Partie 1. La structure des réseaux sociaux

Dimension: px
Commencer à balayer dès la page:

Download "Partie 1. La structure des réseaux sociaux"

Transcription

1 Partie 1. La structure des réseaux sociaux Analyse et Modélisation des Réseaux, Université Bordeaux IV

2 Sections : Introduction 1 Introduction 2 3 L expérience de Milgram Les réseaux aléatoires 4 Le clustering à la Watts et Strogatz 5 Mesures inviduelles de centralité La distribution des degrés Le modèle de Barabasi et Albert 6

3 Pourquoi s intérésser aux réseaux sociaux? Une catégorie très générale et très fréquente des situations d interaction économiques et sociales Joue un rôle dans les comportements des agents et dans les issues individuelle et collective de leurs interactions.

4 Pourquoi s intérésser aux réseaux sociaux? Une catégorie très générale et très fréquente des situations d interaction économiques et sociales Joue un rôle dans les comportements des agents et dans les issues individuelle et collective de leurs interactions.

5 Familles florentines et influence

6 Collaborations scientifiques

7 Information et internet

8 Relations amicales et origine ethnique

9 Romances Introduction

10 L analyse des reseaux sociaux Un objet partagé : Sociologie, Mathématiques, Physique, Economie, Management. Disponibilité des données de réseau Un point de rencontre vers une approche unifiée du fait social.

11 L analyse des reseaux sociaux Un objet partagé : Sociologie, Mathématiques, Physique, Economie, Management. Disponibilité des données de réseau Un point de rencontre vers une approche unifiée du fait social.

12 L analyse des reseaux sociaux Un objet partagé : Sociologie, Mathématiques, Physique, Economie, Management. Disponibilité des données de réseau Un point de rencontre vers une approche unifiée du fait social.

13 Quelques domaines d application en conomie économie de l innovation économie industrielle économie du travail théorie de jeux économie du développement économie publique et environnement économie internationale finance économie spatiale économétrie économie sociale économie du crime

14 Quelques domaines d application en conomie économie de l innovation économie industrielle économie du travail théorie de jeux économie du développement économie publique et environnement économie internationale finance économie spatiale économétrie économie sociale économie du crime

15 Quelques domaines d application en conomie économie de l innovation économie industrielle économie du travail théorie de jeux économie du développement économie publique et environnement économie internationale finance économie spatiale économétrie économie sociale économie du crime

16 Quelques domaines d application en conomie économie de l innovation économie industrielle économie du travail théorie de jeux économie du développement économie publique et environnement économie internationale finance économie spatiale économétrie économie sociale économie du crime

17 Quelques domaines d application en conomie économie de l innovation économie industrielle économie du travail théorie de jeux économie du développement économie publique et environnement économie internationale finance économie spatiale économétrie économie sociale économie du crime

18 Quelques domaines d application en conomie économie de l innovation économie industrielle économie du travail théorie de jeux économie du développement économie publique et environnement économie internationale finance économie spatiale économétrie économie sociale économie du crime

19 Quelques domaines d application en conomie économie de l innovation économie industrielle économie du travail théorie de jeux économie du développement économie publique et environnement économie internationale finance économie spatiale économétrie économie sociale économie du crime

20 Quelques domaines d application en conomie économie de l innovation économie industrielle économie du travail théorie de jeux économie du développement économie publique et environnement économie internationale finance économie spatiale économétrie économie sociale économie du crime

21 Quelques domaines d application en conomie économie de l innovation économie industrielle économie du travail théorie de jeux économie du développement économie publique et environnement économie internationale finance économie spatiale économétrie économie sociale économie du crime

22 Quelques domaines d application en conomie économie de l innovation économie industrielle économie du travail théorie de jeux économie du développement économie publique et environnement économie internationale finance économie spatiale économétrie économie sociale économie du crime

23 Quelques domaines d application en conomie économie de l innovation économie industrielle économie du travail théorie de jeux économie du développement économie publique et environnement économie internationale finance économie spatiale économétrie économie sociale économie du crime

24 Quelques domaines d application en conomie économie de l innovation économie industrielle économie du travail théorie de jeux économie du développement économie publique et environnement économie internationale finance économie spatiale économétrie économie sociale économie du crime

25 Organisation du cours Lectures conseillées : Barabasi L., M. Newman, & D. Watts, 2006, The structure and dynamics of networks, Princeton University Press. Jackson M.O., 2008, Social and Economic Networks, Princeton University Press. Wasserman, S, Faust K., 1994, Social Network Analysis. Methods and applications, Cambridge University Press.

26 Organisation du cours Lectures conseillées : Barabasi L., M. Newman, & D. Watts, 2006, The structure and dynamics of networks, Princeton University Press. Jackson M.O., 2008, Social and Economic Networks, Princeton University Press. Wasserman, S, Faust K., 1994, Social Network Analysis. Methods and applications, Cambridge University Press.

27 Organisation du cours Lectures conseillées : Barabasi L., M. Newman, & D. Watts, 2006, The structure and dynamics of networks, Princeton University Press. Jackson M.O., 2008, Social and Economic Networks, Princeton University Press. Wasserman, S, Faust K., 1994, Social Network Analysis. Methods and applications, Cambridge University Press.

28 Organisation du cours Lectures conseillées : Barabasi L., M. Newman, & D. Watts, 2006, The structure and dynamics of networks, Princeton University Press. Jackson M.O., 2008, Social and Economic Networks, Princeton University Press. Wasserman, S, Faust K., 1994, Social Network Analysis. Methods and applications, Cambridge University Press.

29 Plan du cours Chapitre 1. La structure des réseaux sociaux Chapitre 2. La formation stratégique des réseaux Chapitre 3. Réseaux et comportements (diffusion, apprentissage, jeux, et marchés)

30 Plan du cours Chapitre 1. La structure des réseaux sociaux Chapitre 2. La formation stratégique des réseaux Chapitre 3. Réseaux et comportements (diffusion, apprentissage, jeux, et marchés)

31 Plan du cours Chapitre 1. La structure des réseaux sociaux Chapitre 2. La formation stratégique des réseaux Chapitre 3. Réseaux et comportements (diffusion, apprentissage, jeux, et marchés)

32 Evaluation pour M2-R Economie Applique Choix d un article de recherche qui doit être présenté et discuté dans un document.

33 Sections : Introduction 1 Introduction 2 3 L expérience de Milgram Les réseaux aléatoires 4 Le clustering à la Watts et Strogatz 5 Mesures inviduelles de centralité La distribution des degrés Le modèle de Barabasi et Albert 6

34 Definitions Introduction Il y a n agents, N = {1, 2,..., n}. Les agents constituent les noeuds d un graphe, les arcs constituant les relations entre eux. Un lien entre deux agents distincts i et j N est dénoté ij. Le réseau est la liste des paires (ordonnées ou non ordonnées) ij g. On écrit aussi que g ij = 1 si ij g et 0 sinon. Il est aussi possible que g ij R dans le cas des graphes pondérés.

35 Definitions Introduction Il y a n agents, N = {1, 2,..., n}. Les agents constituent les noeuds d un graphe, les arcs constituant les relations entre eux. Un lien entre deux agents distincts i et j N est dénoté ij. Le réseau est la liste des paires (ordonnées ou non ordonnées) ij g. On écrit aussi que g ij = 1 si ij g et 0 sinon. Il est aussi possible que g ij R dans le cas des graphes pondérés.

36 Definitions Introduction Il y a n agents, N = {1, 2,..., n}. Les agents constituent les noeuds d un graphe, les arcs constituant les relations entre eux. Un lien entre deux agents distincts i et j N est dénoté ij. Le réseau est la liste des paires (ordonnées ou non ordonnées) ij g. On écrit aussi que g ij = 1 si ij g et 0 sinon. Il est aussi possible que g ij R dans le cas des graphes pondérés.

37 Definitions Introduction Il y a n agents, N = {1, 2,..., n}. Les agents constituent les noeuds d un graphe, les arcs constituant les relations entre eux. Un lien entre deux agents distincts i et j N est dénoté ij. Le réseau est la liste des paires (ordonnées ou non ordonnées) ij g. On écrit aussi que g ij = 1 si ij g et 0 sinon. Il est aussi possible que g ij R dans le cas des graphes pondérés.

38 Definitions Introduction Il y a n agents, N = {1, 2,..., n}. Les agents constituent les noeuds d un graphe, les arcs constituant les relations entre eux. Un lien entre deux agents distincts i et j N est dénoté ij. Le réseau est la liste des paires (ordonnées ou non ordonnées) ij g. On écrit aussi que g ij = 1 si ij g et 0 sinon. Il est aussi possible que g ij R dans le cas des graphes pondérés.

39 Definitions Introduction Le réseaux complet est g N = {ij i, j N}, l ensemble de tous les sous ensembles de N de taille 2. L ensemble de tous les graphes possibles entre les n agents est G = { g g N}. Le nombre total de liens est donné par η(g) = #g. N i (g) = {j ij g} est l ensemble des voisins de i. η i (g) = #N i (g) est le degré de i.

40 Definitions Introduction Le réseaux complet est g N = {ij i, j N}, l ensemble de tous les sous ensembles de N de taille 2. L ensemble de tous les graphes possibles entre les n agents est G = { g g N}. Le nombre total de liens est donné par η(g) = #g. N i (g) = {j ij g} est l ensemble des voisins de i. η i (g) = #N i (g) est le degré de i.

41 Definitions Introduction Le réseaux complet est g N = {ij i, j N}, l ensemble de tous les sous ensembles de N de taille 2. L ensemble de tous les graphes possibles entre les n agents est G = { g g N}. Le nombre total de liens est donné par η(g) = #g. N i (g) = {j ij g} est l ensemble des voisins de i. η i (g) = #N i (g) est le degré de i.

42 Definitions Introduction Le réseaux complet est g N = {ij i, j N}, l ensemble de tous les sous ensembles de N de taille 2. L ensemble de tous les graphes possibles entre les n agents est G = { g g N}. Le nombre total de liens est donné par η(g) = #g. N i (g) = {j ij g} est l ensemble des voisins de i. η i (g) = #N i (g) est le degré de i.

43 Definitions Introduction Le réseaux complet est g N = {ij i, j N}, l ensemble de tous les sous ensembles de N de taille 2. L ensemble de tous les graphes possibles entre les n agents est G = { g g N}. Le nombre total de liens est donné par η(g) = #g. N i (g) = {j ij g} est l ensemble des voisins de i. η i (g) = #N i (g) est le degré de i.

44 Definitions Introduction Un chemin d un réseaux g G reliant i à j, est une séquence de liens telle que {i 1 i 2, i 2 i 3,..., i k 1 i k } g où i 1 = i, i k = j. i g j est l ensemble des chemins reliant i à j sur le graphe g. L ensemble des plus court chemins entre i et j sur g noté i g j est tel que k i g j, alors k i g j et #k = min h i g j #h. Un composant C est un sous ensemble non vide de l ensemble des agents C N tel que i, j C, il y a un chemin entre i et j, c est-à-dire i g j.

45 Definitions Introduction Un chemin d un réseaux g G reliant i à j, est une séquence de liens telle que {i 1 i 2, i 2 i 3,..., i k 1 i k } g où i 1 = i, i k = j. i g j est l ensemble des chemins reliant i à j sur le graphe g. L ensemble des plus court chemins entre i et j sur g noté i g j est tel que k i g j, alors k i g j et #k = min h i g j #h. Un composant C est un sous ensemble non vide de l ensemble des agents C N tel que i, j C, il y a un chemin entre i et j, c est-à-dire i g j.

46 Definitions Introduction Un chemin d un réseaux g G reliant i à j, est une séquence de liens telle que {i 1 i 2, i 2 i 3,..., i k 1 i k } g où i 1 = i, i k = j. i g j est l ensemble des chemins reliant i à j sur le graphe g. L ensemble des plus court chemins entre i et j sur g noté i g j est tel que k i g j, alors k i g j et #k = min h i g j #h. Un composant C est un sous ensemble non vide de l ensemble des agents C N tel que i, j C, il y a un chemin entre i et j, c est-à-dire i g j.

47 Definitions Introduction Un chemin d un réseaux g G reliant i à j, est une séquence de liens telle que {i 1 i 2, i 2 i 3,..., i k 1 i k } g où i 1 = i, i k = j. i g j est l ensemble des chemins reliant i à j sur le graphe g. L ensemble des plus court chemins entre i et j sur g noté i g j est tel que k i g j, alors k i g j et #k = min h i g j #h. Un composant C est un sous ensemble non vide de l ensemble des agents C N tel que i, j C, il y a un chemin entre i et j, c est-à-dire i g j.

48 Definitions Introduction La distance géodesique (relationnelle) entre i et j est le nombre de liens d un chemin le plus court entre eux : d(i, j) = d g (i, j) = #k, avec k i g j. Graphes typiques : le réseaux vide g, l étoile (complète) g, est telle que #g = n 1 et il existe un agent i N tel que si jk g, alors soit j = i ou k = i. L agent i est le centre de l étoile. l arbre (spanning tree) reliant tous les agents est caractérisé par l existence d un chemin et un seul entre chaque paire d agents (aucun cycle et aucun agent isolé). Nous avons ici : η(g) = n 1.

49 Definitions Introduction La distance géodesique (relationnelle) entre i et j est le nombre de liens d un chemin le plus court entre eux : d(i, j) = d g (i, j) = #k, avec k i g j. Graphes typiques : le réseaux vide g, l étoile (complète) g, est telle que #g = n 1 et il existe un agent i N tel que si jk g, alors soit j = i ou k = i. L agent i est le centre de l étoile. l arbre (spanning tree) reliant tous les agents est caractérisé par l existence d un chemin et un seul entre chaque paire d agents (aucun cycle et aucun agent isolé). Nous avons ici : η(g) = n 1.

50 Definitions Introduction La distance géodesique (relationnelle) entre i et j est le nombre de liens d un chemin le plus court entre eux : d(i, j) = d g (i, j) = #k, avec k i g j. Graphes typiques : le réseaux vide g, l étoile (complète) g, est telle que #g = n 1 et il existe un agent i N tel que si jk g, alors soit j = i ou k = i. L agent i est le centre de l étoile. l arbre (spanning tree) reliant tous les agents est caractérisé par l existence d un chemin et un seul entre chaque paire d agents (aucun cycle et aucun agent isolé). Nous avons ici : η(g) = n 1.

51 Definitions Introduction La distance géodesique (relationnelle) entre i et j est le nombre de liens d un chemin le plus court entre eux : d(i, j) = d g (i, j) = #k, avec k i g j. Graphes typiques : le réseaux vide g, l étoile (complète) g, est telle que #g = n 1 et il existe un agent i N tel que si jk g, alors soit j = i ou k = i. L agent i est le centre de l étoile. l arbre (spanning tree) reliant tous les agents est caractérisé par l existence d un chemin et un seul entre chaque paire d agents (aucun cycle et aucun agent isolé). Nous avons ici : η(g) = n 1.

52 Definitions Introduction La distance géodesique (relationnelle) entre i et j est le nombre de liens d un chemin le plus court entre eux : d(i, j) = d g (i, j) = #k, avec k i g j. Graphes typiques : le réseaux vide g, l étoile (complète) g, est telle que #g = n 1 et il existe un agent i N tel que si jk g, alors soit j = i ou k = i. L agent i est le centre de l étoile. l arbre (spanning tree) reliant tous les agents est caractérisé par l existence d un chemin et un seul entre chaque paire d agents (aucun cycle et aucun agent isolé). Nous avons ici : η(g) = n 1.

53 Sections : Introduction L expérience de Milgram Les réseaux aléatoires 1 Introduction 2 3 L expérience de Milgram Les réseaux aléatoires 4 Le clustering à la Watts et Strogatz 5 Mesures inviduelles de centralité La distribution des degrés Le modèle de Barabasi et Albert 6

54 Les petits mondes L expérience de Milgram Les réseaux aléatoires Expérience de Milgram (69, 74) Sélectionner une cible à Sharon (Massachussets), Sélectionner 296 personnes : 196 à Omaha (Nebraska) 100 à Boston (Massachussets), Une boîte leur est envoyée, dans laquelle il leur est demandé : d atteindre la cible s ils la connaissent, d envoyer la boîte à une personne dont ils pensent qu elle pourrait la connaître sinon, et dans tous les cas, d envoyer un rapport.

55 Les petits mondes L expérience de Milgram Les réseaux aléatoires Expérience de Milgram (69, 74) Sélectionner une cible à Sharon (Massachussets), Sélectionner 296 personnes : 196 à Omaha (Nebraska) 100 à Boston (Massachussets), Une boîte leur est envoyée, dans laquelle il leur est demandé : d atteindre la cible s ils la connaissent, d envoyer la boîte à une personne dont ils pensent qu elle pourrait la connaître sinon, et dans tous les cas, d envoyer un rapport.

56 Les petits mondes L expérience de Milgram Les réseaux aléatoires Expérience de Milgram (69, 74) Sélectionner une cible à Sharon (Massachussets), Sélectionner 296 personnes : 196 à Omaha (Nebraska) 100 à Boston (Massachussets), Une boîte leur est envoyée, dans laquelle il leur est demandé : d atteindre la cible s ils la connaissent, d envoyer la boîte à une personne dont ils pensent qu elle pourrait la connaître sinon, et dans tous les cas, d envoyer un rapport.

57 Les petits mondes L expérience de Milgram Les réseaux aléatoires Expérience de Milgram (69, 74) Sélectionner une cible à Sharon (Massachussets), Sélectionner 296 personnes : 196 à Omaha (Nebraska) 100 à Boston (Massachussets), Une boîte leur est envoyée, dans laquelle il leur est demandé : d atteindre la cible s ils la connaissent, d envoyer la boîte à une personne dont ils pensent qu elle pourrait la connaître sinon, et dans tous les cas, d envoyer un rapport.

58 Les petits mondes L expérience de Milgram Les réseaux aléatoires Expérience de Milgram (69, 74) Sélectionner une cible à Sharon (Massachussets), Sélectionner 296 personnes : 196 à Omaha (Nebraska) 100 à Boston (Massachussets), Une boîte leur est envoyée, dans laquelle il leur est demandé : d atteindre la cible s ils la connaissent, d envoyer la boîte à une personne dont ils pensent qu elle pourrait la connaître sinon, et dans tous les cas, d envoyer un rapport.

59 Les petits mondes L expérience de Milgram Les réseaux aléatoires Expérience de Milgram (69, 74) Sélectionner une cible à Sharon (Massachussets), Sélectionner 296 personnes : 196 à Omaha (Nebraska) 100 à Boston (Massachussets), Une boîte leur est envoyée, dans laquelle il leur est demandé : d atteindre la cible s ils la connaissent, d envoyer la boîte à une personne dont ils pensent qu elle pourrait la connaître sinon, et dans tous les cas, d envoyer un rapport.

60 Les petits mondes L expérience de Milgram Les réseaux aléatoires Expérience de Milgram (69, 74) Sélectionner une cible à Sharon (Massachussets), Sélectionner 296 personnes : 196 à Omaha (Nebraska) 100 à Boston (Massachussets), Une boîte leur est envoyée, dans laquelle il leur est demandé : d atteindre la cible s ils la connaissent, d envoyer la boîte à une personne dont ils pensent qu elle pourrait la connaître sinon, et dans tous les cas, d envoyer un rapport.

61 Les petits mondes L expérience de Milgram Les réseaux aléatoires Expérience de Milgram (69, 74) Sélectionner une cible à Sharon (Massachussets), Sélectionner 296 personnes : 196 à Omaha (Nebraska) 100 à Boston (Massachussets), Une boîte leur est envoyée, dans laquelle il leur est demandé : d atteindre la cible s ils la connaissent, d envoyer la boîte à une personne dont ils pensent qu elle pourrait la connaître sinon, et dans tous les cas, d envoyer un rapport.

62 Les petits mondes L expérience de Milgram Les réseaux aléatoires Expérience de Milgram (69, 74) Sélectionner une cible à Sharon (Massachussets), Sélectionner 296 personnes : 196 à Omaha (Nebraska) 100 à Boston (Massachussets), Une boîte leur est envoyée, dans laquelle il leur est demandé : d atteindre la cible s ils la connaissent, d envoyer la boîte à une personne dont ils pensent qu elle pourrait la connaître sinon, et dans tous les cas, d envoyer un rapport.

63 Les petits mondes L expérience de Milgram Les réseaux aléatoires

64 Les petits mondes L expérience de Milgram Les réseaux aléatoires

65 Les petits mondes L expérience de Milgram Les réseaux aléatoires 64 essais ont atteint la cible et, cela a pris en moyenne 5.2 intermediaires et maximum de 12. La légende des six degrés de séparation est née!

66 Les petits mondes L expérience de Milgram Les réseaux aléatoires 64 essais ont atteint la cible et, cela a pris en moyenne 5.2 intermediaires et maximum de 12. La légende des six degrés de séparation est née!

67 Les petits mondes L expérience de Milgram Les réseaux aléatoires De la longueur des chaînes relationnelles à une estimation de la distance moyenne. Les chaînes non abouties : biais conduisant à une sous-estimation de la distance moyenne mais considérer que le taux de réponse des enquêtes ne dépasse quasiment jamais 30%. Biais conduisant à une sur-estimation de la distance moyenne, les chaînes relationnelles n emprunte pas nécessairement un plus court chemin. Correction par White qui estime que la moyenne est plutôt entre 6 et 8.

68 Les petits mondes L expérience de Milgram Les réseaux aléatoires De la longueur des chaînes relationnelles à une estimation de la distance moyenne. Les chaînes non abouties : biais conduisant à une sous-estimation de la distance moyenne mais considérer que le taux de réponse des enquêtes ne dépasse quasiment jamais 30%. Biais conduisant à une sur-estimation de la distance moyenne, les chaînes relationnelles n emprunte pas nécessairement un plus court chemin. Correction par White qui estime que la moyenne est plutôt entre 6 et 8.

69 Les petits mondes L expérience de Milgram Les réseaux aléatoires De la longueur des chaînes relationnelles à une estimation de la distance moyenne. Les chaînes non abouties : biais conduisant à une sous-estimation de la distance moyenne mais considérer que le taux de réponse des enquêtes ne dépasse quasiment jamais 30%. Biais conduisant à une sur-estimation de la distance moyenne, les chaînes relationnelles n emprunte pas nécessairement un plus court chemin. Correction par White qui estime que la moyenne est plutôt entre 6 et 8.

70 Les petits mondes L expérience de Milgram Les réseaux aléatoires De la longueur des chaînes relationnelles à une estimation de la distance moyenne. Les chaînes non abouties : biais conduisant à une sous-estimation de la distance moyenne mais considérer que le taux de réponse des enquêtes ne dépasse quasiment jamais 30%. Biais conduisant à une sur-estimation de la distance moyenne, les chaînes relationnelles n emprunte pas nécessairement un plus court chemin. Correction par White qui estime que la moyenne est plutôt entre 6 et 8.

71 L expérience de Milgram Les réseaux aléatoires Mesures globale de distance moyenne La distance moyenne (des agents sur leur composant) : i j i d (g) = d (i, j) 1 {i g j } # {i, j i j N, i g j }.

72 Les petits mondes L expérience de Milgram Les réseaux aléatoires Dans leur composant le plus grand (incluant toujours plus de 80% des noeuds) : Distance moyenne de 3.7 dans le actor-movie network (Watt & Strogatz, 1998) Distance moyenne de 3.9 dans le co-authorship math network (de Castro & Grossman, 1999) Distance moyenne de 6.2 dans le cond-mat arxiv physics network (Newman, 2004) Echantillon de sites web, distance moyenne de 3.1 dans le réseau non dirigé des hyperlinks (Adamic, 1999).

73 Les petits mondes L expérience de Milgram Les réseaux aléatoires Dans leur composant le plus grand (incluant toujours plus de 80% des noeuds) : Distance moyenne de 3.7 dans le actor-movie network (Watt & Strogatz, 1998) Distance moyenne de 3.9 dans le co-authorship math network (de Castro & Grossman, 1999) Distance moyenne de 6.2 dans le cond-mat arxiv physics network (Newman, 2004) Echantillon de sites web, distance moyenne de 3.1 dans le réseau non dirigé des hyperlinks (Adamic, 1999).

74 Les petits mondes L expérience de Milgram Les réseaux aléatoires Dans leur composant le plus grand (incluant toujours plus de 80% des noeuds) : Distance moyenne de 3.7 dans le actor-movie network (Watt & Strogatz, 1998) Distance moyenne de 3.9 dans le co-authorship math network (de Castro & Grossman, 1999) Distance moyenne de 6.2 dans le cond-mat arxiv physics network (Newman, 2004) Echantillon de sites web, distance moyenne de 3.1 dans le réseau non dirigé des hyperlinks (Adamic, 1999).

75 Les petits mondes L expérience de Milgram Les réseaux aléatoires Dans leur composant le plus grand (incluant toujours plus de 80% des noeuds) : Distance moyenne de 3.7 dans le actor-movie network (Watt & Strogatz, 1998) Distance moyenne de 3.9 dans le co-authorship math network (de Castro & Grossman, 1999) Distance moyenne de 6.2 dans le cond-mat arxiv physics network (Newman, 2004) Echantillon de sites web, distance moyenne de 3.1 dans le réseau non dirigé des hyperlinks (Adamic, 1999).

76 Les Poisson random networks L expérience de Milgram Les réseaux aléatoires G(n, p) (Solomonoff et Rapoport, 1951 ; Erdös-Renyi, 1959) random graph model : n le nombre de noeuds 0 p 1 est la probabilité (iid) que pour toute paire d agents i et j, ij g G(n, E) (Erdös-Renyi, 1960) n le nombre de noeuds E est le nombre de liens à allouer sur les n(n 1)/2 paires d agents i et j possibles. Etablir tous les réseaux possibles sur les n noeuds, en tirer un aléatoirement.

77 Les Poisson random networks L expérience de Milgram Les réseaux aléatoires G(n, p) (Solomonoff et Rapoport, 1951 ; Erdös-Renyi, 1959) random graph model : n le nombre de noeuds 0 p 1 est la probabilité (iid) que pour toute paire d agents i et j, ij g G(n, E) (Erdös-Renyi, 1960) n le nombre de noeuds E est le nombre de liens à allouer sur les n(n 1)/2 paires d agents i et j possibles. Etablir tous les réseaux possibles sur les n noeuds, en tirer un aléatoirement.

78 Les Poisson random networks L expérience de Milgram Les réseaux aléatoires G(n, p) (Solomonoff et Rapoport, 1951 ; Erdös-Renyi, 1959) random graph model : n le nombre de noeuds 0 p 1 est la probabilité (iid) que pour toute paire d agents i et j, ij g G(n, E) (Erdös-Renyi, 1960) n le nombre de noeuds E est le nombre de liens à allouer sur les n(n 1)/2 paires d agents i et j possibles. Etablir tous les réseaux possibles sur les n noeuds, en tirer un aléatoirement.

79 Les Poisson random networks L expérience de Milgram Les réseaux aléatoires G(n, p) (Solomonoff et Rapoport, 1951 ; Erdös-Renyi, 1959) random graph model : n le nombre de noeuds 0 p 1 est la probabilité (iid) que pour toute paire d agents i et j, ij g G(n, E) (Erdös-Renyi, 1960) n le nombre de noeuds E est le nombre de liens à allouer sur les n(n 1)/2 paires d agents i et j possibles. Etablir tous les réseaux possibles sur les n noeuds, en tirer un aléatoirement.

80 Les Poisson random networks L expérience de Milgram Les réseaux aléatoires G(n, p) (Solomonoff et Rapoport, 1951 ; Erdös-Renyi, 1959) random graph model : n le nombre de noeuds 0 p 1 est la probabilité (iid) que pour toute paire d agents i et j, ij g G(n, E) (Erdös-Renyi, 1960) n le nombre de noeuds E est le nombre de liens à allouer sur les n(n 1)/2 paires d agents i et j possibles. Etablir tous les réseaux possibles sur les n noeuds, en tirer un aléatoirement.

81 Les Poisson random networks L expérience de Milgram Les réseaux aléatoires G(n, p) (Solomonoff et Rapoport, 1951 ; Erdös-Renyi, 1959) random graph model : n le nombre de noeuds 0 p 1 est la probabilité (iid) que pour toute paire d agents i et j, ij g G(n, E) (Erdös-Renyi, 1960) n le nombre de noeuds E est le nombre de liens à allouer sur les n(n 1)/2 paires d agents i et j possibles. Etablir tous les réseaux possibles sur les n noeuds, en tirer un aléatoirement.

82 Les Poisson random networks L expérience de Milgram Les réseaux aléatoires G(n, p) (Solomonoff et Rapoport, 1951 ; Erdös-Renyi, 1959) random graph model : n le nombre de noeuds 0 p 1 est la probabilité (iid) que pour toute paire d agents i et j, ij g G(n, E) (Erdös-Renyi, 1960) n le nombre de noeuds E est le nombre de liens à allouer sur les n(n 1)/2 paires d agents i et j possibles. Etablir tous les réseaux possibles sur les n noeuds, en tirer un aléatoirement.

83 Les Poisson random networks L expérience de Milgram Les réseaux aléatoires Principe d analyse des propriétés structurelles Pour un réseau alétoire (Poisson random graph) Fixons p(n) et laissons n Définissons une propriété de réseau qui elle même définit, pour une population N, un sous-ensemble de tous les réseaux possibles sur N : A(N) G(N) Monotonicité : la propriété A(.) est monotone si N, g g et g A(N) alors g A(N).

84 Les Poisson random networks L expérience de Milgram Les réseaux aléatoires Principe d analyse des propriétés structurelles Pour un réseau alétoire (Poisson random graph) Fixons p(n) et laissons n Définissons une propriété de réseau qui elle même définit, pour une population N, un sous-ensemble de tous les réseaux possibles sur N : A(N) G(N) Monotonicité : la propriété A(.) est monotone si N, g g et g A(N) alors g A(N).

85 Les Poisson random networks L expérience de Milgram Les réseaux aléatoires Principe d analyse des propriétés structurelles Pour un réseau alétoire (Poisson random graph) Fixons p(n) et laissons n Définissons une propriété de réseau qui elle même définit, pour une population N, un sous-ensemble de tous les réseaux possibles sur N : A(N) G(N) Monotonicité : la propriété A(.) est monotone si N, g g et g A(N) alors g A(N).

86 Les Poisson random networks L expérience de Milgram Les réseaux aléatoires Principe d analyse des propriétés structurelles Pour un réseau alétoire (Poisson random graph) Fixons p(n) et laissons n Définissons une propriété de réseau qui elle même définit, pour une population N, un sous-ensemble de tous les réseaux possibles sur N : A(N) G(N) Monotonicité : la propriété A(.) est monotone si N, g g et g A(N) alors g A(N).

L'analyse des réseaux sociaux

L'analyse des réseaux sociaux L'analyse des réseaux sociaux Laurent Beauguitte CNRS - UMR IDEES 20 janvier 2015 L. Beauguitte (CNRS) SNA 20 janvier 2015 1 / 17 1 Questions de recherche et données 2 Mesures globales et locales 3 Deux

Plus en détail

Analyse empirique et modélisation de la dynamique de la topologie de l Internet

Analyse empirique et modélisation de la dynamique de la topologie de l Internet Analyse empirique et modélisation de la dynamique de la topologie de l Internet Sergey Kirgizov Directrice de thèse: Clémence Magnien Complex Networks, LIP6, (UPMC, CNRS) Paris, 12 décembre 2014 Plan 1

Plus en détail

Introduction à l Analyse des Réseaux Sociaux

Introduction à l Analyse des Réseaux Sociaux (ARS) 18 mars 2010 Analyse des réseaux sociaux Définition Propriétés Utilisation & Applications Analyse des réseaux sociaux Définition Propriétés Utilisation & Applications Etude des entités sociales (les

Plus en détail

Introduction à l Analyse des Réseaux Sociaux

Introduction à l Analyse des Réseaux Sociaux Introduction à l Analyse des Réseaux Sociaux Erick Stattner Laboratoire LAMIA Université des Antilles et de la Guyane, France erick.stattner@univ-ag.fr Guadeloupe, Novembre 2012 Erick Stattner Introduction

Plus en détail

Analyse des réseaux sociaux et apprentissage

Analyse des réseaux sociaux et apprentissage Analyse des réseaux sociaux et apprentissage Emmanuel Viennet Laboratoire de Traitement et Transport de l Information Université Paris 13 - Sorbonne Paris Cité Réseaux sociaux? Réseaux sociaux? Analyse

Plus en détail

FaceBook aime les Maths!

FaceBook aime les Maths! FaceBook aime les Maths! Michel Rigo http://www.discmath.ulg.ac.be/ http://orbi.ulg.ac.be/ Réseaux Visualizing my Twitter Network by number of followers. Michael Atkisson http://woknowing.wordpress.com/

Plus en détail

IFT6561. Simulation: aspects stochastiques

IFT6561. Simulation: aspects stochastiques IFT 6561 Simulation: aspects stochastiques DIRO Université de Montréal Automne 2013 Détails pratiques Professeur:, bureau 3367, Pav. A.-Aisenstadt. Courriel: bastin@iro.umontreal.ca Page web: http://www.iro.umontreal.ca/~bastin

Plus en détail

Big Data et Graphes : Quelques pistes de recherche

Big Data et Graphes : Quelques pistes de recherche Big Data et Graphes : Quelques pistes de recherche Hamamache Kheddouci Laboratoire d'informatique en Image et Systèmes d'information LIRIS UMR 5205 CNRS/INSA de Lyon/Université Claude Bernard Lyon 1/Université

Plus en détail

Big Data et Graphes : Quelques pistes de recherche

Big Data et Graphes : Quelques pistes de recherche Big Data et Graphes : Quelques pistes de recherche Hamamache Kheddouci http://liris.cnrs.fr/hamamache.kheddouci Laboratoire d'informatique en Image et Systèmes d'information LIRIS UMR 5205 CNRS/INSA de

Plus en détail

Modèles à Événements Discrets. Réseaux de Petri Stochastiques

Modèles à Événements Discrets. Réseaux de Petri Stochastiques Modèles à Événements Discrets Réseaux de Petri Stochastiques Table des matières 1 Chaînes de Markov Définition formelle Idée générale Discrete Time Markov Chains Continuous Time Markov Chains Propriétés

Plus en détail

14. Introduction aux files d attente

14. Introduction aux files d attente 14. Introduction aux files d attente MTH2302D S. Le Digabel, École Polytechnique de Montréal H2015 (v2) MTH2302D: Files d attente 1/24 Plan 1. Introduction 2. Modèle M/M/1 3. Modèle M/M/1/K MTH2302D: Files

Plus en détail

Les indicateurs structurels d'un graphe: calculs, visualisation, interactivité

Les indicateurs structurels d'un graphe: calculs, visualisation, interactivité Les indicateurs structurels d'un graphe: calculs, visualisation, interactivité Brigitte GAY (*), Bernard DOUSSET (**), Radwen WANASSI (**) b.gay@esc-toulouse.fr, bernard.dousset@irit.fr, wanesradwen@gmail.com

Plus en détail

Une nouvelle approche de détection de communautés dans les réseaux sociaux

Une nouvelle approche de détection de communautés dans les réseaux sociaux UNIVERSITÉ DU QUÉBEC EN OUTAOUAIS Département d informatique et d ingénierie Une nouvelle approche de détection de communautés dans les réseaux sociaux Mémoire (INF 6021) pour l obtention du grade de Maîtrise

Plus en détail

COURS SYRRES RÉSEAUX SOCIAUX. Jean-Loup Guillaume

COURS SYRRES RÉSEAUX SOCIAUX. Jean-Loup Guillaume COURS SYRRES RÉSEAUX SOCIAUX Jean-Loup Guillaume Le cours http://jlguillaume.free.fr/www/teaching/syrres/ Exemple 1 : Expérience de Milgram Objectif faire transiter une lettre depuis les Nebraska à un

Plus en détail

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. 1 Définitions, notations Calcul matriciel Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. On utilise aussi la notation m n pour le

Plus en détail

L'ANALYSE DYNAMIQUE DE RESEAUX SOCIAUX METHODE ET APPLICATION (SIENA POUR LES NULS) COMPLETS AVEC SIENA. Ainhoa de Federico de la Rúa

L'ANALYSE DYNAMIQUE DE RESEAUX SOCIAUX METHODE ET APPLICATION (SIENA POUR LES NULS) COMPLETS AVEC SIENA. Ainhoa de Federico de la Rúa L'ANALYSE DYNAMIQUE DE RESEAUX SOCIAUX COMPLETS AVEC SIENA METHODE ET APPLICATION (SIENA POUR LES NULS) Ainhoa de Federico de la Rúa Université de Toulouse II Le Mirail CERS LISST RESEAUX CAUSES OU EFFETS?

Plus en détail

Contents. 1 Introduction Objectifs des systèmes bonus-malus Système bonus-malus à classes Système bonus-malus : Principes

Contents. 1 Introduction Objectifs des systèmes bonus-malus Système bonus-malus à classes Système bonus-malus : Principes Université Claude Bernard Lyon 1 Institut de Science Financière et d Assurances Système Bonus-Malus Introduction & Applications SCILAB Julien Tomas Institut de Science Financière et d Assurances Laboratoire

Plus en détail

La programmation linéaire : une introduction. Qu est-ce qu un programme linéaire? Terminologie. Écriture mathématique

La programmation linéaire : une introduction. Qu est-ce qu un programme linéaire? Terminologie. Écriture mathématique La programmation linéaire : une introduction Qu est-ce qu un programme linéaire? Qu est-ce qu un programme linéaire? Exemples : allocation de ressources problème de recouvrement Hypothèses de la programmation

Plus en détail

Projet CLANU en 3GE: Compléments d algèbre linéaire numérique

Projet CLANU en 3GE: Compléments d algèbre linéaire numérique Projet CLANU en 3GE: Compléments d algèbre linéaire numérique Année 2008/2009 1 Décomposition QR On rappelle que la multiplication avec une matrice unitaire Q C n n (c est-à-dire Q 1 = Q = Q T ) ne change

Plus en détail

Cours de mathématiques - Alternance Gea

Cours de mathématiques - Alternance Gea Cours de mathématiques - Alternance Gea Anne Fredet 11 décembre 005 1 Calcul matriciel Une matrice n m est un tableau de nombres à n lignes( et m colonnes. 1 0 Par exemple, avec n = et m =, on peut considérer

Plus en détail

COURS SYRRES RÉSEAUX SOCIAUX INTRODUCTION. Jean-Loup Guillaume

COURS SYRRES RÉSEAUX SOCIAUX INTRODUCTION. Jean-Loup Guillaume COURS SYRRES RÉSEAUX SOCIAUX INTRODUCTION Jean-Loup Guillaume Le cours Enseignant : Jean-Loup Guillaume équipe Complex Network Page du cours : http://jlguillaume.free.fr/www/teaching-syrres.php Évaluation

Plus en détail

Chaînes de Markov. Mireille de Granrut

Chaînes de Markov. Mireille de Granrut Chaînes de Markov Mireille de Granrut Quelques précisions à propos de ce cours : Préambule 1. Tel que je l ai conçu, le cours sur les chaînes de Markov interviendra dès la rentrée, pour faire un peu de

Plus en détail

Processus aléatoires avec application en finance

Processus aléatoires avec application en finance Genève, le 16 juin 2007. Processus aléatoires avec application en finance La durée de l examen est de deux heures. N oubliez pas d indiquer votre nom et prénom sur chaque feuille. Toute documentation et

Plus en détail

FIMA, 7 juillet 2005

FIMA, 7 juillet 2005 F. Corset 1 S. 2 1 LabSAD Université Pierre Mendes France 2 Département de Mathématiques Université de Franche-Comté FIMA, 7 juillet 2005 Plan de l exposé plus court chemin Origine du problème Modélisation

Plus en détail

Capacité d un canal Second Théorème de Shannon. Théorie de l information 1/34

Capacité d un canal Second Théorème de Shannon. Théorie de l information 1/34 Capacité d un canal Second Théorème de Shannon Théorie de l information 1/34 Plan du cours 1. Canaux discrets sans mémoire, exemples ; 2. Capacité ; 3. Canaux symétriques ; 4. Codage de canal ; 5. Second

Plus en détail

Objectif du groupe GT1.1 Fusion de Données

Objectif du groupe GT1.1 Fusion de Données Objectif du groupe GT1.1 Fusion de Données Le groupe travaille dans trois directions Le vocabulaire (piloté par ADVITAM et l aide de SITE) L état de l art (piloté par SYROKKO) Deux applications illustratives

Plus en détail

Introduction à l approche bootstrap

Introduction à l approche bootstrap Introduction à l approche bootstrap Irène Buvat U494 INSERM buvat@imedjussieufr 25 septembre 2000 Introduction à l approche bootstrap - Irène Buvat - 21/9/00-1 Plan du cours Qu est-ce que le bootstrap?

Plus en détail

4 Distributions particulières de probabilités

4 Distributions particulières de probabilités 4 Distributions particulières de probabilités 4.1 Distributions discrètes usuelles Les variables aléatoires discrètes sont réparties en catégories selon le type de leur loi. 4.1.1 Variable de Bernoulli

Plus en détail

Principales caractéristiques de Mixmod

Principales caractéristiques de Mixmod Modèle de mélanges Principales caractéristiques de Mixmod Gérard Govaert et Gilles Celeux 24 octobre 2006 1 Plan Le modèledemélange Utilisations du modèle de mélange Les algorithmes de Mixmod Modèle de

Plus en détail

Annexe 6. Notions d ordonnancement.

Annexe 6. Notions d ordonnancement. Annexe 6. Notions d ordonnancement. APP3 Optimisation Combinatoire: problèmes sur-contraints et ordonnancement. Mines-Nantes, option GIPAD, 2011-2012. Sophie.Demassey@mines-nantes.fr Résumé Ce document

Plus en détail

Cours de Data Mining PageRank et HITS

Cours de Data Mining PageRank et HITS Cours de Data Mining PageRank et HITS Andreea Dragut Univ. Aix-Marseille, IUT d Aix-en-Provence Andreea Dragut Cours de Data Mining PageRank et HITS 1 / 48 Plan du cours Présentation Andreea Dragut Cours

Plus en détail

Baccalauréat ES/L Amérique du Sud 21 novembre 2013

Baccalauréat ES/L Amérique du Sud 21 novembre 2013 Baccalauréat ES/L Amérique du Sud 21 novembre 2013 A. P. M. E. P. EXERCICE 1 Commun à tous les candidats 5 points Une entreprise informatique produit et vend des clés USB. La vente de ces clés est réalisée

Plus en détail

Texte Agrégation limitée par diffusion interne

Texte Agrégation limitée par diffusion interne Page n 1. Texte Agrégation limitée par diffusion interne 1 Le phénomène observé Un fût de déchets radioactifs est enterré secrètement dans le Cantal. Au bout de quelques années, il devient poreux et laisse

Plus en détail

Modèles et Méthodes de Réservation

Modèles et Méthodes de Réservation Modèles et Méthodes de Réservation Petit Cours donné à l Université de Strasbourg en Mai 2003 par Klaus D Schmidt Lehrstuhl für Versicherungsmathematik Technische Universität Dresden D 01062 Dresden E

Plus en détail

Exposing a test of homogeneity of chronological series of annual rainfall in a climatic area. with using, if possible, the regional vector Hiez.

Exposing a test of homogeneity of chronological series of annual rainfall in a climatic area. with using, if possible, the regional vector Hiez. Test d homogéné$é Y. BRUNET-MORET Ingénieur hydrologue, Bureau Central Hydrologique Paris RÉSUMÉ Présentation d un test d homogénéi.té spécialement conçu pour vérijier Z homogénéité des suites chronologiques

Plus en détail

Le Data Mining au service du Scoring ou notation statistique des emprunteurs!

Le Data Mining au service du Scoring ou notation statistique des emprunteurs! France Le Data Mining au service du Scoring ou notation statistique des emprunteurs! Comme le rappelle la CNIL dans sa délibération n 88-083 du 5 Juillet 1988 portant adoption d une recommandation relative

Plus en détail

Enjeux mathématiques et Statistiques du Big Data

Enjeux mathématiques et Statistiques du Big Data Enjeux mathématiques et Statistiques du Big Data Mathilde Mougeot LPMA/Université Paris Diderot, mathilde.mougeot@univ-paris-diderot.fr Mathématique en Mouvements, Paris, IHP, 6 Juin 2015 M. Mougeot (Paris

Plus en détail

Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé

Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé A. P. M. E. P. Exercice 1 5 points 1. Réponse d. : 1 e Le coefficient directeur de la tangente est négatif et n est manifestement pas 2e

Plus en détail

Rappels sur les suites - Algorithme

Rappels sur les suites - Algorithme DERNIÈRE IMPRESSION LE 14 septembre 2015 à 12:36 Rappels sur les suites - Algorithme Table des matières 1 Suite : généralités 2 1.1 Déition................................. 2 1.2 Exemples de suites............................

Plus en détail

Prévention et gestion des risques naturels et environnementaux

Prévention et gestion des risques naturels et environnementaux Prévention et gestion des risques naturels et environnementaux Risque et assurance : quelques éléments théoriques Ecole des Ponts - Le 6 Avril 01 Jacques Pelletan 1 Théorie du risque et pérennité de l

Plus en détail

Probabilités et Statistiques. Feuille 2 : variables aléatoires discrètes

Probabilités et Statistiques. Feuille 2 : variables aléatoires discrètes IUT HSE Probabilités et Statistiques Feuille : variables aléatoires discrètes 1 Exercices Dénombrements Exercice 1. On souhaite ranger sur une étagère 4 livres de mathématiques (distincts), 6 livres de

Plus en détail

Le théorème de Perron-Frobenius, les chaines de Markov et un célèbre moteur de recherche

Le théorème de Perron-Frobenius, les chaines de Markov et un célèbre moteur de recherche Le théorème de Perron-Frobenius, les chaines de Markov et un célèbre moteur de recherche Bachir Bekka Février 2007 Le théorème de Perron-Frobenius a d importantes applications en probabilités (chaines

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)

Plus en détail

Modélisation aléatoire en fiabilité des logiciels

Modélisation aléatoire en fiabilité des logiciels collection Méthodes stochastiques appliquées dirigée par Nikolaos Limnios et Jacques Janssen La sûreté de fonctionnement des systèmes informatiques est aujourd hui un enjeu économique et sociétal majeur.

Plus en détail

Cours 7 : Utilisation de modules sous python

Cours 7 : Utilisation de modules sous python Cours 7 : Utilisation de modules sous python 2013/2014 Utilisation d un module Importer un module Exemple : le module random Importer un module Exemple : le module random Importer un module Un module est

Plus en détail

Principes de mathématiques 12 SÉRIE DE PROBLÈMES. Septembre 2001. Student Assessment and Program Evaluation Branch

Principes de mathématiques 12 SÉRIE DE PROBLÈMES. Septembre 2001. Student Assessment and Program Evaluation Branch Principes de mathématiques 12 SÉRIE DE PROBLÈMES Septembre 2001 Student Assessment and Program Evaluation Branch REMERCIEMENTS Le Ministère de l Éducation tient à remercier chaleureusement les professionnels

Plus en détail

Chapitre 5 : Flot maximal dans un graphe

Chapitre 5 : Flot maximal dans un graphe Graphes et RO TELECOM Nancy A Chapitre 5 : Flot maximal dans un graphe J.-F. Scheid 1 Plan du chapitre I. Définitions 1 Graphe Graphe valué 3 Représentation d un graphe (matrice d incidence, matrice d

Plus en détail

A propos de l enseignant Introduction aux réseaux sociaux

A propos de l enseignant Introduction aux réseaux sociaux A propos de l enseignant Introduction aux réseaux sociaux Sebastian BERVOETS Sebastian BERVOETS Chercheur CNRS - Greqam Me contacter sebastian.bervoets@univmed.fr 1 A propos du cours Objectifs du cours

Plus en détail

Probabilités. I- Expérience aléatoire, espace probabilisé : ShotGun. 1- Définitions :

Probabilités. I- Expérience aléatoire, espace probabilisé : ShotGun. 1- Définitions : Probabilités I- Expérience aléatoire, espace probabilisé : 1- Définitions : Ω : Ensemble dont les points w sont les résultats possibles de l expérience Des évènements A parties de Ω appartiennent à A une

Plus en détail

Tests d indépendance en analyse multivariée et tests de normalité dans les modèles ARMA

Tests d indépendance en analyse multivariée et tests de normalité dans les modèles ARMA Tests d indépendance en analyse multivariée et tests de normalité dans les modèles ARMA Soutenance de doctorat, sous la direction de Pr. Bilodeau, M. et Pr. Ducharme, G. Université de Montréal et Université

Plus en détail

La classification automatique de données quantitatives

La classification automatique de données quantitatives La classification automatique de données quantitatives 1 Introduction Parmi les méthodes de statistique exploratoire multidimensionnelle, dont l objectif est d extraire d une masse de données des informations

Plus en détail

Table des matières. I Mise à niveau 11. Préface

Table des matières. I Mise à niveau 11. Préface Table des matières Préface v I Mise à niveau 11 1 Bases du calcul commercial 13 1.1 Alphabet grec...................................... 13 1.2 Symboles mathématiques............................... 14 1.3

Plus en détail

Recherche d information textuelle

Recherche d information textuelle Recherche d information textuelle Pré-traitements & indexation B. Piwowarski CNRS / LIP6 Université Paris 6 benjamin@bpiwowar.net http://www.bpiwowar.net Master IP - 2014-15 Cours et travaux pratiques

Plus en détail

Moments des variables aléatoires réelles

Moments des variables aléatoires réelles Chapter 6 Moments des variables aléatoires réelles Sommaire 6.1 Espérance des variables aléatoires réelles................................ 46 6.1.1 Définition et calcul........................................

Plus en détail

Résolution de systèmes linéaires par des méthodes directes

Résolution de systèmes linéaires par des méthodes directes Résolution de systèmes linéaires par des méthodes directes J. Erhel Janvier 2014 1 Inverse d une matrice carrée et systèmes linéaires Ce paragraphe a pour objet les matrices carrées et les systèmes linéaires.

Plus en détail

Chaînes de Markov au lycée

Chaînes de Markov au lycée Journées APMEP Metz Atelier P1-32 du dimanche 28 octobre 2012 Louis-Marie BONNEVAL Chaînes de Markov au lycée Andreï Markov (1856-1922) , série S Problème 1 Bonus et malus en assurance automobile Un contrat

Plus en détail

MAT 2377 Solutions to the Mi-term

MAT 2377 Solutions to the Mi-term MAT 2377 Solutions to the Mi-term Tuesday June 16 15 Time: 70 minutes Student Number: Name: Professor M. Alvo This is an open book exam. Standard calculators are permitted. Answer all questions. Place

Plus en détail

Jeux à somme nulle : le cas fini

Jeux à somme nulle : le cas fini CHAPITRE 2 Jeux à somme nulle : le cas fini Les jeux à somme nulle sont les jeux à deux joueurs où la somme des fonctions de paiement est nulle. Dans ce type d interaction stratégique, les intérêts des

Plus en détail

MAT-3071 Processus Stochastiques

MAT-3071 Processus Stochastiques Université du Québec à Montréal Hiver 2012 Département de Mathématiques Groupe : 011 MAT-3071 Processus Stochastiques Chargée de cours : Hélène Guérin Courriel : guerin.helene@uqam.ca Merci de prendre

Plus en détail

Introduction au Calcul des Probabilités

Introduction au Calcul des Probabilités Université des Sciences et Technologies de Lille U.F.R. de Mathématiques Pures et Appliquées Bât. M2, F-59655 Villeneuve d Ascq Cedex Introduction au Calcul des Probabilités Probabilités à Bac+2 et plus

Plus en détail

TESTS PORTMANTEAU D ADÉQUATION DE MODÈLES ARMA FAIBLES : UNE APPROCHE BASÉE SUR L AUTO-NORMALISATION

TESTS PORTMANTEAU D ADÉQUATION DE MODÈLES ARMA FAIBLES : UNE APPROCHE BASÉE SUR L AUTO-NORMALISATION TESTS PORTMANTEAU D ADÉQUATION DE MODÈLES ARMA FAIBLES : UNE APPROCHE BASÉE SUR L AUTO-NORMALISATION Bruno Saussereau Laboratoire de Mathématiques de Besançon Université de Franche-Comté Travail en commun

Plus en détail

Programmes des classes préparatoires aux Grandes Ecoles

Programmes des classes préparatoires aux Grandes Ecoles Programmes des classes préparatoires aux Grandes Ecoles Filière : scientifique Voie : Biologie, chimie, physique et sciences de la Terre (BCPST) Discipline : Mathématiques Seconde année Préambule Programme

Plus en détail

Notes de cours de Probabilités Appliquées. Olivier François

Notes de cours de Probabilités Appliquées. Olivier François Notes de cours de Probabilités Appliquées Olivier François 2 Table des matières 1 Axiomes des probabilités 7 1.1 Introduction................................. 7 1.2 Définitions et notions élémentaires.....................

Plus en détail

Exemples de problèmes et d applications. INF6953 Exemples de problèmes 1

Exemples de problèmes et d applications. INF6953 Exemples de problèmes 1 Exemples de problèmes et d applications INF6953 Exemples de problèmes Sommaire Quelques domaines d application Quelques problèmes réels Allocation de fréquences dans les réseaux radio-mobiles Affectation

Plus en détail

Jeux sous forme normale

Jeux sous forme normale CHAPITRE 4 Jeux sous forme normale Dans les problèmes de décision, nous avons relié les choix qui pouvaient être faits par un agent avec les utilités qu il pouvait en dériver. L idée qu un agent rationnel

Plus en détail

Calculs de probabilités

Calculs de probabilités Calculs de probabilités Mathématiques Générales B Université de Genève Sylvain Sardy 13 mars 2008 1. Définitions et notations 1 L origine des probabilités est l analyse de jeux de hasard, tels que pile

Plus en détail

Petits jeux de probabilités (Solutions)

Petits jeux de probabilités (Solutions) Petits jeux de probabilités (Solutions) Christophe Lalanne En famille 1. Mon voisin a deux enfants dont l un est une fille, quelle est la probabilité pour que l autre soit un garçon? Une famille de deux

Plus en détail

Lois de probabilité à densité Loi normale

Lois de probabilité à densité Loi normale DERNIÈRE IMPRESSIN LE 31 mars 2015 à 14:11 Lois de probabilité à densité Loi normale Table des matières 1 Lois à densité 2 1.1 Introduction................................ 2 1.2 Densité de probabilité

Plus en détail

Vision industrielle et télédétection - Détection d ellipses. Guillaume Martinez 17 décembre 2007

Vision industrielle et télédétection - Détection d ellipses. Guillaume Martinez 17 décembre 2007 Vision industrielle et télédétection - Détection d ellipses Guillaume Martinez 17 décembre 2007 1 Table des matières 1 Le projet 3 1.1 Objectif................................ 3 1.2 Les choix techniques.........................

Plus en détail

L Algorithme de Kohonen appliqué a l'evaluation de la Sécurité d un Système d'energie Electrique. Gonzalo Joya. Dpto. Tecnología Electrónica

L Algorithme de Kohonen appliqué a l'evaluation de la Sécurité d un Système d'energie Electrique. Gonzalo Joya. Dpto. Tecnología Electrónica L Algorithme de Kohonen appliqué a l'evaluation de la Sécurité d un Système d'energie Electrique Gonzalo Joya ETSI Telecomucicación 29017 Málaga joya@dte.uma.es París, le 21 fevrier 2003 Plan 1. Estimation

Plus en détail

Loi binomiale Lois normales

Loi binomiale Lois normales Loi binomiale Lois normales Christophe ROSSIGNOL Année scolaire 204/205 Table des matières Rappels sur la loi binomiale 2. Loi de Bernoulli............................................ 2.2 Schéma de Bernoulli

Plus en détail

Développement décimal d un réel

Développement décimal d un réel 4 Développement décimal d un réel On rappelle que le corps R des nombres réels est archimédien, ce qui permet d y définir la fonction partie entière. En utilisant cette partie entière on verra dans ce

Plus en détail

PROBABILITES ET STATISTIQUE I&II

PROBABILITES ET STATISTIQUE I&II PROBABILITES ET STATISTIQUE I&II TABLE DES MATIERES CHAPITRE I - COMBINATOIRE ELEMENTAIRE I.1. Rappel des notations de la théorie des ensemble I.1.a. Ensembles et sous-ensembles I.1.b. Diagrammes (dits

Plus en détail

Simulation de variables aléatoires

Simulation de variables aléatoires Chapter 1 Simulation de variables aléatoires Références: [F] Fishman, A first course in Monte Carlo, chap 3. [B] Bouleau, Probabilités de l ingénieur, chap 4. [R] Rubinstein, Simulation and Monte Carlo

Plus en détail

Chapitre 1. L intérêt. 2. Concept d intérêt. 1. Mise en situation. Au terme de ce chapitre, vous serez en mesure de :

Chapitre 1. L intérêt. 2. Concept d intérêt. 1. Mise en situation. Au terme de ce chapitre, vous serez en mesure de : Chapitre 1 L intérêt Au terme de ce chapitre, vous serez en mesure de : 1. Comprendre la notion générale d intérêt. 2. Distinguer la capitalisation à intérêt simple et à intérêt composé. 3. Calculer la

Plus en détail

Introduction d indices structuraux pour l analyse de réseaux multiplexes

Introduction d indices structuraux pour l analyse de réseaux multiplexes Introduction d indices structuraux pour l analyse de réseaux multiplexes Application à l analyse d un thésaurus Romain Boulet UMR ESPACE-DEV IRD 500 Avenue Jean-François Breton 34093 MONTPELLIER romain.boulet@ird.fr

Plus en détail

Statistique Descriptive et Inférentielle Méthodes paramétriques et non paramétriques

Statistique Descriptive et Inférentielle Méthodes paramétriques et non paramétriques Fiche TD avec le logiciel : a2-1-c Statistique Descriptive et Inférentielle Méthodes paramétriques et non paramétriques Sylvain Mousset Rappels de probabilités / statistiques Table des matières 1 Probabilités

Plus en détail

Probabilités sur un univers fini

Probabilités sur un univers fini [http://mp.cpgedupuydelome.fr] édité le 10 août 2015 Enoncés 1 Proailités sur un univers fini Evènements et langage ensemliste A quelle condition sur (a,, c, d) ]0, 1[ 4 existe-t-il une proailité P sur

Plus en détail

Programme de mathématiques TSI1

Programme de mathématiques TSI1 Programme de mathématiques TSI1 1. PROGRAMME DE DÉBUT D ANNÉE I. Nombres complexes et géométrie élémentaire 1. Nombres complexes 1 2. Géométrie élémentaire du plan 3 3. Géométrie élémentaire de l espace

Plus en détail

(51) Int Cl.: H04L 29/06 (2006.01) G06F 21/55 (2013.01)

(51) Int Cl.: H04L 29/06 (2006.01) G06F 21/55 (2013.01) (19) TEPZZ 8 8 4_A_T (11) EP 2 838 241 A1 (12) DEMANDE DE BREVET EUROPEEN (43) Date de publication: 18.02.1 Bulletin 1/08 (1) Int Cl.: H04L 29/06 (06.01) G06F 21/ (13.01) (21) Numéro de dépôt: 141781.4

Plus en détail

Travaux Dirigés de Probabilités - Statistiques, TD 4. Lois limites ; estimation.

Travaux Dirigés de Probabilités - Statistiques, TD 4. Lois limites ; estimation. Travaux Dirigés de Probabilités - Statistiques, TD 4 Lois limites ; estimation. Exercice 1. Trois machines, A, B, C fournissent respectivement 50%, 30%, 20% de la production d une usine. Les pourcentages

Plus en détail

Introduction à la théorie des files d'attente. Claude Chaudet Claude.Chaudet@enst.fr

Introduction à la théorie des files d'attente. Claude Chaudet Claude.Chaudet@enst.fr Introduction à la théorie des files d'attente Claude Chaudet Claude.Chaudet@enst.fr La théorie des files d'attente... Principe: modélisation mathématique de l accès à une ressource partagée Exemples réseaux

Plus en détail

Cours 7 : fonctions recursives, arithmétique binaire, flottants 1

Cours 7 : fonctions recursives, arithmétique binaire, flottants 1 Cours 7 : fonctions recursives, arithmétique binaire, flottants 1 Les types énumérés On peut aussi définir des types qui ont un nombre fini de valeurs (ex: jours de la semaine, couleurs primaires, etc.)

Plus en détail

Analyser les réseaux avec R (packages statnet, igraph et tnet)

Analyser les réseaux avec R (packages statnet, igraph et tnet) Analyser les réseaux avec R (packages statnet, igraph et tnet) Laurent Beauguitte To cite this version: Laurent Beauguitte. Analyser les réseaux avec R (packages statnet, igraph et tnet). DEA. Analyser

Plus en détail

Simulation d un système d assurance automobile

Simulation d un système d assurance automobile Simulation d un système d assurance automobile DESSOUT / PLESEL / DACHI Plan 1 Introduction... 2 Méthodes et outils utilisés... 2.1 Chaines de Markov... 2.2 Méthode de Monte Carlo... 2.3 Méthode de rejet...

Plus en détail

Master de mathématiques Analyse numérique matricielle

Master de mathématiques Analyse numérique matricielle Master de mathématiques Analyse numérique matricielle 2009 2010 CHAPITRE 1 Méthodes itératives de résolution de systèmes linéaires On veut résoudre un système linéaire Ax = b, où A est une matrice inversible

Plus en détail

Empreintes conceptuelles et spatiales pour la caractérisation des réseaux sociaux

Empreintes conceptuelles et spatiales pour la caractérisation des réseaux sociaux Empreintes conceptuelles et spatiales pour la caractérisation des réseaux sociaux Bénédicte Le Grand*, Marie-Aude Aufaure** and Michel Soto* *Laboratoire d Informatique de Paris 6 UPMC {Benedicte.Le-Grand,

Plus en détail

Probabilités sur un univers fini

Probabilités sur un univers fini [http://mp.cpgedupuydelome.fr] édité le 7 août 204 Enoncés Probabilités sur un univers fini Evènements et langage ensembliste A quelle condition sur (a, b, c, d) ]0, [ 4 existe-t-il une probabilité P sur

Plus en détail

J. Franco *1, O. Vasseur 2, B. Corre 1, M. Sergent 3. Communication orale 1. INTRODUCTION

J. Franco *1, O. Vasseur 2, B. Corre 1, M. Sergent 3. Communication orale 1. INTRODUCTION Un nouveau critère basé sur les arbres de longueur minimale pour déterminer la qualité de la répartition spatiale des points d un plan d expériences numériques en phase exploratoire. J. Franco *1, O. Vasseur

Plus en détail

Structures de données non linéaires

Structures de données non linéaires Structures de données non linéaires I. Graphes Définition Un graphe (simple) orienté G est un couple (S, A), où : S est un ensemble dont les éléments sont appelés les sommets. A est un ensemble de couples

Plus en détail

Exercices types Algorithmique et simulation numérique Oral Mathématiques et algorithmique Banque PT

Exercices types Algorithmique et simulation numérique Oral Mathématiques et algorithmique Banque PT Exercices types Algorithmique et simulation numérique Oral Mathématiques et algorithmique Banque PT Ces exercices portent sur les items 2, 3 et 5 du programme d informatique des classes préparatoires,

Plus en détail

Université de Montréal. Temps de Branchement du Mouvement Brownien Branchant Inhomogène. Jean-Sébastien Turcotte

Université de Montréal. Temps de Branchement du Mouvement Brownien Branchant Inhomogène. Jean-Sébastien Turcotte Université de Montréal Temps de Branchement du Mouvement Brownien Branchant Inhomogène par Jean-Sébastien Turcotte Département de mathématiques et de statistique Faculté des arts et des sciences Mémoire

Plus en détail

7.1 Un exemple en guise d introduction : Gérer les incompatibilités

7.1 Un exemple en guise d introduction : Gérer les incompatibilités CHAPITRE 7 COLORATION DE GRAPHES 51 Chapitre 7: Coloration de graphes 7.1 Un exemple en guise d introduction : Gérer les incompatibilités Problème : Une entreprise qui fabrique six sortes de produits chimiques

Plus en détail

Baccalauréat ES/L Métropole La Réunion 13 septembre 2013 Corrigé

Baccalauréat ES/L Métropole La Réunion 13 septembre 2013 Corrigé Baccalauréat S/L Métropole La Réunion 13 septembre 2013 Corrigé A. P. M.. P. XRCIC 1 Commun à tous les candidats Partie A 1. L arbre de probabilité correspondant aux données du problème est : 0,3 0,6 H

Plus en détail

Lois de probabilité. Anita Burgun

Lois de probabilité. Anita Burgun Lois de probabilité Anita Burgun Problème posé Le problème posé en statistique: On s intéresse à une population On extrait un échantillon On se demande quelle sera la composition de l échantillon (pourcentage

Plus en détail

Qu est ce qu un réseau social. CNAM Séminaire de Statistiques Appliquées 13/11/2013. F.Soulié Fogelman 1. Utilisation des réseaux sociaux pour le

Qu est ce qu un réseau social. CNAM Séminaire de Statistiques Appliquées 13/11/2013. F.Soulié Fogelman 1. Utilisation des réseaux sociaux pour le Qui je suis Innovation Utilisation des réseaux sociaux pour le data mining Business & Decision Françoise Soulié Fogelman francoise.soulie@outlook.com Atos KDD_US CNAM Séminaire de Statistique appliquée

Plus en détail

Analyse du réseau des voiries urbaines : une approche directe

Analyse du réseau des voiries urbaines : une approche directe RECHERCHE Analyse du réseau des voiries urbaines : une approche directe Sergio Porta 1, Paolo Crucitti 2, Vito Latora 3 Article disponible sur le site ArXiv physics/0506009 Originellement paru dans la

Plus en détail

Quelques points de repères dans l étude des réseaux par la théorie des graphes

Quelques points de repères dans l étude des réseaux par la théorie des graphes Networks and Communication Studies NETCOM, vol. 20, n 1-2, 2006 p. 195-216 Quelques points de repères dans l étude des réseaux par la théorie des graphes Laurence Saglietto 1 Abstract. The notion of network

Plus en détail

Abdallah Derbal Département de Mathématiques, Ecole Normale Supérieure, Vieux Kouba - Alger - abderbal@yahoo.fr

Abdallah Derbal Département de Mathématiques, Ecole Normale Supérieure, Vieux Kouba - Alger - abderbal@yahoo.fr #A56 INTEGERS 9 009), 735-744 UNE FORME EFFECTIVE D UN THÉORÈME DE BATEMAN SUR LA FONCTION PHI D EULER Abdallah Derbal Département de Mathématiques, Ecole Normale Supérieure, Vieux Kouba - Alger - Algérie,

Plus en détail

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures)

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures) CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE Cinquième épreuve d admissibilité STATISTIQUE (durée : cinq heures) Une composition portant sur la statistique. SUJET Cette épreuve est composée d un

Plus en détail