Problème d ordonnancement de véhicules en variables booléennes

Dimension: px
Commencer à balayer dès la page:

Download "Problème d ordonnancement de véhicules en variables booléennes"

Transcription

1 Problème d ordonnancement de véhicules en variables booléennes Freddy Hetman 2 juillet 2013 Faculté des sciences Jean Perrin Freddy Hetman () 2 juillet / 22

2 Sommaire 1 Introduction 2 Le problème d ordonnancement de véhicules 3 Le problème en variables booléennes Les variables Les contraintes 4 Résultats 5 Conclusion Freddy Hetman () 2 juillet / 22

3 Introduction Ordonnancement de véhicules Problème : NP-complet, problème N.1 classique de CSPLib. Ordonnancement de véhicules : produire une séquence de véhicules pour une chaîne de montage automobile soumis à diverses contraintes. Variables booléennes : utilisation des variables soit vraies soit fausses. Freddy Hetman () 2 juillet / 22

4 Le problème d ordonnancement de véhicules Formalisation Définition Soit le quintuplet (V, O, p, q, r) avec : V : Ensemble des voitures à produire. O : Ensemble des options disponibles. p, q : Listes d entier, pour chaque option i, p i /q i représente la fréquence d apparition. r : Matrice de booléen r i,j = 1, représente le fait que l option O j est présente sur le véhicule V i, 0 sinon. Pour produire une permutation de V respectant les contraintes de fréquences. Freddy Hetman () 2 juillet / 22

5 Exemple CSPLib Le problème d ordonnancement de véhicules Freddy Hetman () 2 juillet / 22

6 Solution CSPLib Le problème d ordonnancement de véhicules Classe Options requises Freddy Hetman () 2 juillet / 22

7 Le problème d ordonnancement de véhicules Challenge ROADEF 2005 Problème réel proposé par RENAULT en Optimisation du problème standard. 2 nouvelles contraintes : Atelier peinture. Priorité entre les options. Meilleures approches basées sur la recherche locale Freddy Hetman () 2 juillet / 22

8 Nos variables Le problème en variables booléennes Les variables Définition des voitures i 1..n, j 0..(c 1), X i j = { 1 (Vrai) si X i appartient à la classe j. 0 (Faux) sinon. Exemple X0 1, X 1 1,..., X 5 1 représente la classe du premier véhicule. X0 2, X 1 2,..., X 5 2 représente la classe du second véhicule.... X0 10, X 1 10,..., X 10 5 représente la classe du dernier véhicule. Freddy Hetman () 2 juillet / 22

9 Nos variables Le problème en variables booléennes Les variables Définition des options i 1..n, j 1..o, O j i = 1 (Vrai) si l option O j est installé sur le véhicule X i. 0 (Faux) sinon. Exemple O 1 1, O2 1, O3 1, O4 1, O5 1 représente les options du véhicule X 1. O 1 2, O2 2, O3 2, O4 2, O5 2 représente les options du véhicule X O 1 10, O2 10, O3 10, O4 10, O5 10 représente les options du véhicule X 10. Freddy Hetman () 2 juillet / 22

10 Nos Contraintes Le problème en variables booléennes Les contraintes Définition On représente pour chaque véhicule à la position i, autant de classe : (C1) i 1..n, c 1 l=0 X i l = 1. Exemple X0 1 + X X 5 1 = 1 X0 2 + X X 5 2 = 1... X X X5 10 = 1 Freddy Hetman () 2 juillet / 22

11 Nos Contraintes Le problème en variables booléennes Les contraintes Définition Chaque classe comporte un certain nombre de véhicules : (C2) l 0..c 1, n X i l = k l. k l représente le nombre de véhicule de la classe l, 0 k n. i=1 Exemple X0 1 + X 0 2 X1 1 + X 1 2 X2 1 + X 2 2 X3 1 + X 3 2 X4 1 + X 4 2 X5 1 + X X 10 0 = X 10 1 = X 10 2 = X 10 3 = X 10 4 = X 10 5 = 2 Freddy Hetman () 2 juillet / 22

12 Nos Contraintes Le problème en variables booléennes Les contraintes Définition On a au plus p j véhicules sur un bloc de taille q j pour l option j : (C3) i 1..(n (q j k+q j 1 1)), j 1..o, O j k pj. k=i Exemple O1 1 + O Option 1. O9 1 + O O1 2 + O2 2 + O Option 2. O6 2 + O7 2 + O8 2 2 Freddy Hetman () 2 juillet / 22

13 Nos Contraintes Le problème en variables booléennes Les contraintes Définition Le véhicule i de classe l implique les options correspondantes : Exemple (C4) i 1..n, l 0..c 1, X i l k 1..o Ok i. X0 1 = O1 1 O1 2 O1 3 O1 4 O Premier véhicule. X5 1 = O1 1 O1 2 O1 3 O1 4 O1 5 X0 10 = O10 1 O10 2 O10 3 O10 4 O Dernier véhicule. X5 10 = O10 1 O10 2 O10 3 O10 4 O10 5 Freddy Hetman () 2 juillet / 22

14 Résultats Résultats 3 ensembles instances de CSPLib testés. Solveur SAT : SAT4j. Temps d exécution : 10 minutes, Mémoire disponible : 2 Go. Instances Abscon SAT4j PB Copris 4 72 à (8) 0% 0% 0% faciles (70) 5.71% (59) 68.57% (2152) 60% (5884) difficiles (30) 0% 0% 0% Entre parenthèses figure la somme des temps des problèmes résolus en seconde. Freddy Hetman () 2 juillet / 22

15 Résultats Détail du modèle pseudo booléen Instances SAT4j PB (200, 5, 26) (200, 5, 25) (200, 5, 28) (200, 5, 24) (200, 5, 25) (200, 5, 25) (200, 5, 24) (200, 5, 24) (200, 5, 25) (200, 5, 25) 305 Instance : problème de symétrie? Freddy Hetman () 2 juillet / 22

16 Résultats D autres personnes s intéressent au problème... Modèle de V. Mayer-Eichberger et T. Walsh. Traduction du modèle vers SAT disponible, papier soumis à PoS Pas de possibilité de vérification. Plus : utilisation des mêmes variables pour les contraintes de capacités et de fréquences. Instances SAT4j PB Walsh 4 72 à (8) 0% 33,33% (309) faciles (70) 68.57% (2152) 100% (184) difficiles (30) 0% 40% (2371) Freddy Hetman () 2 juillet / 22

17 Résultats Expérimentation sous Copris Suggestions d améliorations proposées par Naoyuki Tamura (Créateur de Copris). Utilisation de contraintes globales de cardinalités : forcer sur un ensemble de variables, le nombres de valeurs voulues. remplace la contrainte (C2). Instances Copris défaut GCC 4 72 à (8) 0% 0% faciles (70) 60% (5884) 60% (6036) difficiles (30) 0% 0% Freddy Hetman () 2 juillet / 22

18 Résultats Expérimentation sous Copris Contrainte All different, implique des changements de variables (Xj i Pl i ) et contraintes (C1 et C2). Instances Copris défaut All Diff 4 72 à (8) 0% 0% faciles (70) 60% (5884) 0% difficiles (30) 0% 0% Freddy Hetman () 2 juillet / 22

19 Résultats Expérimentation sous Copris Contrainte de somme partielle : introduction d une nouvelle variable S tel que : Sj i = O j Oj i, les contraintes C3 deviennent des différences entre S i j et S i+qj j. Instances Copris défaut Partial Sum 4 72 à (8) 0% 0% faciles (70) 60% (5884) 60% (4002) difficiles (30) 0% 0% Freddy Hetman () 2 juillet / 22

20 Conclusion Conclusion Approche pseudo booléenne efficace mais non robuste. Approche SAT efficace avec un modèle spécifique. Étude de la robustesse sous le format pseudo booléen. Prise en compte des symétries dans le modèle. Autres formes d optimisations (minimisation de trous dans la séquence quand le problème est UNSAT). Freddy Hetman () 2 juillet / 22

21 Conclusion Merci! Freddy Hetman () 2 juillet / 22

22 References Conclusion C. Solnon, V. D. Cung, A. Nguyen and C. Artigues. The car sequencing problem : overview of state-of-the-art methods and industrial case-study of the ROADEF 2005 challenge problem. LIRIS CNRS UMR 5205, D. Parello, W.C. Kabat, and L. Wos. Job-shop scheduling using automated rea- soning : a case study of the car sequencing problem. Journal of Automated Reasoning, 2 : 1 42, I.P. Gent. Two results on car-sequencing problems. Technical report (http ://www.apes.cs.strath.ac.uk/apesreports.html), APES, V. Mayer-Eichberger and T. Walsh SAT Encodings for the Car Sequencing Problem Pragmatics of SAT, Freddy Hetman () 2 juillet / 22

Résolution d un problème de Job-Shop intégrant des contraintes de Ressources Humaines

Résolution d un problème de Job-Shop intégrant des contraintes de Ressources Humaines Résolution d un problème de Job-Shop intégrant des contraintes de Ressources Humaines ROADEF 09, 10-12 février 2009, Nancy (France) O. Guyon 1.2, P. Lemaire 2, É. Pinson 1 et D. Rivreau 1 1 LISA - Institut

Plus en détail

Lignes directrices. Introduction à la Programmation par Contraintes. Lignes directrices. Affectation des fréquences : énoncé

Lignes directrices. Introduction à la Programmation par Contraintes. Lignes directrices. Affectation des fréquences : énoncé Introduction à la Programmation par Contraintes Cours 5. Modélisation des problèmes réels (ou proches de la réalité). Ruslan Sadykov INRIA Bordeaux Sud-Ouest 10 Novembre 2014 1 / 35 2 / 35 : énoncé Il

Plus en détail

ATELIER ALGORITHME PREMIERS PAS Journée d information sur les nouveaux programmes de Première S-ES 2010-2011

ATELIER ALGORITHME PREMIERS PAS Journée d information sur les nouveaux programmes de Première S-ES 2010-2011 Pour me contacter : irene.rougier@ac-clermont.fr 1. Introduction ATELIER ALGORITHME PREMIERS PAS Journée d information sur les nouveaux programmes de Première S-ES 2010-2011 De nombreux documents et informations

Plus en détail

3 Instructions (suite)

3 Instructions (suite) Initiation à la programmation et cours 2 1 3 Instructions (suite) Introduction En comme en programmation : l'ordre des instructions est primordial Le processeur exécute les instructions dans l'ordre dans

Plus en détail

Cours de Master Recherche

Cours de Master Recherche Cours de Master Recherche Spécialité CODE : Résolution de problèmes combinatoires Christine Solnon LIRIS, UMR 5205 CNRS / Université Lyon 1 2007 Rappel du plan du cours 1 - Introduction Qu est-ce qu un

Plus en détail

Sortie : OUI si n est premier, NON sinon. On peut voir Premier aussi comme une fonction, en remplaçant OUI par 1 et NON par 0.

Sortie : OUI si n est premier, NON sinon. On peut voir Premier aussi comme une fonction, en remplaçant OUI par 1 et NON par 0. Université Bordeaux 1. Master Sciences & Technologies, Informatique. Examen UE IN7W11, Modèles de calcul. Responsable A. Muscholl Session 1, 2011 2012. 12 décembre 2011, 14h-17h. Documents autorisés :

Plus en détail

Table des matières. Coopération homme-machine pour l ordonnancement sous incertitudes. L atelier de production. Introduction.

Table des matières. Coopération homme-machine pour l ordonnancement sous incertitudes. L atelier de production. Introduction. Coopération homme-machine pour l ordonnancement sous incertitudes Guillaume Pinot IRCCyN, équipes ACSED et PsyCoTec Christian Artigues CR, CNRS, Toulouse Rapporteur Jacques Carlier Pr., UTC, Compiègne

Plus en détail

Ordonnancement de véhicules: une approche par recherche locale à grand voisinage

Ordonnancement de véhicules: une approche par recherche locale à grand voisinage Actes JFPC 2005 Ordonnancement de véhicules: une approche par recherche locale à grand voisinage Bertrand Estellon 1 Frédéric Gardi 1,2 Karim Nouioua 1 1 Laboratoire d'informatique Fondamentale Parc Scientique

Plus en détail

Planification et ordonnancement sous incertitudes Application à la gestion de projet

Planification et ordonnancement sous incertitudes Application à la gestion de projet Toulouse, 14 mai 2003 Planification et ordonnancement sous incertitudes Application à la gestion de projet Julien Bidot Plan Séminaire au LAAS Planification de tâches et ordonnancement Domaine d application

Plus en détail

Annexe 6. Notions d ordonnancement.

Annexe 6. Notions d ordonnancement. Annexe 6. Notions d ordonnancement. APP3 Optimisation Combinatoire: problèmes sur-contraints et ordonnancement. Mines-Nantes, option GIPAD, 2011-2012. Sophie.Demassey@mines-nantes.fr Résumé Ce document

Plus en détail

21 mars 2012. Simulations et Méthodes de Monte Carlo. DADI Charles-Abner. Objectifs et intérêt de ce T.E.R. Générer l'aléatoire.

21 mars 2012. Simulations et Méthodes de Monte Carlo. DADI Charles-Abner. Objectifs et intérêt de ce T.E.R. Générer l'aléatoire. de 21 mars 2012 () 21 mars 2012 1 / 6 de 1 2 3 4 5 () 21 mars 2012 2 / 6 1 de 2 3 4 5 () 21 mars 2012 3 / 6 1 2 de 3 4 5 () 21 mars 2012 4 / 6 1 2 de 3 4 de 5 () 21 mars 2012 5 / 6 de 1 2 3 4 5 () 21 mars

Plus en détail

Des fourmis pour le problème d ordonnancement de voitures

Des fourmis pour le problème d ordonnancement de voitures Actes JFPC 2006 Des fourmis pour le problème d ordonnancement de voitures Christine Solnon LIRIS CNRS UMR 5205, Université Lyon I Nautibus, 43 Bd du 11 novembre, 69622 Villeurbanne cedex, France christine.solnon@liris.cnrs.fr

Plus en détail

Quelques problèmes NP-complets

Quelques problèmes NP-complets Chapitre 12 Quelques problèmes NP-complets Maintenant que nous connaissons la NP-complétude d au moins un problème (SAT), nous allons montrer qu un très grand nombre de problèmes sont NP-complets. Le livre

Plus en détail

Chapitre 6. Modélisation en P.L.I. 6.1 Lien entre PL et PLI. 6.1.1 Approximation de la PLI

Chapitre 6. Modélisation en P.L.I. 6.1 Lien entre PL et PLI. 6.1.1 Approximation de la PLI Chapitre 6 Modélisation en P.L.I. 6.1 Lien entre PL et PLI (P) problème de PL. On restreint les variables à être entières : on a un problème de PLI (ILP en anglais). On restreint certaines variables à

Plus en détail

S²LOW 1.1 API mail sécurisé. Eric Pommateau Sigmalis

S²LOW 1.1 API mail sécurisé. Eric Pommateau Sigmalis S²LOW 1.1 API mail sécurisé Eric Pommateau Sigmalis Table des matières Liste des utilisateurs de la collectivité...3 Nombre de mails sur le système...3 Liste de mails...3 Détail d'un email...4 Objet :

Plus en détail

ET 24 : Modèle de comportement d un système Boucles de programmation avec Labview.

ET 24 : Modèle de comportement d un système Boucles de programmation avec Labview. ET 24 : Modèle de comportement d un système Boucles de programmation avec Labview. Sciences et Technologies de l Industrie et du Développement Durable Formation des enseignants parcours : ET24 Modèle de

Plus en détail

Programmation par contraintes avec des fourmis

Programmation par contraintes avec des fourmis Actes JFPC 2008 Programmation par contraintes avec des fourmis Madjid Khichane (1,2) Patrick Albert (1) Christine Solnon (2) Ilog S.A. (1) 9 rue de Verdun, 94253 Gentilly cedex {mkhichane,palbert}@ilog.fr

Plus en détail

Exemples de problèmes et d applications. INF6953 Exemples de problèmes 1

Exemples de problèmes et d applications. INF6953 Exemples de problèmes 1 Exemples de problèmes et d applications INF6953 Exemples de problèmes Sommaire Quelques domaines d application Quelques problèmes réels Allocation de fréquences dans les réseaux radio-mobiles Affectation

Plus en détail

Analyse par simulation d une chaîne de production automobile multi-produit avec différenciation retardée

Analyse par simulation d une chaîne de production automobile multi-produit avec différenciation retardée Analyse par simulation d une chaîne de production automobile multi-produit avec différenciation retardée Xavier Fournier 1, Bruno Agard 1 1 École Polytechnique de Montréal, Département de mathématiques

Plus en détail

Guide de démarrage rapide de WinReporter

Guide de démarrage rapide de WinReporter Guide de démarrage rapide de WinReporter Pour plus d information à propos de WinReporter, vous pouvez contacter IS Decisions à : Tél : +33 (0)5.59.41.42.20 (Heure française : GMT +1) Fax : +33 (0)5.59.41.42.21

Plus en détail

Modbus 06/05/2013. Version 1.3

Modbus 06/05/2013. Version 1.3 06/05/2013 Version 1.3 Le protocole Modbus TCP, mode «Maître» Table des matières 1 Pré-requis... 3 2 Connecteur Modbus... 3 2.1 Ajout d un connecteur Modbus TCP... 3 2.2 Configuration d un connecteur Modbus

Plus en détail

2B La résolution de modèles linéaires par Excel 2010

2B La résolution de modèles linéaires par Excel 2010 2B La résolution de modèles linéaires par Excel 2010 Nous reprenons ici, de façon plus détaillée, la section où est indiqué comment utiliser le solveur d'excel 2010 pour résoudre un modèle linéaire (voir

Plus en détail

Introduction à l algorithmique et à la programmation 2013-2014. Cyril Nicaud Cyril.Nicaud@univ-mlv.fr. Cours 1 / 5

Introduction à l algorithmique et à la programmation 2013-2014. Cyril Nicaud Cyril.Nicaud@univ-mlv.fr. Cours 1 / 5 Introduction à l algorithmique et à la programmation IUT 1ère année 2013-2014 Cyril Nicaud Cyril.Nicaud@univ-mlv.fr Cours 1 / 5 Déroulement du cours Organisation : 5 séances de 2h de cours 10 séances de

Plus en détail

Algorithmique Partie 1

Algorithmique Partie 1 Algorithmique Partie 1 IUT Informatique de Lens, 1ère Année Université d Artois Frédéric Koriche koriche@cril.fr 2011 - Semestre 1 Modalités Sommaire 1 Modalités 2 Programmation 3 Données 4 Opérateurs

Plus en détail

Algorithmique et Programmation, IMA

Algorithmique et Programmation, IMA Algorithmique et Programmation, IMA Cours 2 : C Premier Niveau / Algorithmique Université Lille 1 - Polytech Lille Notations, identificateurs Variables et Types de base Expressions Constantes Instructions

Plus en détail

Projet ROSCOV Robuste Ordonnancement de Systèmes de Contrôle de Vol

Projet ROSCOV Robuste Ordonnancement de Systèmes de Contrôle de Vol Journée de l Institut Farman ENS Cachan 26 novembre 2013 Projet ROSCOV Robuste Ordonnancement de Systèmes de Contrôle de Vol L. Fribourg, D. Lesens, P. Moro, R. Soulat L. Fribourg, D. Lesens, R. Soulat

Plus en détail

LIF1 : ALGORITHMIQUE ET PROGRAMMATION IMPÉRATIVE, INITIATION

LIF1 : ALGORITHMIQUE ET PROGRAMMATION IMPÉRATIVE, INITIATION Licence STS Université Claude Bernard Lyon I LIF1 : ALGORITHMIQUE ET PROGRAMMATION IMPÉRATIVE, INITIATION 1 COURS 5 : Les Tableaux PLAN DE LA SÉANCE Comprendre l utilité des tableaux Apprendre à manipuler

Plus en détail

Planifica(on du stockage intermédiaire dans l industrie du shampoing

Planifica(on du stockage intermédiaire dans l industrie du shampoing dans l industrie du shampoing R. Belaid, V. T kindt, C. Esswein, rabah.belaid@etu.univ-tours.fr Université François Rabelais Tours Laboratoire d Informatique 64 avenue Jean Portalis, 37200, Tours Journées

Plus en détail

Chapitre 5 : Flot maximal dans un graphe

Chapitre 5 : Flot maximal dans un graphe Graphes et RO TELECOM Nancy A Chapitre 5 : Flot maximal dans un graphe J.-F. Scheid 1 Plan du chapitre I. Définitions 1 Graphe Graphe valué 3 Représentation d un graphe (matrice d incidence, matrice d

Plus en détail

Des outils pour l optimisation et la robustesse. Marc Sevaux

Des outils pour l optimisation et la robustesse. Marc Sevaux Des outils pour l optimisation et la sse Marc Sevaux Université de Valenciennes et du Hainaut-Cambrésis Laboratoire d Automatique, de Mécanique et d Informatique Industrielles et Humaines (UMR CNRS 8530)

Plus en détail

Capacité d un canal Second Théorème de Shannon. Théorie de l information 1/34

Capacité d un canal Second Théorème de Shannon. Théorie de l information 1/34 Capacité d un canal Second Théorème de Shannon Théorie de l information 1/34 Plan du cours 1. Canaux discrets sans mémoire, exemples ; 2. Capacité ; 3. Canaux symétriques ; 4. Codage de canal ; 5. Second

Plus en détail

De la difficulté de colorer : de Guthrie à Karp

De la difficulté de colorer : de Guthrie à Karp De la difficulté de colorer : de Guthrie à Karp Introduction à l optimisation combinatoire : Modélisation et complexité Marc Demange ESSEC Business School Paris, Singapore demange@essec.edu Plan de la

Plus en détail

Cours Informatique. Louis Sutre Université Montesquieu Bordeaux IV- L2 Économie et gestion 1

Cours Informatique. Louis Sutre Université Montesquieu Bordeaux IV- L2 Économie et gestion 1 Cours Informatique Louis Sutre Université Montesquieu Bordeaux IV- L2 Économie et gestion 1 Chapitre 1 : Introduction au tableur... 3 1. Composition du logiciel... 3 1.1 Menus... 3 1.2 Formatage d une

Plus en détail

Concours 2015 Épreuve d Informatique Filière : MP Durée de l épreuve : 3 heures. L utilisation d une calculatrice est autorisée.

Concours 2015 Épreuve d Informatique Filière : MP Durée de l épreuve : 3 heures. L utilisation d une calculatrice est autorisée. A 2015 INFO. MP École des Ponts ParisTech, SUPAERO (ISAE), ENSTA ParisTech, Télécom ParisTech, Mines ParisTech, Mines de Saint-étienne, Mines Nancy, Télécom Bretagne, ENSAE ParisTech (filière MP), École

Plus en détail

Regroupement (clustering) Bruno Pinaud (basé sur le support de Sofian Maabout)

Regroupement (clustering) Bruno Pinaud (basé sur le support de Sofian Maabout) 1 Regroupement (clustering) Bruno Pinaud (basé sur le support de Sofian Maabout) C est quoi? Regroupement (Clustering): construire une collection d objets Similaires au sein d un même groupe Dissimilaires

Plus en détail

ÉPREUVE COMMUNE DE TIPE 2007 - Partie D. TITRE : La recherche de motifs fréquents : une méthode de fouille de données

ÉPREUVE COMMUNE DE TIPE 2007 - Partie D. TITRE : La recherche de motifs fréquents : une méthode de fouille de données ÉPREUVE COMMUNE DE TIPE 2007 - Partie D TITRE : La recherche de motifs fréquents : une méthode de fouille de données Temps de préparation :...2 h 15 minutes Temps de présentation devant le jury :.10 minutes

Plus en détail

Cours 3: Coopération entre processus: Synchronisation + Communication

Cours 3: Coopération entre processus: Synchronisation + Communication Cours 3: Coopération entre processus: Synchronisation + Communication Coopération entre processus & Synchronisation + Communication 1. Introduction 2. Rendez-vous de N entités 3. Producteur(s) / Consommateur(s)

Plus en détail

Définition: Transaction

Définition: Transaction Concurrence des accès Atomicité à la concurrence Concurrency atomicity Concepts 2PL Définition: Transaction Une transaction est une unité de travail Un ensemble d actions qui prend la base de données dans

Plus en détail

Programmation en VBA

Programmation en VBA Programmation en VBA Présentation de Visual Basic Visual Basic : Basic : dérivé du langage Basic (Biginner s All purpose Symbolic Instruction Code) des années 60 Visual : dessin et aperçu de l interface

Plus en détail

Recherche opérationnelle dans le secteur de la construction (5/5)

Recherche opérationnelle dans le secteur de la construction (5/5) Recherche opérationnelle dans le secteur de la construction (5/5) Antoine Jeanjean Ingénieur de recherche Ecole des Mines de Nantes Amphi Georges Besse 14h30-16h30 Plan de la présentation Le Groupe Bouygues

Plus en détail

Curriculum Vitae - Emmanuel Hebrard. Emmanuel Hebrard

Curriculum Vitae - Emmanuel Hebrard. Emmanuel Hebrard Emmanuel Hebrard Adresse 5 Tuckey Street Cork, Ireland emmanuel.hebrard@gmail.com http ://4c.ucc.ie/ ehebrard/home.html Adresse Professionnelle Cork Constraint Computation Centre Cork, Ireland Telephone

Plus en détail

Algorithmique et. Plan CHAPITRE 2: NOTIONS D'ALGORITHMIQUE CONCEPTS DE BASE DU LANGAGE C CHAPITRE 3: LES TABLEAUX LES POINTEURS CHAPITRE 4

Algorithmique et. Plan CHAPITRE 2: NOTIONS D'ALGORITHMIQUE CONCEPTS DE BASE DU LANGAGE C CHAPITRE 3: LES TABLEAUX LES POINTEURS CHAPITRE 4 Université Mohammed V Agdal Ecole Mohammadia d'ingénieurs Département Génie Informatique Rabat CHAPITRE 1: Plan NOTIONS D'ALGORITHMIQUE CHAPITRE 2: Algorithmique et Programmation en Langage C CONCEPTS

Plus en détail

Vous ne pourrez utiliser Impôts Expert que sur un poste (il ne sera pas accessible sur les autres postes).

Vous ne pourrez utiliser Impôts Expert que sur un poste (il ne sera pas accessible sur les autres postes). PROCEDURE D INSTALLATION DE CAPITAL EXPLORER OFFLINE * *réservée aux clients de l ancienne version «PC» Février 2015 Sommaire 1. PREALABLE... 1 Accès aux applications :... 1 Configuration requise :...

Plus en détail

La NP-complétude. Johanne Cohen. PRISM/CNRS, Versailles, France.

La NP-complétude. Johanne Cohen. PRISM/CNRS, Versailles, France. La NP-complétude Johanne Cohen PRISM/CNRS, Versailles, France. Références 1. Algorithm Design, Jon Kleinberg, Eva Tardos, Addison-Wesley, 2006. 2. Computers and Intractability : A Guide to the Theory of

Plus en détail

Problèmes d ordonnancement dans les systèmes de production. Journée Automatique et Optimisation Université de Paris 12 20 Mars 2003

Problèmes d ordonnancement dans les systèmes de production. Journée Automatique et Optimisation Université de Paris 12 20 Mars 2003 Problèmes d ordonnancement dans les systèmes de production Michel Gourgand Université Blaise Pascal Clermont Ferrand LIMOS CNRS UMR 6158 1 Le LIMOS Laboratoire d Informatique, de Modélisation et d Optimisation

Plus en détail

Initiation à LabView : Les exemples d applications :

Initiation à LabView : Les exemples d applications : Initiation à LabView : Les exemples d applications : c) Type de variables : Créer un programme : Exemple 1 : Calcul de c= 2(a+b)(a-3b) ou a, b et c seront des réels. «Exemple1» nom du programme : «Exemple

Plus en détail

Résolution du jeu Eternity 2 avec les technologies SAT

Résolution du jeu Eternity 2 avec les technologies SAT Résolution du jeu Eternity 2 avec les technologies SAT Rapport de TER Master 1 (Spécialité informatique) Université d Artois Réalisé par Joffrey CUVILLIER et Rémi SZYMKOWIAK Responsables de stage : Jean-Marie

Plus en détail

A GRASPxELS approach for the Job Shop with generic time-lags and new statistical determination of the parameters

A GRASPxELS approach for the Job Shop with generic time-lags and new statistical determination of the parameters A GRASPxELS approach for the Job Shop with generic time-lags and new statistical determination of the parameters Présenté par : Equipe de travail : Laboratoire : Maxime CHASSAING Philippe LACOMME, Nikolay

Plus en détail

Conférence «Accords transnationaux d entreprise» «Transnational Company Agreements» Conference

Conférence «Accords transnationaux d entreprise» «Transnational Company Agreements» Conference Conférence «Accords transnationaux d entreprise» «Transnational Company Agreements» Conference 13-14 novembre 2008-13th -14th Novembre 2008 Centre des Congrès, Lyon LES DYNAMIQUES DE LA NÉGOCIATION Votre

Plus en détail

RÈGLES POUR L'ÉCRITURE DES PSEUDO-CODES (Programmation par objets)

RÈGLES POUR L'ÉCRITURE DES PSEUDO-CODES (Programmation par objets) RÈGLES POUR L'ÉCRITURE DES PSEUDO-CODES (Programmation par objets) Consignes générales : 1) Chaque algorithme est bien identifié. 2) Les mots clés doivent être utilisés selon la même syntaxe que ci-dessous.

Plus en détail

Nouvelles propositions pour la résolution exacte du problème de sac à dos bi-objectif unidimensionnel en variables binaires

Nouvelles propositions pour la résolution exacte du problème de sac à dos bi-objectif unidimensionnel en variables binaires Nouvelles propositions pour la résolution exacte du problème de sac à dos bi-objectif unidimensionnel en variables binaires Julien Jorge, Xavier Gandibleux Laboratoire d Informatique de Nantes Atlantique

Plus en détail

Calculer les expressions suivantes et donner le résultat sous la forme d une fraction irréductible. B = 16 55

Calculer les expressions suivantes et donner le résultat sous la forme d une fraction irréductible. B = 16 55 Page / Corrigé exercices de révision algèbre Classe de re Corrigé de l exercice A = + 4 8 4 C = 8 4 A = + 4 4 + A = + 4 8 4 C = 8 4 4 4 A = + 8 4 + 4 C = 8 8 4 8 C = 8 4 A = + 8 A = + 40 A = 4 0 4 + 8

Plus en détail

Programmation en VBA

Programmation en VBA Programmation en VBA Présentation de Visual Basic Visual Basic : Basic : dérivé du langage Basic (Biginner s All purpose Symbolic Instruction Code) des années 60 Visual : dessin et aperçu de l interface

Plus en détail

1/24. I passer d un problème exprimé en français à la réalisation d un. I expressions arithmétiques. I structures de contrôle (tests, boucles)

1/24. I passer d un problème exprimé en français à la réalisation d un. I expressions arithmétiques. I structures de contrôle (tests, boucles) 1/4 Objectif de ce cours /4 Objectifs de ce cours Introduction au langage C - Cours Girardot/Roelens Septembre 013 Du problème au programme I passer d un problème exprimé en français à la réalisation d

Plus en détail

Projet INF242. Stéphane Devismes & Benjamin Wack. Pour ce projet les étudiants doivent former des groupes de 3 ou 4 étudiants.

Projet INF242. Stéphane Devismes & Benjamin Wack. Pour ce projet les étudiants doivent former des groupes de 3 ou 4 étudiants. Projet INF242 Stéphane Devismes & Benjamin Wak Pour e projet les étudiants doivent former des groupes de 3 ou 4 étudiants. 1 Planning Distribution du projet au premier ours. À la fin de la deuxième semaine

Plus en détail

Ordonnancement sous contraintes de Qualité de Service dans les Clouds

Ordonnancement sous contraintes de Qualité de Service dans les Clouds Ordonnancement sous contraintes de Qualité de Service dans les Clouds GUÉROUT Tom DA COSTA Georges (SEPIA) MONTEIL Thierry (SARA) 14/9/215 1 Profil Profil Parcours : Laboratoires LAAS et IRIT à Toulouse

Plus en détail

Traduction des arbres programmatiques en C

Traduction des arbres programmatiques en C Traduction des arbres programmatiques en C Table des matières 1 Premier exemple : helloworld.c 1 2 Méthode de programmation 2 3 Déclaration de variables 2 4 Structures de contrôle 3 5 Opérateurs C 5 6

Plus en détail

7.5 Quelques notions sur XML Schema

7.5 Quelques notions sur XML Schema 7.5 Quelques notions sur XML Schema WMK-schema est une autre façon de spécifier des données XML (une autre façon d écrire un schéma). N.B. : Un XML-schéma est lui-même un document XML! Mais il spécifie

Plus en détail

Représentation des nombres entiers et réels. en binaire en mémoire

Représentation des nombres entiers et réels. en binaire en mémoire L3 Mag1 Phys. fond., cours C 15-16 Rep. des nbs. en binaire 25-09-05 23 :06 :02 page 1 1 Nombres entiers 1.1 Représentation binaire Représentation des nombres entiers et réels Tout entier positif n peut

Plus en détail

Algorithmique et programmation. Cours d'algorithmique illustré par des exemples pour le picbasic

Algorithmique et programmation. Cours d'algorithmique illustré par des exemples pour le picbasic Algorithmique et programmation Cours d'algorithmique illustré par des exemples pour le picbasic Même s'il est possible d'écrire un programme petit à petit par touches successives, le résultat est souvent

Plus en détail

A. L opérateur ET logique

A. L opérateur ET logique IV.5 Les Opérateurs A. L opérateur ET logique cmd1 && cmd2 On exécutera cmd2 uniquement si la commande cmd1 se termine correctement Exemple : $ pwd /usr/c1 $ mkdir tmp $ test d $HOME/tmp && cd $HOME/tmp

Plus en détail

Analyse et développement d algorithmes parallèles pour la résolution directe de grands systèmes linéaires creux

Analyse et développement d algorithmes parallèles pour la résolution directe de grands systèmes linéaires creux Analyse et développement d algorithmes parallèles pour la résolution directe de grands systèmes linéaires creux Ibrahima GUEYE 1, Xavier JUVIGNY 1, François-Xavier ROUX 1, Frédéric FEYEL 1 & Georges CAILLETAUD

Plus en détail

UE1 - Langage C Fiche TP1

UE1 - Langage C Fiche TP1 1 UE1 - Langage C Fiche TP1 Objectifs 1. Connaître quelques commandes linux 2. Savoir manipuler les outils de compilation tels que gcc, make 3. Ecrire des algorithmes, les coder en C, et les exécuter 1.

Plus en détail

INTRODUCTION AUX PROBLEMES COMBINATOIRES "DIFFICILES" : LE PROBLEME DU VOYAGEUR DE COMMERCE ET LE PROBLEME DE COLORATION D'UN GRAPHE

INTRODUCTION AUX PROBLEMES COMBINATOIRES DIFFICILES : LE PROBLEME DU VOYAGEUR DE COMMERCE ET LE PROBLEME DE COLORATION D'UN GRAPHE Leçon 10 INTRODUCTION AUX PROBLEMES COMBINATOIRES "DIFFICILES" : LE PROBLEME DU VOYAGEUR DE COMMERCE ET LE PROBLEME DE COLORATION D'UN GRAPHE Dans cette leçon, nous présentons deux problèmes très célèbres,

Plus en détail

Algorithme Algorigramme page 1/10 Algorithmique Algorigramme

Algorithme Algorigramme page 1/10 Algorithmique Algorigramme Algorithme Algorigramme page 1/10 Algorithmique Algorigramme Centre d'interêt : Analyser les constituants d'un système réel d'un point de vue structurel et comportemental Objectifs A la fin de la séquence,

Plus en détail

Informatique (INFO-F-206) Exemple de questionnaire d examen

Informatique (INFO-F-206) Exemple de questionnaire d examen Informatique (INFO-F-206) Exemple de questionnaire d examen Jean Cardinal Année académique 2010 2011 Consignes : 1. Les réponses doivent figurer sur des feuilles distinctes, indiquant le numéro de la question,

Plus en détail

Notre objectif : vous avertir si besoin est et vous aider à récupérer rapidement les données pertinentes. Intelligent Video Analysis

Notre objectif : vous avertir si besoin est et vous aider à récupérer rapidement les données pertinentes. Intelligent Video Analysis Notre objectif : vous avertir si besoin est et vous aider à récupérer rapidement les données pertinentes. Intelligent Video Analysis 2 Intelligent Video Analysis Apporter sens et structure S agissant de

Plus en détail

La recherche locale. INF6953 La recherche locale 1

La recherche locale. INF6953 La recherche locale 1 La recherche locale INF6953 La recherche locale 1 Sommaire Recherche locale et voisinage. Fonction de voisinage, optimum local Fonction de voisinage et mouvements Fonction de voisinage et mouvements Exemples

Plus en détail

Cours Optimisation Partie Optimisation Combinatoire. Année scolaire 2008-2009. Gérard Verfaillie ONERA/DCSD/CD, Toulouse Gerard.Verfaillie@onera.

Cours Optimisation Partie Optimisation Combinatoire. Année scolaire 2008-2009. Gérard Verfaillie ONERA/DCSD/CD, Toulouse Gerard.Verfaillie@onera. Cours Optimisation Partie Optimisation Combinatoire 3ième année ISAE Année scolaire 2008-2009 Gérard Verfaillie ONERA/DCSD/CD, Toulouse Gerard.Verfaillie@onera.fr Septembre 2008 Résumé Ce document couvre

Plus en détail

Optimisation multi-critère pour l allocation de ressources sur Clouds distribués avec prise en compte de l énergie

Optimisation multi-critère pour l allocation de ressources sur Clouds distribués avec prise en compte de l énergie Optimisation multi-critère pour l allocation de ressources sur Clouds distribués avec prise en compte de l énergie 1 Présenté par: Yacine KESSACI Encadrement : N. MELAB E-G. TALBI 31/05/2011 Plan 2 Motivation

Plus en détail

Chapitre 7 : Programmation dynamique

Chapitre 7 : Programmation dynamique Graphes et RO TELECOM Nancy 2A Chapitre 7 : Programmation dynamique J.-F. Scheid 1 Plan du chapitre I. Introduction et principe d optimalité de Bellman II. Programmation dynamique pour la programmation

Plus en détail

La logique et les tests

La logique et les tests UEF 1 : Informatique & Programmation Faculté des Sciences de Nice DEUG 2000-2001 La logique et les tests Jérôme DURAND-LOSE Sandrine JULIA Jean-Paul ROY COURS 5 2 Les valeurs booléennes et Ne pas confondre

Plus en détail

Cours de Master Recherche

Cours de Master Recherche Cours de Master Recherche Spécialité CODE : Résolution de problèmes combinatoires Christine Solnon LIRIS, UMR 5205 CNRS / Université Lyon 1 2007 Rappel du plan du cours 16 heures de cours 1 - Introduction

Plus en détail

Programmer avec Xcas : version 0.8.6 et 0.9

Programmer avec Xcas : version 0.8.6 et 0.9 Programmer avec Xcas : version 0.8.6 et 0.9 I. L environnement de travail de Xcas Xcas permet d écrire des programmes, comme n importe quel langage de programmation. C est un langage fonctionnel. L argument

Plus en détail

Transformation de modèles pour validation de processus métier

Transformation de modèles pour validation de processus métier Transformation de modèles pour validation de processus métier Guillaume Voiron February 4, 215 1 Introduction Les flux de travaux (ou processus métier) consistent en une succession d activités à effectuer

Plus en détail

Systèmes d Exploitation Chapitre 6 Sémaphores

Systèmes d Exploitation Chapitre 6 Sémaphores Systèmes d Exploitation Chapitre 6 Sémaphores F. Moal 2012/2013 Par DIJKSTRA 1971 Idée : encapsuler les solutions diverses au pb de la section critique pour fournir une interface unique et assurer la portabilité.

Plus en détail

Rappel du plan du cours

Rappel du plan du cours Rappel du plan du cours 1 - Introduction Qu est-ce qu un problème «complexe»? Exemples de problèmes «complexes» 2 - Approches complètes Structuration de l espace de recherche en Arbre Application à la

Plus en détail

E3A PC 2009 Math A. questions de cours. t C). On véri e que

E3A PC 2009 Math A. questions de cours. t C). On véri e que E3A PC 29 Math A questions de cours. Soit C 2 M 3 (R) Analyse : Si C = S + A, S 2 S 3 (R) et A 2 A 3 (R) alors t C = t S + t A = S A d où S = 2 (C +t C) et A = 2 (C t C). L analyse assure l unicité (sous

Plus en détail

UML Diagramme de classes (class diagram) pour le recueil et l analyse des besoins. Emmanuel Pichon 2013 V1.1

UML Diagramme de classes (class diagram) pour le recueil et l analyse des besoins. Emmanuel Pichon 2013 V1.1 UML Diagramme de classes (class diagram) pour le recueil et l analyse des besoins 2013 V1.1 Objectif Diagramme de classes (class diagram) pour le recueil des besoins et l analyse Présenter un ensemble

Plus en détail

Thème 11 Réseaux de Petri Places-Transitions

Thème 11 Réseaux de Petri Places-Transitions Thème 11 Réseaux de Petri Places-Transitions Contenu du thème 1. Introduction 2. RdP PT 3. Protocoles de communication Références Diaz, Michel (2001) Les Réseaux de Petri Modèles fondamentaux, Hermes Science

Plus en détail

Machines composées de (depuis 1940 env.) : http://cui.unige.ch/isi/cours/std/

Machines composées de (depuis 1940 env.) : http://cui.unige.ch/isi/cours/std/ données pr ogramme 11111101 11001101 01000101 b us disque ma gnétique processeur écran Structures de données et algorithmes Ordinateurs Gilles Falquet, printemps-été 2002 Machines composées de (depuis

Plus en détail

Comparaison entre approche directe et compilée pour un problème de configuration

Comparaison entre approche directe et compilée pour un problème de configuration Comparaison entre approche directe et compilée pour un problème de configuration Nicolas Morbieu Mémoire de stage de M2R soutenu le 23 juin 2006 Directrice de recherche : Hélène Fargier Recherche effectuée

Plus en détail

Les mathématiques du calcul

Les mathématiques du calcul Les mathématiques du calcul Module Maths Discrètes, INSA, Univ Lyon 1, 2015-2016 Eric Tannier (eric.tannier@univ-lyon1.fr) Les mathématiques du calcul Tradition orientale Al-Khawarizmi Al-Khawarizmi, 783-850

Plus en détail

www.localsolver.com 1/18

www.localsolver.com 1/18 www.localsolver.com 1/18 Bouygues Une culture de l innovation 2 43 Le Groupe Bouygues 5 métiers CA : 32,7 Mds Routes (1986) BTP (1952) Immobilier (1956) 96,5 % 100 % 100 % CONSTRUCTION (2006) 30,7 % ÉNERGIE

Plus en détail

Ordonnancement : entre théorie et applications

Ordonnancement : entre théorie et applications Christophe RAPINE Laboratoire LGIPM, université de Lorraine Ecole des Jeunes Chercheurs du GDR-RO 1 Qu est-ce que l ordonnancement? Organiser la réalisation d un ensemble de tâches Planification dans le

Plus en détail

GUIDE D'INSTALLATION. AXIS Camera Station

GUIDE D'INSTALLATION. AXIS Camera Station GUIDE D'INSTALLATION AXIS Camera Station A propos de ce guide Ce guide est destiné aux administrateurs et aux utilisateurs de AXIS Camera Station et est applicable pour la version 4.0 du logiciel et les

Plus en détail

DREW : Un outil Internet pour créer des situations d apprentissage coopérant

DREW : Un outil Internet pour créer des situations d apprentissage coopérant 109 DREW : Un outil Internet pour créer des situations d apprentissage coopérant Annie Corbel*, Philippe Jaillon*, Xavier Serpaggi*, Michael Baker**, Mathieu Quignard**, Kristine Lund**, Arnaud Séjourné**

Plus en détail

Acquisition : Les exemples d applications :

Acquisition : Les exemples d applications : Acquisition : Les exemples d applications : Exemple 1 : Assistant Programmation à l aide de l assistant Nous allons générer une tension V1 qui varie de 0 à 5V. Cette tension augmentera d un pas: p = 5

Plus en détail

Modèle probabiliste: Algorithmes et Complexité

Modèle probabiliste: Algorithmes et Complexité Modèles de calcul, Complexité, Approximation et Heuristiques Modèle probabiliste: Algorithmes et Complexité Jean-Louis Roch Master-2 Mathématique Informatique Grenoble-INP UJF Grenoble University, France

Plus en détail

Sujets de stage. Sciences de la Fabrication et Logistique. Génie Industriel. Optimisation. Recherche opérationnelle. Simulation

Sujets de stage. Sciences de la Fabrication et Logistique. Génie Industriel. Optimisation. Recherche opérationnelle. Simulation 2011 2012 Sujets de stage Génie Industriel Optimisation Recherche opérationnelle Simulation Sciences de la Fabrication et Logistique Table des matières Problème de planification de production avec des

Plus en détail

Licence ST Université Claude Bernard Lyon I LIF1 : Algorithmique et Programmation C Bases du langage C 1 Conclusion de la dernière fois Introduction de l algorithmique générale pour permettre de traiter

Plus en détail

Programmation Avancée - Prolog

Programmation Avancée - Prolog Programmation Avancée - Prolog N. Prcovic Programmation Avancée - Prolog p.1/26 Introduction La programmation logique est une forme particulière de programmation déclarative. La programmation déclarative

Plus en détail

IBM ILOG CP Optimizer Artelys Kalis Microsoft Solver Foundation Comet Choco Solver MINION Gecode

IBM ILOG CP Optimizer Artelys Kalis Microsoft Solver Foundation Comet Choco Solver MINION Gecode Lignes directrices Introduction à la Programmation par Contraintes TP 1. Présentation de l OPL Ruslan Sadykov INRIA Bordeaux Sud-Ouest 17 Novembre 2014 1 / 18 2 / 18 Logiciels disponibles pour résoudre

Plus en détail

OÙ EN EST-ON? ABANDONNER L IDÉE D AVOIR UN ALGORITHME

OÙ EN EST-ON? ABANDONNER L IDÉE D AVOIR UN ALGORITHME OÙ EN EST-ON? Que faire face à un problème dur? AAC S.Tison Université Lille1 Master1 Informatique Quelques schémas d algorithmes Un peu de complexité de problèmes Un peu d algorithmique avancée ou Que

Plus en détail

Plan du cours. Métaheuristiques pour l optimisation combinatoire. Quelques problèmes classiques (2/3) Quelques problèmes classiques (1/3)

Plan du cours. Métaheuristiques pour l optimisation combinatoire. Quelques problèmes classiques (2/3) Quelques problèmes classiques (1/3) Plan du cours Quelques problèmes classiques Quelques algorithmes classiques Métaheuristiques pour l optimisation combinatoire un peu de vocabulaire codage des solutions taxinomie méthodes complètes méthodes

Plus en détail

Une extension pour RDF/RDFS utilisant des relations procédurales

Une extension pour RDF/RDFS utilisant des relations procédurales Une extension pour RDF/RDFS utilisant des relations procédurales Jean-François Baget * * INRIA Sophia-Antipolis & LIRMM(CNRS - UM2) LIRMM, 161 rue Ada, 34392 Montpellier Cedex 5 baget@lirmm.fr RÉSUMÉ.

Plus en détail

Générer le fichier de prélèvement pour la banque.

Générer le fichier de prélèvement pour la banque. Générer le fichier de prélèvement pour la banque. Vous devez d abord avoir suivi au moins une fois la procédure : «115.61 - Configurer le prélèvement automatique» 1) Lancez le logiciel Gestion clientèle

Plus en détail

Structure conditionnelle

Structure conditionnelle EXCEL 2002 Structure conditionnelle SOMMAIRE Notions préalables 3 A) Opérateurs de comparaison 3 B) Comparaison de valeurs 3 C) Fonctions logiques ET / OU 3 Mise en forme conditionnelle 4 A) Faire une

Plus en détail

Reproductibilité des expériences de l article "Analyse et réduction du chemin critique dans l exécution d une application"

Reproductibilité des expériences de l article Analyse et réduction du chemin critique dans l exécution d une application Reproductibilité des expériences de l article "Analyse et réduction du chemin critique dans l exécution d une application" Katarzyna Porada and David Parello and Bernard Goossens Univ. Perpignan Via Domitia,

Plus en détail

Complexité II. 1 Les Classes de Complexité P et N P

Complexité II. 1 Les Classes de Complexité P et N P Complexité II 1 Les Classes de Complexité P et N P Les quatre problèmes présentés en introduction à la section 1 sont de natures diverses. Leurs résolutions semblent plus on moins évidentes ou rapides.

Plus en détail