Reconnaissance du locuteur

Dimension: px
Commencer à balayer dès la page:

Download "Reconnaissance du locuteur"

Transcription

1 Reconnaissance du locuteur Claude Barras! Master, Université Paris-Sud

2 Plan Introduction Vérification du locuteur Structuration en tours de parole Recherches en cours 2/46

3 Introduction Plan Introduction Vérification du locuteur Structuration en tours de parole Recherches en cours 3/46

4 Introduction Les tâches en reconnaissance du locuteur Vérification le locuteur est-il bien celui qu il prétend? target speaker unknown speaker? Speaker verification accepted rejected (impostor) brique de base pour les autres tâches Identification recherche parmi un ensemble de voix de personnes connues Structuration en tours de parole qui parle, quand? 4/46

5 Introduction Applications Sécurité contrôle d accès (complément d un code, d un badge) accès physique: banques, voitures, entreprises accès distant: consultation de comptes bancaires par téléphone... Police criminelle / identification de suspects? filtrage de voix suspectes (+ validation humaine) fiabilité pour utilisation comme preuve? (position AFCP) Indexation multimédia indexation par locuteur Transcription automatique adaptation des modèles acoustiques à la voix du locuteur 5/46

6 Introduction Paramètres caractéristiques Paramètres acoustiques anatomie des cordes vocales et du conduit vocal pas mesurable directement comme une biométrie physique analyse spectrale à court terme du timbre résonances dans le conduit vocal modulées par le geste articulatoire (biométrie comportementale) Autres sources d information possibles personnalité, éducation, lieu de naissance... prosodie, prononciation... contenu, sémantique transcription 6/46

7 Introduction Paramètres caractéristiques Critères pour choisir de bons paramètres pratiques (faciles à mesurer) robustes (au bruit et au temps) sécurisés (discriminants, résistants à la contrefaçon) Qualité des coefficients spectraux? pratiques (modalité orale non intrusive) peu discriminants, peu robustes Variabilité intra-locuteur intrinsèque: contenu linguistique, humeur, effort vocal externe: réverbération, microphone, bruit de fond 7/46

8 Introduction Modèles de locuteurs Séquence de vecteurs de paramètres acoustiques X = (x 1,..., x t,..., x T ) Modèle par mélange de gaussiennes (GMM) M p(x Θ) = ω i N (x; µ i, Σ i ) apprentissage direct ou adaptation d un modèle générique Adaptation par Maximum a posteriori (MAP) adaptation des vecteurs de moyenne i=1 facteur de pertinence τ ˆµ i = n ie i {x} + τµ i n i + τ 8/46

9 Vérification du locuteur Plan Introduction Vérification du locuteur Structuration en tours de parole Recherches en cours 9/46

10 Vérification du locuteur Vérification du locuteur Approche standard GMM-UBM (D. Reynolds, MIT-LL) voix cible signal Paramètres voix de référence Modèle cible Adaptation Modèle de référence accepté + Σ Normalisation score >S rejeté décision par rapport de vraisemblance 10/46

11 Vérification du locuteur Evaluation en vérification du locuteur Erreurs possibles rejet du bon locuteur ( détection manquée ) acceptation d un imposteur ( fausse alarme ) 0.2 Impostors False acceptance True targets False rejection Threshold 0.15 likelihood score 11/46

12 Vérification du locuteur Evaluation en vérification du locuteur Compromis entre les 2 types d erreur Réglage du seuil de décision dépendant de la tâche seuil faible: peu de faux rejets, risque d impostures seuil élevé: peu d impostures, risque de rejeter le bon locuteur Mesure de coût somme pondérée des deux probabilités d erreur C = αp rejet + βp imposture pondérations dépendantes de l application recherche du seuil offrant le coût minimum Taux d égale erreur (EER) 12/46

13 Vérification du locuteur Représentation par courbe DET Courbe DET (Detection Error Tradeoff) compromis entre les deux types d erreur courbe caractérisque quasi-linéaire 100% ROC DET détections manquées coût constant égale erreur détections manquées coût constant égale erreur 0 fausses alarmes 100% fausses alarmes 13/46

14 Vérification du locuteur Campagnes internationales NIST SRE Campagnes d évaluation en reconnaissance du locuteur organisées par l organisme fédéral américain NIST (bis)annuelles depuis 1996 nombre de participants croissant (10 à 50) taille des données croissante (1 à 100Gb) Importance des évaluations + partage des données, compétition, échanges, visibilité travail de mise en place, réduction de la diversité Particularité des évaluation NIST vérification du locuteur, indépendamment du texte en majorité, sur conversations téléphoniques en anglais exemples : référence, imposteur, cible favorise un faible taux d imposteurs: C = P rejet + 9, 9P imposture 14/46

15 Vérification du locuteur Système GMM-UBM de base Paramètres acoustiques 15 coefficients cepstraux + leur dérivée + dérivée de l énergie normalisation cepstrale (moyenne et variance) Modèles de référence (UBM) deux modèles GMM (homme/femme) à 1024 gaussiennes apprentissage quelques dizaines (centaines...) de voix différentes Modèle du locuteur-cible adaptation MAP du modèle de référence (moyenne des gaussiennes, soit paramètres) Score détection des segments de parole (seuil sur l énergie ou VAD) rapport de vraisemblance avec le modèle de référence seuil de détection optimisé sur l ensemble de développement 15/46

16 Vérification du locuteur Normalisation des paramètres acoustiques Le canal téléphonique dégrade la qualité de la voix... Approches standard CMS: Cepstral Mean Substraction Compensation d un canal de transmission linéaire et stationnaire Peut aussi atténuer le spectre moyen du locuteur Généralisation Normalisation de la moyenne et de la variance Globale et court-terme (fenêtre glissante) Meilleure compensation d un bruit additif Améliorations Feature warping: gaussianisation marginale Feature mapping: compensation supervisée du canal 16/46

17 Vérification du locuteur Feature warping Pelecanos & Sridharan, Odyssey 01 transformation non linéaire de la distribution des coefficients cepstraux projette chaque dimension vers une loi normale sur une fenêtre glissante (3 secondes) warping Distribution initiale Distribution gaussienne Gaussianisation (IBM, NIPS 00 et ICASSP 02) optimisation iterative (algorithme EM) 1. transformation linéaire (diagonalisation) 2. gaussianisation marginale court-terme (i.e. feature warping) 17/46

18 Vérification du locuteur Feature warping 50 Features normalization Miss probability (in %) none mean mean+variance variance (3 sec) warping (3 sec) False Alarms probability (in %) 18/46

19 Vérification du locuteur Feature mapping Reynolds, NIST SRE 02 and ICASSP 03 Projette les paramètres dépendants du canal dans un espace indépendant du canal Entraine un modèle indépendant du canal CI (groupe toutes les données) Entraine un modèle dépendant du canal CD i par adaptation MAP Pour chaque phrase de test 1. détecte le canal le plus probable CD k 2. projection inverse des paramètres dans l espace CI CD1 CD2 CDn CI y=t(x) 19/46

20 Vérification du locuteur Feature mapping Fonction de projection pour une trame x, choisit la meilleure Gaussienne i utilise la top-1 Gaussienne de la phase de détection du canal y = (x µ CD k i ) σci i σ CD k i µ CI i approche inverse de la synthèse de modèle de locuteur (SMS) CD1 CD2 CDn CI y=t(x) Cible 20/46

21 Vérification du locuteur Apport de l information prosodique Prosodie (mélodie, rythme, intensité) contient une information caractéristique du locuteur probablement robuste aux variations du canal acoustique peu ou pas prise en compte dans les paramètres spectraux Approches analyse prosodique locale (F 0, log E) segmentation du contour prosodique (pseudo-)syllabes ou minima d énergie modélisation GMM-UBM ou par N-gram valeurs statistiques de F0 sur le segment paramètres modélisant le contour mélodique discrétisation de la variation de la prosodie Expériences performances individuelles loin de celles du système spectral gain relatif entre 5 et 10% en combinaison de tous les système 21/46

22 Vérification du locuteur SVM et modèles d adaptation au locuteur Approche GMM-UBM standard calcul de la vraisemblance des paramètres acoustiques du locuteur à reconnaitre pour le modèle du locuteur cible Classifieurs SVM (Support Vector Machines) classifieurs binaires discriminants dans un espace de très grande dimension nécessite des vecteurs de taille fixe permet la comparaison directe de modèles de locuteurs Méthodes d adaptation au locuteur étudiées adaptation MAP adaptation MLLR (Maximum Likelihood Linear Regression) 22/46

23 Vérification du locuteur Régression linéaire par maximum de vraisemblance Principe de l adaptation MLLR adaptation paramétrique d un modèle transformation affine des vecteurs de moyenne des gaussiennes ˆµ = Aµ + b Application en transcription de parole adaptation de modèles phonétiques génériques regroupement des gaussiennes des modèles en classes de régression une transformation MLLR apprise pour chacune des classes Approche MLLR contrainte (CMLLR) même transformation linéaire A pour la matrice de covariance ˆΣ = AΣA T formulation équivalente dans l espace des paramètres vecteur indépendant du locuteur x t = A 1 ˆx t A 1 b 23/46

24 Vérification du locuteur Le modèle comme paramètre du classifieur Paramètres issus de l adaptation MAP (Campbell, 2006) super-vecteur de gaussiennes (GSV) modèle de locuteur obtenu par adaptation MAP concaténation des vecteurs de moyenne Paramètres MLLR (Stolcke, 2005) super-vecteur à partir des paramètres A et b de la transformation (C)MLLR concaténation des lignes de la matrice une ou plusieurs transformations combinées 24/46

25 Vérification du locuteur Utilisation des super-vecteurs Alternative au classifieur SVM Projection du super-vecteur GSV dans des sous-espaces de dimension réduite Principal Component Analysis (PCA) et Linear Discriminant Analysis (LDA) Joint Factor Analyis (Kenny, 2005) Séparation des espaces de variabilité du locuteur et de la session i-vecteurs (Dehak, 2009)) Total Variability Space y = µ + T θ projection vers 300 dimensions distance entre i-vecteurs: within class variance normalization (WCNN) L approche la plus performance actuellement en reconnaissance du locuteur 25/46

26 Vérification du locuteur Performances et limites Impact considérable des conditions expérimentales durée d enrôlement et de test prompt fixé (mot de passe) ou parole libre environnement calme, communication bruitée sujet collaboratif ou non nombre de locuteurs en identification, types de voix fréquence a priori des imposteurs Limites difficulté théorique d avoir un bon modèle de rejet (connaissance a priori de toute la variabilité possible des voix?) pas de transposition facile des résultats d une condition à une autre certaines voix sont plus faciles à reconnaître que d autres (tests à grande échelle avec des imitateurs?) Déploiement en application réelle combinaison avec d autres modalités d identification 26/46

27 Structuration en tours de parole Plan Introduction Vérification du locuteur Structuration en tours de parole Recherches en cours 27/46

28 Structuration en tours de parole Structuration en tours de parole Qui parle, quand? speaker diarization segmentation et regroupement automatique en locuteurs Motivations adapter les modèles acoustiques aux locuteurs pour meilleure une transcription automatique améliorer la lisibilité de la transcription produite indexation en locuteur pour la recherche d information 28/46

29 Structuration en tours de parole Exemple: flux de mots verbatim mais aujourd hui j insiste là-dessus le mouvement de Médecins sans frontières est un mouvement international européen et en Belgique en Hollande Suisse etc. il y a d autres euh il y a à peu près il y a à peu près plus européen plus européen qu international plus européen qu international tout à fait il faut le dire il y a à peu près dix ans que vous en êtes le chef de file oui euh en en quelques mots parce que j ai beaucoup de questions à vous poser sur votre itinéraire je pense ça éclairera la suite euh en quelques mots euh quelle est la marque que vous vous vous reconnaissez sur Médecins sur frontières eh bien celle de la euh du développement de Médecins sans frontières de la transformation d une idée qui était formidable en une action qui est aujourd hui concrète mesurable reconnue à l échelon mondial 29/46

30 Structuration en tours de parole Etape 1: découpage en tours de parole mais aujourd hui j insiste là-dessus le mouvement de Médecins sans frontières est un mouvement international européen et en Belgique en Hollande Suisse etc. il y a d autres euh il y a à peu près il y a à peu près plus européen plus européen qu international plus européen qu international tout à fait il faut le dire il y a à peu près dix ans que vous en êtes le chef de file oui euh en en quelques mots parce que j ai beaucoup de questions à vous poser sur votre itinéraire je pense ça éclairera la suite euh en quelques mots euh quelle est la marque que vous vous vous reconnaissez sur Médecins sur frontières eh bien celle de la euh du développement de Médecins sans frontières de la transformation d une idée qui était formidable en une action qui est aujourd hui concrète mesurable reconnue à l échelon mondial 30/46

31 Structuration en tours de parole Etape 2: regroupement en locuteurs L1 mais aujourd hui j insiste là-dessus le mouvement de Médecins sans frontières est un mouvement international européen et en Belgique en Hollande Suisse etc. il y a d autres L2 euh il y a à peu près il y a à peu près L3 plus européen plus européen qu international L1 plus européen qu international tout à fait L3 il faut le dire L2 il y a à peu près dix ans que vous en êtes le chef de file L1 oui L2 euh en en quelques mots parce que j ai beaucoup de questions à vous poser sur votre itinéraire je pense ça éclairera la suite euh en quelques mots euh quelle est la marque que vous vous vous reconnaissez sur Médecins sur frontières L1 eh bien celle de la euh du développement de Médecins sans frontières de la transformation d une idée qui était formidable en une action qui est aujourd hui concrète mesurable reconnue à l échelon mondial 31/46

32 Structuration en tours de parole Etape 3: identification des locuteurs connus Rony Brauman mais aujourd hui j insiste là-dessus le mouvement de Médecins sans frontières est un mouvement international européen et en Belgique en Hollande Suisse etc. il y a d autres Alain Duhamel euh il y a à peu près il y a à peu près François-Henri de Virieu plus européen plus européen qu international Rony Brauman plus européen qu international tout à fait François-Henri de Virieu il faut le dire Alain Duhamel il y a à peu près dix ans que vous en êtes le chef de file Rony Brauman oui Alain Duhamel euh en en quelques mots parce que j ai beaucoup de questions à vous poser sur votre itinéraire je pense ça éclairera la suite euh en quelques mots euh quelle est la marque que vous vous vous reconnaissez sur Médecins sur frontières Rony Brauman eh bien celle de la euh du développement de Médecins sans frontières de la transformation d une idée qui était formidable en une action qui est aujourd hui concrète mesurable reconnue à l échelon mondial 32/46

33 Structuration en tours de parole Approches Architecture analyse acoustique (paramètres d enveloppe spectrale) détection des zones de parole (décodeur à deux modèles) découpage en segments homogènes contenant un seul locuteur regroupement des segments d un même locuteur dans une classe Difficultés pas de connaissance a priori des voix des intervenants... ni même de leur nombre 33/46

34 Structuration en tours de parole Détection de parole Intérêt utile pour mettre de côté les silences longs les silences courts sont normaux pendant la parole et ne posent pas de problème au système de reconnaissance. nombreux phénomènes acoustiques: musique, bruit de fond... à traiter séparemment Méthodes seuils sur l énergie et les passages par zéro: uniquement pour la détection de silence, mais pas adapté en présence de bruit. approche la plus répandue: classification par maximum de vraisemblance par GMM sur le cepstre du signal 34/46

35 Structuration en tours de parole Détection de parole (2) Architecture d un détecteur par GMM étiquetage de réference sur une base d apprentissage apprentissage d un GMM pour chaque condition acoustique: 2 modèles (parole/non-parole) ou plus en différenciant les conditions acoustiques (parole, parole+musique, parole+bruit, silence, bruit...) voire des modèles par classe phonétique. segmentation au moyen d un décodage par algorithme de Viterbi heuristiques de durée ou d énergie minimum Performances 1 à 2 % de durée de parole manquée en radio-télé d autant plus difficile que le rapport signal-bruit diminue on préfère éviter de perdre des segments de parole et rejeter ultérieurement des segments de non-parole 35/46

36 Structuration en tours de parole Segmentation acoustique Détection des changements de locuteur ou de condition acoustique Méthodes changement de locuteur lors des pauses? pas réaliste... modèles a priori des voix des locuteurs? pas toujours connu d avance... métrique sur le signal sans modèle a priori segmentation combinée à la classification Segmentation sans modèle 2 fenêtres glissantes adjacentes w 1 et w 2 durée typique 1 à 5 sec. estimation d un modèle sur chaque fenêtre Gaussienne (matrice de covariance pleine ou diagonale) ou GMM calcul d une distance entre les 2 modèles rapport de vraisemblance, distance Kullback-Leibler, distance BIC... sélection des pics de la fonction distance 36/46

37 Structuration en tours de parole Classification Méthodes classification agglomérative la plus répandue définition d une mesure de similarité entre classes critère d arret (nombre de classes ou distance maximale) Classification avec le critère BIC 1 Gaussienne à matrice de covariance pleine par classe critère de regroupement BIC = (n i + n j )log Σ n i log Σ i n j log Σ j λp avec la pénalité critère d arret P = 1 2 (d + 1 d(d + 1)) log N 2 BIC >= 0 pénalité BIC locale (N = n i + n j ) ou globale (N = k n k) 37/46

38 Structuration en tours de parole Segmentation et classification conjointe Speech Activity Detection Chop in small segments Train a GMM for each segment Viterbi segmentation and GMM reestimation GMM clustering less clusters? Viterbi segmentation with energy constraints Bandwidth and gender identification c-std estimation d un GMM sur chaque segment GMM à 8 composants à matrice de covariance diagonale par segment segment Segmentation/classification itérative des GMM fonction objective de log-vraisemblance pénalisée: N log f (s i M ci ) αn βk i=1 avec f (s i M ci ) la vraisemblance s i de la classe c i, N nb de segments, K nb de classes, α > 0 et β > 0 38/46

39 Structuration en tours de parole Architecture multi-passes de LIMSI Speech Activity Detection Chop in small segments Train a GMM for each segment Viterbi resegmentation Agglomerative BIC clustering Viterbi resegmentation with energy constraints Bandwidth and gender identification c-bic Agglomerative SID clustering c-sid SAD post-filtering p-asr Combinaison de plusieurs niveaux de modélisation pour les locuteurs 1ère phase: beaucoup de segments courts modélisation directe par une Gaussienne à matrice de covariance pleine classification hiérarchique ascendante regroupement des segments à forte similarité 2ème phase: des classes déjà construites modélisation plus riche par un GMM adapté à partir d un modèle générique 39/46

40 Structuration en tours de parole Architecture multi-passes: BIC Speech Activity Detection Chop in small segments Train a GMM for each segment Viterbi resegmentation Agglomerative BIC clustering Viterbi resegmentation with energy constraints Bandwidth and gender identification c-bic Agglomerative SID clustering c-sid SAD post-filtering p-asr Regroupement BIC (Bayesian Information Criterion) 1 Gaussienne à matrice de covariance pleine par classe c i N (µ i, Σ i ) critère de regroupement BIC = (n i + n j )log Σ i j n i log Σ i n j log Σ j λ 1 2 (d d(d + 1)) log(n i + n j ) avec n i nombre de trames de c i d dimension des vecteurs critère d arret BIC >= 0 40/46

41 Structuration en tours de parole Architecture multi-passes: CLR Speech Activity Detection Chop in small segments Train a GMM for each segment Viterbi resegmentation Agglomerative BIC clustering Viterbi resegmentation with energy constraints Bandwidth and gender identification c-bic Agglomerative SID clustering c-sid SAD post-filtering p-asr Regroupement CLR architecture GMM-UBM avec adaptation MAP rapport de log-vraisemblance croisé (CLR) clr(c i, c j ) = 1 n i log f (x i M j ) f (x i UBM) + 1 n j log f (x j M i ) f (x j UBM) avec x i les données de la classe c i, M i le modèle de la classe c i, n i nombre de trames de x i seuil de décision δ 41/46

42 Structuration en tours de parole Evaluation Qualité du regroupement automatique (DER) mise en correspondance bi-univoque optimale entre les classes de l hypothese et les identités de référence fraction du temps qui n est pas attribuée au bon locuteur reference A B hypothesis S1 S2 S3 error SPK FA MS DER = Speaker Error (SPK) + False Alarm Speech (FA) + Missed Speech (MS) Données et campagnes d évaluation Broadcast News anglais système BIC: 15 % d erreur système multi-passes: < 10 % d erreur performances comparables sur le français sensibilité aux réglages de seuils 42/46

43 Recherches en cours Plan Introduction Vérification du locuteur Structuration en tours de parole Recherches en cours 43/46

44 Recherches en cours Structuration multi-documents Cadre expérimental classique pas de connaissance a priori sur les locuteurs produit une étiquette par locuteur spécifique au document Objectifs en indexation d archives analyser une collection de documents d une même source produire des étiquettes de locuteurs consistantes Structuration en locuteurs multi-documents 44/46

45 Recherches en cours détection et suivi multi-pitch 45/46 Annotation et détection de voix superposée Intérêt croissant pour la parole superposée rare en parole préparée et actualité ignorée par les systèmes de transcription fréquente en parole spontanée conversations téléphoniques, réunions, talk-shows Pourquoi détecter la parole superposée? pour la mettre de côté erreurs de transcription automatique pour la transcrire? pas nécessairement un contenu essentiel pour comprendre la nature de l acte de communication Comment la détecter? séparation de source ou localisation en situation multi-canal cas fréquent d enregistrement mono-canal réaliser un décodage de la parole superposée complexe et pas toujours nécessaire analyse des zones harmoniques

46 Recherches en cours Reconnaissance multimodale des personnes Défi ANR REPERE organisé par la DGA analyse d extraits d émissions télévisées d actualité test à blanc en janvier 2012 Approche multimodale reconnaissance du visage des personnes structuration acoustique des tours de parole nom des intervenants en incrustation dans la vidéo citation du nom des journalistes et des invités Fusion intégration en amont des différentes modalités prise de décision prenant en compte toutes les sources d information 46/46

L authentification biométrique vocale

L authentification biométrique vocale L authentification biométrique vocale Jean-François Bonastre jean-francois.bonastre@lia.univ-avignon.fr www.lia.univ-avignon.fr 17 Mars 2005 Contexte A partir d un signal de parole, des informations de

Plus en détail

Apprentissage Automatique

Apprentissage Automatique Apprentissage Automatique Introduction-I jean-francois.bonastre@univ-avignon.fr www.lia.univ-avignon.fr Définition? (Wikipedia) L'apprentissage automatique (machine-learning en anglais) est un des champs

Plus en détail

Dan Istrate. Directeur de thèse : Eric Castelli Co-Directeur : Laurent Besacier

Dan Istrate. Directeur de thèse : Eric Castelli Co-Directeur : Laurent Besacier Détection et reconnaissance des sons pour la surveillance médicale Dan Istrate le 16 décembre 2003 Directeur de thèse : Eric Castelli Co-Directeur : Laurent Besacier Thèse mené dans le cadre d une collaboration

Plus en détail

Master IAD Module PS. IV. Reconnaissance de la parole. Gaël RICHARD Février 2008

Master IAD Module PS. IV. Reconnaissance de la parole. Gaël RICHARD Février 2008 Master IAD Module PS IV. Reconnaissance de la parole Gaël RICHARD Février 2008 1 Contenu Introduction aux technologies vocales Production et Perception de la parole Modélisation articulatoire Synthèse

Plus en détail

Sources d information : lexicale. Sources d information : phonotactique. Sources d information : prosodie (2/3) Sources d information : prosodie (1/3)

Sources d information : lexicale. Sources d information : phonotactique. Sources d information : prosodie (2/3) Sources d information : prosodie (1/3) Organisation de la présentation Reconnaissance automatique des langues RMITS 28 http://www.irit.fr/~jerome.farinas/rmits28/ Jérôme Farinas jerome.farinas@irit.fr Équipe SAMOVA (Structuration, Analyse et

Plus en détail

BIO_MUL. (Biométrie & Multimodalité) Jean-François Bonastre - LIA. ACI Sécurité Informatique

BIO_MUL. (Biométrie & Multimodalité) Jean-François Bonastre - LIA. ACI Sécurité Informatique Communication Langagière et Interaction Pers onne-sys tème CNRS - INPG - UJF BP 53-38041 Grenoble Cedex 9 - France ACI Sécurité Informatique BIO_MUL (Biométrie & Multimodalité) Jean-François Bonastre -

Plus en détail

Jean-François Bonastre. jean-francois.bonastre@lia.univ-avignon.fr www.lia.univ-avignon.fr 08 Février 2006

Jean-François Bonastre. jean-francois.bonastre@lia.univ-avignon.fr www.lia.univ-avignon.fr 08 Février 2006 L authentification biométrique vocale Jean-François Bonastre jean-francois.bonastre@lia.univ-avignon.fr www.lia.univ-avignon.fr 08 Février 2006 L identification vocale dans le milieu judiciaire Une motivation

Plus en détail

Introduction au Data-Mining

Introduction au Data-Mining Introduction au Data-Mining Alain Rakotomamonjy - Gilles Gasso. INSA Rouen -Département ASI Laboratoire PSI Introduction au Data-Mining p. 1/25 Data-Mining : Kèkecé? Traduction : Fouille de données. Terme

Plus en détail

Un code-barre sur la tête?

Un code-barre sur la tête? Un code-barre sur la tête? Les nouvelles tendances des technologies de biométrie. Nouvelles technologies GISIC 2010 Photo Steven Puetzer Prof. Jean Hennebert Université de Fribourg HES-SO Jean Hennebert

Plus en détail

Un code-barre sur la tête?

Un code-barre sur la tête? Un code-barre sur la tête? Les nouvelles tendances des technologies d'identification, de la biométrie à l'internet des objets. Présentation au Groupement Industriel Fribourgeois, Décembre 08 Photo Steven

Plus en détail

Meeting Room : An Interactive Systems Laboratories Project

Meeting Room : An Interactive Systems Laboratories Project Travail de Séminaire DIVA Research Group University of Fribourg Etude de Projets Actuels sur l enregistrement et l analyse de Réunions Meeting Room : An Interactive Systems Laboratories Project Canergie

Plus en détail

Vérification audiovisuelle de l identité

Vérification audiovisuelle de l identité Vérification audiovisuelle de l identité Rémi Landais, Hervé Bredin, Leila Zouari, et Gérard Chollet École Nationale Supérieure des Télécommunications, Département Traitement du Signal et des Images, Laboratoire

Plus en détail

Plan d Evaluation (phase 1) Version 1.1

Plan d Evaluation (phase 1) Version 1.1 Evaluation des Systèmes de Transcription enrichie d Emissions Radiophoniques (ESTER) Plan d Evaluation (phase 1) Version 1.1 Dernière mise à jour le 21 novembre 2003. 1 Préambule Ce document décrit le

Plus en détail

Analyse d images en vidéosurveillance embarquée dans les véhicules de transport en commun

Analyse d images en vidéosurveillance embarquée dans les véhicules de transport en commun des s Analyse d images en vidéosurveillance embarquée dans les véhicules de transport en commun Sébastien Harasse thèse Cifre LIS INPG/Duhamel le 7 décembre 2006 1 Système de surveillance des s Enregistreur

Plus en détail

Master IAD Module PS. Reconnaissance de la parole (suite): Paramétrisation. Gaël RICHARD Février 2008

Master IAD Module PS. Reconnaissance de la parole (suite): Paramétrisation. Gaël RICHARD Février 2008 Master IAD Module PS Reconnaissance de la parole (suite): Paramétrisation Gaël RICHARD Février 2008 1 Reconnaissance de la parole Introduction Approches pour la reconnaissance vocale Paramétrisation Distances

Plus en détail

Analyse de la vidéo. Chapitre 4.1 - La modélisation pour le suivi d objet. 10 mars 2015. Chapitre 4.1 - La modélisation d objet 1 / 57

Analyse de la vidéo. Chapitre 4.1 - La modélisation pour le suivi d objet. 10 mars 2015. Chapitre 4.1 - La modélisation d objet 1 / 57 Analyse de la vidéo Chapitre 4.1 - La modélisation pour le suivi d objet 10 mars 2015 Chapitre 4.1 - La modélisation d objet 1 / 57 La représentation d objets Plan de la présentation 1 La représentation

Plus en détail

Reconnaissance vocale

Reconnaissance vocale Reconnaissance vocale Définition : La reconnaissance vocale ou (Automatic Speech Recognition ASR) est une technologie de transcription d'un système «phonatoire organique»exploitable par une machine. La

Plus en détail

Arbres binaires. Hélène Milhem. Institut de Mathématiques de Toulouse, INSA Toulouse, France IUP SID, 2011-2012

Arbres binaires. Hélène Milhem. Institut de Mathématiques de Toulouse, INSA Toulouse, France IUP SID, 2011-2012 Arbres binaires Hélène Milhem Institut de Mathématiques de Toulouse, INSA Toulouse, France IUP SID, 2011-2012 H. Milhem (IMT, INSA Toulouse) Arbres binaires IUP SID 2011-2012 1 / 35 PLAN Introduction Construction

Plus en détail

Introduction au Data-Mining

Introduction au Data-Mining Introduction au Data-Mining Gilles Gasso, Stéphane Canu INSA Rouen -Département ASI Laboratoire LITIS 8 septembre 205. Ce cours est librement inspiré du cours DM de Alain Rakotomamonjy Gilles Gasso, Stéphane

Plus en détail

INTRODUCTION À LA BIOMÉTRIE OCTOBRE 2011

INTRODUCTION À LA BIOMÉTRIE OCTOBRE 2011 INTRODUCTION À LA BIOMÉTRIE OCTOBRE 2011 Bibliographies http://www.clorenz.org/article-12579256.html (vidéo) http://www.cse.msu.edu/~jain/ http://www.cl.cam.ac.uk/~jgd1000/ http://face.nist.gov/frvt/frvt2006/frvt2006.htm

Plus en détail

XXIVèmes Journées d Étude sur la Parole, Nancy, 24-27 juin 2002297 297 2. CONDITIONS EXPÉRIMENTALES

XXIVèmes Journées d Étude sur la Parole, Nancy, 24-27 juin 2002297 297 2. CONDITIONS EXPÉRIMENTALES Reconnaissance de la parole pour des locuteurs non natifs en présence de bruit D. Fohr 1, O. Mella 1, I. Illina 1, F. Lauri 1, C. Cerisara 1, C. Antoine 2 (1) LORIA, 615 rue du jardin botanique 54602 Villers-lès-Nancy,

Plus en détail

Calculatrice vocale basée sur les SVM

Calculatrice vocale basée sur les SVM Calculatrice vocale basée sur les SVM Zaïz Fouzi *, Djeffal Abdelhamid *, Babahenini MohamedChaouki*, Taleb Ahmed Abdelmalik**, * Laboratoire LESIA, Département d Informatique, Université Mohamed Kheider

Plus en détail

Maintien des personnes âgées à domicile

Maintien des personnes âgées à domicile Maintien des personnes âgées à domicile Enjeux scientifiques et technologiques liés à la vision par ordinateur Christian Wolf http://liris.cnrs.fr/christian.wolf Introduction Sommaire Les données et les

Plus en détail

Analyse et modélisation de visages

Analyse et modélisation de visages Analyse et modélisation de visages Pascal Bourdon Laboratoire XLIM-SIC (UMR CNRS 7252) / Université de Poitiers pascal.bourdon@univ-poitiers.fr Analyse et modélisation de visages Plan Introduction Outils

Plus en détail

SPLEX Statistiques pour la classification et fouille de données en

SPLEX Statistiques pour la classification et fouille de données en SPLEX Statistiques pour la classification et fouille de données en génomique Classification Linéaire Binaire CLB Pierre-Henri WUILLEMIN DEcision, Système Intelligent et Recherche opérationnelle LIP6 pierre-henri.wuillemin@lip6.fr

Plus en détail

Synthèse théorique des méthodes de transmission binaires sur les canaux vocodés

Synthèse théorique des méthodes de transmission binaires sur les canaux vocodés Synthèse théorique des méthodes de transmission binaires sur les canaux vocodés I Introduction On cherche à moduler des données binaires dans le but de les transmettre sur des canaux vocodés. Afin de transmettre

Plus en détail

MIXMOD. Un ensemble logiciel de classification des données par modèles de mélanges MIXMOD. F. Langrognet () MIXMOD Avril 2012 1 / 28

MIXMOD. Un ensemble logiciel de classification des données par modèles de mélanges MIXMOD. F. Langrognet () MIXMOD Avril 2012 1 / 28 MIXMOD Un ensemble logiciel de classification des données par modèles de mélanges MIXMOD F. Langrognet () MIXMOD Avril 2012 1 / 28 PLAN 1 La classification des données 2 MIXMOD, ensemble logiciel de classification

Plus en détail

Percol0 - un système multimodal de détection de personnes dans des documents vidéo

Percol0 - un système multimodal de détection de personnes dans des documents vidéo Percol0 - un système multimodal de détection de personnes dans des documents vidéo Frederic Bechet 1 Remi Auguste 2 Stephane Ayache 1 Delphine Charlet 3 Geraldine Damnati 3 Benoit Favre 1 Corinne Fredouille

Plus en détail

ANALYSE MULTI CAPTEUR DE SIGNAUX TRANSITOIRES ISSUS DES SYSTEMES ELECTRIQUES

ANALYSE MULTI CAPTEUR DE SIGNAUX TRANSITOIRES ISSUS DES SYSTEMES ELECTRIQUES ANALYSE MULTI CAPTEUR DE SIGNAUX TRANSITOIRES ISSUS DES SYSTEMES ELECTRIQUES Bertrand GOTTIN Directeurs de thèse: Cornel IOANA et Jocelyn CHANUSSOT 03 Septembre 2010 Problématique liée aux Transitoires

Plus en détail

TD Acquisition du langage. 1. Bruner 2. Prosodie

TD Acquisition du langage. 1. Bruner 2. Prosodie TD Acquisition du langage 1. Bruner 2. Prosodie J. Bruner (1/5) Le langage s apprend en grande partie dans l interaction sociale Pb essentiel à résoudre pour l enfant = apprendre à produire un énoncé adapté

Plus en détail

Ministère de l Enseignement Supérieur et de la Recherche Scientifique

Ministère de l Enseignement Supérieur et de la Recherche Scientifique Ministère de l Enseignement Supérieur et de la Recherche Scientifique Institut National de Formation en Informatique (I.N.I) Oued Smar Alger Direction de la Post Graduation et de la Recherche Thème : Inférence

Plus en détail

Université Toulouse 3 Paul Sabatier(UT3 Paul Sabatier) Université Mohammed V-Agdal de Rabat. Reda JOURANI 6 septembre 2012. tre :

Université Toulouse 3 Paul Sabatier(UT3 Paul Sabatier) Université Mohammed V-Agdal de Rabat. Reda JOURANI 6 septembre 2012. tre : Université Toulouse 3 Paul Sabatier(UT3 Paul Sabatier) Université Mohammed V-Agdal de Rabat Reda JOURANI 6 septembre 2012 tre : Reconnaissance automatique du locuteur par des GMM à grande marge École doctorale

Plus en détail

Reconnaissance de la parole par distance DTW Exemple d application pour la reconnaissance de chiffres isolés dans la langue arabe

Reconnaissance de la parole par distance DTW Exemple d application pour la reconnaissance de chiffres isolés dans la langue arabe Reconnaissance de la parole par distance DTW Exemple d application pour la reconnaissance de chiffres isolés dans la langue arabe Abderrahmane BENDAHMANE Laboratoire SIMPA Département d informatique Université

Plus en détail

Table des matières. PREMIÈRE PARTIE Étapes initiales des études marketing 7

Table des matières. PREMIÈRE PARTIE Étapes initiales des études marketing 7 Table des matières Préface Public 1 Structure de l ouvrage 1 Caractéristiques de l ouvrage 3 Contenu 3 Pédagogie 4 Remarques sur l adaptation française 4 Ressources numériques 5 Biographie 6 PREMIÈRE PARTIE

Plus en détail

N 334 - SIMON Anne-Catherine

N 334 - SIMON Anne-Catherine N 334 - SIMON Anne-Catherine RÉALISATION D UN CDROM/DVD CONTENANT DES DONNÉES DU LANGAGE ORAL ORGANISÉES EN PARCOURS DIDACTIQUES D INITIATION LINGUISTIQUE A PARTIR DES BASES DE DONNÉES VALIBEL Introduction

Plus en détail

Rapport : Base de données. Anthony Larcher 1

Rapport : Base de données. Anthony Larcher 1 Rapport : Base de données Anthony Larcher 1 1 : Laboratoire d Informatique d Avignon - Université d Avignon Tél : +33 (0) 4 90 84 35 55 - Fax : + 33 (0) 4 90 84 35 01 anthony.larcher@univ-avignon.fr 14

Plus en détail

Séance 12: Algorithmes de Support Vector Machines

Séance 12: Algorithmes de Support Vector Machines Séance 12: Algorithmes de Support Vector Machines Laboratoire de Statistique et Probabilités UMR 5583 CNRS-UPS www.lsp.ups-tlse.fr/gadat Douzième partie XII Algorithmes de Support Vector Machines Principe

Plus en détail

- Mobiliser les résultats sur le second degré dans le cadre de la résolution d un problème.

- Mobiliser les résultats sur le second degré dans le cadre de la résolution d un problème. Mathématiques - classe de 1ère des séries STI2D et STL. 1. Analyse On dote les élèves d outils mathématiques permettant de traiter des problèmes relevant de la modélisation de phénomènes continus ou discrets.

Plus en détail

Analyse de données longitudinales continues avec applications

Analyse de données longitudinales continues avec applications Université de Liège Département de Mathématique 29 Octobre 2002 Analyse de données longitudinales continues avec applications David MAGIS 1 Programme 1. Introduction 2. Exemples 3. Méthodes simples 4.

Plus en détail

Objectif du groupe GT1.1 Fusion de Données

Objectif du groupe GT1.1 Fusion de Données Objectif du groupe GT1.1 Fusion de Données Le groupe travaille dans trois directions Le vocabulaire (piloté par ADVITAM et l aide de SITE) L état de l art (piloté par SYROKKO) Deux applications illustratives

Plus en détail

Outils de navigation dans les fichiers audio

Outils de navigation dans les fichiers audio Outils de navigation dans les fichiers audio Chris J. Wellekens Department of Multimedia Communications Institut Eurécom, France christian.wellekens@eurecom.fr Résumé Les services audio de la nouvelle

Plus en détail

Principales caractéristiques de Mixmod

Principales caractéristiques de Mixmod Modèle de mélanges Principales caractéristiques de Mixmod Gérard Govaert et Gilles Celeux 24 octobre 2006 1 Plan Le modèledemélange Utilisations du modèle de mélange Les algorithmes de Mixmod Modèle de

Plus en détail

THÈSE. présentée à l Université d Avignon et des Pays de Vaucluse pour obtenir le diplôme de DOCTORAT

THÈSE. présentée à l Université d Avignon et des Pays de Vaucluse pour obtenir le diplôme de DOCTORAT ACADÉMIE D AIX-MARSEILLE UNIVERSITÉ D AVIGNON ET DES PAYS DE VAUCLUSE THÈSE présentée à l Université d Avignon et des Pays de Vaucluse pour obtenir le diplôme de DOCTORAT SPÉCIALITÉ : Informatique École

Plus en détail

Christelle REYNES EA 2415 Epidémiologie, Biostatistique et Santé Publique Université Montpellier 1. 8 Juin 2012

Christelle REYNES EA 2415 Epidémiologie, Biostatistique et Santé Publique Université Montpellier 1. 8 Juin 2012 Extraction et analyse des mesures haut-débit pour l identification de biomarqueurs : problèmes méthodologiques liés à la dimension et solutions envisagées EA 2415 Epidémiologie, Biostatistique et Santé

Plus en détail

Vérification d Identité par Ecriture et Parole Combinées

Vérification d Identité par Ecriture et Parole Combinées Vérification d Identité par Ecriture et Parole Combinées Jean Hennebert 1 Andreas Humm 1 Rolf Ingold 1 Groupe DIVA, Département d Informatique Boulevard de Pérolles 90, 1700 Fribourg, Suisse jean.hennebert,andreas.humm,rolf.ingold@unifr.ch

Plus en détail

Analyse Quantitative et Qualitative de données textuelles. Normand Péladeau, Ph.D. Président Recherches Provalis

Analyse Quantitative et Qualitative de données textuelles. Normand Péladeau, Ph.D. Président Recherches Provalis Analyse Quantitative et Qualitative de données textuelles Normand Péladeau, Ph.D. Président Recherches Provalis Les Produits de Recherches Provalis SIMSTAT (1989) Analyses Statistiques Simstat v2.5 Les

Plus en détail

LA VOIX ET L OREILLE HUMAINE APPLICATION À LA RECONNAISSANCE VOCALE

LA VOIX ET L OREILLE HUMAINE APPLICATION À LA RECONNAISSANCE VOCALE TS - Physique-Chimie - Spécialité Son et musique - Séance 1/9 Domaine d étude : émetteurs et récepteurs sonores Mots-clefs : voix, acoustique physiologique, reconnaissance vocale LA VOIX ET L OREILLE HUMAINE

Plus en détail

Pour pouvoir utiliser les mêmes liaisons que les autres données, sur le réseau du FAI, la voix est multiplexée :

Pour pouvoir utiliser les mêmes liaisons que les autres données, sur le réseau du FAI, la voix est multiplexée : 1. Les codecs Pour pouvoir utiliser les mêmes liaisons que les autres données, sur le réseau du FAI, la voix est multiplexée : Pour être ainsi transportée, sous forme de paquets, la voix doit être numérisée

Plus en détail

DATA MINING 2 Réseaux de Neurones, Mélanges de classifieurs, SVM avancé

DATA MINING 2 Réseaux de Neurones, Mélanges de classifieurs, SVM avancé I. Réseau Artificiel de Neurones 1. Neurone 2. Type de réseaux Feedforward Couches successives Récurrents Boucles de rétroaction Exemples de choix pour la fonction : suivant une loi de probabilité Carte

Plus en détail

Introduction aux Support Vector Machines (SVM)

Introduction aux Support Vector Machines (SVM) Introduction aux Support Vector Machines (SVM) Olivier Bousquet Centre de Mathématiques Appliquées Ecole Polytechnique, Palaiseau Orsay, 15 Novembre 2001 But de l exposé 2 Présenter les SVM Encourager

Plus en détail

SY09 Rapport TP4 : Analyse discriminante, régression logistique

SY09 Rapport TP4 : Analyse discriminante, régression logistique UNIVERSITÉ DE TECHNOLOGIE DE COMPIÈGNE SY09 Rapport TP4 : Analyse discriminante, régression logistique CUNI Frédéric 15 juin 2015 Objectifs du TP : Le but de ce TP est l application de l analyse discriminante

Plus en détail

Intelligence Artificielle et Systèmes Multi-Agents. Badr Benmammar bbm@badr-benmammar.com

Intelligence Artificielle et Systèmes Multi-Agents. Badr Benmammar bbm@badr-benmammar.com Intelligence Artificielle et Systèmes Multi-Agents Badr Benmammar bbm@badr-benmammar.com Plan La première partie : L intelligence artificielle (IA) Définition de l intelligence artificielle (IA) Domaines

Plus en détail

Profil du candidat et connaissances techniques à connaître/maîtriser

Profil du candidat et connaissances techniques à connaître/maîtriser Utilisation d algorithmes de deep learning pour la reconnaissance d iris. jonathan.milgram@morpho.com Dans ce cadre, l'unité de recherche et technologie a pour but de maintenir le leadership Au sein de

Plus en détail

Approche inverse pour la restauration de l information cristallographique

Approche inverse pour la restauration de l information cristallographique Approche inverse pour la restauration de l information cristallographique Ferréol Soulez INSA CNDRI, Centre de Quantimétrie Lyon 1 1 / 19 Principe 2 / 19 Diffraction des rayon X Diffraction des rayons

Plus en détail

Master IAD Module PS. Reconnaissance de la parole (suite) Alignement temporel et Programmation dynamique. Gaël RICHARD Février 2008

Master IAD Module PS. Reconnaissance de la parole (suite) Alignement temporel et Programmation dynamique. Gaël RICHARD Février 2008 Master IAD Module PS Reconnaissance de la parole (suite) Alignement temporel et Programmation dynamique Gaël RICHARD Février 2008 1 Reconnaissance de la parole Introduction Approches pour la reconnaissance

Plus en détail

Table des matières. Avant propos. Chapitre I NOTIONS SUR LES SYSTEMES

Table des matières. Avant propos. Chapitre I NOTIONS SUR LES SYSTEMES Table des matières Avant propos Chapitre I NOTIONS SUR LES SYSTEMES 1. Systèmes linéaires 1 2. Systèmes stationnaires 1 3. Systèmes continus 2 4. Systèmes linéaires invariants dans le temps (LIT) 2 4.1

Plus en détail

ORA 1531 Phonétique clinique. Phonétique et troubles de la communication

ORA 1531 Phonétique clinique. Phonétique et troubles de la communication ORA 1531 Phonétique clinique Phonétique et troubles de la communication Plan du cours Représentation des troubles Transcription phonétique Analyses acoustiques Méthodes d intervention basées sur la phonétique

Plus en détail

Rmixmod Le package R de MIXMOD R

Rmixmod Le package R de MIXMOD R Rmixmod Le package R de MIXMOD R MIXMOD Rencontres R 2012 - Bordeaux Florent Langrognet Laboratoire de Mathématiques de Besançon F. Langrognet () Rmixmod Juillet 2012 1 / 41 Rmixmod 1 Contexte Le projet

Plus en détail

Introduction générale au codage de canal

Introduction générale au codage de canal Codage de canal et turbo-codes 15/9/2 1/7 Introduction générale au codage de canal Table des matières Table des matières... 1 Table des figures... 1 1. Introduction... 2 2. Notion de message numérique...

Plus en détail

Modèles neuronaux pour la modélisation statistique de la langue

Modèles neuronaux pour la modélisation statistique de la langue Modèles neuronaux pour la modélisation statistique de la langue Introduction Les modèles de langage ont pour but de caractériser et d évaluer la qualité des énoncés en langue naturelle. Leur rôle est fondamentale

Plus en détail

Fouille de Données et Media Sociaux Cours 2 Master DAC Data Science UPMC - LIP6

Fouille de Données et Media Sociaux Cours 2 Master DAC Data Science UPMC - LIP6 Fouille de Données et Media Sociaux Cours 2 Master DAC Data Science UPMC - LIP6 Ludovic Denoyer 21 septembre 2015 Ludovic Denoyer () FDMS 21 septembre 2015 1 / 1 Contexte Observation La plupart des bonnes

Plus en détail

Introduction aux CRF via l annotation par des modèles graphiques. Isabelle Tellier. LIFO, Université d Orléans

Introduction aux CRF via l annotation par des modèles graphiques. Isabelle Tellier. LIFO, Université d Orléans Introduction aux CRF via l annotation par des modèles graphiques Isabelle Tellier LIFO, Université d Orléans Plan 1. Annoter pour quoi faire 2. Apprendre avec un modèle graphique 3. Annnoter des chaînes

Plus en détail

LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING»

LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING» LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING» Gilbert Saporta Professeur de Statistique Appliquée Conservatoire National des Arts et Métiers Dans leur quasi totalité, les banques et organismes financiers

Plus en détail

Bouchekif Abdesselam 11 mars 2012

Bouchekif Abdesselam 11 mars 2012 Expériences sur les données du répertoire de données de UCI avec une boîte à outils Bouchekif Abdesselam 11 mars 2012 Résumé Les dix dernières années ont été témoin de grands progrès réalisés dans le domaine

Plus en détail

Les serveurs vocaux au service de l nformation voyageurs: Etat de l art et perspectives

Les serveurs vocaux au service de l nformation voyageurs: Etat de l art et perspectives Les serveurs vocaux au service de l nformation voyageurs: Etat de l art et perspectives Bernard PROUTS L Information Voyageur Horaires théoriques Situations perturbées Horaires «Temps réel» Itinéraires

Plus en détail

Utilisation des diagrammes de Voronoï et des algorithmes génétiques pour l'étude des complexes protéine-protéine.

Utilisation des diagrammes de Voronoï et des algorithmes génétiques pour l'étude des complexes protéine-protéine. Utilisation des diagrammes de Voronoï et des algorithmes génétiques pour l'étude des complexes protéine-protéine. Anne Poupon Biologie et Bioinformatique des Systèmes de Signalisation INRA - Nouzilly France

Plus en détail

TP : La voix, de sa création à sa reconnaissance

TP : La voix, de sa création à sa reconnaissance TP : La voix, de sa création à sa reconnaissance Mots-clés : Voix, Acoustique physiologique, Reconnaissance vocale I. Comment la voix se crée-t-elle? I.1. Etude documentaire Doc 1 Le corps humain, un instrument

Plus en détail

Reconnaissance d'activités en environnement intelligent. Dominique Vaufreydaz Équipe PRIMA Inria/Université Pierre Mendès-France

Reconnaissance d'activités en environnement intelligent. Dominique Vaufreydaz Équipe PRIMA Inria/Université Pierre Mendès-France Reconnaissance d'activités en environnement intelligent Dominique Vaufreydaz Équipe PRIMA Inria/Université Pierre Mendès-France Reconnaissance d'activités en environnement intelligent Dominique Vaufreydaz

Plus en détail

Objectifs. Clustering. Principe. Applications. Applications. Cartes de crédits. Remarques. Biologie, Génomique

Objectifs. Clustering. Principe. Applications. Applications. Cartes de crédits. Remarques. Biologie, Génomique Objectifs Clustering On ne sait pas ce qu on veut trouver : on laisse l algorithme nous proposer un modèle. On pense qu il existe des similarités entre les exemples. Qui se ressemble s assemble p. /55

Plus en détail

Projet de Traitement du Signal Segmentation d images SAR

Projet de Traitement du Signal Segmentation d images SAR Projet de Traitement du Signal Segmentation d images SAR Introduction En analyse d images, la segmentation est une étape essentielle, préliminaire à des traitements de haut niveau tels que la classification,

Plus en détail

Classification du genre vidéo reposant sur des transcriptions automatiques

Classification du genre vidéo reposant sur des transcriptions automatiques TALN 2010, Montréal, 19 23 juillet 2010 Classification du genre vidéo reposant sur des transcriptions automatiques Stanislas Oger, Mickael Rouvier, Georges Linarès LIA, Université d Avignon, France {stanislas.oger,

Plus en détail

1. Introduction. 2. Extraction d observation à partir du signal audio. TP ATIAM, Structuration et résumé audio Mardi 27 janvier 2009 14h00 17h30

1. Introduction. 2. Extraction d observation à partir du signal audio. TP ATIAM, Structuration et résumé audio Mardi 27 janvier 2009 14h00 17h30 Sujet : Date : Auteur : TP ATIAM, Structuration et résumé audio Mardi 7 janvier 009 14h00 17h30 Geoffroy Peeters 1. Introduction Ce TP vise à construire un système simple mais complet de création de résumé

Plus en détail

Une comparaison de méthodes de discrimination des masses de véhicules automobiles

Une comparaison de méthodes de discrimination des masses de véhicules automobiles p.1/34 Une comparaison de méthodes de discrimination des masses de véhicules automobiles A. Rakotomamonjy, R. Le Riche et D. Gualandris INSA de Rouen / CNRS 1884 et SMS / PSA Enquêtes en clientèle dans

Plus en détail

Que signifie la phrase suivante?

Que signifie la phrase suivante? SPE TS AE 1 : Reconnaissance vocale son et musique Emetteurs et récepteurs sonores La reconnaissance vocale est une technique permettant d'analyser une parole et de la retranscrire sous une forme exploitable

Plus en détail

Statistique en grande dimension pour la génomique Projets 2014-2015 L. Jacob, F. Picard, N. Pustelnik, V. Viallon

Statistique en grande dimension pour la génomique Projets 2014-2015 L. Jacob, F. Picard, N. Pustelnik, V. Viallon Statistique en grande dimension pour la génomique Projets 2014-2015 L. Jacob, F. Picard, N. Pustelnik, V. Viallon Table des matières 1 Graph Kernels for Molecular Structure-Activity Relationship Analysis

Plus en détail

De l importance de l homogénéisation des conventions de transcription pour l alignement automatique de corpus oraux de parole spontanée

De l importance de l homogénéisation des conventions de transcription pour l alignement automatique de corpus oraux de parole spontanée De l importance de l homogénéisation des conventions de transcription pour l alignement automatique de corpus oraux de parole spontanée Dominique Fohr, Odile Mella, Denis Jouvet LORIA INRIA Nancy France

Plus en détail

Mesure agnostique de la qualité des images.

Mesure agnostique de la qualité des images. Mesure agnostique de la qualité des images. Application en biométrie Christophe Charrier Université de Caen Basse-Normandie GREYC, UMR CNRS 6072 Caen, France 8 avril, 2013 C. Charrier NR-IQA 1 / 34 Sommaire

Plus en détail

Cours IFT6266, Exemple d application: Data-Mining

Cours IFT6266, Exemple d application: Data-Mining Cours IFT6266, Exemple d application: Data-Mining Voici un exemple du processus d application des algorithmes d apprentissage statistique dans un contexte d affaire, qu on appelle aussi data-mining. 1.

Plus en détail

Statistique et analyse de données pour l assureur : des outils pour la gestion des risques et le marketing

Statistique et analyse de données pour l assureur : des outils pour la gestion des risques et le marketing Statistique et analyse de données pour l assureur : des outils pour la gestion des risques et le marketing Gilbert Saporta Chaire de Statistique Appliquée, CNAM ActuariaCnam, 31 mai 2012 1 L approche statistique

Plus en détail

Projet SINF2275 «Data mining and decision making» Projet classification et credit scoring

Projet SINF2275 «Data mining and decision making» Projet classification et credit scoring Projet SINF2275 «Data mining and decision making» Projet classification et credit scoring Année académique 2006-2007 Professeurs : Marco Saerens Adresse : Université catholique de Louvain Information Systems

Plus en détail

Reconnaissance de la parole

Reconnaissance de la parole Reconnaissance de la parole Octobre 2001 Arnaud MARTIN Le présent document contient des informations qui sont la propriété de France Télécom. L'acceptation de ce document par son destinataire implique,

Plus en détail

Analyse des données individuelles groupées

Analyse des données individuelles groupées Analyse des données individuelles groupées Analyse des Temps de Réponse Le modèle mixte linéaire (L2M) Y ij, j-ième observation continue de l individu i (i = 1,, N ; j =1,, n) et le vecteur des réponses

Plus en détail

Le Data Mining au service du Scoring ou notation statistique des emprunteurs!

Le Data Mining au service du Scoring ou notation statistique des emprunteurs! France Le Data Mining au service du Scoring ou notation statistique des emprunteurs! Comme le rappelle la CNIL dans sa délibération n 88-083 du 5 Juillet 1988 portant adoption d une recommandation relative

Plus en détail

Marketing quantitatif M2-MASS

Marketing quantitatif M2-MASS Marketing quantitatif M2-MASS Francois.Kauffmann@unicaen.fr UCBN 2 décembre 2012 Francois.Kauffmann@unicaen.fr UCBN Marketing quantitatif M2-MASS 2 décembre 2012 1 / 61 Première partie I Analyse Analyse

Plus en détail

Regime Switching Model : une approche «pseudo» multivarie e

Regime Switching Model : une approche «pseudo» multivarie e Regime Switching Model : une approche «pseudo» multivarie e A. Zerrad 1, R&D, Nexialog Consulting, Juin 2015 azerrad@nexialog.com Les crises financières survenues dans les trente dernières années et les

Plus en détail

Détection de transcriptions incorrectes de parole non-native dans le cadre de l apprentissage de langues étrangères

Détection de transcriptions incorrectes de parole non-native dans le cadre de l apprentissage de langues étrangères Détection de transcriptions incorrectes de parole non-native dans le cadre de l apprentissage de langues étrangères Luiza Orosanu Denis Jouvet Dominique Fohr Irina Illina Anne Bonneau INRIA - LORIA, 615

Plus en détail

Traitements appliqués à la photointerprétation

Traitements appliqués à la photointerprétation Traitements numériques des images de télédétection Traitements appliqués à la photointerprétation OLIVIER DE JOINVILLE 3e partie Table des matières I - L'analyse en composantes principales 5 II - La détection

Plus en détail

1 Complément sur la projection du nuage des individus

1 Complément sur la projection du nuage des individus TP 0 : Analyse en composantes principales (II) Le but de ce TP est d approfondir nos connaissances concernant l analyse en composantes principales (ACP). Pour cela, on reprend les notations du précédent

Plus en détail

PJE : Analyse de comportements avec Twitter Classification supervisée

PJE : Analyse de comportements avec Twitter Classification supervisée PJE : Analyse de comportements avec Twitter Classification supervisée Arnaud Liefooghe arnaud.liefooghe@univ-lille1.fr Master 1 Informatique PJE2 2015-16 B. Derbel L. Jourdan A. Liefooghe 1 2 Agenda Partie

Plus en détail

Projet : Recherche de source d onde gravitationnelle (analyse de données Metropolis Hastings Markov Chain) 1

Projet : Recherche de source d onde gravitationnelle (analyse de données Metropolis Hastings Markov Chain) 1 Université Paris Diderot Physique L2 2014-2015 Simulations Numériques SN4 Projet : Recherche de source d onde gravitationnelle (analyse de données Metropolis Hastings Markov Chain) 1 Objectifs : Simuler

Plus en détail

Avancée en classification multi-labels de textes en langue chinoise

Avancée en classification multi-labels de textes en langue chinoise Avancée en classification multi-labels de textes en langue chinoise Thèse en cotutelle présentée par Zhihua WEI pour les doctorats en informatique des Universités Lyon2 et Tongji La thèse est centrée sur

Plus en détail

L analyse d images regroupe plusieurs disciplines que l on classe en deux catégories :

L analyse d images regroupe plusieurs disciplines que l on classe en deux catégories : La vision nous permet de percevoir et d interpreter le monde qui nous entoure. La vision artificielle a pour but de reproduire certaines fonctionnalités de la vision humaine au travers de l analyse d images.

Plus en détail

PROPOSITION D UNE APPROCHE DE SEGMENTATION D IMAGES HYPERSPECTRALES

PROPOSITION D UNE APPROCHE DE SEGMENTATION D IMAGES HYPERSPECTRALES PROPOSITION D UNE APPROCHE DE SEGMENTATION D IMAGES HYPERSPECTRALES Nathalie GORRETTA MONTEIRO 1 1 UMR Information et Technologies pour les Agro-Procédés, Cemagref Montpellier, France Présentée le 25 Février

Plus en détail

Introduction au datamining

Introduction au datamining Introduction au datamining Patrick Naïm janvier 2005 Définition Définition Historique Mot utilisé au départ par les statisticiens Le mot indiquait une utilisation intensive des données conduisant à des

Plus en détail

ECHOGRAPHE ET CAPTEUR. D.I.U. d Echocardiographie module 1

ECHOGRAPHE ET CAPTEUR. D.I.U. d Echocardiographie module 1 ECHOGRAPHE ET CAPTEUR D.I.U. d Echocardiographie module 1 Plan Généralités Capteur Echographe Traitement du signal Stockage Transport Généralités Historique the blue goose 1970 180 cm Généralités Historique

Plus en détail

Analyse d images. L analyse d images regroupe plusieurs disciplines que l on classe en deux catégories :

Analyse d images. L analyse d images regroupe plusieurs disciplines que l on classe en deux catégories : Analyse d images La vision nous permet de percevoir et d interpreter le monde qui nous entoure. La vision artificielle a pour but de reproduire certaines fonctionnalités de la vision humaine au travers

Plus en détail

Abdenour Hacine-Gharbi. Sélection de paramètres acoustiques pertinents pour la reconnaissance de la parole

Abdenour Hacine-Gharbi. Sélection de paramètres acoustiques pertinents pour la reconnaissance de la parole ÉCOLE DOCTORALE SCIENCES ET TECHNOLOGIES (ORLEANS) FACULTÉ de TECHNOLOGIE (Sétif) Laboratoire PRISME THÈSE EN COTUTELLE INTERNATIONALE présentée par : Abdenour Hacine-Gharbi soutenue le : 09 décembre 2012

Plus en détail

Contributions à la maîtrise statistique des processus industriels multivariés

Contributions à la maîtrise statistique des processus industriels multivariés UNIVERSITE d ANGERS Contributions à la maîtrise statistique des processus industriels multivariés Soutenue par: Teodor TIPLICA Directeur de thèse: Mr. Alain BARREAU Co-encadrant de thèse: Mr. Abdessamad

Plus en détail

Évaluation de la classification et segmentation d'images en environnement incertain

Évaluation de la classification et segmentation d'images en environnement incertain Évaluation de la classification et segmentation d'images en environnement incertain EXTRACTION ET EXPLOITATION DE L INFORMATION EN ENVIRONNEMENTS INCERTAINS / E3I2 EA3876 2, rue F. Verny 29806 Brest cedex

Plus en détail

Factorisation matricielle non-négative pour la classification des instruments de musique

Factorisation matricielle non-négative pour la classification des instruments de musique Factorisation matricielle non-négative pour la classification des instruments de musique Objectif Ce projet a pour but d appliquer la NMF à l analyse des instruments de musique. Supposons que l on possède

Plus en détail