATIQUES POUR LE CYCLE INFERIEUR LYCEE MICHEL-RODANGE LUXEMBOURG PROGRAMMES DE MATHEMATIQUES POUR LE CYCLE INFERIEUR Introduction. page 2 Classe de septième.. page 3 Classe de sixième page 7-1 - INTRODUCTION D une manière générale on

Plus en détail

Colloque sur l'intégration des TIC. Outaouais 2005. Mathématique, TIC et Situations d'apprentissage ouvertes au secondaire

Colloque sur l'intégration des TIC. Outaouais 2005. Mathématique, TIC et Situations d'apprentissage ouvertes au secondaire Colloque sur l'intégration des TIC Outaouais 2005 Mathématique, TIC et Situations d'apprentissage ouvertes au secondaire 1. Présentation de la vision de l'intégration des TIC dans le domaine de la mathématique

Plus en détail

Niveau de la classe : troisième ou seconde

Niveau de la classe : troisième ou seconde Olivier PILORGET et Luc PONSONNET - Académie de Nice - TraAM 2013-2014 " PERIMETRE DE SECURITE AUTOUR D UNE PISCINE" Niveau de la classe : troisième ou seconde Testée avec une classe de seconde sur une

Plus en détail

Classe(s) : 3 ème 2 nde

Classe(s) : 3 ème 2 nde Le toit de René Classe(s) : 3 ème 2 nde Approche de la notion de fonction à l aide d une situation concrète 1) Objectifs Mathématiques : - Notion de variable et notion de fonction. - Réinvestissement de

Plus en détail

Mallette de ressources mathématiques pour l école cycle 1 - cycle 2. COPIRELEM et IFÉ

Mallette de ressources mathématiques pour l école cycle 1 - cycle 2. COPIRELEM et IFÉ Mallette de ressources mathématiques pour l école cycle 1 - cycle 2 COPIRELEM et IFÉ Objectif : des ressources Pour tous les domaines mathématiques De la PS au CE1 Utilisant différents types d outils matériels

Plus en détail

Programme de la formation. Écrit : 72hdepréparation aux épreuves d admissibilité au CRPE

Programme de la formation. Écrit : 72hdepréparation aux épreuves d admissibilité au CRPE Programme de la formation Écrit : 72hdepréparation aux épreuves d admissibilité au CRPE o 36 h pour la préparation à l'épreuve écrite de français Cette préparation comprend : - un travail sur la discipline

Plus en détail

Deux disques dans un carré

Deux disques dans un carré Deux disques dans un carré Table des matières 1 Fiche résumé 2 2 Fiche élève Seconde - version 1 3 2.1 Le problème............................................... 3 2.2 Construction de la figure avec geogebra...............................

Plus en détail

Première STMG1 2014-2015 progression. - 1. Séquence : Proportion d une sous population dans une population.

Première STMG1 2014-2015 progression. - 1. Séquence : Proportion d une sous population dans une population. Première STMG1 2014-2015 progression. - 1 Table des matières Fil rouge. 3 Axes du programme. 3 Séquence : Proportion d une sous population dans une population. 3 Information chiffrée : connaître et exploiter

Plus en détail

E-Learning / Ergonomie :

E-Learning / Ergonomie : BARRAU Mathieu Licence Pro Communication Electronique GRUFFAZ Loic Université Lyon 2 E-Learning / Ergonomie : Cahier des charges, contenu et organisation du support de cours pour le programme de formation

Plus en détail

Comment organiser une séance d EPS

Comment organiser une séance d EPS Comment organiser une séance d EPS Ce qui est important pour l élève c est de : - comprendre quand il réussit quelle procédure reproductible a été utilisée et isolée pour cette procédure - apprendre pour

Plus en détail

Organisation et gestion de données cycle 3

Organisation et gestion de données cycle 3 Organisation et gestion de données cycle 3 Clarifier les enjeux de cet enseignement Formation d enseignants de cycle 3 Circonscription de Grenoble 2 Positionnement de la pratique. En classe, comment travaillez-

Plus en détail

Mathématiques CP. Fichier d activités. Auteurs : Michel de la Cruz Stéphane Miaux. Coordination : Expert :

Mathématiques CP. Fichier d activités. Auteurs : Michel de la Cruz Stéphane Miaux. Coordination : Expert : Mathématiques CP Fichier d activités Auteurs : Michel de la Cruz Stéphane Miaux Coordination : Alain Bonichon Sylvie Dhotel, chef de proj Expert : Marie Mégard Ce cours est la propriété du Cned. Les images

Plus en détail

NOTE DE MÉTHODOLOGIE PÉDAGOGIE DIDACTIQUE APPRENTISSAGE CONJUGUER L HISTOIRE DE L EUROPE AVEC L HISTOIRE DE L EUROPÉEN

NOTE DE MÉTHODOLOGIE PÉDAGOGIE DIDACTIQUE APPRENTISSAGE CONJUGUER L HISTOIRE DE L EUROPE AVEC L HISTOIRE DE L EUROPÉEN NOTE DE MÉTHODOLOGIE PÉDAGOGIE DIDACTIQUE APPRENTISSAGE CONJUGUER L HISTOIRE DE L EUROPE AVEC L HISTOIRE DE L EUROPÉEN 1.- LE TRIANGLE PÉDAGOGIQUE DU PROJET REPERES Entre les trois pôles du triangle qui

Plus en détail

Journée pédagogique des stagiaires 1 octobre 2014

Journée pédagogique des stagiaires 1 octobre 2014 Journée pédagogique des stagiaires 1 octobre 2014 LP Blaise Pascal COLMAR Retour d expériences Choisir 2 images qui témoignent de votre ressenti dans votre prise de fonction Restitution au groupe LE REFERENTIEL

Plus en détail

Deuxième épreuve d admission. Exemples de sujets

Deuxième épreuve d admission. Exemples de sujets Deuxième épreuve d admission. Exemples de sujets Thème : probabilités 1) On lance deux dés équilibrés à 6 faces et on note la somme des deux faces obtenues. 1.a) Donner un univers associé cette expérience.

Plus en détail

STAGE DE GEOGEBRA Présentation des fonctions de base Exemples simples d'utilisation

STAGE DE GEOGEBRA Présentation des fonctions de base Exemples simples d'utilisation STAGE DE GEOGEBRA Présentation des fonctions de base Exemples simples d'utilisation Charger le logiciel GeoGebra. Dans le menu «Affichage» vérifier que les sous menus «axes», «fenêtre algèbre», «champ

Plus en détail

Géométrie dans l espace

Géométrie dans l espace Géométrie dans l espace A l école primaire Cycle 2 (programme du 19/06/2008) CP CE1 Reconnaître et nommer le cube et le pavé droit. Reconnaître, décrire, nommer quelques solides droits : cube, pavé Manuel

Plus en détail

Le trésor du pirate (4 e )

Le trésor du pirate (4 e ) Le trésor du pirate (4 e ) Cyril MICHAU Collège R. Descartes, 93 Le-Blanc-Mesnil. Niveau Concerné Quatrième. Modalité Il est possible de réaliser ce travail en salle informatique par binôme, ou bien en

Plus en détail

BACCALAURÉAT PROFESSIONNEL ÉPREUVE DE MATHEMATIQUES. EXEMPLE DE SUJET n 2

BACCALAURÉAT PROFESSIONNEL ÉPREUVE DE MATHEMATIQUES. EXEMPLE DE SUJET n 2 Exemple de sujet n 2 Page 1/7 BACCALAURÉAT PROFESSIONNEL ÉPREUVE DE MATHEMATIQUES EXEMPLE DE SUJET n 2 Ce document comprend : Pour l examinateur : - une fiche descriptive du sujet page 2/7 - une fiche

Plus en détail

Technologie du dessin industriel

Technologie du dessin industriel Technologie du dessin industriel Compétences fondamentales RAG F1 Communication technique : Communiquer les idées et dessins techniques de façon efficace et appropriée. Résultat(s) d apprentissage spécifique(s)

Plus en détail

Ligne directrice du cours de perfectionnement pour les directrices et directeurs d école

Ligne directrice du cours de perfectionnement pour les directrices et directeurs d école Ligne directrice du cours de perfectionnement pour les directrices et directeurs d école Règlement 184/97 Qualifications requises pour enseigner Janvier 2005 This document is available in English under

Plus en détail

ACE Advanced Cost Estimator for steel structures

ACE Advanced Cost Estimator for steel structures Introduction Dans ce document, les principales étapes pour effectuer un calcul ACE concernent le cas d un bâtiment à plusieurs étages. L'accent est mis sur la séquence de commandes. Il n'est pas destiné

Plus en détail

Observatoire des ressources numériques adaptées

Observatoire des ressources numériques adaptées Observatoire des ressources numériques adaptées INS HEA 58-60 avenue des Landes 92150 Suresnes orna@inshea.fr TITRE DE LA FICHE BOMEHC DATE DE PUBLICATION DE LA FICHE Novembre 2015 MOTS -CLÉS (CHAMPS DISCIPLINAIRES,

Plus en détail

Bachelier - AESI en sciences

Bachelier - AESI en sciences Haute Ecole Léonard de Vinci Programme du Bachelier - AESI en sciences Année académique 2015-2016 Contenu 1. Identification de la formation... 2 2. Référentiel de compétences... 3 3. Profil d enseignement...

Plus en détail

Niveaux 1 2 3 4 Option spécifique - 2 2 3 Option complémentaire - - 2 2

Niveaux 1 2 3 4 Option spécifique - 2 2 3 Option complémentaire - - 2 2 Direction de l'instruction publique, de la culture et du sport Direktion für Erziehung, Kultur und Sport Service de l enseignement secondaire du deuxième degré Amt für Unterricht der Sekundarstufe 2 CANTON

Plus en détail

Gestion des fichiers sur micro-ordinateur

Gestion des fichiers sur micro-ordinateur ... 1 Qu est ce qu une gestion de fichier :... 2 Importance d une bonne gestion des fichiers :... 2 Qui doit faire une gestion des dossiers :... 3 Étapes à suivre pour une meilleur gestion des dossiers

Plus en détail

Concevoir et analyser des tâches mathématiques dans un environnement logiciel : Quels objectifs d apprentissage? Quels choix de conception?

Concevoir et analyser des tâches mathématiques dans un environnement logiciel : Quels objectifs d apprentissage? Quels choix de conception? Concevoir et analyser des tâches mathématiques dans un environnement logiciel : Quels objectifs d apprentissage? Quels choix de conception? Semaine 2, auteurs Maha Abboud-Blanchard (ESPE de Versailles,

Plus en détail

Séminaire inter-académique LYON (12-13 décembre 2007) Expérimentation en mathématiques, épreuve pratique de mathématiques : formation des élèves

Séminaire inter-académique LYON (12-13 décembre 2007) Expérimentation en mathématiques, épreuve pratique de mathématiques : formation des élèves Séminaire inter-académique LYON (12-13 décembre 2007) Expérimentation en mathématiques, épreuve pratique de mathématiques : formation des élèves (atelier animé par l académie de Besançon) Le fil conducteur

Plus en détail

GRAVURE - TISSAGE VANNERIE - ENTRELACS FICHE PROFESSEUR DE MATHEMATIQUES NIVEAUX DÉROULEMENT DE LA SÉQUENCE ET DESCRIPTION DE LA DÉMARCHE

GRAVURE - TISSAGE VANNERIE - ENTRELACS FICHE PROFESSEUR DE MATHEMATIQUES NIVEAUX DÉROULEMENT DE LA SÉQUENCE ET DESCRIPTION DE LA DÉMARCHE FICHE PROFESSEUR DE MATHEMATIQUES NIVEAUX Classe de CM2-6 ème DÉROULEMENT DE LA SÉQUENCE ET DESCRIPTION DE LA DÉMARCHE Cette séquence peut s organiser autour de trois séances en mathématiques 1 ère séance

Plus en détail

Construction d un cercle tangent à deux cercles donnés.

Construction d un cercle tangent à deux cercles donnés. Préparation au CAPES Strasbourg, octobre 2008 Construction d un cercle tangent à deux cercles donnés. Le problème posé : On se donne deux cercles C et C de centres O et O distincts et de rayons R et R

Plus en détail

Tutoriel ActivInspire

Tutoriel ActivInspire Le logiciel ActivInspire est un logiciel pour Tableau Blanc Interactif (TBI) de la marque Promethean. Le logiciel peut être installé dans la salle de classe et sur le poste personnel de l enseignant lorsque

Plus en détail

ACQUI SITION ET DEVELOPPE M E N T DES COMPETE N C E S DES SALA RI E S DE BAS NIVEAU DE QUALIFICATIO N

ACQUI SITION ET DEVELOPPE M E N T DES COMPETE N C E S DES SALA RI E S DE BAS NIVEAU DE QUALIFICATIO N au réapprentissagedes savoirs debase Formations des M au ges rurales Organisme de formation de base de proximité, compétent dans l accompagnement et la formation des publics dits de faible niveau (V et

Plus en détail

BACCALAURÉAT PROFESSIONNEL ÉPREUVE DE MATHEMATIQUES. EXEMPLE DE SUJET n 1

BACCALAURÉAT PROFESSIONNEL ÉPREUVE DE MATHEMATIQUES. EXEMPLE DE SUJET n 1 Exemple de sujet n 1 Page 1/7 BACCALAURÉAT PROFESSIONNEL ÉPREUVE DE MATHEMATIQUES EXEMPLE DE SUJET n 1 Ce document comprend : Pour l examinateur : - une fiche descriptive du sujet page 2/7 - une fiche

Plus en détail

Géométrie. Itinéraire de visite

Géométrie. Itinéraire de visite Itinéraire de visite Géométrie Niveau collège Mathématiques : 5e, 4e, 3 e et seconde Disciplines concernées : géométrie du triangle, solides platoniciens Temps de visite : 1 heure Cet itinéraire de visite

Plus en détail

Technicien d Études du Bâtiment comportant

Technicien d Études du Bâtiment comportant Création d une option de «collaborateur d architecte» à un diplôme professionnel existant Le Baccalauréat Professionnel Technicien du bâtiment : Études et Économie A la rentrée 2008 Le bac pro Technicien

Plus en détail

Livret d'évaluation et du socle commun en mathématiques

Livret d'évaluation et du socle commun en mathématiques Photo? Livret d'évaluation et du socle commun en mathématiques Niveau Cycle d'adaptation - 6ème Nom et prénom Classe Année scolaire 2... - 2... Il y a dans ce livret 4 grands thèmes : Nombres et Calculs

Plus en détail

Projet 8INF206 (3cr) Guide

Projet 8INF206 (3cr) Guide Module d informatique et de mathématique Projet 8INF206 (3cr) Guide Version avril 2012 Université du Québec à Chicoutimi Département d'informatique et de mathématique TABLE DES MATIÈRES INFORMATION GÉNÉRALE...

Plus en détail

Le modèle de données

Le modèle de données Le modèle de données Introduction : Une fois que l étude des besoins est complétée, deux points importants sont à retenir : Les données du système étudié Les traitements effectués par le système documentaire.

Plus en détail

Dispositif : da01 - Animations pédagogiques. Module da-01 : 01 - Apprentissages coopératifs en maternelle

Dispositif : da01 - Animations pédagogiques. Module da-01 : 01 - Apprentissages coopératifs en maternelle Dispositif : da01 - Animations pédagogiques Identifiant : 13D0906003 Inscription : Public désigné, ne pas s'inscrire Objectifs généraux : Maîtrise de la langue, Mathématiques et culture scientifique, culture

Plus en détail

Le cas «BOURSE» annexe

Le cas «BOURSE» annexe Le cas «BOURSE» Le cas BOURSE sera réalisé en liaison avec les fiches ressources n 1 à n 5. Objectifs pédagogiques : - se familiariser en douceur avec les manipulations de base (utilisation des icônes,

Plus en détail

Architecte d intérieur

Architecte d intérieur Architecte d intérieur Document pour les professeurs/es Objectif général Faire découvrir un métier en utilisant le site de l Onisep et des mises en situation validées par un professionnel. Compétences

Plus en détail

x 8 = 0 3x - 6 = 2x + 2 3x² 6 = 2x² + 2

x 8 = 0 3x - 6 = 2x + 2 3x² 6 = 2x² + 2 Partie numérique : 16 points Exercice n 1 (4 points) : Pour chaque ligne du tableau ci-dessous, 3 réponses sont proposées, mais une seule est exacte. Aucune justification n'est demandée. Écrire le numéro

Plus en détail

Le programme de mathématiques Classes de première STI2D STL

Le programme de mathématiques Classes de première STI2D STL Journée de l inspection 15 avril 2011 - Lycée F. BUISSON 18 avril 2011 - Lycée J. ALGOUD 21 avril 2011 - Lycée L. ARMAND Le programme de mathématiques Classes de première STI2D STL Déroulement de la journée

Plus en détail

Concours de recrutement interne PLP 2009

Concours de recrutement interne PLP 2009 Concours de recrutement interne PLP 2009 Le sujet est constitué de quatre exercices indépendants. Le premier exercice, de nature pédagogique au niveau du baccalauréat professionnel, porte sur le flocon

Plus en détail

Le ce rcl e de lecture (d après les travaux de Jocelyne GIASSON Les textes littéraires De Boeck éditions)

Le ce rcl e de lecture (d après les travaux de Jocelyne GIASSON Les textes littéraires De Boeck éditions) Le ce rcl e de lecture ( ) 1 Le principe : C est un temps d échanges entre des élèves ayant lu le même livre qui se déroule de la manière la plus autonome possible. Afin de rendre ce temps d échanges riche,

Plus en détail

Anglais CAHIER- PROGRAMME

Anglais CAHIER- PROGRAMME Anglais CAHIER- PROGRAMME Dans le présent document, le masculin est utilisé sans aucune discrimination et uniquement dans le but d alléger le texte. NOTE : Tous les renseignements contenus dans ce document

Plus en détail

Cours PHP. Cours en ligne Développement web PHP. Académie Libre info@academielibre.fr

Cours PHP. Cours en ligne Développement web PHP. Académie Libre info@academielibre.fr Cours PHP Cours en ligne Développement web PHP Académie Libre info@academielibre.fr Programme général du Cours PHP Module 1 Introduction et installation d un environnement PHP Unité 1 Introduction à PHP

Plus en détail

Ce document a pour but de montrer comment installer votre plateforme de Trading MetaTrader4 sur Mac OS.

Ce document a pour but de montrer comment installer votre plateforme de Trading MetaTrader4 sur Mac OS. Ce document a pour but de montrer comment installer votre plateforme de Trading MetaTrader4 sur Mac OS. Pour cela, MetaQuotes, développeur de MetaTrader 4 a sélectionné une application externe gratuite

Plus en détail

«Représentation statistiques»

«Représentation statistiques» Scénario indexé dans http://www.educnet.education.fr/ http://www.educnet.education.fr/bd/urtic/maths/ «Représentation statistiques» Evolution de populations : Comparer des séries «Les TICE pour traiter

Plus en détail

Liste des résultats d apprentissage et indicateurs de rendement

Liste des résultats d apprentissage et indicateurs de rendement ANNEXE Mathématiques appliquées 3232 Liste des résultats d apprentissage et indicateurs de rendement (incluant les pages de au programme d études) PROGRAMME D ÉTUDES - MATHÉMATIQUES APPLIQUÉES 3232 (2013)

Plus en détail

SUITE AFFAIRE+ Guide du logiciel de gestion des compétences Version 2. Créé par : www.rif-innotech.ca

SUITE AFFAIRE+ Guide du logiciel de gestion des compétences Version 2. Créé par : www.rif-innotech.ca SUITE AFFAIRE+ Guide du logiciel de gestion des compétences Version 2 Créé par : www.rif-innotech.ca Le 20 Mars 2012 Table des matières Commencer à utiliser le logiciel... 3 Démarrer le logiciel... 3 Rappeler

Plus en détail

Algorithmes (2) Premiers programmes sur calculatrice. Programmation sur calculatrice TI. codage

Algorithmes (2) Premiers programmes sur calculatrice. Programmation sur calculatrice TI. codage Objectifs : lgorithmes () Premiers programmes sur calculatrice - passer de la notion d algorithme à la notion de programme - aborder la notion de langage de programmation - s initier à la programmation

Plus en détail

TUTORIAL SUR LE PARTAGE DE FICHIERS D IMPRIMANTE GRACE A UN RESEAU LOCAL

TUTORIAL SUR LE PARTAGE DE FICHIERS D IMPRIMANTE GRACE A UN RESEAU LOCAL 1/1 TUTORIAL SUR LE PARTAGE DE FICHIERS ET D IMPRIMANTE GRACE A UN RESEAU LOCAL 2/2 SOMMAIRE 1 BUT... 3 2 HISTORIQUE... 3 3 REFERENCES... 3 4 DESCRIPTION GENERALE... 3 4.1 PREPARATIFS... 4 4.2 CONFIGURATION

Plus en détail

La démarche d investigation en mathématiques. 26 novembre 2008 La démarche d investigation en mathématiques P. KOBER- IUFM Nice

La démarche d investigation en mathématiques. 26 novembre 2008 La démarche d investigation en mathématiques P. KOBER- IUFM Nice La démarche d investigation en mathématiques 1) Qu est ce que la démarche d investigation en sciences? 2) Qu est-ce que faire des mathématiques? - Pour un chercheur Plan de cette intervention - Dans l

Plus en détail

Il suffit de tracer deux médiatrices pour obtenir le centre du cercle circonscrit..

Il suffit de tracer deux médiatrices pour obtenir le centre du cercle circonscrit.. Correction-Exercices sur les droites remarquables 1. Construire un triangle ABC tel que AB = 5cm, BC = 6cm et AC= 8 cm et le cercle circonscrit à ce triangle Il suffit de tracer deux médiatrices pour obtenir

Plus en détail

Les mathématiques en maternelle. Circonscription de St Julien - Christophe Licitri CPAIEN Martine Montellier PEMF

Les mathématiques en maternelle. Circonscription de St Julien - Christophe Licitri CPAIEN Martine Montellier PEMF Les mathématiques en maternelle Circonscription de St Julien - Christophe Licitri CPAIEN Martine Montellier PEMF Questionnement Quels sont les champs d'application des mathématiques en maternelle? Quels

Plus en détail

Séquence : création de films d animation

Séquence : création de films d animation Animation pédagogique : TNI et maîtrise de la langue (mercredi 12 décembre 2012) Compétences du socle (palier2):. DIRE. LIRE - Compétence1 maîtrise de la langue :. ECRIRE.ETUDE DE LA LANGUE Séquence :

Plus en détail

point On obtient ainsi le ou les points d inter- entre deux objets».

point On obtient ainsi le ou les points d inter- entre deux objets». Déplacer un objet Cliquer sur le bouton «Déplacer». On peut ainsi rendre la figure dynamique. Attraper l objet à déplacer avec la souris. Ici, on veut déplacer le point A du triangle point ABC. A du triangle

Plus en détail

Mathématiques CE1. Fichier d activités. Auteur : Alain Marque. Coordination : Expert : Alain Bonichon Sylvie Dhotel, chef de projet.

Mathématiques CE1. Fichier d activités. Auteur : Alain Marque. Coordination : Expert : Alain Bonichon Sylvie Dhotel, chef de projet. Mathématiques CE1 Fichier d activités Auteur : Alain Marque Coordination : Alain Bonichon Sylvie Dhotel, chef de proj Expert : Marie Mégard Ce cours est la propriété du Cned. Les images textes intégrés

Plus en détail

Brevet Juin 2007 Métropole Réunion Corrige Page 1 sur 7

Brevet Juin 2007 Métropole Réunion Corrige Page 1 sur 7 Brevet Juin 2007 Métropole Réunion Corrige Page 1 sur 7 Exercice 1 : ACTIVITES NUMERIQUES (12 points) 1. (3x + 5)² = (3x) 2 + 2 3x 5 + 5 2 = 9x² + 30x + 25 2. 4(4 + 1) = 20 (4 + 1)(4 2) = 10 (4 + 1)² =

Plus en détail

Gestion de Planning Présentation

Gestion de Planning Présentation Gestion de Planning Présentation et tous droits réservés à 2C-FAO sarl Reproduction interdite Page 1/15 Sommaire 1. Présentation générale, objectifs... 3 2. La méthode utilisée... 4 3. La planification

Plus en détail

Exercice 1 Le plan est muni d'un repère. On donne les points, et. 1/ Soit D le point tel que ABCD est un parallélogramme.

Exercice 1 Le plan est muni d'un repère. On donne les points, et. 1/ Soit D le point tel que ABCD est un parallélogramme. Devoir Maison A rendre le mercredi 2 mai 2nde 1 Le plan est muni d'un repère. On donne les points, et. 1/ Soit D le point tel que ABCD est un parallélogramme. Calculer les coordonnées du point D. 2/ a)

Plus en détail

Situation d apprentissage Les traits vivants avec le logiciel LopArt DUO (#P002)

Situation d apprentissage Les traits vivants avec le logiciel LopArt DUO (#P002) (#P002) Situation Description... 2 Compétences visées... 2 Préparation (Environ 30 minutes)... 3 Réalisation (Environ 45 minutes)... 4 Intégration (Environ 15 minutes)... 5 Réinvestissement... 5 Fiche

Plus en détail

Classe(s) : Seconde, première

Classe(s) : Seconde, première Le fantôme Classe(s) : Seconde, première Utilisation d un logiciel de tracé de courbes. Fonctions définies sur un intervalle. Fonctions associées. 1) Objectifs Mathématiques : - Fonctions polynômes du

Plus en détail

Figures et solides géométriques

Figures et solides géométriques Cellule de Géométrie Figures et solides géométriques Partie pratique (de 5 à 11 ans) JOURNÉES NATIONALES APMEP METZ 2012 Danielle POPELER Michel DEMAL Sommaire Partie pratique 1. Figures géométriques en

Plus en détail

LES PAVAGES DU PLAN EXERCICES PROPOSES Exercices 1

LES PAVAGES DU PLAN EXERCICES PROPOSES Exercices 1 LES PAVAGES DU PLAN Ces travaux sont mis en place dans la circonscription de Vitry sur Seine (94) au niveau des classes de cycle 2 (grandes sections, CP et CE1). Cette réflexion a été mise en place à partir

Plus en détail

Programmation orientée objet et technologies Web

Programmation orientée objet et technologies Web Programmation orientée objet et technologies Web LEA.3N, version 2012 Information : (514) 376-1620, poste 7388 Programme de formation Type de sanction Attestation d études collégiales permettant de cumuler

Plus en détail

Livret du Stagiaire en Informatique

Livret du Stagiaire en Informatique Université François-Rabelais de Tours Campus de Blois UFR Sciences et Techniques Département Informatique Livret du Stagiaire en Informatique Licence 3ème année Master 2ème année Année 2006-2007 Responsable

Plus en détail

Gestion commerciale LCA.8Z. Information : (514) 376-1620, poste 419

Gestion commerciale LCA.8Z. Information : (514) 376-1620, poste 419 Gestion LCA.8Z Information : (514) 376-1620, poste 419 Programme de formation Type de sanction Attestation d études collégiales permettant de cumuler 35 unités 1/3. Buts généraux du programme Ce programme

Plus en détail

INITIATION A POWERPOINT

INITIATION A POWERPOINT INITIATION A POWERPOINT P. BESSON OCTOBRE 2000 SOMMAIRE Chap. 1 Découverte de POWERPOINT I. Démarrer Powerpoint 1. Lancement de l application 2. Boite de dialogue de démarrage de Powerpoint II. Structure

Plus en détail