Partie 1. La structure des réseaux sociaux

Dimension: px
Commencer à balayer dès la page:

Download "Partie 1. La structure des réseaux sociaux"

Transcription

1 Partie 1. La structure des réseaux sociaux Analyse et Modélisation des Réseaux, Université Bordeaux IV

2 Sections : Introduction 1 Introduction 2 3 L expérience de Milgram Les réseaux aléatoires 4 Le clustering à la Watts et Strogatz 5 Mesures inviduelles de centralité La distribution des degrés Le modèle de Barabasi et Albert 6

3 Pourquoi s intérésser aux réseaux sociaux? Une catégorie très générale et très fréquente des situations d interaction économiques et sociales Joue un rôle dans les comportements des agents et dans les issues individuelle et collective de leurs interactions.

4 Pourquoi s intérésser aux réseaux sociaux? Une catégorie très générale et très fréquente des situations d interaction économiques et sociales Joue un rôle dans les comportements des agents et dans les issues individuelle et collective de leurs interactions.

5 Familles florentines et influence

6 Collaborations scientifiques

7 Information et internet

8 Relations amicales et origine ethnique

9 Romances Introduction

10 L analyse des reseaux sociaux Un objet partagé : Sociologie, Mathématiques, Physique, Economie, Management. Disponibilité des données de réseau Un point de rencontre vers une approche unifiée du fait social.

11 L analyse des reseaux sociaux Un objet partagé : Sociologie, Mathématiques, Physique, Economie, Management. Disponibilité des données de réseau Un point de rencontre vers une approche unifiée du fait social.

12 L analyse des reseaux sociaux Un objet partagé : Sociologie, Mathématiques, Physique, Economie, Management. Disponibilité des données de réseau Un point de rencontre vers une approche unifiée du fait social.

13 Quelques domaines d application en conomie économie de l innovation économie industrielle économie du travail théorie de jeux économie du développement économie publique et environnement économie internationale finance économie spatiale économétrie économie sociale économie du crime

14 Quelques domaines d application en conomie économie de l innovation économie industrielle économie du travail théorie de jeux économie du développement économie publique et environnement économie internationale finance économie spatiale économétrie économie sociale économie du crime

15 Quelques domaines d application en conomie économie de l innovation économie industrielle économie du travail théorie de jeux économie du développement économie publique et environnement économie internationale finance économie spatiale économétrie économie sociale économie du crime

16 Quelques domaines d application en conomie économie de l innovation économie industrielle économie du travail théorie de jeux économie du développement économie publique et environnement économie internationale finance économie spatiale économétrie économie sociale économie du crime

17 Quelques domaines d application en conomie économie de l innovation économie industrielle économie du travail théorie de jeux économie du développement économie publique et environnement économie internationale finance économie spatiale économétrie économie sociale économie du crime

18 Quelques domaines d application en conomie économie de l innovation économie industrielle économie du travail théorie de jeux économie du développement économie publique et environnement économie internationale finance économie spatiale économétrie économie sociale économie du crime

19 Quelques domaines d application en conomie économie de l innovation économie industrielle économie du travail théorie de jeux économie du développement économie publique et environnement économie internationale finance économie spatiale économétrie économie sociale économie du crime

20 Quelques domaines d application en conomie économie de l innovation économie industrielle économie du travail théorie de jeux économie du développement économie publique et environnement économie internationale finance économie spatiale économétrie économie sociale économie du crime

21 Quelques domaines d application en conomie économie de l innovation économie industrielle économie du travail théorie de jeux économie du développement économie publique et environnement économie internationale finance économie spatiale économétrie économie sociale économie du crime

22 Quelques domaines d application en conomie économie de l innovation économie industrielle économie du travail théorie de jeux économie du développement économie publique et environnement économie internationale finance économie spatiale économétrie économie sociale économie du crime

23 Quelques domaines d application en conomie économie de l innovation économie industrielle économie du travail théorie de jeux économie du développement économie publique et environnement économie internationale finance économie spatiale économétrie économie sociale économie du crime

24 Quelques domaines d application en conomie économie de l innovation économie industrielle économie du travail théorie de jeux économie du développement économie publique et environnement économie internationale finance économie spatiale économétrie économie sociale économie du crime

25 Organisation du cours Lectures conseillées : Barabasi L., M. Newman, & D. Watts, 2006, The structure and dynamics of networks, Princeton University Press. Jackson M.O., 2008, Social and Economic Networks, Princeton University Press. Wasserman, S, Faust K., 1994, Social Network Analysis. Methods and applications, Cambridge University Press.

26 Organisation du cours Lectures conseillées : Barabasi L., M. Newman, & D. Watts, 2006, The structure and dynamics of networks, Princeton University Press. Jackson M.O., 2008, Social and Economic Networks, Princeton University Press. Wasserman, S, Faust K., 1994, Social Network Analysis. Methods and applications, Cambridge University Press.

27 Organisation du cours Lectures conseillées : Barabasi L., M. Newman, & D. Watts, 2006, The structure and dynamics of networks, Princeton University Press. Jackson M.O., 2008, Social and Economic Networks, Princeton University Press. Wasserman, S, Faust K., 1994, Social Network Analysis. Methods and applications, Cambridge University Press.

28 Organisation du cours Lectures conseillées : Barabasi L., M. Newman, & D. Watts, 2006, The structure and dynamics of networks, Princeton University Press. Jackson M.O., 2008, Social and Economic Networks, Princeton University Press. Wasserman, S, Faust K., 1994, Social Network Analysis. Methods and applications, Cambridge University Press.

29 Plan du cours Chapitre 1. La structure des réseaux sociaux Chapitre 2. La formation stratégique des réseaux Chapitre 3. Réseaux et comportements (diffusion, apprentissage, jeux, et marchés)

30 Plan du cours Chapitre 1. La structure des réseaux sociaux Chapitre 2. La formation stratégique des réseaux Chapitre 3. Réseaux et comportements (diffusion, apprentissage, jeux, et marchés)

31 Plan du cours Chapitre 1. La structure des réseaux sociaux Chapitre 2. La formation stratégique des réseaux Chapitre 3. Réseaux et comportements (diffusion, apprentissage, jeux, et marchés)

32 Evaluation pour M2-R Economie Applique Choix d un article de recherche qui doit être présenté et discuté dans un document.

33 Sections : Introduction 1 Introduction 2 3 L expérience de Milgram Les réseaux aléatoires 4 Le clustering à la Watts et Strogatz 5 Mesures inviduelles de centralité La distribution des degrés Le modèle de Barabasi et Albert 6

34 Definitions Introduction Il y a n agents, N = {1, 2,..., n}. Les agents constituent les noeuds d un graphe, les arcs constituant les relations entre eux. Un lien entre deux agents distincts i et j N est dénoté ij. Le réseau est la liste des paires (ordonnées ou non ordonnées) ij g. On écrit aussi que g ij = 1 si ij g et 0 sinon. Il est aussi possible que g ij R dans le cas des graphes pondérés.

35 Definitions Introduction Il y a n agents, N = {1, 2,..., n}. Les agents constituent les noeuds d un graphe, les arcs constituant les relations entre eux. Un lien entre deux agents distincts i et j N est dénoté ij. Le réseau est la liste des paires (ordonnées ou non ordonnées) ij g. On écrit aussi que g ij = 1 si ij g et 0 sinon. Il est aussi possible que g ij R dans le cas des graphes pondérés.

36 Definitions Introduction Il y a n agents, N = {1, 2,..., n}. Les agents constituent les noeuds d un graphe, les arcs constituant les relations entre eux. Un lien entre deux agents distincts i et j N est dénoté ij. Le réseau est la liste des paires (ordonnées ou non ordonnées) ij g. On écrit aussi que g ij = 1 si ij g et 0 sinon. Il est aussi possible que g ij R dans le cas des graphes pondérés.

37 Definitions Introduction Il y a n agents, N = {1, 2,..., n}. Les agents constituent les noeuds d un graphe, les arcs constituant les relations entre eux. Un lien entre deux agents distincts i et j N est dénoté ij. Le réseau est la liste des paires (ordonnées ou non ordonnées) ij g. On écrit aussi que g ij = 1 si ij g et 0 sinon. Il est aussi possible que g ij R dans le cas des graphes pondérés.

38 Definitions Introduction Il y a n agents, N = {1, 2,..., n}. Les agents constituent les noeuds d un graphe, les arcs constituant les relations entre eux. Un lien entre deux agents distincts i et j N est dénoté ij. Le réseau est la liste des paires (ordonnées ou non ordonnées) ij g. On écrit aussi que g ij = 1 si ij g et 0 sinon. Il est aussi possible que g ij R dans le cas des graphes pondérés.

39 Definitions Introduction Le réseaux complet est g N = {ij i, j N}, l ensemble de tous les sous ensembles de N de taille 2. L ensemble de tous les graphes possibles entre les n agents est G = { g g N}. Le nombre total de liens est donné par η(g) = #g. N i (g) = {j ij g} est l ensemble des voisins de i. η i (g) = #N i (g) est le degré de i.

40 Definitions Introduction Le réseaux complet est g N = {ij i, j N}, l ensemble de tous les sous ensembles de N de taille 2. L ensemble de tous les graphes possibles entre les n agents est G = { g g N}. Le nombre total de liens est donné par η(g) = #g. N i (g) = {j ij g} est l ensemble des voisins de i. η i (g) = #N i (g) est le degré de i.

41 Definitions Introduction Le réseaux complet est g N = {ij i, j N}, l ensemble de tous les sous ensembles de N de taille 2. L ensemble de tous les graphes possibles entre les n agents est G = { g g N}. Le nombre total de liens est donné par η(g) = #g. N i (g) = {j ij g} est l ensemble des voisins de i. η i (g) = #N i (g) est le degré de i.

42 Definitions Introduction Le réseaux complet est g N = {ij i, j N}, l ensemble de tous les sous ensembles de N de taille 2. L ensemble de tous les graphes possibles entre les n agents est G = { g g N}. Le nombre total de liens est donné par η(g) = #g. N i (g) = {j ij g} est l ensemble des voisins de i. η i (g) = #N i (g) est le degré de i.

43 Definitions Introduction Le réseaux complet est g N = {ij i, j N}, l ensemble de tous les sous ensembles de N de taille 2. L ensemble de tous les graphes possibles entre les n agents est G = { g g N}. Le nombre total de liens est donné par η(g) = #g. N i (g) = {j ij g} est l ensemble des voisins de i. η i (g) = #N i (g) est le degré de i.

44 Definitions Introduction Un chemin d un réseaux g G reliant i à j, est une séquence de liens telle que {i 1 i 2, i 2 i 3,..., i k 1 i k } g où i 1 = i, i k = j. i g j est l ensemble des chemins reliant i à j sur le graphe g. L ensemble des plus court chemins entre i et j sur g noté i g j est tel que k i g j, alors k i g j et #k = min h i g j #h. Un composant C est un sous ensemble non vide de l ensemble des agents C N tel que i, j C, il y a un chemin entre i et j, c est-à-dire i g j.

45 Definitions Introduction Un chemin d un réseaux g G reliant i à j, est une séquence de liens telle que {i 1 i 2, i 2 i 3,..., i k 1 i k } g où i 1 = i, i k = j. i g j est l ensemble des chemins reliant i à j sur le graphe g. L ensemble des plus court chemins entre i et j sur g noté i g j est tel que k i g j, alors k i g j et #k = min h i g j #h. Un composant C est un sous ensemble non vide de l ensemble des agents C N tel que i, j C, il y a un chemin entre i et j, c est-à-dire i g j.

46 Definitions Introduction Un chemin d un réseaux g G reliant i à j, est une séquence de liens telle que {i 1 i 2, i 2 i 3,..., i k 1 i k } g où i 1 = i, i k = j. i g j est l ensemble des chemins reliant i à j sur le graphe g. L ensemble des plus court chemins entre i et j sur g noté i g j est tel que k i g j, alors k i g j et #k = min h i g j #h. Un composant C est un sous ensemble non vide de l ensemble des agents C N tel que i, j C, il y a un chemin entre i et j, c est-à-dire i g j.

47 Definitions Introduction Un chemin d un réseaux g G reliant i à j, est une séquence de liens telle que {i 1 i 2, i 2 i 3,..., i k 1 i k } g où i 1 = i, i k = j. i g j est l ensemble des chemins reliant i à j sur le graphe g. L ensemble des plus court chemins entre i et j sur g noté i g j est tel que k i g j, alors k i g j et #k = min h i g j #h. Un composant C est un sous ensemble non vide de l ensemble des agents C N tel que i, j C, il y a un chemin entre i et j, c est-à-dire i g j.

48 Definitions Introduction La distance géodesique (relationnelle) entre i et j est le nombre de liens d un chemin le plus court entre eux : d(i, j) = d g (i, j) = #k, avec k i g j. Graphes typiques : le réseaux vide g, l étoile (complète) g, est telle que #g = n 1 et il existe un agent i N tel que si jk g, alors soit j = i ou k = i. L agent i est le centre de l étoile. l arbre (spanning tree) reliant tous les agents est caractérisé par l existence d un chemin et un seul entre chaque paire d agents (aucun cycle et aucun agent isolé). Nous avons ici : η(g) = n 1.

49 Definitions Introduction La distance géodesique (relationnelle) entre i et j est le nombre de liens d un chemin le plus court entre eux : d(i, j) = d g (i, j) = #k, avec k i g j. Graphes typiques : le réseaux vide g, l étoile (complète) g, est telle que #g = n 1 et il existe un agent i N tel que si jk g, alors soit j = i ou k = i. L agent i est le centre de l étoile. l arbre (spanning tree) reliant tous les agents est caractérisé par l existence d un chemin et un seul entre chaque paire d agents (aucun cycle et aucun agent isolé). Nous avons ici : η(g) = n 1.

50 Definitions Introduction La distance géodesique (relationnelle) entre i et j est le nombre de liens d un chemin le plus court entre eux : d(i, j) = d g (i, j) = #k, avec k i g j. Graphes typiques : le réseaux vide g, l étoile (complète) g, est telle que #g = n 1 et il existe un agent i N tel que si jk g, alors soit j = i ou k = i. L agent i est le centre de l étoile. l arbre (spanning tree) reliant tous les agents est caractérisé par l existence d un chemin et un seul entre chaque paire d agents (aucun cycle et aucun agent isolé). Nous avons ici : η(g) = n 1.

51 Definitions Introduction La distance géodesique (relationnelle) entre i et j est le nombre de liens d un chemin le plus court entre eux : d(i, j) = d g (i, j) = #k, avec k i g j. Graphes typiques : le réseaux vide g, l étoile (complète) g, est telle que #g = n 1 et il existe un agent i N tel que si jk g, alors soit j = i ou k = i. L agent i est le centre de l étoile. l arbre (spanning tree) reliant tous les agents est caractérisé par l existence d un chemin et un seul entre chaque paire d agents (aucun cycle et aucun agent isolé). Nous avons ici : η(g) = n 1.

52 Definitions Introduction La distance géodesique (relationnelle) entre i et j est le nombre de liens d un chemin le plus court entre eux : d(i, j) = d g (i, j) = #k, avec k i g j. Graphes typiques : le réseaux vide g, l étoile (complète) g, est telle que #g = n 1 et il existe un agent i N tel que si jk g, alors soit j = i ou k = i. L agent i est le centre de l étoile. l arbre (spanning tree) reliant tous les agents est caractérisé par l existence d un chemin et un seul entre chaque paire d agents (aucun cycle et aucun agent isolé). Nous avons ici : η(g) = n 1.

53 Sections : Introduction L expérience de Milgram Les réseaux aléatoires 1 Introduction 2 3 L expérience de Milgram Les réseaux aléatoires 4 Le clustering à la Watts et Strogatz 5 Mesures inviduelles de centralité La distribution des degrés Le modèle de Barabasi et Albert 6

54 Les petits mondes L expérience de Milgram Les réseaux aléatoires Expérience de Milgram (69, 74) Sélectionner une cible à Sharon (Massachussets), Sélectionner 296 personnes : 196 à Omaha (Nebraska) 100 à Boston (Massachussets), Une boîte leur est envoyée, dans laquelle il leur est demandé : d atteindre la cible s ils la connaissent, d envoyer la boîte à une personne dont ils pensent qu elle pourrait la connaître sinon, et dans tous les cas, d envoyer un rapport.

55 Les petits mondes L expérience de Milgram Les réseaux aléatoires Expérience de Milgram (69, 74) Sélectionner une cible à Sharon (Massachussets), Sélectionner 296 personnes : 196 à Omaha (Nebraska) 100 à Boston (Massachussets), Une boîte leur est envoyée, dans laquelle il leur est demandé : d atteindre la cible s ils la connaissent, d envoyer la boîte à une personne dont ils pensent qu elle pourrait la connaître sinon, et dans tous les cas, d envoyer un rapport.

56 Les petits mondes L expérience de Milgram Les réseaux aléatoires Expérience de Milgram (69, 74) Sélectionner une cible à Sharon (Massachussets), Sélectionner 296 personnes : 196 à Omaha (Nebraska) 100 à Boston (Massachussets), Une boîte leur est envoyée, dans laquelle il leur est demandé : d atteindre la cible s ils la connaissent, d envoyer la boîte à une personne dont ils pensent qu elle pourrait la connaître sinon, et dans tous les cas, d envoyer un rapport.

57 Les petits mondes L expérience de Milgram Les réseaux aléatoires Expérience de Milgram (69, 74) Sélectionner une cible à Sharon (Massachussets), Sélectionner 296 personnes : 196 à Omaha (Nebraska) 100 à Boston (Massachussets), Une boîte leur est envoyée, dans laquelle il leur est demandé : d atteindre la cible s ils la connaissent, d envoyer la boîte à une personne dont ils pensent qu elle pourrait la connaître sinon, et dans tous les cas, d envoyer un rapport.

58 Les petits mondes L expérience de Milgram Les réseaux aléatoires Expérience de Milgram (69, 74) Sélectionner une cible à Sharon (Massachussets), Sélectionner 296 personnes : 196 à Omaha (Nebraska) 100 à Boston (Massachussets), Une boîte leur est envoyée, dans laquelle il leur est demandé : d atteindre la cible s ils la connaissent, d envoyer la boîte à une personne dont ils pensent qu elle pourrait la connaître sinon, et dans tous les cas, d envoyer un rapport.

59 Les petits mondes L expérience de Milgram Les réseaux aléatoires Expérience de Milgram (69, 74) Sélectionner une cible à Sharon (Massachussets), Sélectionner 296 personnes : 196 à Omaha (Nebraska) 100 à Boston (Massachussets), Une boîte leur est envoyée, dans laquelle il leur est demandé : d atteindre la cible s ils la connaissent, d envoyer la boîte à une personne dont ils pensent qu elle pourrait la connaître sinon, et dans tous les cas, d envoyer un rapport.

60 Les petits mondes L expérience de Milgram Les réseaux aléatoires Expérience de Milgram (69, 74) Sélectionner une cible à Sharon (Massachussets), Sélectionner 296 personnes : 196 à Omaha (Nebraska) 100 à Boston (Massachussets), Une boîte leur est envoyée, dans laquelle il leur est demandé : d atteindre la cible s ils la connaissent, d envoyer la boîte à une personne dont ils pensent qu elle pourrait la connaître sinon, et dans tous les cas, d envoyer un rapport.

61 Les petits mondes L expérience de Milgram Les réseaux aléatoires Expérience de Milgram (69, 74) Sélectionner une cible à Sharon (Massachussets), Sélectionner 296 personnes : 196 à Omaha (Nebraska) 100 à Boston (Massachussets), Une boîte leur est envoyée, dans laquelle il leur est demandé : d atteindre la cible s ils la connaissent, d envoyer la boîte à une personne dont ils pensent qu elle pourrait la connaître sinon, et dans tous les cas, d envoyer un rapport.

62 Les petits mondes L expérience de Milgram Les réseaux aléatoires Expérience de Milgram (69, 74) Sélectionner une cible à Sharon (Massachussets), Sélectionner 296 personnes : 196 à Omaha (Nebraska) 100 à Boston (Massachussets), Une boîte leur est envoyée, dans laquelle il leur est demandé : d atteindre la cible s ils la connaissent, d envoyer la boîte à une personne dont ils pensent qu elle pourrait la connaître sinon, et dans tous les cas, d envoyer un rapport.

63 Les petits mondes L expérience de Milgram Les réseaux aléatoires

64 Les petits mondes L expérience de Milgram Les réseaux aléatoires

65 Les petits mondes L expérience de Milgram Les réseaux aléatoires 64 essais ont atteint la cible et, cela a pris en moyenne 5.2 intermediaires et maximum de 12. La légende des six degrés de séparation est née!

66 Les petits mondes L expérience de Milgram Les réseaux aléatoires 64 essais ont atteint la cible et, cela a pris en moyenne 5.2 intermediaires et maximum de 12. La légende des six degrés de séparation est née!

67 Les petits mondes L expérience de Milgram Les réseaux aléatoires De la longueur des chaînes relationnelles à une estimation de la distance moyenne. Les chaînes non abouties : biais conduisant à une sous-estimation de la distance moyenne mais considérer que le taux de réponse des enquêtes ne dépasse quasiment jamais 30%. Biais conduisant à une sur-estimation de la distance moyenne, les chaînes relationnelles n emprunte pas nécessairement un plus court chemin. Correction par White qui estime que la moyenne est plutôt entre 6 et 8.

68 Les petits mondes L expérience de Milgram Les réseaux aléatoires De la longueur des chaînes relationnelles à une estimation de la distance moyenne. Les chaînes non abouties : biais conduisant à une sous-estimation de la distance moyenne mais considérer que le taux de réponse des enquêtes ne dépasse quasiment jamais 30%. Biais conduisant à une sur-estimation de la distance moyenne, les chaînes relationnelles n emprunte pas nécessairement un plus court chemin. Correction par White qui estime que la moyenne est plutôt entre 6 et 8.

69 Les petits mondes L expérience de Milgram Les réseaux aléatoires De la longueur des chaînes relationnelles à une estimation de la distance moyenne. Les chaînes non abouties : biais conduisant à une sous-estimation de la distance moyenne mais considérer que le taux de réponse des enquêtes ne dépasse quasiment jamais 30%. Biais conduisant à une sur-estimation de la distance moyenne, les chaînes relationnelles n emprunte pas nécessairement un plus court chemin. Correction par White qui estime que la moyenne est plutôt entre 6 et 8.

70 Les petits mondes L expérience de Milgram Les réseaux aléatoires De la longueur des chaînes relationnelles à une estimation de la distance moyenne. Les chaînes non abouties : biais conduisant à une sous-estimation de la distance moyenne mais considérer que le taux de réponse des enquêtes ne dépasse quasiment jamais 30%. Biais conduisant à une sur-estimation de la distance moyenne, les chaînes relationnelles n emprunte pas nécessairement un plus court chemin. Correction par White qui estime que la moyenne est plutôt entre 6 et 8.

71 L expérience de Milgram Les réseaux aléatoires Mesures globale de distance moyenne La distance moyenne (des agents sur leur composant) : i j i d (g) = d (i, j) 1 {i g j } # {i, j i j N, i g j }.

72 Les petits mondes L expérience de Milgram Les réseaux aléatoires Dans leur composant le plus grand (incluant toujours plus de 80% des noeuds) : Distance moyenne de 3.7 dans le actor-movie network (Watt & Strogatz, 1998) Distance moyenne de 3.9 dans le co-authorship math network (de Castro & Grossman, 1999) Distance moyenne de 6.2 dans le cond-mat arxiv physics network (Newman, 2004) Echantillon de sites web, distance moyenne de 3.1 dans le réseau non dirigé des hyperlinks (Adamic, 1999).

73 Les petits mondes L expérience de Milgram Les réseaux aléatoires Dans leur composant le plus grand (incluant toujours plus de 80% des noeuds) : Distance moyenne de 3.7 dans le actor-movie network (Watt & Strogatz, 1998) Distance moyenne de 3.9 dans le co-authorship math network (de Castro & Grossman, 1999) Distance moyenne de 6.2 dans le cond-mat arxiv physics network (Newman, 2004) Echantillon de sites web, distance moyenne de 3.1 dans le réseau non dirigé des hyperlinks (Adamic, 1999).

74 Les petits mondes L expérience de Milgram Les réseaux aléatoires Dans leur composant le plus grand (incluant toujours plus de 80% des noeuds) : Distance moyenne de 3.7 dans le actor-movie network (Watt & Strogatz, 1998) Distance moyenne de 3.9 dans le co-authorship math network (de Castro & Grossman, 1999) Distance moyenne de 6.2 dans le cond-mat arxiv physics network (Newman, 2004) Echantillon de sites web, distance moyenne de 3.1 dans le réseau non dirigé des hyperlinks (Adamic, 1999).

75 Les petits mondes L expérience de Milgram Les réseaux aléatoires Dans leur composant le plus grand (incluant toujours plus de 80% des noeuds) : Distance moyenne de 3.7 dans le actor-movie network (Watt & Strogatz, 1998) Distance moyenne de 3.9 dans le co-authorship math network (de Castro & Grossman, 1999) Distance moyenne de 6.2 dans le cond-mat arxiv physics network (Newman, 2004) Echantillon de sites web, distance moyenne de 3.1 dans le réseau non dirigé des hyperlinks (Adamic, 1999).

76 Les Poisson random networks L expérience de Milgram Les réseaux aléatoires G(n, p) (Solomonoff et Rapoport, 1951 ; Erdös-Renyi, 1959) random graph model : n le nombre de noeuds 0 p 1 est la probabilité (iid) que pour toute paire d agents i et j, ij g G(n, E) (Erdös-Renyi, 1960) n le nombre de noeuds E est le nombre de liens à allouer sur les n(n 1)/2 paires d agents i et j possibles. Etablir tous les réseaux possibles sur les n noeuds, en tirer un aléatoirement.

77 Les Poisson random networks L expérience de Milgram Les réseaux aléatoires G(n, p) (Solomonoff et Rapoport, 1951 ; Erdös-Renyi, 1959) random graph model : n le nombre de noeuds 0 p 1 est la probabilité (iid) que pour toute paire d agents i et j, ij g G(n, E) (Erdös-Renyi, 1960) n le nombre de noeuds E est le nombre de liens à allouer sur les n(n 1)/2 paires d agents i et j possibles. Etablir tous les réseaux possibles sur les n noeuds, en tirer un aléatoirement.

78 Les Poisson random networks L expérience de Milgram Les réseaux aléatoires G(n, p) (Solomonoff et Rapoport, 1951 ; Erdös-Renyi, 1959) random graph model : n le nombre de noeuds 0 p 1 est la probabilité (iid) que pour toute paire d agents i et j, ij g G(n, E) (Erdös-Renyi, 1960) n le nombre de noeuds E est le nombre de liens à allouer sur les n(n 1)/2 paires d agents i et j possibles. Etablir tous les réseaux possibles sur les n noeuds, en tirer un aléatoirement.

79 Les Poisson random networks L expérience de Milgram Les réseaux aléatoires G(n, p) (Solomonoff et Rapoport, 1951 ; Erdös-Renyi, 1959) random graph model : n le nombre de noeuds 0 p 1 est la probabilité (iid) que pour toute paire d agents i et j, ij g G(n, E) (Erdös-Renyi, 1960) n le nombre de noeuds E est le nombre de liens à allouer sur les n(n 1)/2 paires d agents i et j possibles. Etablir tous les réseaux possibles sur les n noeuds, en tirer un aléatoirement.

80 Les Poisson random networks L expérience de Milgram Les réseaux aléatoires G(n, p) (Solomonoff et Rapoport, 1951 ; Erdös-Renyi, 1959) random graph model : n le nombre de noeuds 0 p 1 est la probabilité (iid) que pour toute paire d agents i et j, ij g G(n, E) (Erdös-Renyi, 1960) n le nombre de noeuds E est le nombre de liens à allouer sur les n(n 1)/2 paires d agents i et j possibles. Etablir tous les réseaux possibles sur les n noeuds, en tirer un aléatoirement.

81 Les Poisson random networks L expérience de Milgram Les réseaux aléatoires G(n, p) (Solomonoff et Rapoport, 1951 ; Erdös-Renyi, 1959) random graph model : n le nombre de noeuds 0 p 1 est la probabilité (iid) que pour toute paire d agents i et j, ij g G(n, E) (Erdös-Renyi, 1960) n le nombre de noeuds E est le nombre de liens à allouer sur les n(n 1)/2 paires d agents i et j possibles. Etablir tous les réseaux possibles sur les n noeuds, en tirer un aléatoirement.

82 Les Poisson random networks L expérience de Milgram Les réseaux aléatoires G(n, p) (Solomonoff et Rapoport, 1951 ; Erdös-Renyi, 1959) random graph model : n le nombre de noeuds 0 p 1 est la probabilité (iid) que pour toute paire d agents i et j, ij g G(n, E) (Erdös-Renyi, 1960) n le nombre de noeuds E est le nombre de liens à allouer sur les n(n 1)/2 paires d agents i et j possibles. Etablir tous les réseaux possibles sur les n noeuds, en tirer un aléatoirement.

83 Les Poisson random networks L expérience de Milgram Les réseaux aléatoires Principe d analyse des propriétés structurelles Pour un réseau alétoire (Poisson random graph) Fixons p(n) et laissons n Définissons une propriété de réseau qui elle même définit, pour une population N, un sous-ensemble de tous les réseaux possibles sur N : A(N) G(N) Monotonicité : la propriété A(.) est monotone si N, g g et g A(N) alors g A(N).

84 Les Poisson random networks L expérience de Milgram Les réseaux aléatoires Principe d analyse des propriétés structurelles Pour un réseau alétoire (Poisson random graph) Fixons p(n) et laissons n Définissons une propriété de réseau qui elle même définit, pour une population N, un sous-ensemble de tous les réseaux possibles sur N : A(N) G(N) Monotonicité : la propriété A(.) est monotone si N, g g et g A(N) alors g A(N).

85 Les Poisson random networks L expérience de Milgram Les réseaux aléatoires Principe d analyse des propriétés structurelles Pour un réseau alétoire (Poisson random graph) Fixons p(n) et laissons n Définissons une propriété de réseau qui elle même définit, pour une population N, un sous-ensemble de tous les réseaux possibles sur N : A(N) G(N) Monotonicité : la propriété A(.) est monotone si N, g g et g A(N) alors g A(N).

86 Les Poisson random networks L expérience de Milgram Les réseaux aléatoires Principe d analyse des propriétés structurelles Pour un réseau alétoire (Poisson random graph) Fixons p(n) et laissons n Définissons une propriété de réseau qui elle même définit, pour une population N, un sous-ensemble de tous les réseaux possibles sur N : A(N) G(N) Monotonicité : la propriété A(.) est monotone si N, g g et g A(N) alors g A(N).

Les logiciels Ucinet et Netdraw

Les logiciels Ucinet et Netdraw École d été Web intelligence 6 au 10 juillet 2009 Les graphes et leurs différentes formes Des données à la construction du graphe Une forme plus avancée de représentation Densité d un graphe Graphe connexe

Plus en détail

Théorie des graphes. Introduction. Programme de Terminale ES Spécialité. Résolution de problèmes à l aide de graphes. Préparation CAPES UCBL

Théorie des graphes. Introduction. Programme de Terminale ES Spécialité. Résolution de problèmes à l aide de graphes. Préparation CAPES UCBL Introduction Ces quelques pages ont pour objectif de vous initier aux notions de théorie des graphes enseignées en Terminale ES. Le programme de Terminale (voir ci-après) est construit sur la résolution

Plus en détail

Cours de spécialité mathématiques en Terminale ES

Cours de spécialité mathématiques en Terminale ES Cours de spécialité mathématiques en Terminale ES O. Lader 2014/2015 Lycée Jean Vilar Spé math terminale ES 2014/2015 1 / 51 Systèmes linéaires Deux exemples de systèmes linéaires à deux équations et deux

Plus en détail

Modèles à Événements Discrets. Réseaux de Petri Stochastiques

Modèles à Événements Discrets. Réseaux de Petri Stochastiques Modèles à Événements Discrets Réseaux de Petri Stochastiques Table des matières 1 Chaînes de Markov Définition formelle Idée générale Discrete Time Markov Chains Continuous Time Markov Chains Propriétés

Plus en détail

Analyse empirique et modélisation de la dynamique de la topologie de l Internet

Analyse empirique et modélisation de la dynamique de la topologie de l Internet Analyse empirique et modélisation de la dynamique de la topologie de l Internet Sergey Kirgizov Directrice de thèse: Clémence Magnien Complex Networks, LIP6, (UPMC, CNRS) Paris, 12 décembre 2014 Plan 1

Plus en détail

Big Data et Graphes : Quelques pistes de recherche

Big Data et Graphes : Quelques pistes de recherche Big Data et Graphes : Quelques pistes de recherche Hamamache Kheddouci Laboratoire d'informatique en Image et Systèmes d'information LIRIS UMR 5205 CNRS/INSA de Lyon/Université Claude Bernard Lyon 1/Université

Plus en détail

Big Data et Graphes : Quelques pistes de recherche

Big Data et Graphes : Quelques pistes de recherche Big Data et Graphes : Quelques pistes de recherche Hamamache Kheddouci http://liris.cnrs.fr/hamamache.kheddouci Laboratoire d'informatique en Image et Systèmes d'information LIRIS UMR 5205 CNRS/INSA de

Plus en détail

Graphes, réseaux et internet

Graphes, réseaux et internet Graphes, réseaux et internet Clémence Magnien clemence.magnien@lip6.fr LIP6 CNRS et Université Pierre et Marie Curie (UPMC Paris 6) avec Matthieu Latapy, Frédéric Ouédraogo, Guillaume Valadon, Assia Hamzaoui,...

Plus en détail

Analyse des réseaux sociaux et apprentissage

Analyse des réseaux sociaux et apprentissage Analyse des réseaux sociaux et apprentissage Emmanuel Viennet Laboratoire de Traitement et Transport de l Information Université Paris 13 - Sorbonne Paris Cité Réseaux sociaux? Réseaux sociaux? Analyse

Plus en détail

LES RESEAUX SOCIAUX. Alain DEGENNE 1

LES RESEAUX SOCIAUX. Alain DEGENNE 1 5 Math. & Sci. hum. / Mathematics and Social Sciences (42 e année, n 168, 2004(4), p. 5-9) LES RESEAUX SOCIAUX Alain DEGENNE 1 INTRODUCTION Parmi les nombreux foyers de recherche actifs dans le domaine

Plus en détail

Baccalauréat ES Centres étrangers 12 juin 2014 - Corrigé

Baccalauréat ES Centres étrangers 12 juin 2014 - Corrigé Baccalauréat ES Centres étrangers 1 juin 14 - Corrigé A. P. M. E. P. Exercice 1 5 points Commun à tous les candidats 1. On prend un candidat au hasard et on note : l évènement «le candidat a un dossier

Plus en détail

COURS SYRRES RÉSEAUX SOCIAUX. Jean-Loup Guillaume

COURS SYRRES RÉSEAUX SOCIAUX. Jean-Loup Guillaume COURS SYRRES RÉSEAUX SOCIAUX Jean-Loup Guillaume Le cours http://jlguillaume.free.fr/www/teaching/syrres/ Exemple 1 : Expérience de Milgram Objectif faire transiter une lettre depuis les Nebraska à un

Plus en détail

14. Introduction aux files d attente

14. Introduction aux files d attente 14. Introduction aux files d attente MTH2302D S. Le Digabel, École Polytechnique de Montréal H2015 (v2) MTH2302D: Files d attente 1/24 Plan 1. Introduction 2. Modèle M/M/1 3. Modèle M/M/1/K MTH2302D: Files

Plus en détail

Chapitre 2 Maîtrise des flux. - Chapitre 2 - Maîtrise des flux

Chapitre 2 Maîtrise des flux. - Chapitre 2 - Maîtrise des flux - - Facteurs agissant sur les flux Les modèles pour les SP Les réseaux de files d attente 1 Facteurs agissant sur les flux Au niveau physique : L implantation Le nombre de machines Automatisation (robots,

Plus en détail

DEFINITION et PROPRIETES des PRINCIPALES LOIS de PROBABILITES

DEFINITION et PROPRIETES des PRINCIPALES LOIS de PROBABILITES Université Paris1, Licence 00-003, Mme Pradel : Principales lois de Probabilité 1 DEFINITION et PROPRIETES des PRINCIPALES LOIS de PROBABILITES Notations Si la variable aléatoire X suit la loi L, onnoterax

Plus en détail

Cours 1: lois discrétes classiques en probabilités

Cours 1: lois discrétes classiques en probabilités Cours 1: lois discrétes classiques en probabilités Laboratoire de Mathématiques de Toulouse Université Paul Sabatier-IUT GEA Ponsan Module: Stat inférentielles Définition Quelques exemples loi d une v.a

Plus en détail

AT41 - «Métropoles et réseaux»

AT41 - «Métropoles et réseaux» AT41 - «Métropoles et réseaux» Une approche par la théorie des graphes Plan Problématiques Quelques définitions Théorie des graphes: 1. Partitionnement de graphe : ex. les communautés 2. Analyse des réseaux

Plus en détail

Programmation dynamique

Programmation dynamique A. Principe général B. Application Triangle de Pascal Série mondiale Multiplication chaînée de matrices Les plus courts chemins Principe général Souvent, pour résoudre un problème de taille n, on s'aperçoit

Plus en détail

Introduction à la simulation de Monte Carlo

Introduction à la simulation de Monte Carlo Introduction à la simulation de 6-601-09 Simulation Geneviève Gauthier HEC Montréal e 1 d une I Soit X 1, X,..., X n des variables aléatoires indépendantes et identiquement distribuées. Elles sont obtenues

Plus en détail

L'analyse des réseaux sociaux

L'analyse des réseaux sociaux L'analyse des réseaux sociaux Laurent Beauguitte CNRS - UMR IDEES 20 janvier 2015 L. Beauguitte (CNRS) SNA 20 janvier 2015 1 / 17 1 Questions de recherche et données 2 Mesures globales et locales 3 Deux

Plus en détail

Texte Agrégation limitée par diffusion interne

Texte Agrégation limitée par diffusion interne Page n 1. Texte Agrégation limitée par diffusion interne 1 Le phénomène observé Un fût de déchets radioactifs est enterré secrètement dans le Cantal. Au bout de quelques années, il devient poreux et laisse

Plus en détail

Le Data Mining au service du Scoring ou notation statistique des emprunteurs!

Le Data Mining au service du Scoring ou notation statistique des emprunteurs! France Le Data Mining au service du Scoring ou notation statistique des emprunteurs! Comme le rappelle la CNIL dans sa délibération n 88-083 du 5 Juillet 1988 portant adoption d une recommandation relative

Plus en détail

L'ANALYSE DYNAMIQUE DE RESEAUX SOCIAUX METHODE ET APPLICATION (SIENA POUR LES NULS) COMPLETS AVEC SIENA. Ainhoa de Federico de la Rúa

L'ANALYSE DYNAMIQUE DE RESEAUX SOCIAUX METHODE ET APPLICATION (SIENA POUR LES NULS) COMPLETS AVEC SIENA. Ainhoa de Federico de la Rúa L'ANALYSE DYNAMIQUE DE RESEAUX SOCIAUX COMPLETS AVEC SIENA METHODE ET APPLICATION (SIENA POUR LES NULS) Ainhoa de Federico de la Rúa Université de Toulouse II Le Mirail CERS LISST RESEAUX CAUSES OU EFFETS?

Plus en détail

TD 4 : HEC 2001 épreuve II

TD 4 : HEC 2001 épreuve II TD 4 : HEC 200 épreuve II Dans tout le problème, n désigne un entier supérieur ou égal à 2 On dispose de n jetons numérotés de à n On tire, au hasard et sans remise, les jetons un à un La suite (a, a 2,,

Plus en détail

Hélène Desmier ab, Pascale Kuntz a & Ivan Kojadinovic a. Pauc, 44306 Nantes. {prenom.nom}@polytech.univ-nantes.fr

Hélène Desmier ab, Pascale Kuntz a & Ivan Kojadinovic a. Pauc, 44306 Nantes. {prenom.nom}@polytech.univ-nantes.fr Une classification hiérarchique de variables discrètes basée sur l information mutuelle en pré-traitement d un algorithme de sélection de variables pertinentes. Hélène Desmier ab, Pascale Kuntz a & Ivan

Plus en détail

Support du cours de Probabilités IUT d Orléans, Département d informatique

Support du cours de Probabilités IUT d Orléans, Département d informatique Support du cours de Probabilités IUT d Orléans, Département d informatique Pierre Andreoletti IUT d Orléans Laboratoire MAPMO (Bât. de Mathématiques UFR Sciences) - Bureau 126 email: pierre.andreoletti@univ-orleans.fr

Plus en détail

FIMA, 7 juillet 2005

FIMA, 7 juillet 2005 F. Corset 1 S. 2 1 LabSAD Université Pierre Mendes France 2 Département de Mathématiques Université de Franche-Comté FIMA, 7 juillet 2005 Plan de l exposé plus court chemin Origine du problème Modélisation

Plus en détail

Méthodes de Résolution de problèmes En Intelligence Artificielle

Méthodes de Résolution de problèmes En Intelligence Artificielle Méthodes de Résolution de problèmes En Intelligence Artificielle Résolution de Problèmes et Intelligence Artificielle Résoudre des puzzles Jouer aux échecs Faire des mathématiques Et même conduire une

Plus en détail

Introduction à l Analyse des Réseaux Sociaux

Introduction à l Analyse des Réseaux Sociaux Introduction à l Analyse des Réseaux Sociaux Erick Stattner Laboratoire LAMIA Université des Antilles et de la Guyane, France erick.stattner@univ-ag.fr Guadeloupe, Novembre 2012 Erick Stattner Introduction

Plus en détail

FaceBook aime les Maths!

FaceBook aime les Maths! FaceBook aime les Maths! Michel Rigo http://www.discmath.ulg.ac.be/ http://orbi.ulg.ac.be/ Réseaux Visualizing my Twitter Network by number of followers. Michael Atkisson http://woknowing.wordpress.com/

Plus en détail

Le corps R des nombres réels

Le corps R des nombres réels Le corps R des nombres réels. Construction de R à l aide des suites de Cauchy de nombres rationnels On explique brièvement dans ce paragraphe comment construire le corps R des nombres réels à partir du

Plus en détail

Introduction à la programmation en variables entières Cours 3

Introduction à la programmation en variables entières Cours 3 Introduction à la programmation en variables entières Cours 3 F. Clautiaux francois.clautiaux@math.u-bordeaux1.fr Université Bordeaux 1 Bât A33 - Bur 272 Sommaire Notion d heuristique Les algorithmes gloutons

Plus en détail

Introduction et définition

Introduction et définition Loi de puissance Introduction et définition Propriétés de la loi de puissance(ldp) LdP et loi probabilités LdP et loi d échelle LdP et graphes complexes LdP et SOC Exemples d applicabilité Economie Réseaux

Plus en détail

PROBABILITES ET STATISTIQUE I&II

PROBABILITES ET STATISTIQUE I&II PROBABILITES ET STATISTIQUE I&II TABLE DES MATIERES CHAPITRE I - COMBINATOIRE ELEMENTAIRE I.1. Rappel des notations de la théorie des ensemble I.1.a. Ensembles et sous-ensembles I.1.b. Diagrammes (dits

Plus en détail

Master IAD Module PS. Reconnaissance de la parole (suite) Modèles de Markov et bases de données. Gaël RICHARD Février 2008

Master IAD Module PS. Reconnaissance de la parole (suite) Modèles de Markov et bases de données. Gaël RICHARD Février 2008 Master IAD Module PS Reconnaissance de la parole (suite) Modèles de Markov et bases de données Gaël RICHARD Février 2008 1 Reconnaissance de la parole Introduction Approches pour la reconnaissance vocale

Plus en détail

Licence STIC, Semestre 1 Algorithmique & Programmation 1

Licence STIC, Semestre 1 Algorithmique & Programmation 1 Licence STIC, Semestre 1 Algorithmique & Programmation 1 Exercices Alexandre Tessier 1 Introduction 2 instruction de sortie 3 expressions 4 variable informatique 5 séquence d instructions, trace Exercice

Plus en détail

Soutien illimité 7j/7 en maths: Coach, profs, exercices & annales, cours. Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Liban

Soutien illimité 7j/7 en maths: Coach, profs, exercices & annales, cours. Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Liban Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Liban EXERCICE 1 : 4 Points Cet exercice est un questionnaire à choix multiples. Aucune justification n est demandée. Pour chacune des questions, une

Plus en détail

Sujet de Bac 2013 Maths ES Obligatoire & Spécialité - Pondichéry

Sujet de Bac 2013 Maths ES Obligatoire & Spécialité - Pondichéry Sujet de Bac 2013 Maths ES Obligatoire & Spécialité - Pondichéry Exercice 1 : 4 points Commun à tous les candidats Cet exercice est un questionnaire à choix multiples. Une réponse exacte rapporte 1 point.

Plus en détail

Contents. 1 Introduction Objectifs des systèmes bonus-malus Système bonus-malus à classes Système bonus-malus : Principes

Contents. 1 Introduction Objectifs des systèmes bonus-malus Système bonus-malus à classes Système bonus-malus : Principes Université Claude Bernard Lyon 1 Institut de Science Financière et d Assurances Système Bonus-Malus Introduction & Applications SCILAB Julien Tomas Institut de Science Financière et d Assurances Laboratoire

Plus en détail

Prévention et gestion des risques naturels et environnementaux

Prévention et gestion des risques naturels et environnementaux Prévention et gestion des risques naturels et environnementaux Risque et assurance : quelques éléments théoriques Ecole des Ponts - Le 6 Avril 01 Jacques Pelletan 1 Théorie du risque et pérennité de l

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)

Plus en détail

COURS SYRRES RÉSEAUX SOCIAUX INTRODUCTION. Jean-Loup Guillaume

COURS SYRRES RÉSEAUX SOCIAUX INTRODUCTION. Jean-Loup Guillaume COURS SYRRES RÉSEAUX SOCIAUX INTRODUCTION Jean-Loup Guillaume Le cours Enseignant : Jean-Loup Guillaume équipe Complex Network Page du cours : http://jlguillaume.free.fr/www/teaching-syrres.php Évaluation

Plus en détail

Modélisation coalescente pour la détection précoce d un cancer

Modélisation coalescente pour la détection précoce d un cancer Modélisation coalescente pour la détection précoce d un cancer Mathieu Emily 27 Novembre 2007 Bioinformatics Research Center - Université d Aarhus Danemark Mathieu Emily Coalescence et cancer 1 Introduction

Plus en détail

Chapitre 1: Introduction au calcul des probabilités, cas d un univers fini.

Chapitre 1: Introduction au calcul des probabilités, cas d un univers fini. Chapitre 1: Introduction au calcul des probabilités, cas d un univers fini. 1 Introduction Des actions comme lancer un dé, tirer une carte d un jeu, observer la durée de vie d une ampoule électrique, etc...sont

Plus en détail

Arbres binaires. Hélène Milhem. Institut de Mathématiques de Toulouse, INSA Toulouse, France IUP SID, 2011-2012

Arbres binaires. Hélène Milhem. Institut de Mathématiques de Toulouse, INSA Toulouse, France IUP SID, 2011-2012 Arbres binaires Hélène Milhem Institut de Mathématiques de Toulouse, INSA Toulouse, France IUP SID, 2011-2012 H. Milhem (IMT, INSA Toulouse) Arbres binaires IUP SID 2011-2012 1 / 35 PLAN Introduction Construction

Plus en détail

Projet CLANU en 3GE: Compléments d algèbre linéaire numérique

Projet CLANU en 3GE: Compléments d algèbre linéaire numérique Projet CLANU en 3GE: Compléments d algèbre linéaire numérique Année 2008/2009 1 Décomposition QR On rappelle que la multiplication avec une matrice unitaire Q C n n (c est-à-dire Q 1 = Q = Q T ) ne change

Plus en détail

Introduction à l Analyse des Réseaux Sociaux

Introduction à l Analyse des Réseaux Sociaux (ARS) 18 mars 2010 Analyse des réseaux sociaux Définition Propriétés Utilisation & Applications Analyse des réseaux sociaux Définition Propriétés Utilisation & Applications Etude des entités sociales (les

Plus en détail

Capacité d un canal Second Théorème de Shannon. Théorie de l information 1/34

Capacité d un canal Second Théorème de Shannon. Théorie de l information 1/34 Capacité d un canal Second Théorème de Shannon Théorie de l information 1/34 Plan du cours 1. Canaux discrets sans mémoire, exemples ; 2. Capacité ; 3. Canaux symétriques ; 4. Codage de canal ; 5. Second

Plus en détail

Chapitre 5 : Flot maximal dans un graphe

Chapitre 5 : Flot maximal dans un graphe Graphes et RO TELECOM Nancy A Chapitre 5 : Flot maximal dans un graphe J.-F. Scheid 1 Plan du chapitre I. Définitions 1 Graphe Graphe valué 3 Représentation d un graphe (matrice d incidence, matrice d

Plus en détail

IFT6561. Simulation: aspects stochastiques

IFT6561. Simulation: aspects stochastiques IFT 6561 Simulation: aspects stochastiques DIRO Université de Montréal Automne 2013 Détails pratiques Professeur:, bureau 3367, Pav. A.-Aisenstadt. Courriel: bastin@iro.umontreal.ca Page web: http://www.iro.umontreal.ca/~bastin

Plus en détail

Modélisation des transports

Modélisation des transports Modélisation des transports Cinzia Cirillo, Eric Cornelis & Philippe TOINT D.E.S. interuniversitaire en gestion des transports Les Modèles de choix discrets Dr. CINZIA CIRILLO Facultés Universitaires Notre-Dame

Plus en détail

IAE Master 2 Gestion de Portefeuille Année 2011 2012. Feuille 3 Pricing et couverture Modèles discret

IAE Master 2 Gestion de Portefeuille Année 2011 2012. Feuille 3 Pricing et couverture Modèles discret Université de Paris Est Créteil Mathématiques financières IAE Master 2 Gestion de Portefeuille Année 2011 2012 1. Le problème des partis 1 Feuille 3 Pricing et couverture Modèles discret Le chevalier de

Plus en détail

Chapitre 3 : INFERENCE

Chapitre 3 : INFERENCE Chapitre 3 : INFERENCE 3.1 L ÉCHANTILLONNAGE 3.1.1 Introduction 3.1.2 L échantillonnage aléatoire 3.1.3 Estimation ponctuelle 3.1.4 Distributions d échantillonnage 3.1.5 Intervalles de probabilité L échantillonnage

Plus en détail

- Mobiliser les résultats sur le second degré dans le cadre de la résolution d un problème.

- Mobiliser les résultats sur le second degré dans le cadre de la résolution d un problème. Mathématiques - classe de 1ère des séries STI2D et STL. 1. Analyse On dote les élèves d outils mathématiques permettant de traiter des problèmes relevant de la modélisation de phénomènes continus ou discrets.

Plus en détail

Introduction à l approche bootstrap

Introduction à l approche bootstrap Introduction à l approche bootstrap Irène Buvat U494 INSERM buvat@imedjussieufr 25 septembre 2000 Introduction à l approche bootstrap - Irène Buvat - 21/9/00-1 Plan du cours Qu est-ce que le bootstrap?

Plus en détail

Lois de probabilité. Anita Burgun

Lois de probabilité. Anita Burgun Lois de probabilité Anita Burgun Problème posé Le problème posé en statistique: On s intéresse à une population On extrait un échantillon On se demande quelle sera la composition de l échantillon (pourcentage

Plus en détail

Programmation linéaire

Programmation linéaire Programmation linéaire DIDIER MAQUIN Ecole Nationale Supérieure d Electricité et de Mécanique Institut National Polytechnique de Lorraine Mathématiques discrètes cours de 2ème année Programmation linéaire

Plus en détail

Fouille de Données et Media Sociaux Cours 2 Master DAC Data Science UPMC - LIP6

Fouille de Données et Media Sociaux Cours 2 Master DAC Data Science UPMC - LIP6 Fouille de Données et Media Sociaux Cours 2 Master DAC Data Science UPMC - LIP6 Ludovic Denoyer 21 septembre 2015 Ludovic Denoyer () FDMS 21 septembre 2015 1 / 1 Contexte Observation La plupart des bonnes

Plus en détail

Loi binomiale Lois normales

Loi binomiale Lois normales Loi binomiale Lois normales Christophe ROSSIGNOL Année scolaire 204/205 Table des matières Rappels sur la loi binomiale 2. Loi de Bernoulli............................................ 2.2 Schéma de Bernoulli

Plus en détail

Distributions bayésiennes nonparamétriques sur les matrices binaires triangulaires infinies : Applications aux modèles graphiques

Distributions bayésiennes nonparamétriques sur les matrices binaires triangulaires infinies : Applications aux modèles graphiques Distributions bayésiennes nonparamétriques sur les matrices binaires triangulaires infinies : Applications aux modèles graphiques Patrick Dallaire Université Laval Département d informatique et de génie

Plus en détail

Modélisation aléatoire en fiabilité des logiciels

Modélisation aléatoire en fiabilité des logiciels collection Méthodes stochastiques appliquées dirigée par Nikolaos Limnios et Jacques Janssen La sûreté de fonctionnement des systèmes informatiques est aujourd hui un enjeu économique et sociétal majeur.

Plus en détail

Modélisation aléatoire en fiabilité des logiciels

Modélisation aléatoire en fiabilité des logiciels collection Méthodes stochastiques appliquées dirigée par Nikolaos Limnios et Jacques Janssen La sûreté de fonctionnement des systèmes informatiques est aujourd hui un enjeu économique et sociétal majeur.

Plus en détail

Queue de la solution stationnaire d un modèle auto-régressif d ordre 1 à coefficients markoviens.

Queue de la solution stationnaire d un modèle auto-régressif d ordre 1 à coefficients markoviens. . Queue de la solution stationnaire d un modèle auto-régressif d ordre 1 à coefficients markoviens. Benoîte de Saporta Université de Nantes Université de Nantes - 9 juin 2005 p. 1/37 Plan de l exposé 1.

Plus en détail

MULTIPLICATION RAPIDE : KARATSUBA ET FFT

MULTIPLICATION RAPIDE : KARATSUBA ET FFT MULTIPLICATION RAPIDE : KARATSUBA ET FFT 1. Introduction La multiplication est une opération élémentaire qu on utilise évidemment très souvent, et la rapidité des nombreux algorithmes qui l utilisent dépend

Plus en détail

Principes généraux de codage entropique d'une source. Cours : Compression d'images Master II: IASIG Dr. Mvogo Ngono Joseph

Principes généraux de codage entropique d'une source. Cours : Compression d'images Master II: IASIG Dr. Mvogo Ngono Joseph Principes généraux de codage entropique d'une source Cours : Compression d'images Master II: IASIG Dr. Mvogo Ngono Joseph Table des matières Objectifs 5 Introduction 7 I - Entropie d'une source 9 II -

Plus en détail

I La théorie de l arbitrage fiscal de la dette (8 points)

I La théorie de l arbitrage fiscal de la dette (8 points) E : «Théories de la finance d entreprise» Master M1 Université Paris-Dauphine Thierry Granger Année Universitaire 2013/2014 Session 1 Aucun document, calculette autorisée Durée 1h30 Respecter la numérotation

Plus en détail

Méthodes de distances Formation CNRS «Phylogénie moléculaire»

Méthodes de distances Formation CNRS «Phylogénie moléculaire» Méthodes de distances Formation CNRS «Phylogénie moléculaire» Guy Perrière Laboratoire de Biométrie et Biologie Évolutive UMR CNRS n 5558 Université Claude Bernard Lyon 1 2 mars 213 Guy Perrière (BBE)

Plus en détail

Le Multidimensional Scaling et la cartographie des préférences

Le Multidimensional Scaling et la cartographie des préférences Le Multidimensional Scaling et la cartographie des préférences Gilbert Saporta Conservatoire National des Arts et Métiers http://cedric.cnam.fr/~saporta Avril 2014 Multidimensional scaling Egalement appelé

Plus en détail

Fiche de révision sur les lois continues

Fiche de révision sur les lois continues Exercice 1 Voir la correction Le laboratoire de physique d un lycée dispose d un parc d oscilloscopes identiques. La durée de vie en années d un oscilloscope est une variable aléatoire notée X qui suit

Plus en détail

Baccalauréat ES/L Amérique du Sud 21 novembre 2013

Baccalauréat ES/L Amérique du Sud 21 novembre 2013 Baccalauréat ES/L Amérique du Sud 21 novembre 2013 A. P. M. E. P. EXERCICE 1 Commun à tous les candidats 5 points Une entreprise informatique produit et vend des clés USB. La vente de ces clés est réalisée

Plus en détail

Processus aléatoires avec application en finance

Processus aléatoires avec application en finance Genève, le 16 juin 2007. Processus aléatoires avec application en finance La durée de l examen est de deux heures. N oubliez pas d indiquer votre nom et prénom sur chaque feuille. Toute documentation et

Plus en détail

Heuristique et métaheuristique. 8. Optimisation combinatoire et métaheuristiques. Optimisation combinatoire. Problème du voyageur de commerce

Heuristique et métaheuristique. 8. Optimisation combinatoire et métaheuristiques. Optimisation combinatoire. Problème du voyageur de commerce Heuristique et métaheuristique IFT1575 Modèles de recherche opérationnelle (RO) 8. Optimisation combinatoire et métaheuristiques Un algorithme heuristique permet d identifier au moins une solution réalisable

Plus en détail

COMPORTEMENT ASYMPTOTIQUE D UNE FILE D ATTENTE À UN SERVEUR

COMPORTEMENT ASYMPTOTIQUE D UNE FILE D ATTENTE À UN SERVEUR Université Paris VII. Préparation à l Agrégation. (François Delarue) COMPORTEMENT ASYMPTOTIQUE D UNE FILE D ATTENTE À UN SERVEUR Ce texte vise à l étude du temps d attente d un client à la caisse d un

Plus en détail

Évaluation de la classification et segmentation d'images en environnement incertain

Évaluation de la classification et segmentation d'images en environnement incertain Évaluation de la classification et segmentation d'images en environnement incertain EXTRACTION ET EXPLOITATION DE L INFORMATION EN ENVIRONNEMENTS INCERTAINS / E3I2 EA3876 2, rue F. Verny 29806 Brest cedex

Plus en détail

Méthodes de Monte-Carlo Simulation de grandeurs aléatoires

Méthodes de Monte-Carlo Simulation de grandeurs aléatoires Méthodes de Monte-Carlo Simulation de grandeurs aléatoires Master Modélisation et Simulation / ENSTA TD 1 2012-2013 Les méthodes dites de Monte-Carlo consistent en des simulations expérimentales de problèmes

Plus en détail

Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin.

Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin. Exo7 Matrice d une application linéaire Corrections d Arnaud odin. Exercice Soit R muni de la base canonique = ( i, j). Soit f : R R la projection sur l axe des abscisses R i parallèlement à R( i + j).

Plus en détail

Exercices : Probabilités

Exercices : Probabilités Exercices : Probabilités Partie : Probabilités Exercice Dans un univers, on donne deux événements et incompatibles tels que =0, et =0,7. Calculer,, et. Exercice Un dé (à faces) est truqué de la façon suivante

Plus en détail

Introduction au modèle linéaire général

Introduction au modèle linéaire général Résumé Introductions au modèle linéaire général Retour au plan du cours Travaux pratiques 1 Introduction L objet de ce chapitre est d introduire le cadre théorique global permettant de regrouper tous les

Plus en détail

Jeffrey S. Rosenthal

Jeffrey S. Rosenthal Les marches aléatoires et les algorithmes MCMC Jeffrey S. Rosenthal University of Toronto jeff@math.toronto.edu http ://probability.ca/jeff/ (CRM, Montréal, Jan 12, 2007) Un processus stochastique Qu est-ce

Plus en détail

Théorie du chaos multiplicatif et application à l étude de la mesure MRM lognormale. 15 novembre 2010

Théorie du chaos multiplicatif et application à l étude de la mesure MRM lognormale. 15 novembre 2010 Théorie du chaos multiplicatif et application à l étude de la mesure MRM lognormale 15 novembre 2010 Table des matières 1 Rappel sur les Processus Gaussiens 2 Théorie du chaos multiplicatif gaussien de

Plus en détail

Recommandation dans les réseaux sociaux professionnels

Recommandation dans les réseaux sociaux professionnels Recommandation dans les réseaux sociaux professionnels Application sur un réseau bibliographique 6 mai 2010 Objectif et Motivation Techniques utilisées Algorithme exhaustive de recherche de toutes les

Plus en détail

Méthodologie d échantillonnage et Échantillonneur ASDE

Méthodologie d échantillonnage et Échantillonneur ASDE Méthodologie d échantillonnage et Échantillonneur ASDE Par Michel Rochon L énoncé suivant définit de façon générale la méthodologie utilisée par Échantillonneur ASDE pour tirer des échantillons téléphoniques.

Plus en détail

Master Modélisation Statistique M2 Finance - chapitre 1. Gestion optimale de portefeuille, l approche de Markowitz

Master Modélisation Statistique M2 Finance - chapitre 1. Gestion optimale de portefeuille, l approche de Markowitz Master Modélisation Statistique M2 Finance - chapitre 1 Gestion optimale de portefeuille, l approche de Markowitz Clément Dombry, Laboratoire de Mathématiques de Besançon, Université de Franche-Comté.

Plus en détail

Probabilités. I- Expérience aléatoire, espace probabilisé : ShotGun. 1- Définitions :

Probabilités. I- Expérience aléatoire, espace probabilisé : ShotGun. 1- Définitions : Probabilités I- Expérience aléatoire, espace probabilisé : 1- Définitions : Ω : Ensemble dont les points w sont les résultats possibles de l expérience Des évènements A parties de Ω appartiennent à A une

Plus en détail

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. 1 Définitions, notations Calcul matriciel Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. On utilise aussi la notation m n pour le

Plus en détail

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures)

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures) CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE Cinquième épreuve d admissibilité STATISTIQUE (durée : cinq heures) Une composition portant sur la statistique. SUJET Cette épreuve est composée d un

Plus en détail

Exercices théoriques

Exercices théoriques École normale supérieure 2008-2009 Département d informatique Algorithmique et Programmation TD n 9 : Programmation Linéaire Avec Solutions Exercices théoriques Rappel : Dual d un programme linéaire cf.

Plus en détail

Travaux Dirigés de Probabilités - Statistiques, TD 4. Lois limites ; estimation.

Travaux Dirigés de Probabilités - Statistiques, TD 4. Lois limites ; estimation. Travaux Dirigés de Probabilités - Statistiques, TD 4 Lois limites ; estimation. Exercice 1. Trois machines, A, B, C fournissent respectivement 50%, 30%, 20% de la production d une usine. Les pourcentages

Plus en détail

Loi normale ou loi de Laplace-Gauss

Loi normale ou loi de Laplace-Gauss LivreSansTitre1.book Page 44 Mardi, 22. juin 2010 10:40 10 Loi normale ou loi de Laplace-Gauss I. Définition de la loi normale II. Tables de la loi normale centrée réduite S il y avait une seule loi de

Plus en détail

Développement décimal d un réel

Développement décimal d un réel 4 Développement décimal d un réel On rappelle que le corps R des nombres réels est archimédien, ce qui permet d y définir la fonction partie entière. En utilisant cette partie entière on verra dans ce

Plus en détail

Probabilités et Statistiques. Feuille 2 : variables aléatoires discrètes

Probabilités et Statistiques. Feuille 2 : variables aléatoires discrètes IUT HSE Probabilités et Statistiques Feuille : variables aléatoires discrètes 1 Exercices Dénombrements Exercice 1. On souhaite ranger sur une étagère 4 livres de mathématiques (distincts), 6 livres de

Plus en détail

BACCALAURÉAT GÉNÉRAL Hiver 2015

BACCALAURÉAT GÉNÉRAL Hiver 2015 BACCALAURÉAT GÉNÉRAL Hiver 2015 Épreuve : MATHÉMATIQUES Séries SCIENCES ÉCONOMIQUES ET SOCIALES, toutes spécialités LITTÉRAIRE, spécialité Mathématiques Classes TES1, TES2, TES3, TES ET TL1ES Durée de

Plus en détail

Analyse de données et méthodes numériques

Analyse de données et méthodes numériques Analyse de données et méthodes numériques Analyse de données: Que faire avec un résultat? Comment le décrire? Comment l analyser? Quels sont les «modèles» mathématiques associés? Analyse de données et

Plus en détail

Filtrage stochastique non linéaire par la théorie de représentation des martingales

Filtrage stochastique non linéaire par la théorie de représentation des martingales Filtrage stochastique non linéaire par la théorie de représentation des martingales Adriana Climescu-Haulica Laboratoire de Modélisation et Calcul Institut d Informatique et Mathématiques Appliquées de

Plus en détail

Baccalauréat ES Polynésie 7 juin 2013

Baccalauréat ES Polynésie 7 juin 2013 Baccalauréat ES Polnésie 7 juin 2013 EXERCICE 1 Cet exercice est un questionnaire à choix multiples. Pour chaque question, une seule des quatre réponses proposées est correcte. Une réponse juste rapporte

Plus en détail

Notion de complexité

Notion de complexité 1 de 27 Algorithmique Notion de complexité Florent Hivert Mél : Florent.Hivert@lri.fr Adresse universelle : http://www-igm.univ-mlv.fr/ hivert Outils mathématiques 2 de 27 Outils mathématiques : analyse

Plus en détail

CNAM 2002-2003 2léments de cours Bonus-malus et Crédibilité

CNAM 2002-2003 2léments de cours Bonus-malus et Crédibilité 1 CNAM 2002-2003 2léments de cours Bonus-malus et Crédibilité Une situation fréquente en pratique est de disposer non pas d un résultat mais de plusieurs. Le cas se présente en assurance, par exemple :

Plus en détail

L essentiel sur les tests statistiques

L essentiel sur les tests statistiques L essentiel sur les tests statistiques 21 septembre 2014 2 Chapitre 1 Tests statistiques Nous considérerons deux exemples au long de ce chapitre. Abondance en C, G : On considère une séquence d ADN et

Plus en détail

A propos de l enseignant Introduction aux réseaux sociaux

A propos de l enseignant Introduction aux réseaux sociaux A propos de l enseignant Introduction aux réseaux sociaux Sebastian BERVOETS Sebastian BERVOETS Chercheur CNRS - Greqam Me contacter sebastian.bervoets@univmed.fr 1 A propos du cours Objectifs du cours

Plus en détail

Théorème du point fixe - Théorème de l inversion locale

Théorème du point fixe - Théorème de l inversion locale Chapitre 7 Théorème du point fixe - Théorème de l inversion locale Dans ce chapitre et le suivant, on montre deux applications importantes de la notion de différentiabilité : le théorème de l inversion

Plus en détail