14. Introduction aux files d attente

Dimension: px
Commencer à balayer dès la page:

Download "14. Introduction aux files d attente"

Transcription

1 14. Introduction aux files d attente MTH2302D S. Le Digabel, École Polytechnique de Montréal H2015 (v2) MTH2302D: Files d attente 1/24

2 Plan 1. Introduction 2. Modèle M/M/1 3. Modèle M/M/1/K MTH2302D: Files d attente 2/24

3 1. Introduction 2. Modèle M/M/1 3. Modèle M/M/1/K MTH2302D: Files d attente 3/24

4 Introduction La théorie des files d attente consiste en l étude de systèmes où des clients se présentent à un dispositif de service, appelé serveur. Puisqu un client occupe le serveur pendant un certain temps, les autres clients doivent attendre avant d être servis, formant ainsi une file d attente. Quelques exemples d application : Réseaux informatiques : serveur = routeur, client = paquet. Ateliers (job shop) : serveur = machine, client = tâche. En ingénierie, on s intéresse à des métriques de performance des files d attente, par exemple : Taille moyenne de la file d attente. Taux d utilisation du serveur. Temps moyen d attente d un client. MTH2302D: Files d attente 4/24

5 Modèle élémentaire de file d attente En général, pour étudier l impact de différents choix de conception sur la performance d une file d attente, il faut construire un modèle de simulation. On peut aussi utiliser un modèle simplifié pour lequel les métriques s expriment par des équations analytiques. Le modèle de base en files d attente se nomme M/M/1 et se généralise en notation de Kendall A/B/C/K/N/D : A : processus d arrivée (M = markovien ou memoryless). B : processus de service (M = markovien ou memoryless). C : nombre de serveurs. K : capacité du système (file + serveurs). N : taille de la population des clients (habituellement infinie). D : discipline de service (par défaut, FIFO, ou PAPS : 1er arrivé 1er servi, mais aussi RANDOM ou PRIORITY). MTH2302D: Files d attente 5/24

6 1. Introduction 2. Modèle M/M/1 3. Modèle M/M/1/K MTH2302D: Files d attente 6/24

7 Modèle M/M/1 Les clients se présentent au système aléatoirement selon un processus de Poisson de taux λ. Le temps de service suit une loi exponentielle de taux µ, indépendamment d un client à l autre. La file d attente peut s étendre à l infini. Rappel sur le processus de Poisson : Le nombre A(t) d arrivées dans l intervalle de temps [0; t] suit une loi de Poisson de paramètre c = λt. Les arrivées dans deux intervalles de temps disjoints sont indépendantes. Le temps qui s écoule entre deux arrivées suit une loi exponentielle de taux λ. MTH2302D: Files d attente 7/24

8 Exemple 1 Soit T n le temps d arrivée du n ième client dans une file M/M/1. On dit que T n suit une loi d Erlang de paramètres n et λ, i.e. T n Γ(α = n, λ). 1. Trouver la fonction de répartition de T n (utiliser le processus de Poisson). 2. Calculer E(T n ) et V(T n ). MTH2302D: Files d attente 8/24

9 Arrivée avant un départ et départ avant une arrivée Temps pour qu une nouvelle arrivée se produise : A Exp(λ). Temps pour qu un nouveau départ se produise : (A et D sont indépendantes). D Exp(µ). Probabilité qu une arrivée se produise avant un départ : P (A < D) = λ λ + µ. Probabilité qu un départ se produise avant une arrivée : P (D < A) = µ λ + µ. MTH2302D: Files d attente 9/24

10 Analyse en régime stationnaire Il est difficile d étudier la variable aléatoire N(t) représentant le nombre de clients au temps t dans le système. On s intéresse plutôt à N = lim t N(t). On parle alors d analyse en régime stationnaire (ou analyse à l équilibre). Pour qu une file M/M/1 puisse atteindre l équilibre, il faut que λ < µ (sinon la taille de la file augmentera à l infini). À l équilibre, on peut montrer que P (N = n) = λ µ P (N = n 1) + P (N = n + 1). λ + µ λ + µ λ λ+µ Il s agit de la règle des probabilités totales. Le terme représente la probabilité qu un nouveau client arrive avant que le µ client en service quitte le système, et λ+µ est la probabilité que le client en service quitte avant qu un nouveau client n arrive. MTH2302D: Files d attente 10/24

11 Équations d équilibre Soit π n = P (N = n). En posant les équations π 1 = λ λ+µ π 0 + µ λ+µ π 2, π 2 = λ λ+µ π 1 + µ λ+µ π 3,..., π n = λ λ+µ π n 1 + µ λ+µ π n+1,..., et n=0 π n = 1, on trouve que π n = (1 ρ)ρ n pour n = 0, 1, 2, 3,..., où ρ = λ µ est défini comme l intensité du trafic. On remarque que N + 1 Geom(1 ρ). MTH2302D: Files d attente 11/24

12 Notations N Q : nombre moyen de clients faisant la queue. N S : nombre moyen de clients en train d être servis. N = E(N) = N Q + N S : nombre total (attente + service) moyen de clients dans le système en équilibre. N Q, N S et N sont les v.a. correspondantes. On a P (N = k) = π k. T Q : temps moyen d attente. T S : temps moyen de service. T = T Q + T S : temps moyen qu un client passe dans le système. T Q, T S et T sont les v.a. correspondantes. T k : temps que passe le kème client dans le système. MTH2302D: Files d attente 12/24

13 La loi de Little La loi s énonce ainsi : N = λ e T où λ e est le taux d entrée dans le système (λ e = λ pour une file M/M/1). Puisque N = N Q + N S et T = T Q + T S, on trouve également que N Q = λ e T Q et N S = λ e T S. Remarque : La loi de Little s applique à tous les modèles de file d attente rencontrés en pratique (pas seulement à la file M/M/1). MTH2302D: Files d attente 13/24

14 Exemple 2 On considère une file d attente M/M/1 de taux λ = 1 et µ = 2. Calculer (à l équilibre) : 1. Le nombre moyen de clients dans le système, N. 2. Le nombre moyen de clients en service, N S. 3. Le nombre moyen de clients dans la file d attente, N Q. MTH2302D: Files d attente 14/24

15 Modèle M/M/1 : formules ρ = λ/µ. N = ρ 1 ρ. N S =1 π 0 = ρ. N Q =N N S = T =N/λ = T S = 1/µ. T Q =T T S = ρ2 1 ρ. ρ λ(1 ρ) = 1 µ λ. λ µ(µ λ). MTH2302D: Files d attente 15/24

16 Modèle M/M/1 : formules (suite) { Un seul serveur : N Q = 0 si N = 0 ou N = 1, N 1 si N > 1. P (N Q = 0) =P (N = 0) + P (N = 1) = π 0 + π 1 = 1 ρ + ρ(1 ρ) = (1 ρ)(1 + ρ). P (N Q = k) =P (N = k + 1) = π k+1 = ρ k+1 (1 ρ), pour k > 0. MTH2302D: Files d attente 16/24

17 Modèle M/M/1 : formules (suite) Si N est le nombre de clients dans le système à l équilibre, alors N + 1 = N 1 Geom(p = 1 ρ). Nombre de clients en train d être servis : N S Bern(ρ). Temps total (attente + service) passé dans la file : T Exp(µ λ). Temps d attente T Q (variable mixte) : P (TQ = 0) = π 0 = 1 ρ. TQ {N Q > 0} Exp(µ λ) (comme T ). MTH2302D: Files d attente 17/24

18 Exemple 3 On considère une file d attente M/M/1 de taux λ = 1 et µ = 2. Calculer (à l équilibre) : 1. Le temps moyen de séjour d un client dans le système, T. 2. Le temps moyen d attente d un client dans la file, T Q. 3. Le temps moyen de service d un client, T S. MTH2302D: Files d attente 18/24

19 1. Introduction 2. Modèle M/M/1 3. Modèle M/M/1/K MTH2302D: Files d attente 19/24

20 Modèle M/M/1/K Pour un système de capacité K (taille maximale de la file de K 1) avec ρ = λ µ 1, on peut montrer que pour n = 0, 1,..., K : Si ρ < 1 : π n = P (Y = n+1 Y K+1) = avec Y Geom(1 ρ). Si ρ > 1 : π n = P (Y = K n + 1 Y K + 1) = (même formule dans les deux cas). P (Y = n + 1) P (Y K + 1) = ρn (1 ρ) 1 ρ K+1 P (Y = K n + 1) P (Y K + 1) = ρn (1 ρ) avec Y Geom(1 1/ρ). 1 ρk+1 MTH2302D: Files d attente 20/24

21 Modèle M/M/1/K (suite) L équilibre est atteint pour tout ρ : Si ρ 1, π n = ρ n 1 ρ 1 ρ K+1. Si ρ = 1, on considère des états équiprobables : π n = 1 K + 1 pour n = 0, 1,..., K. Le système est à pleine capacité avec probabilité π K. Taux d entrée : λ e = λ(1 π K ). MTH2302D: Files d attente 21/24

22 Exemple 4 Pour le système M/M/1/2 avec λ = µ, trouver l espérance et la variance du nombre de clients dans le système en équilibre. MTH2302D: Files d attente 22/24

23 Exemple 5 On considère une file d attente M/M/1/5 de taux λ = 1 et µ = 2. Calculer (à l équilibre) : 1. Le nombre moyen de clients dans le système. 2. Le nombre moyen de clients dans la file d attente. 3. La proportion de clients ne pouvant entrer dans le système. 4. Le temps moyen de séjour d un client dans le système. 5. Le temps moyen d attente d un client dans la file. MTH2302D: Files d attente 23/24

24 Exemple 6 On considère une file d attente M/M/1 avec priorité : Les clients de classe 1 ont une priorité absolue sur les clients de classe 2, c est-à-dire qu ils dépassent automatiquement tous les clients de classe 2 dans la file. De plus, un client de classe 2 en service retourne immédiatement dans la file d attente si un client de classe 1 se présente. On a λ 1 = 1 pour les clients de classe 1, λ 2 = 2 pour les clients de classe 2, et µ = 4. Calculer (à l équilibre) : 1. Le nombre moyen de clients de chaque classe dans le système. 2. Le temps moyen de séjour dans le système pour chaque classe. Indication : On peut montrer que les équations d équilibre de la file M/M/1 ne dépendent pas de la politique de service de la file. MTH2302D: Files d attente 24/24

Introduction à la théorie des files d'attente. Claude Chaudet Claude.Chaudet@enst.fr

Introduction à la théorie des files d'attente. Claude Chaudet Claude.Chaudet@enst.fr Introduction à la théorie des files d'attente Claude Chaudet Claude.Chaudet@enst.fr La théorie des files d'attente... Principe: modélisation mathématique de l accès à une ressource partagée Exemples réseaux

Plus en détail

3. Caractéristiques et fonctions d une v.a.

3. Caractéristiques et fonctions d une v.a. 3. Caractéristiques et fonctions d une v.a. MTH2302D S. Le Digabel, École Polytechnique de Montréal H2015 (v2) MTH2302D: fonctions d une v.a. 1/32 Plan 1. Caractéristiques d une distribution 2. Fonctions

Plus en détail

Modèle classique Extensions Modèle multi-branches. Théorie de la ruine. Esterina Masiello (ISFA)

Modèle classique Extensions Modèle multi-branches. Théorie de la ruine. Esterina Masiello (ISFA) Esterina Masiello Institut de Science Financière et d Assurances Université Lyon 1 Premières Journées Actuarielles de Strasbourg 6-7 octobre 2010 En résumé... Modèle classique de la théorie de la ruine

Plus en détail

Module 7: Chaînes de Markov à temps continu

Module 7: Chaînes de Markov à temps continu Module 7: Chaînes de Markov à temps continu Patrick Thiran 1 Introduction aux chaînes de Markov à temps continu 1.1 (Première) définition Ce module est consacré aux processus à temps continu {X(t), t R

Plus en détail

Modèles à Événements Discrets. Réseaux de Petri Stochastiques

Modèles à Événements Discrets. Réseaux de Petri Stochastiques Modèles à Événements Discrets Réseaux de Petri Stochastiques Table des matières 1 Chaînes de Markov Définition formelle Idée générale Discrete Time Markov Chains Continuous Time Markov Chains Propriétés

Plus en détail

Lois de probabilité à densité Loi normale

Lois de probabilité à densité Loi normale DERNIÈRE IMPRESSIN LE 31 mars 2015 à 14:11 Lois de probabilité à densité Loi normale Table des matières 1 Lois à densité 2 1.1 Introduction................................ 2 1.2 Densité de probabilité

Plus en détail

IFT6561. Simulation: aspects stochastiques

IFT6561. Simulation: aspects stochastiques IFT 6561 Simulation: aspects stochastiques DIRO Université de Montréal Automne 2013 Détails pratiques Professeur:, bureau 3367, Pav. A.-Aisenstadt. Courriel: bastin@iro.umontreal.ca Page web: http://www.iro.umontreal.ca/~bastin

Plus en détail

Simulation d un système d assurance automobile

Simulation d un système d assurance automobile Simulation d un système d assurance automobile DESSOUT / PLESEL / DACHI Plan 1 Introduction... 2 Méthodes et outils utilisés... 2.1 Chaines de Markov... 2.2 Méthode de Monte Carlo... 2.3 Méthode de rejet...

Plus en détail

TSTI 2D CH X : Exemples de lois à densité 1

TSTI 2D CH X : Exemples de lois à densité 1 TSTI 2D CH X : Exemples de lois à densité I Loi uniforme sur ab ; ) Introduction Dans cette activité, on s intéresse à la modélisation du tirage au hasard d un nombre réel de l intervalle [0 ;], chacun

Plus en détail

Calculs de probabilités

Calculs de probabilités Calculs de probabilités Mathématiques Générales B Université de Genève Sylvain Sardy 13 mars 2008 1. Définitions et notations 1 L origine des probabilités est l analyse de jeux de hasard, tels que pile

Plus en détail

Thèse. présentée en vu d obtenir le grade de Docteur, spécialité «Mathématiques Appliquées» par. ARRAR Nawel Khadidja

Thèse. présentée en vu d obtenir le grade de Docteur, spécialité «Mathématiques Appliquées» par. ARRAR Nawel Khadidja Université Badji Mokhtar-Annaba, Algérie Université Paris 1, Panthéon-Sorbonne, France Ecole Doctorale Sciences Mathématiques de Paris centre Laboratoire LaPS et LANOS, Annaba Laboratoire SAMM, Paris 1

Plus en détail

ACTUARIAT 1, ACT 2121, AUTOMNE 2013 #16

ACTUARIAT 1, ACT 2121, AUTOMNE 2013 #16 ACTUARIAT 1, ACT 2121, AUTOMNE 201 #16 ARTHUR CHARPENTIER 1 Dans une petite compagnie d assurance le nombre N de réclamations durant une année suit une loi de Poisson de moyenne λ = 100. On estime que

Plus en détail

Statistique Descriptive et Inférentielle Méthodes paramétriques et non paramétriques

Statistique Descriptive et Inférentielle Méthodes paramétriques et non paramétriques Fiche TD avec le logiciel : a2-1-c Statistique Descriptive et Inférentielle Méthodes paramétriques et non paramétriques Sylvain Mousset Rappels de probabilités / statistiques Table des matières 1 Probabilités

Plus en détail

4 Distributions particulières de probabilités

4 Distributions particulières de probabilités 4 Distributions particulières de probabilités 4.1 Distributions discrètes usuelles Les variables aléatoires discrètes sont réparties en catégories selon le type de leur loi. 4.1.1 Variable de Bernoulli

Plus en détail

Qualité de service d'un centre de service de messagerie GSM (SMSC)

Qualité de service d'un centre de service de messagerie GSM (SMSC) UNIVERSITE LIBANAISE (Faculté de Génie) UNIVERSITE SAINT-JOSEPH (Faculté d'ingénierie) Sous l'égide de l'agence Universitaire de la Francophonie AUF Diplôme d'etudes Approfondies Réseaux de télécommunications

Plus en détail

Chapitre 19 LES FILES D ATTENTE

Chapitre 19 LES FILES D ATTENTE OBJECTIFS D APPRENTISSAGE Après avoir terminé l étude de ce chapitre, vous pourrez : 1. Expliquer pourquoi des files d attente se forment dans des systèmes non congestionnés. 2. Identifier l objectif de

Plus en détail

PROBABILITES ET STATISTIQUE I&II

PROBABILITES ET STATISTIQUE I&II PROBABILITES ET STATISTIQUE I&II TABLE DES MATIERES CHAPITRE I - COMBINATOIRE ELEMENTAIRE I.1. Rappel des notations de la théorie des ensemble I.1.a. Ensembles et sous-ensembles I.1.b. Diagrammes (dits

Plus en détail

Petits jeux de probabilités (Solutions)

Petits jeux de probabilités (Solutions) Petits jeux de probabilités (Solutions) Christophe Lalanne En famille 1. Mon voisin a deux enfants dont l un est une fille, quelle est la probabilité pour que l autre soit un garçon? Une famille de deux

Plus en détail

Actuariat I ACT2121. septième séance. Arthur Charpentier. Automne 2012. charpentier.arthur@uqam.ca. http ://freakonometrics.blog.free.

Actuariat I ACT2121. septième séance. Arthur Charpentier. Automne 2012. charpentier.arthur@uqam.ca. http ://freakonometrics.blog.free. Actuariat I ACT2121 septième séance Arthur Charpentier charpentier.arthur@uqam.ca http ://freakonometrics.blog.free.fr/ Automne 2012 1 Exercice 1 En analysant le temps d attente X avant un certain événement

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)

Plus en détail

Calcul élémentaire des probabilités

Calcul élémentaire des probabilités Myriam Maumy-Bertrand 1 et Thomas Delzant 1 1 IRMA, Université Louis Pasteur Strasbourg, France Licence 1ère Année 16-02-2006 Sommaire La loi de Poisson. Définition. Exemple. 1 La loi de Poisson. 2 3 4

Plus en détail

Processus aléatoires avec application en finance

Processus aléatoires avec application en finance Genève, le 16 juin 2007. Processus aléatoires avec application en finance La durée de l examen est de deux heures. N oubliez pas d indiquer votre nom et prénom sur chaque feuille. Toute documentation et

Plus en détail

TABLE DES MATIERES. C Exercices complémentaires 42

TABLE DES MATIERES. C Exercices complémentaires 42 TABLE DES MATIERES Chapitre I : Echantillonnage A - Rappels de cours 1. Lois de probabilités de base rencontrées en statistique 1 1.1 Définitions et caractérisations 1 1.2 Les propriétés de convergence

Plus en détail

Cours de gestion des risques d assurances et de théorie de la ruine. Stéphane Loisel

Cours de gestion des risques d assurances et de théorie de la ruine. Stéphane Loisel Cours de gestion des risques d assurances et de théorie de la ruine Stéphane Loisel ISFA, 2005-2006 Table des matières I Modélisation de la charge sinistre : du modèle individuel au modèle collectif 5

Plus en détail

Le modèle de Black et Scholes

Le modèle de Black et Scholes Le modèle de Black et Scholes Alexandre Popier février 21 1 Introduction : exemple très simple de modèle financier On considère un marché avec une seule action cotée, sur une période donnée T. Dans un

Plus en détail

Statistiques Descriptives à une dimension

Statistiques Descriptives à une dimension I. Introduction et Définitions 1. Introduction La statistique est une science qui a pour objectif de recueillir et de traiter les informations, souvent en très grand nombre. Elle regroupe l ensemble des

Plus en détail

Variables Aléatoires. Chapitre 2

Variables Aléatoires. Chapitre 2 Chapitre 2 Variables Aléatoires Après avoir réalisé une expérience, on ne s intéresse bien souvent à une certaine fonction du résultat et non au résultat en lui-même. Lorsqu on regarde une portion d ADN,

Plus en détail

M2 IAD UE MODE Notes de cours (3)

M2 IAD UE MODE Notes de cours (3) M2 IAD UE MODE Notes de cours (3) Jean-Yves Jaffray Patrice Perny 16 mars 2006 ATTITUDE PAR RAPPORT AU RISQUE 1 Attitude par rapport au risque Nousn avons pas encore fait d hypothèse sur la structure de

Plus en détail

Fiche de révision sur les lois continues

Fiche de révision sur les lois continues Exercice 1 Voir la correction Le laboratoire de physique d un lycée dispose d un parc d oscilloscopes identiques. La durée de vie en années d un oscilloscope est une variable aléatoire notée X qui suit

Plus en détail

Théorie et Codage de l Information (IF01) exercices 2013-2014. Paul Honeine Université de technologie de Troyes France

Théorie et Codage de l Information (IF01) exercices 2013-2014. Paul Honeine Université de technologie de Troyes France Théorie et Codage de l Information (IF01) exercices 2013-2014 Paul Honeine Université de technologie de Troyes France TD-1 Rappels de calculs de probabilités Exercice 1. On dispose d un jeu de 52 cartes

Plus en détail

Mouad Ben Mamoun Master Offshoring Informatique Appliquée

Mouad Ben Mamoun Master Offshoring Informatique Appliquée Cours Evaluation de performances des Systèmes Informatiques Mouad Ben Mamoun Master Offshoring Informatique Appliquée Département d Informatique, Université Mohammed V-Agdal email:ben mamoun@fsr.ac.ma

Plus en détail

FONDEMENTS MATHÉMATIQUES 12 E ANNÉE. Mathématiques financières

FONDEMENTS MATHÉMATIQUES 12 E ANNÉE. Mathématiques financières FONDEMENTS MATHÉMATIQUES 12 E ANNÉE Mathématiques financières A1. Résoudre des problèmes comportant des intérêts composés dans la prise de décisions financières. [C, L, RP, T, V] Résultat d apprentissage

Plus en détail

Licence MASS 2000-2001. (Re-)Mise à niveau en Probabilités. Feuilles de 1 à 7

Licence MASS 2000-2001. (Re-)Mise à niveau en Probabilités. Feuilles de 1 à 7 Feuilles de 1 à 7 Ces feuilles avec 25 exercices et quelques rappels historiques furent distribuées à des étudiants de troisième année, dans le cadre d un cours intensif sur deux semaines, en début d année,

Plus en détail

Événements et probabilités, probabilité conditionnelle et indépendance

Événements et probabilités, probabilité conditionnelle et indépendance Chapitre 1 Événements et probabilités, probabilité conditionnelle et indépendance On cherche ici à proposer un cadre mathématique dans lequel on puisse parler sans ambiguité de la probabilité qu un événement

Plus en détail

Lagrange, où λ 1 est pour la contrainte sur µ p ).

Lagrange, où λ 1 est pour la contrainte sur µ p ). Chapitre 1 Exercice 1 : Portefeuilles financiers Considérons trois types d actions qui sont négociées à la bourse et dont les rentabilités r 1, r 2 et r 3 sont des variables aléatoires d espérances µ i

Plus en détail

Calcul élémentaire des probabilités

Calcul élémentaire des probabilités Myriam Maumy-Bertrand 1 et Thomas Delzant 1 1 IRMA, Université Louis Pasteur Strasbourg, France Licence 1ère Année 16-02-2006 Sommaire Variables aléatoires. Exemple 1. (Jeu d argent) Exemple 2. Loi de

Plus en détail

Prévention et gestion des risques naturels et environnementaux

Prévention et gestion des risques naturels et environnementaux Prévention et gestion des risques naturels et environnementaux Risque et assurance : quelques éléments théoriques Ecole des Ponts - Le 6 Avril 01 Jacques Pelletan 1 Théorie du risque et pérennité de l

Plus en détail

Travaux Dirigés de Probabilités - Statistiques, TD 4. Lois limites ; estimation.

Travaux Dirigés de Probabilités - Statistiques, TD 4. Lois limites ; estimation. Travaux Dirigés de Probabilités - Statistiques, TD 4 Lois limites ; estimation. Exercice 1. Trois machines, A, B, C fournissent respectivement 50%, 30%, 20% de la production d une usine. Les pourcentages

Plus en détail

Files d attente (1) F. Sur - ENSMN. Introduction. 1 Introduction. Vocabulaire Caractéristiques Notations de Kendall Loi de Little.

Files d attente (1) F. Sur - ENSMN. Introduction. 1 Introduction. Vocabulaire Caractéristiques Notations de Kendall Loi de Little. Cours de Tronc Commun Scienifique Recherche Opéraionnelle Les files d aene () Les files d aene () Frédéric Sur École des Mines de Nancy www.loria.fr/ sur/enseignemen/ro/ 5 /8 /8 Exemples de files d aene

Plus en détail

Modélisation aléatoire en fiabilité des logiciels

Modélisation aléatoire en fiabilité des logiciels collection Méthodes stochastiques appliquées dirigée par Nikolaos Limnios et Jacques Janssen La sûreté de fonctionnement des systèmes informatiques est aujourd hui un enjeu économique et sociétal majeur.

Plus en détail

FIMA, 7 juillet 2005

FIMA, 7 juillet 2005 F. Corset 1 S. 2 1 LabSAD Université Pierre Mendes France 2 Département de Mathématiques Université de Franche-Comté FIMA, 7 juillet 2005 Plan de l exposé plus court chemin Origine du problème Modélisation

Plus en détail

Espérance, variance, quantiles

Espérance, variance, quantiles Espérance, variance, quantiles Mathématiques Générales B Université de Genève Sylvain Sardy 22 mai 2008 0. Motivation Mesures de centralité (ex. espérance) et de dispersion (ex. variance) 1 f(x) 0.0 0.1

Plus en détail

Probabilités stationnaires d une chaîne de Markov sur TI-nspire Louis Parent, ing., MBA École de technologie supérieure, Montréal, Québec 1

Probabilités stationnaires d une chaîne de Markov sur TI-nspire Louis Parent, ing., MBA École de technologie supérieure, Montréal, Québec 1 Introduction Probabilités stationnaires d une chaîne de Markov sur TI-nspire Louis Parent, ing., MBA École de technologie supérieure, Montréal, Québec 1 L auteur remercie Mme Sylvie Gervais, Ph.D., maître

Plus en détail

Condition de stabilité d'un réseau de les d'attente à deux stations et N classes de clients 1

Condition de stabilité d'un réseau de les d'attente à deux stations et N classes de clients 1 General Mathematics Vol. 18, No. 4 (2010), 85108 Condition de stabilité d'un réseau de les d'attente à deux stations et N classes de clients 1 Faiza Belarbi, Amina Angelika Bouchentouf Résumé Nous étudions

Plus en détail

Température corporelle d un castor (une petite introduction aux séries temporelles)

Température corporelle d un castor (une petite introduction aux séries temporelles) Température corporelle d un castor (une petite introduction aux séries temporelles) GMMA 106 GMMA 106 2014 2015 1 / 32 Cas d étude Temperature (C) 37.0 37.5 38.0 0 20 40 60 80 100 Figure 1: Temperature

Plus en détail

Parameter estimation and performance analysis of several network applications

Parameter estimation and performance analysis of several network applications Parameter estimation and performance analysis of several network applications Sara Alouf To cite this version: Sara Alouf. Parameter estimation and performance analysis of several network applications.

Plus en détail

MODELES DE DUREE DE VIE

MODELES DE DUREE DE VIE MODELES DE DUREE DE VIE Cours 1 : Introduction I- Contexte et définitions II- Les données III- Caractéristiques d intérêt IV- Evènements non renouvelables/renouvelables (unique/répété) I- Contexte et définitions

Plus en détail

Examen d accès - 1 Octobre 2009

Examen d accès - 1 Octobre 2009 Examen d accès - 1 Octobre 2009 Aucun document autorisé - Calculatrice fournie par le centre d examen Ce examen est un questionnaire à choix multiples constitué de 50 questions. Plusieurs réponses sont

Plus en détail

Simulation de variables aléatoires

Simulation de variables aléatoires CHAPITRE I. SIMULATION DE VARIABLES ALÉATOIRES 25 Chapitre I Simulation de variables aléatoires La simulation informatique de variables aléatoires, aussi complexes soient elles, repose sur la simulation

Plus en détail

POLY-PREPAS ANNEE 2009/2010 Centre de Préparation aux Concours Paramédicaux

POLY-PREPAS ANNEE 2009/2010 Centre de Préparation aux Concours Paramédicaux POLY-PREPAS ANNEE 2009/2010 Centre de Préparation aux Concours Paramédicaux - Section : i-prépa Audioprothésiste (annuel) - MATHEMATIQUES 8 : EQUATIONS DIFFERENTIELLES - COURS + ENONCE EXERCICE - Olivier

Plus en détail

Les équations différentielles

Les équations différentielles Les équations différentielles Equations différentielles du premier ordre avec second membre Ce cours porte exclusivement sur la résolution des équations différentielles du premier ordre avec second membre

Plus en détail

Rappels sur les suites - Algorithme

Rappels sur les suites - Algorithme DERNIÈRE IMPRESSION LE 14 septembre 2015 à 12:36 Rappels sur les suites - Algorithme Table des matières 1 Suite : généralités 2 1.1 Déition................................. 2 1.2 Exemples de suites............................

Plus en détail

Moments des variables aléatoires réelles

Moments des variables aléatoires réelles Chapter 6 Moments des variables aléatoires réelles Sommaire 6.1 Espérance des variables aléatoires réelles................................ 46 6.1.1 Définition et calcul........................................

Plus en détail

Programme des épreuves des concours externes de recrutement des personnels techniques et administratifs de recherche et de formation

Programme des épreuves des concours externes de recrutement des personnels techniques et administratifs de recherche et de formation Programme des épreuves des concours externes de recrutement des personnels E1 RECRUTEMENT DES ASSISTANTS INGENIEURS DE RECHERCHE ET DE FORMATION...2 E1.1 Gestionnaire de base de données...2 E1.2 Développeur

Plus en détail

CONCOURS 2015 Programme des classes préparatoires

CONCOURS 2015 Programme des classes préparatoires CONCOURS 2015 Programme des classes préparatoires Voie économique et commerciale option scientifique option économique option technologique Voie littéraire Filière B/L Lettres et Sciences Sociales Filière

Plus en détail

Master IMEA 1 Calcul Stochastique et Finance Feuille de T.D. n o 1

Master IMEA 1 Calcul Stochastique et Finance Feuille de T.D. n o 1 Master IMEA 1 Calcul Stochastique et Finance Feuille de T.D. n o 1 1. a. On considère un modèle de marché (B, S) à une étape. On suppose que S = 5 C et qu à la date t = 1 on a (S u 1 = 51, S d 1 = 48).

Plus en détail

Contents. 1 Introduction Objectifs des systèmes bonus-malus Système bonus-malus à classes Système bonus-malus : Principes

Contents. 1 Introduction Objectifs des systèmes bonus-malus Système bonus-malus à classes Système bonus-malus : Principes Université Claude Bernard Lyon 1 Institut de Science Financière et d Assurances Système Bonus-Malus Introduction & Applications SCILAB Julien Tomas Institut de Science Financière et d Assurances Laboratoire

Plus en détail

Cours de Méthodes Déterministes en Finance (ENPC) Benoît Humez Société Générale Recherche Quantitative benoit.humez@sgcib.com

Cours de Méthodes Déterministes en Finance (ENPC) Benoît Humez Société Générale Recherche Quantitative benoit.humez@sgcib.com Cours de Méthodes Déterministes en Finance (ENPC) Benoît Humez Société Générale Recherche Quantitative benoit.humez@sgcib.com Points abordés Méthodes numériques employées en finance Approximations de prix

Plus en détail

La fonction exponentielle

La fonction exponentielle DERNIÈRE IMPRESSION LE 2 novembre 204 à :07 La fonction exponentielle Table des matières La fonction exponentielle 2. Définition et théorèmes.......................... 2.2 Approche graphique de la fonction

Plus en détail

Mathématiques financières

Mathématiques financières Mathématiques financières Arnaud Triay Table des matières 1 Introduction Position du problème.1 Pricing des options........................................... Formalisme..............................................

Plus en détail

Que faire lorsqu on considère plusieurs variables en même temps?

Que faire lorsqu on considère plusieurs variables en même temps? Chapitre 3 Que faire lorsqu on considère plusieurs variables en même temps? On va la plupart du temps se limiter à l étude de couple de variables aléatoires, on peut bien sûr étendre les notions introduites

Plus en détail

Probabilités (méthodes et objectifs)

Probabilités (méthodes et objectifs) Probabilités (méthodes et objectifs) G. Petitjean Lycée de Toucy 10 juin 2007 G. Petitjean (Lycée de Toucy) Probabilités (méthodes et objectifs) 10 juin 2007 1 / 19 1 Déterminer la loi de probabilité d

Plus en détail

Théorie et codage de l information

Théorie et codage de l information Théorie et codage de l information Mesure quantitative de l information - Chapitre 2 - Information propre et mutuelle Quantité d information propre d un événement Soit A un événement de probabilité P (A)

Plus en détail

Feuille 6 : Tests. Peut-on dire que l usine a respecté ses engagements? Faire un test d hypothèses pour y répondre.

Feuille 6 : Tests. Peut-on dire que l usine a respecté ses engagements? Faire un test d hypothèses pour y répondre. Université de Nantes Année 2013-2014 L3 Maths-Eco Feuille 6 : Tests Exercice 1 On cherche à connaître la température d ébullition µ, en degrés Celsius, d un certain liquide. On effectue 16 expériences

Plus en détail

Recherche et Diffusion de l Information dans les Réseaux. Philippe Robert. Le 8 avril 2014

Recherche et Diffusion de l Information dans les Réseaux. Philippe Robert. Le 8 avril 2014 Recherche et Diffusion de l Information dans les Réseaux Philippe Robert Le 8 avril 2014 Présentation Présentation Directeur de recherche à l INRIA Responsable de l équipe de recherche Réseaux, Algorithmes

Plus en détail

Master Modélisation Statistique M2 Finance - chapitre 4 Mouvement Brownien et modèle de Black-Scholes

Master Modélisation Statistique M2 Finance - chapitre 4 Mouvement Brownien et modèle de Black-Scholes Master Modélisation Statistique M2 Finance - chapitre 4 Mouvement Brownien et modèle de Black-Scholes Clément Dombry, Laboratoire de Mathématiques de Besançon, Université de Franche-Comté. C.Dombry (Université

Plus en détail

Devoir Surveillé n 5 BTS 2009 groupement B

Devoir Surveillé n 5 BTS 2009 groupement B EXERCICE 1 (12 points) Devoir Surveillé n 5 BTS 2009 groupement B Les trois parties de cet exercice peuvent être traitées de façon indépendante. A. Résolution d une équation différentielle On considère

Plus en détail

Sites web éducatifs et ressources en mathématiques

Sites web éducatifs et ressources en mathématiques Sites web éducatifs et ressources en mathématiques Exercices en ligne pour le primaire Calcul mental élémentaire : http://www.csaffluents.qc.ca/wlamen/tables-sous.html Problèmes de soustraction/addition

Plus en détail

Méthodes de Simulation

Méthodes de Simulation Méthodes de Simulation JEAN-YVES TOURNERET Institut de recherche en informatique de Toulouse (IRIT) ENSEEIHT, Toulouse, France Peyresq06 p. 1/41 Remerciements Christian Robert : pour ses excellents transparents

Plus en détail

Modélisation et Outils Mathématiques TP génération de nombres aléatoires et probabilités

Modélisation et Outils Mathématiques TP génération de nombres aléatoires et probabilités Modélisation et Outils Mathématiques TP génération de nombres aléatoires et probabilités 3IF, INSA de Lyon, 2014/2015 Marine Minier, Irène Gannaz INSA-Lyon, Département Informatique version 2.00, 12 Février

Plus en détail

Reputation, Prix Limite et Prédation

Reputation, Prix Limite et Prédation Reputation, Prix Limite et Prédation Economie Industrielle Laurent Linnemer Thibaud Vergé Laboratoire d Economie Industrielle (CREST-INSEE) 13 et 20 janvier 2009 Linnemer - Vergé (CREST-LEI) Reputation,

Plus en détail

Cours de mathématiques Partie IV Probabilités MPSI 4

Cours de mathématiques Partie IV Probabilités MPSI 4 Lycée Louis-Le-Grand, Paris Année 2013/2014 Cours de mathématiques Partie IV Probabilités MPSI 4 Alain TROESCH Version du: 30 mai 2014 Table des matières 1 Dénombrement 3 I Combinatoire des ensembles

Plus en détail

Programmes des classes préparatoires aux Grandes Ecoles

Programmes des classes préparatoires aux Grandes Ecoles Programmes des classes préparatoires aux Grandes Ecoles Filière : scientifique Voie : Biologie, chimie, physique et sciences de la Terre (BCPST) Discipline : Mathématiques Seconde année Préambule Programme

Plus en détail

Exercices Alternatifs. Quelqu un aurait-il vu passer un polynôme?

Exercices Alternatifs. Quelqu un aurait-il vu passer un polynôme? Exercices Alternatifs Quelqu un aurait-il vu passer un polynôme? c 2004 Frédéric Le Roux, François Béguin (copyleft LDL : Licence pour Documents Libres). Sources et figures: polynome-lagrange/. Version

Plus en détail

Exercices Alternatifs. Quelqu un aurait-il vu passer un polynôme?

Exercices Alternatifs. Quelqu un aurait-il vu passer un polynôme? Exercices Alternatifs Quelqu un aurait-il vu passer un polynôme? c 2004 Frédéric Le Roux, François Béguin (copyleft LDL : Licence pour Documents Libres). Sources et figures: polynome-lagrange/. Version

Plus en détail

Travaux dirigés d introduction aux Probabilités

Travaux dirigés d introduction aux Probabilités Travaux dirigés d introduction aux Probabilités - Dénombrement - - Probabilités Élémentaires - - Variables Aléatoires Discrètes - - Variables Aléatoires Continues - 1 - Dénombrement - Exercice 1 Combien

Plus en détail

Table des matières. I Mise à niveau 11. Préface

Table des matières. I Mise à niveau 11. Préface Table des matières Préface v I Mise à niveau 11 1 Bases du calcul commercial 13 1.1 Alphabet grec...................................... 13 1.2 Symboles mathématiques............................... 14 1.3

Plus en détail

Première STMG1 2014-2015 progression. - 1. Séquence : Proportion d une sous population dans une population.

Première STMG1 2014-2015 progression. - 1. Séquence : Proportion d une sous population dans une population. Première STMG1 2014-2015 progression. - 1 Table des matières Fil rouge. 3 Axes du programme. 3 Séquence : Proportion d une sous population dans une population. 3 Information chiffrée : connaître et exploiter

Plus en détail

Continuité et dérivabilité d une fonction

Continuité et dérivabilité d une fonction DERNIÈRE IMPRESSIN LE 7 novembre 014 à 10:3 Continuité et dérivabilité d une fonction Table des matières 1 Continuité d une fonction 1.1 Limite finie en un point.......................... 1. Continuité

Plus en détail

Master IMEA 1 Calcul Stochastique et Finance Feuille de T.D. n o 1

Master IMEA 1 Calcul Stochastique et Finance Feuille de T.D. n o 1 Master IMEA Calcul Stochastique et Finance Feuille de T.D. n o Corrigé exercices8et9 8. On considère un modèle Cox-Ross-Rubinstein de marché (B,S) à trois étapes. On suppose que S = C et que les facteurs

Plus en détail

Discrétisation et génération de hiérarchies de concepts

Discrétisation et génération de hiérarchies de concepts Prétraitement des données 1 Pourquoi prétraiter les données? Nettoyage des données Intégration et transformation Réduction des données Discrétisation et génération de hiérarchies de g concepts Pourquoi

Plus en détail

ENS de Lyon TD 1 17-18 septembre 2012 Introduction aux probabilités. A partie finie de N

ENS de Lyon TD 1 17-18 septembre 2012 Introduction aux probabilités. A partie finie de N ENS de Lyon TD 7-8 septembre 0 Introduction aux probabilités Exercice Soit (u n ) n N une suite de nombres réels. On considère σ une bijection de N dans N, de sorte que (u σ(n) ) n N est un réordonnement

Plus en détail

Coup de Projecteur sur les Réseaux de Neurones

Coup de Projecteur sur les Réseaux de Neurones Coup de Projecteur sur les Réseaux de Neurones Les réseaux de neurones peuvent être utilisés pour des problèmes de prévision ou de classification. La représentation la plus populaire est le réseau multicouche

Plus en détail

Mathématiques financières

Mathématiques financières Mathématique financière à court terme I) Les Intérêts : Intérêts simples Mathématiques financières - Intérêts terme échu et terme à échoir - Taux terme échu i u équivalent à un taux terme à échoir i r

Plus en détail

UFR de Sciences Economiques Année 2008-2009 TESTS PARAMÉTRIQUES

UFR de Sciences Economiques Année 2008-2009 TESTS PARAMÉTRIQUES Université Paris 13 Cours de Statistiques et Econométrie I UFR de Sciences Economiques Année 2008-2009 Licence de Sciences Economiques L3 Premier semestre TESTS PARAMÉTRIQUES Remarque: les exercices 2,

Plus en détail

FONCTION EXPONENTIELLE ( ) 2 = 0.

FONCTION EXPONENTIELLE ( ) 2 = 0. FONCTION EXPONENTIELLE I. Définition Théorème : Il eiste une unique fonction f dérivable sur R telle que f ' = f et f (0) =. Démonstration de l'unicité (eigible BAC) : L'eistence est admise - Démontrons

Plus en détail

MATHÉMATIQUES FINANCIÈRES I

MATHÉMATIQUES FINANCIÈRES I MATHÉMATIQUES FINANCIÈRES I Deuxième cours Rappel: Intérêt Rappel: Intérêt Fonction de capitalisation 1 Rappel: Intérêt Fonction de capitalisation Fonction d accumulation Rappel: Intérêt Fonction de capitalisation

Plus en détail

Simulations de Monte Carlo en finance : Pricer d option

Simulations de Monte Carlo en finance : Pricer d option Emma Alfonsi, Xavier Milhaud - M2R SAF Simulations de Monte Carlo en finance : Pricer d option Sous la direction de M. Pierre Alain Patard ISFA - Mars 2008 . 1 Table des matières 1 Introduction 4 2 Un

Plus en détail

Une expérience de construction d'ontologie d application pour indexer les ressources d une formation en statistique

Une expérience de construction d'ontologie d application pour indexer les ressources d une formation en statistique Une expérience de construction d'ontologie d application pour indexer les ressources d une formation en statistique Brigitte Chaput 1, Ahcene Benayache 2, Catherine Barry 3, Marie-Hélène Abel 2 1 Equipe

Plus en détail

ALEATOIRE - Les enjeux du cours de Probabilités en première année de l Ecole Polytechnique

ALEATOIRE - Les enjeux du cours de Probabilités en première année de l Ecole Polytechnique ALEATOIRE - Les enjeux du cours de Probabilités en première année de l Ecole Polytechnique Télécom ParisTech, 09 mai 2012 http://www.mathematiquesappliquees.polytechnique.edu/ accueil/programmes/cycle-polytechnicien/annee-1/

Plus en détail

Arrondissage des résultats de mesure. Nombre de chiffres significatifs

Arrondissage des résultats de mesure. Nombre de chiffres significatifs BUREAU NATIONAL DE MÉTROLOGIE COMMISSARIAT À L'ÉNERGIE ATOMIQUE LABORATOIRE NATIONAL HENRI BECQUEREL Note technique LNHB/04-13 Arrondissage des résultats de esure Nobre de chiffres significatifs M.M. Bé,

Plus en détail

Analyse de la variance Comparaison de plusieurs moyennes

Analyse de la variance Comparaison de plusieurs moyennes Analyse de la variance Comparaison de plusieurs moyennes Biostatistique Pr. Nicolas MEYER Laboratoire de Biostatistique et Informatique Médicale Fac. de Médecine de Strasbourg Mars 2011 Plan 1 Introduction

Plus en détail

Cours d Analyse. Fonctions de plusieurs variables

Cours d Analyse. Fonctions de plusieurs variables Cours d Analyse Fonctions de plusieurs variables Licence 1ère année 2007/2008 Nicolas Prioux Université de Marne-la-Vallée Table des matières 1 Notions de géométrie dans l espace et fonctions à deux variables........

Plus en détail

Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques.

Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques. 14-3- 214 J.F.C. p. 1 I Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques. Exercice 1 Densité de probabilité. F { ln x si x ], 1] UN OVNI... On pose x R,

Plus en détail

Modèle de troncature gauche : Comparaison par simulation sur données indépendantes et dépendantes

Modèle de troncature gauche : Comparaison par simulation sur données indépendantes et dépendantes de troncature gauche : Comparaison par simulation sur données indépendantes et dépendantes Zohra Guessoum 1 & Farida Hamrani 2 1 Lab. MSTD, Faculté de mathématique, USTHB, BP n 32, El Alia, Alger, Algérie,zguessoum@usthb.dz

Plus en détail

Probabilités. I Petits rappels sur le vocabulaire des ensembles 2 I.1 Définitions... 2 I.2 Propriétés... 2

Probabilités. I Petits rappels sur le vocabulaire des ensembles 2 I.1 Définitions... 2 I.2 Propriétés... 2 Probabilités Table des matières I Petits rappels sur le vocabulaire des ensembles 2 I.1 s................................................... 2 I.2 Propriétés...................................................

Plus en détail

Qu est-ce qu une probabilité?

Qu est-ce qu une probabilité? Chapitre 1 Qu est-ce qu une probabilité? 1 Modéliser une expérience dont on ne peut prédire le résultat 1.1 Ensemble fondamental d une expérience aléatoire Une expérience aléatoire est une expérience dont

Plus en détail

3. Conditionnement P (B)

3. Conditionnement P (B) Conditionnement 16 3. Conditionnement Dans cette section, nous allons rappeler un certain nombre de définitions et de propriétés liées au problème du conditionnement, c est à dire à la prise en compte

Plus en détail

Probabilités sur un univers fini

Probabilités sur un univers fini [http://mp.cpgedupuydelome.fr] édité le 7 août 204 Enoncés Probabilités sur un univers fini Evènements et langage ensembliste A quelle condition sur (a, b, c, d) ]0, [ 4 existe-t-il une probabilité P sur

Plus en détail

Filtrage stochastique non linéaire par la théorie de représentation des martingales

Filtrage stochastique non linéaire par la théorie de représentation des martingales Filtrage stochastique non linéaire par la théorie de représentation des martingales Adriana Climescu-Haulica Laboratoire de Modélisation et Calcul Institut d Informatique et Mathématiques Appliquées de

Plus en détail