Partie 1. La structure des réseaux sociaux

Dimension: px
Commencer à balayer dès la page:

Download "Partie 1. La structure des réseaux sociaux"

Transcription

1 Partie 1. La structure des réseaux sociaux Analyse et Modélisation des Réseaux, Université Bordeaux IV

2 Sections : Introduction 1 Introduction 2 3 L expérience de Milgram Les réseaux aléatoires 4 Le clustering à la Watts et Strogatz 5 Mesures inviduelles de centralité La distribution des degrés Le modèle de Barabasi et Albert 6

3 Pourquoi s intérésser aux réseaux sociaux? Une catégorie très générale et très fréquente des situations d interaction économiques et sociales Joue un rôle dans les comportements des agents et dans les issues individuelle et collective de leurs interactions.

4 Pourquoi s intérésser aux réseaux sociaux? Une catégorie très générale et très fréquente des situations d interaction économiques et sociales Joue un rôle dans les comportements des agents et dans les issues individuelle et collective de leurs interactions.

5 Familles florentines et influence

6 Collaborations scientifiques

7 Information et internet

8 Relations amicales et origine ethnique

9 Romances Introduction

10 L analyse des reseaux sociaux Un objet partagé : Sociologie, Mathématiques, Physique, Economie, Management. Disponibilité des données de réseau Un point de rencontre vers une approche unifiée du fait social.

11 L analyse des reseaux sociaux Un objet partagé : Sociologie, Mathématiques, Physique, Economie, Management. Disponibilité des données de réseau Un point de rencontre vers une approche unifiée du fait social.

12 L analyse des reseaux sociaux Un objet partagé : Sociologie, Mathématiques, Physique, Economie, Management. Disponibilité des données de réseau Un point de rencontre vers une approche unifiée du fait social.

13 Quelques domaines d application en conomie économie de l innovation économie industrielle économie du travail théorie de jeux économie du développement économie publique et environnement économie internationale finance économie spatiale économétrie économie sociale économie du crime

14 Quelques domaines d application en conomie économie de l innovation économie industrielle économie du travail théorie de jeux économie du développement économie publique et environnement économie internationale finance économie spatiale économétrie économie sociale économie du crime

15 Quelques domaines d application en conomie économie de l innovation économie industrielle économie du travail théorie de jeux économie du développement économie publique et environnement économie internationale finance économie spatiale économétrie économie sociale économie du crime

16 Quelques domaines d application en conomie économie de l innovation économie industrielle économie du travail théorie de jeux économie du développement économie publique et environnement économie internationale finance économie spatiale économétrie économie sociale économie du crime

17 Quelques domaines d application en conomie économie de l innovation économie industrielle économie du travail théorie de jeux économie du développement économie publique et environnement économie internationale finance économie spatiale économétrie économie sociale économie du crime

18 Quelques domaines d application en conomie économie de l innovation économie industrielle économie du travail théorie de jeux économie du développement économie publique et environnement économie internationale finance économie spatiale économétrie économie sociale économie du crime

19 Quelques domaines d application en conomie économie de l innovation économie industrielle économie du travail théorie de jeux économie du développement économie publique et environnement économie internationale finance économie spatiale économétrie économie sociale économie du crime

20 Quelques domaines d application en conomie économie de l innovation économie industrielle économie du travail théorie de jeux économie du développement économie publique et environnement économie internationale finance économie spatiale économétrie économie sociale économie du crime

21 Quelques domaines d application en conomie économie de l innovation économie industrielle économie du travail théorie de jeux économie du développement économie publique et environnement économie internationale finance économie spatiale économétrie économie sociale économie du crime

22 Quelques domaines d application en conomie économie de l innovation économie industrielle économie du travail théorie de jeux économie du développement économie publique et environnement économie internationale finance économie spatiale économétrie économie sociale économie du crime

23 Quelques domaines d application en conomie économie de l innovation économie industrielle économie du travail théorie de jeux économie du développement économie publique et environnement économie internationale finance économie spatiale économétrie économie sociale économie du crime

24 Quelques domaines d application en conomie économie de l innovation économie industrielle économie du travail théorie de jeux économie du développement économie publique et environnement économie internationale finance économie spatiale économétrie économie sociale économie du crime

25 Organisation du cours Lectures conseillées : Barabasi L., M. Newman, & D. Watts, 2006, The structure and dynamics of networks, Princeton University Press. Jackson M.O., 2008, Social and Economic Networks, Princeton University Press. Wasserman, S, Faust K., 1994, Social Network Analysis. Methods and applications, Cambridge University Press.

26 Organisation du cours Lectures conseillées : Barabasi L., M. Newman, & D. Watts, 2006, The structure and dynamics of networks, Princeton University Press. Jackson M.O., 2008, Social and Economic Networks, Princeton University Press. Wasserman, S, Faust K., 1994, Social Network Analysis. Methods and applications, Cambridge University Press.

27 Organisation du cours Lectures conseillées : Barabasi L., M. Newman, & D. Watts, 2006, The structure and dynamics of networks, Princeton University Press. Jackson M.O., 2008, Social and Economic Networks, Princeton University Press. Wasserman, S, Faust K., 1994, Social Network Analysis. Methods and applications, Cambridge University Press.

28 Organisation du cours Lectures conseillées : Barabasi L., M. Newman, & D. Watts, 2006, The structure and dynamics of networks, Princeton University Press. Jackson M.O., 2008, Social and Economic Networks, Princeton University Press. Wasserman, S, Faust K., 1994, Social Network Analysis. Methods and applications, Cambridge University Press.

29 Plan du cours Chapitre 1. La structure des réseaux sociaux Chapitre 2. La formation stratégique des réseaux Chapitre 3. Réseaux et comportements (diffusion, apprentissage, jeux, et marchés)

30 Plan du cours Chapitre 1. La structure des réseaux sociaux Chapitre 2. La formation stratégique des réseaux Chapitre 3. Réseaux et comportements (diffusion, apprentissage, jeux, et marchés)

31 Plan du cours Chapitre 1. La structure des réseaux sociaux Chapitre 2. La formation stratégique des réseaux Chapitre 3. Réseaux et comportements (diffusion, apprentissage, jeux, et marchés)

32 Evaluation pour M2-R Economie Applique Choix d un article de recherche qui doit être présenté et discuté dans un document.

33 Sections : Introduction 1 Introduction 2 3 L expérience de Milgram Les réseaux aléatoires 4 Le clustering à la Watts et Strogatz 5 Mesures inviduelles de centralité La distribution des degrés Le modèle de Barabasi et Albert 6

34 Definitions Introduction Il y a n agents, N = {1, 2,..., n}. Les agents constituent les noeuds d un graphe, les arcs constituant les relations entre eux. Un lien entre deux agents distincts i et j N est dénoté ij. Le réseau est la liste des paires (ordonnées ou non ordonnées) ij g. On écrit aussi que g ij = 1 si ij g et 0 sinon. Il est aussi possible que g ij R dans le cas des graphes pondérés.

35 Definitions Introduction Il y a n agents, N = {1, 2,..., n}. Les agents constituent les noeuds d un graphe, les arcs constituant les relations entre eux. Un lien entre deux agents distincts i et j N est dénoté ij. Le réseau est la liste des paires (ordonnées ou non ordonnées) ij g. On écrit aussi que g ij = 1 si ij g et 0 sinon. Il est aussi possible que g ij R dans le cas des graphes pondérés.

36 Definitions Introduction Il y a n agents, N = {1, 2,..., n}. Les agents constituent les noeuds d un graphe, les arcs constituant les relations entre eux. Un lien entre deux agents distincts i et j N est dénoté ij. Le réseau est la liste des paires (ordonnées ou non ordonnées) ij g. On écrit aussi que g ij = 1 si ij g et 0 sinon. Il est aussi possible que g ij R dans le cas des graphes pondérés.

37 Definitions Introduction Il y a n agents, N = {1, 2,..., n}. Les agents constituent les noeuds d un graphe, les arcs constituant les relations entre eux. Un lien entre deux agents distincts i et j N est dénoté ij. Le réseau est la liste des paires (ordonnées ou non ordonnées) ij g. On écrit aussi que g ij = 1 si ij g et 0 sinon. Il est aussi possible que g ij R dans le cas des graphes pondérés.

38 Definitions Introduction Il y a n agents, N = {1, 2,..., n}. Les agents constituent les noeuds d un graphe, les arcs constituant les relations entre eux. Un lien entre deux agents distincts i et j N est dénoté ij. Le réseau est la liste des paires (ordonnées ou non ordonnées) ij g. On écrit aussi que g ij = 1 si ij g et 0 sinon. Il est aussi possible que g ij R dans le cas des graphes pondérés.

39 Definitions Introduction Le réseaux complet est g N = {ij i, j N}, l ensemble de tous les sous ensembles de N de taille 2. L ensemble de tous les graphes possibles entre les n agents est G = { g g N}. Le nombre total de liens est donné par η(g) = #g. N i (g) = {j ij g} est l ensemble des voisins de i. η i (g) = #N i (g) est le degré de i.

40 Definitions Introduction Le réseaux complet est g N = {ij i, j N}, l ensemble de tous les sous ensembles de N de taille 2. L ensemble de tous les graphes possibles entre les n agents est G = { g g N}. Le nombre total de liens est donné par η(g) = #g. N i (g) = {j ij g} est l ensemble des voisins de i. η i (g) = #N i (g) est le degré de i.

41 Definitions Introduction Le réseaux complet est g N = {ij i, j N}, l ensemble de tous les sous ensembles de N de taille 2. L ensemble de tous les graphes possibles entre les n agents est G = { g g N}. Le nombre total de liens est donné par η(g) = #g. N i (g) = {j ij g} est l ensemble des voisins de i. η i (g) = #N i (g) est le degré de i.

42 Definitions Introduction Le réseaux complet est g N = {ij i, j N}, l ensemble de tous les sous ensembles de N de taille 2. L ensemble de tous les graphes possibles entre les n agents est G = { g g N}. Le nombre total de liens est donné par η(g) = #g. N i (g) = {j ij g} est l ensemble des voisins de i. η i (g) = #N i (g) est le degré de i.

43 Definitions Introduction Le réseaux complet est g N = {ij i, j N}, l ensemble de tous les sous ensembles de N de taille 2. L ensemble de tous les graphes possibles entre les n agents est G = { g g N}. Le nombre total de liens est donné par η(g) = #g. N i (g) = {j ij g} est l ensemble des voisins de i. η i (g) = #N i (g) est le degré de i.

44 Definitions Introduction Un chemin d un réseaux g G reliant i à j, est une séquence de liens telle que {i 1 i 2, i 2 i 3,..., i k 1 i k } g où i 1 = i, i k = j. i g j est l ensemble des chemins reliant i à j sur le graphe g. L ensemble des plus court chemins entre i et j sur g noté i g j est tel que k i g j, alors k i g j et #k = min h i g j #h. Un composant C est un sous ensemble non vide de l ensemble des agents C N tel que i, j C, il y a un chemin entre i et j, c est-à-dire i g j.

45 Definitions Introduction Un chemin d un réseaux g G reliant i à j, est une séquence de liens telle que {i 1 i 2, i 2 i 3,..., i k 1 i k } g où i 1 = i, i k = j. i g j est l ensemble des chemins reliant i à j sur le graphe g. L ensemble des plus court chemins entre i et j sur g noté i g j est tel que k i g j, alors k i g j et #k = min h i g j #h. Un composant C est un sous ensemble non vide de l ensemble des agents C N tel que i, j C, il y a un chemin entre i et j, c est-à-dire i g j.

46 Definitions Introduction Un chemin d un réseaux g G reliant i à j, est une séquence de liens telle que {i 1 i 2, i 2 i 3,..., i k 1 i k } g où i 1 = i, i k = j. i g j est l ensemble des chemins reliant i à j sur le graphe g. L ensemble des plus court chemins entre i et j sur g noté i g j est tel que k i g j, alors k i g j et #k = min h i g j #h. Un composant C est un sous ensemble non vide de l ensemble des agents C N tel que i, j C, il y a un chemin entre i et j, c est-à-dire i g j.

47 Definitions Introduction Un chemin d un réseaux g G reliant i à j, est une séquence de liens telle que {i 1 i 2, i 2 i 3,..., i k 1 i k } g où i 1 = i, i k = j. i g j est l ensemble des chemins reliant i à j sur le graphe g. L ensemble des plus court chemins entre i et j sur g noté i g j est tel que k i g j, alors k i g j et #k = min h i g j #h. Un composant C est un sous ensemble non vide de l ensemble des agents C N tel que i, j C, il y a un chemin entre i et j, c est-à-dire i g j.

48 Definitions Introduction La distance géodesique (relationnelle) entre i et j est le nombre de liens d un chemin le plus court entre eux : d(i, j) = d g (i, j) = #k, avec k i g j. Graphes typiques : le réseaux vide g, l étoile (complète) g, est telle que #g = n 1 et il existe un agent i N tel que si jk g, alors soit j = i ou k = i. L agent i est le centre de l étoile. l arbre (spanning tree) reliant tous les agents est caractérisé par l existence d un chemin et un seul entre chaque paire d agents (aucun cycle et aucun agent isolé). Nous avons ici : η(g) = n 1.

49 Definitions Introduction La distance géodesique (relationnelle) entre i et j est le nombre de liens d un chemin le plus court entre eux : d(i, j) = d g (i, j) = #k, avec k i g j. Graphes typiques : le réseaux vide g, l étoile (complète) g, est telle que #g = n 1 et il existe un agent i N tel que si jk g, alors soit j = i ou k = i. L agent i est le centre de l étoile. l arbre (spanning tree) reliant tous les agents est caractérisé par l existence d un chemin et un seul entre chaque paire d agents (aucun cycle et aucun agent isolé). Nous avons ici : η(g) = n 1.

50 Definitions Introduction La distance géodesique (relationnelle) entre i et j est le nombre de liens d un chemin le plus court entre eux : d(i, j) = d g (i, j) = #k, avec k i g j. Graphes typiques : le réseaux vide g, l étoile (complète) g, est telle que #g = n 1 et il existe un agent i N tel que si jk g, alors soit j = i ou k = i. L agent i est le centre de l étoile. l arbre (spanning tree) reliant tous les agents est caractérisé par l existence d un chemin et un seul entre chaque paire d agents (aucun cycle et aucun agent isolé). Nous avons ici : η(g) = n 1.

51 Definitions Introduction La distance géodesique (relationnelle) entre i et j est le nombre de liens d un chemin le plus court entre eux : d(i, j) = d g (i, j) = #k, avec k i g j. Graphes typiques : le réseaux vide g, l étoile (complète) g, est telle que #g = n 1 et il existe un agent i N tel que si jk g, alors soit j = i ou k = i. L agent i est le centre de l étoile. l arbre (spanning tree) reliant tous les agents est caractérisé par l existence d un chemin et un seul entre chaque paire d agents (aucun cycle et aucun agent isolé). Nous avons ici : η(g) = n 1.

52 Definitions Introduction La distance géodesique (relationnelle) entre i et j est le nombre de liens d un chemin le plus court entre eux : d(i, j) = d g (i, j) = #k, avec k i g j. Graphes typiques : le réseaux vide g, l étoile (complète) g, est telle que #g = n 1 et il existe un agent i N tel que si jk g, alors soit j = i ou k = i. L agent i est le centre de l étoile. l arbre (spanning tree) reliant tous les agents est caractérisé par l existence d un chemin et un seul entre chaque paire d agents (aucun cycle et aucun agent isolé). Nous avons ici : η(g) = n 1.

53 Sections : Introduction L expérience de Milgram Les réseaux aléatoires 1 Introduction 2 3 L expérience de Milgram Les réseaux aléatoires 4 Le clustering à la Watts et Strogatz 5 Mesures inviduelles de centralité La distribution des degrés Le modèle de Barabasi et Albert 6

54 Les petits mondes L expérience de Milgram Les réseaux aléatoires Expérience de Milgram (69, 74) Sélectionner une cible à Sharon (Massachussets), Sélectionner 296 personnes : 196 à Omaha (Nebraska) 100 à Boston (Massachussets), Une boîte leur est envoyée, dans laquelle il leur est demandé : d atteindre la cible s ils la connaissent, d envoyer la boîte à une personne dont ils pensent qu elle pourrait la connaître sinon, et dans tous les cas, d envoyer un rapport.

55 Les petits mondes L expérience de Milgram Les réseaux aléatoires Expérience de Milgram (69, 74) Sélectionner une cible à Sharon (Massachussets), Sélectionner 296 personnes : 196 à Omaha (Nebraska) 100 à Boston (Massachussets), Une boîte leur est envoyée, dans laquelle il leur est demandé : d atteindre la cible s ils la connaissent, d envoyer la boîte à une personne dont ils pensent qu elle pourrait la connaître sinon, et dans tous les cas, d envoyer un rapport.

56 Les petits mondes L expérience de Milgram Les réseaux aléatoires Expérience de Milgram (69, 74) Sélectionner une cible à Sharon (Massachussets), Sélectionner 296 personnes : 196 à Omaha (Nebraska) 100 à Boston (Massachussets), Une boîte leur est envoyée, dans laquelle il leur est demandé : d atteindre la cible s ils la connaissent, d envoyer la boîte à une personne dont ils pensent qu elle pourrait la connaître sinon, et dans tous les cas, d envoyer un rapport.

57 Les petits mondes L expérience de Milgram Les réseaux aléatoires Expérience de Milgram (69, 74) Sélectionner une cible à Sharon (Massachussets), Sélectionner 296 personnes : 196 à Omaha (Nebraska) 100 à Boston (Massachussets), Une boîte leur est envoyée, dans laquelle il leur est demandé : d atteindre la cible s ils la connaissent, d envoyer la boîte à une personne dont ils pensent qu elle pourrait la connaître sinon, et dans tous les cas, d envoyer un rapport.

58 Les petits mondes L expérience de Milgram Les réseaux aléatoires Expérience de Milgram (69, 74) Sélectionner une cible à Sharon (Massachussets), Sélectionner 296 personnes : 196 à Omaha (Nebraska) 100 à Boston (Massachussets), Une boîte leur est envoyée, dans laquelle il leur est demandé : d atteindre la cible s ils la connaissent, d envoyer la boîte à une personne dont ils pensent qu elle pourrait la connaître sinon, et dans tous les cas, d envoyer un rapport.

59 Les petits mondes L expérience de Milgram Les réseaux aléatoires Expérience de Milgram (69, 74) Sélectionner une cible à Sharon (Massachussets), Sélectionner 296 personnes : 196 à Omaha (Nebraska) 100 à Boston (Massachussets), Une boîte leur est envoyée, dans laquelle il leur est demandé : d atteindre la cible s ils la connaissent, d envoyer la boîte à une personne dont ils pensent qu elle pourrait la connaître sinon, et dans tous les cas, d envoyer un rapport.

60 Les petits mondes L expérience de Milgram Les réseaux aléatoires Expérience de Milgram (69, 74) Sélectionner une cible à Sharon (Massachussets), Sélectionner 296 personnes : 196 à Omaha (Nebraska) 100 à Boston (Massachussets), Une boîte leur est envoyée, dans laquelle il leur est demandé : d atteindre la cible s ils la connaissent, d envoyer la boîte à une personne dont ils pensent qu elle pourrait la connaître sinon, et dans tous les cas, d envoyer un rapport.

61 Les petits mondes L expérience de Milgram Les réseaux aléatoires Expérience de Milgram (69, 74) Sélectionner une cible à Sharon (Massachussets), Sélectionner 296 personnes : 196 à Omaha (Nebraska) 100 à Boston (Massachussets), Une boîte leur est envoyée, dans laquelle il leur est demandé : d atteindre la cible s ils la connaissent, d envoyer la boîte à une personne dont ils pensent qu elle pourrait la connaître sinon, et dans tous les cas, d envoyer un rapport.

62 Les petits mondes L expérience de Milgram Les réseaux aléatoires Expérience de Milgram (69, 74) Sélectionner une cible à Sharon (Massachussets), Sélectionner 296 personnes : 196 à Omaha (Nebraska) 100 à Boston (Massachussets), Une boîte leur est envoyée, dans laquelle il leur est demandé : d atteindre la cible s ils la connaissent, d envoyer la boîte à une personne dont ils pensent qu elle pourrait la connaître sinon, et dans tous les cas, d envoyer un rapport.

63 Les petits mondes L expérience de Milgram Les réseaux aléatoires

64 Les petits mondes L expérience de Milgram Les réseaux aléatoires

65 Les petits mondes L expérience de Milgram Les réseaux aléatoires 64 essais ont atteint la cible et, cela a pris en moyenne 5.2 intermediaires et maximum de 12. La légende des six degrés de séparation est née!

66 Les petits mondes L expérience de Milgram Les réseaux aléatoires 64 essais ont atteint la cible et, cela a pris en moyenne 5.2 intermediaires et maximum de 12. La légende des six degrés de séparation est née!

67 Les petits mondes L expérience de Milgram Les réseaux aléatoires De la longueur des chaînes relationnelles à une estimation de la distance moyenne. Les chaînes non abouties : biais conduisant à une sous-estimation de la distance moyenne mais considérer que le taux de réponse des enquêtes ne dépasse quasiment jamais 30%. Biais conduisant à une sur-estimation de la distance moyenne, les chaînes relationnelles n emprunte pas nécessairement un plus court chemin. Correction par White qui estime que la moyenne est plutôt entre 6 et 8.

68 Les petits mondes L expérience de Milgram Les réseaux aléatoires De la longueur des chaînes relationnelles à une estimation de la distance moyenne. Les chaînes non abouties : biais conduisant à une sous-estimation de la distance moyenne mais considérer que le taux de réponse des enquêtes ne dépasse quasiment jamais 30%. Biais conduisant à une sur-estimation de la distance moyenne, les chaînes relationnelles n emprunte pas nécessairement un plus court chemin. Correction par White qui estime que la moyenne est plutôt entre 6 et 8.

69 Les petits mondes L expérience de Milgram Les réseaux aléatoires De la longueur des chaînes relationnelles à une estimation de la distance moyenne. Les chaînes non abouties : biais conduisant à une sous-estimation de la distance moyenne mais considérer que le taux de réponse des enquêtes ne dépasse quasiment jamais 30%. Biais conduisant à une sur-estimation de la distance moyenne, les chaînes relationnelles n emprunte pas nécessairement un plus court chemin. Correction par White qui estime que la moyenne est plutôt entre 6 et 8.

70 Les petits mondes L expérience de Milgram Les réseaux aléatoires De la longueur des chaînes relationnelles à une estimation de la distance moyenne. Les chaînes non abouties : biais conduisant à une sous-estimation de la distance moyenne mais considérer que le taux de réponse des enquêtes ne dépasse quasiment jamais 30%. Biais conduisant à une sur-estimation de la distance moyenne, les chaînes relationnelles n emprunte pas nécessairement un plus court chemin. Correction par White qui estime que la moyenne est plutôt entre 6 et 8.

71 L expérience de Milgram Les réseaux aléatoires Mesures globale de distance moyenne La distance moyenne (des agents sur leur composant) : i j i d (g) = d (i, j) 1 {i g j } # {i, j i j N, i g j }.

72 Les petits mondes L expérience de Milgram Les réseaux aléatoires Dans leur composant le plus grand (incluant toujours plus de 80% des noeuds) : Distance moyenne de 3.7 dans le actor-movie network (Watt & Strogatz, 1998) Distance moyenne de 3.9 dans le co-authorship math network (de Castro & Grossman, 1999) Distance moyenne de 6.2 dans le cond-mat arxiv physics network (Newman, 2004) Echantillon de sites web, distance moyenne de 3.1 dans le réseau non dirigé des hyperlinks (Adamic, 1999).

73 Les petits mondes L expérience de Milgram Les réseaux aléatoires Dans leur composant le plus grand (incluant toujours plus de 80% des noeuds) : Distance moyenne de 3.7 dans le actor-movie network (Watt & Strogatz, 1998) Distance moyenne de 3.9 dans le co-authorship math network (de Castro & Grossman, 1999) Distance moyenne de 6.2 dans le cond-mat arxiv physics network (Newman, 2004) Echantillon de sites web, distance moyenne de 3.1 dans le réseau non dirigé des hyperlinks (Adamic, 1999).

74 Les petits mondes L expérience de Milgram Les réseaux aléatoires Dans leur composant le plus grand (incluant toujours plus de 80% des noeuds) : Distance moyenne de 3.7 dans le actor-movie network (Watt & Strogatz, 1998) Distance moyenne de 3.9 dans le co-authorship math network (de Castro & Grossman, 1999) Distance moyenne de 6.2 dans le cond-mat arxiv physics network (Newman, 2004) Echantillon de sites web, distance moyenne de 3.1 dans le réseau non dirigé des hyperlinks (Adamic, 1999).

75 Les petits mondes L expérience de Milgram Les réseaux aléatoires Dans leur composant le plus grand (incluant toujours plus de 80% des noeuds) : Distance moyenne de 3.7 dans le actor-movie network (Watt & Strogatz, 1998) Distance moyenne de 3.9 dans le co-authorship math network (de Castro & Grossman, 1999) Distance moyenne de 6.2 dans le cond-mat arxiv physics network (Newman, 2004) Echantillon de sites web, distance moyenne de 3.1 dans le réseau non dirigé des hyperlinks (Adamic, 1999).

76 Les Poisson random networks L expérience de Milgram Les réseaux aléatoires G(n, p) (Solomonoff et Rapoport, 1951 ; Erdös-Renyi, 1959) random graph model : n le nombre de noeuds 0 p 1 est la probabilité (iid) que pour toute paire d agents i et j, ij g G(n, E) (Erdös-Renyi, 1960) n le nombre de noeuds E est le nombre de liens à allouer sur les n(n 1)/2 paires d agents i et j possibles. Etablir tous les réseaux possibles sur les n noeuds, en tirer un aléatoirement.

77 Les Poisson random networks L expérience de Milgram Les réseaux aléatoires G(n, p) (Solomonoff et Rapoport, 1951 ; Erdös-Renyi, 1959) random graph model : n le nombre de noeuds 0 p 1 est la probabilité (iid) que pour toute paire d agents i et j, ij g G(n, E) (Erdös-Renyi, 1960) n le nombre de noeuds E est le nombre de liens à allouer sur les n(n 1)/2 paires d agents i et j possibles. Etablir tous les réseaux possibles sur les n noeuds, en tirer un aléatoirement.

78 Les Poisson random networks L expérience de Milgram Les réseaux aléatoires G(n, p) (Solomonoff et Rapoport, 1951 ; Erdös-Renyi, 1959) random graph model : n le nombre de noeuds 0 p 1 est la probabilité (iid) que pour toute paire d agents i et j, ij g G(n, E) (Erdös-Renyi, 1960) n le nombre de noeuds E est le nombre de liens à allouer sur les n(n 1)/2 paires d agents i et j possibles. Etablir tous les réseaux possibles sur les n noeuds, en tirer un aléatoirement.

79 Les Poisson random networks L expérience de Milgram Les réseaux aléatoires G(n, p) (Solomonoff et Rapoport, 1951 ; Erdös-Renyi, 1959) random graph model : n le nombre de noeuds 0 p 1 est la probabilité (iid) que pour toute paire d agents i et j, ij g G(n, E) (Erdös-Renyi, 1960) n le nombre de noeuds E est le nombre de liens à allouer sur les n(n 1)/2 paires d agents i et j possibles. Etablir tous les réseaux possibles sur les n noeuds, en tirer un aléatoirement.

80 Les Poisson random networks L expérience de Milgram Les réseaux aléatoires G(n, p) (Solomonoff et Rapoport, 1951 ; Erdös-Renyi, 1959) random graph model : n le nombre de noeuds 0 p 1 est la probabilité (iid) que pour toute paire d agents i et j, ij g G(n, E) (Erdös-Renyi, 1960) n le nombre de noeuds E est le nombre de liens à allouer sur les n(n 1)/2 paires d agents i et j possibles. Etablir tous les réseaux possibles sur les n noeuds, en tirer un aléatoirement.

81 Les Poisson random networks L expérience de Milgram Les réseaux aléatoires G(n, p) (Solomonoff et Rapoport, 1951 ; Erdös-Renyi, 1959) random graph model : n le nombre de noeuds 0 p 1 est la probabilité (iid) que pour toute paire d agents i et j, ij g G(n, E) (Erdös-Renyi, 1960) n le nombre de noeuds E est le nombre de liens à allouer sur les n(n 1)/2 paires d agents i et j possibles. Etablir tous les réseaux possibles sur les n noeuds, en tirer un aléatoirement.

82 Les Poisson random networks L expérience de Milgram Les réseaux aléatoires G(n, p) (Solomonoff et Rapoport, 1951 ; Erdös-Renyi, 1959) random graph model : n le nombre de noeuds 0 p 1 est la probabilité (iid) que pour toute paire d agents i et j, ij g G(n, E) (Erdös-Renyi, 1960) n le nombre de noeuds E est le nombre de liens à allouer sur les n(n 1)/2 paires d agents i et j possibles. Etablir tous les réseaux possibles sur les n noeuds, en tirer un aléatoirement.

83 Les Poisson random networks L expérience de Milgram Les réseaux aléatoires Principe d analyse des propriétés structurelles Pour un réseau alétoire (Poisson random graph) Fixons p(n) et laissons n Définissons une propriété de réseau qui elle même définit, pour une population N, un sous-ensemble de tous les réseaux possibles sur N : A(N) G(N) Monotonicité : la propriété A(.) est monotone si N, g g et g A(N) alors g A(N).

84 Les Poisson random networks L expérience de Milgram Les réseaux aléatoires Principe d analyse des propriétés structurelles Pour un réseau alétoire (Poisson random graph) Fixons p(n) et laissons n Définissons une propriété de réseau qui elle même définit, pour une population N, un sous-ensemble de tous les réseaux possibles sur N : A(N) G(N) Monotonicité : la propriété A(.) est monotone si N, g g et g A(N) alors g A(N).

85 Les Poisson random networks L expérience de Milgram Les réseaux aléatoires Principe d analyse des propriétés structurelles Pour un réseau alétoire (Poisson random graph) Fixons p(n) et laissons n Définissons une propriété de réseau qui elle même définit, pour une population N, un sous-ensemble de tous les réseaux possibles sur N : A(N) G(N) Monotonicité : la propriété A(.) est monotone si N, g g et g A(N) alors g A(N).

86 Les Poisson random networks L expérience de Milgram Les réseaux aléatoires Principe d analyse des propriétés structurelles Pour un réseau alétoire (Poisson random graph) Fixons p(n) et laissons n Définissons une propriété de réseau qui elle même définit, pour une population N, un sous-ensemble de tous les réseaux possibles sur N : A(N) G(N) Monotonicité : la propriété A(.) est monotone si N, g g et g A(N) alors g A(N).

Les logiciels Ucinet et Netdraw

Les logiciels Ucinet et Netdraw École d été Web intelligence 6 au 10 juillet 2009 Les graphes et leurs différentes formes Des données à la construction du graphe Une forme plus avancée de représentation Densité d un graphe Graphe connexe

Plus en détail

LES RESEAUX SOCIAUX. Alain DEGENNE 1

LES RESEAUX SOCIAUX. Alain DEGENNE 1 5 Math. & Sci. hum. / Mathematics and Social Sciences (42 e année, n 168, 2004(4), p. 5-9) LES RESEAUX SOCIAUX Alain DEGENNE 1 INTRODUCTION Parmi les nombreux foyers de recherche actifs dans le domaine

Plus en détail

Cours de spécialité mathématiques en Terminale ES

Cours de spécialité mathématiques en Terminale ES Cours de spécialité mathématiques en Terminale ES O. Lader 2014/2015 Lycée Jean Vilar Spé math terminale ES 2014/2015 1 / 51 Systèmes linéaires Deux exemples de systèmes linéaires à deux équations et deux

Plus en détail

Baccalauréat ES Centres étrangers 12 juin 2014 - Corrigé

Baccalauréat ES Centres étrangers 12 juin 2014 - Corrigé Baccalauréat ES Centres étrangers 1 juin 14 - Corrigé A. P. M. E. P. Exercice 1 5 points Commun à tous les candidats 1. On prend un candidat au hasard et on note : l évènement «le candidat a un dossier

Plus en détail

Théorie des graphes. Introduction. Programme de Terminale ES Spécialité. Résolution de problèmes à l aide de graphes. Préparation CAPES UCBL

Théorie des graphes. Introduction. Programme de Terminale ES Spécialité. Résolution de problèmes à l aide de graphes. Préparation CAPES UCBL Introduction Ces quelques pages ont pour objectif de vous initier aux notions de théorie des graphes enseignées en Terminale ES. Le programme de Terminale (voir ci-après) est construit sur la résolution

Plus en détail

Analyse empirique et modélisation de la dynamique de la topologie de l Internet

Analyse empirique et modélisation de la dynamique de la topologie de l Internet Analyse empirique et modélisation de la dynamique de la topologie de l Internet Sergey Kirgizov Directrice de thèse: Clémence Magnien Complex Networks, LIP6, (UPMC, CNRS) Paris, 12 décembre 2014 Plan 1

Plus en détail

L'analyse des réseaux sociaux

L'analyse des réseaux sociaux L'analyse des réseaux sociaux Laurent Beauguitte CNRS - UMR IDEES 20 janvier 2015 L. Beauguitte (CNRS) SNA 20 janvier 2015 1 / 17 1 Questions de recherche et données 2 Mesures globales et locales 3 Deux

Plus en détail

AT41 - «Métropoles et réseaux»

AT41 - «Métropoles et réseaux» AT41 - «Métropoles et réseaux» Une approche par la théorie des graphes Plan Problématiques Quelques définitions Théorie des graphes: 1. Partitionnement de graphe : ex. les communautés 2. Analyse des réseaux

Plus en détail

Analyse des réseaux sociaux et apprentissage

Analyse des réseaux sociaux et apprentissage Analyse des réseaux sociaux et apprentissage Emmanuel Viennet Laboratoire de Traitement et Transport de l Information Université Paris 13 - Sorbonne Paris Cité Réseaux sociaux? Réseaux sociaux? Analyse

Plus en détail

Cours 1: lois discrétes classiques en probabilités

Cours 1: lois discrétes classiques en probabilités Cours 1: lois discrétes classiques en probabilités Laboratoire de Mathématiques de Toulouse Université Paul Sabatier-IUT GEA Ponsan Module: Stat inférentielles Définition Quelques exemples loi d une v.a

Plus en détail

Méthodes de distances Formation CNRS «Phylogénie moléculaire»

Méthodes de distances Formation CNRS «Phylogénie moléculaire» Méthodes de distances Formation CNRS «Phylogénie moléculaire» Guy Perrière Laboratoire de Biométrie et Biologie Évolutive UMR CNRS n 5558 Université Claude Bernard Lyon 1 2 mars 213 Guy Perrière (BBE)

Plus en détail

COURS SYRRES RÉSEAUX SOCIAUX. Jean-Loup Guillaume

COURS SYRRES RÉSEAUX SOCIAUX. Jean-Loup Guillaume COURS SYRRES RÉSEAUX SOCIAUX Jean-Loup Guillaume Le cours http://jlguillaume.free.fr/www/teaching/syrres/ Exemple 1 : Expérience de Milgram Objectif faire transiter une lettre depuis les Nebraska à un

Plus en détail

Introduction à l Analyse des Réseaux Sociaux

Introduction à l Analyse des Réseaux Sociaux (ARS) 18 mars 2010 Analyse des réseaux sociaux Définition Propriétés Utilisation & Applications Analyse des réseaux sociaux Définition Propriétés Utilisation & Applications Etude des entités sociales (les

Plus en détail

Analyse de données et méthodes numériques

Analyse de données et méthodes numériques Analyse de données et méthodes numériques Analyse de données: Que faire avec un résultat? Comment le décrire? Comment l analyser? Quels sont les «modèles» mathématiques associés? Analyse de données et

Plus en détail

Programmation dynamique

Programmation dynamique A. Principe général B. Application Triangle de Pascal Série mondiale Multiplication chaînée de matrices Les plus courts chemins Principe général Souvent, pour résoudre un problème de taille n, on s'aperçoit

Plus en détail

14. Introduction aux files d attente

14. Introduction aux files d attente 14. Introduction aux files d attente MTH2302D S. Le Digabel, École Polytechnique de Montréal H2015 (v2) MTH2302D: Files d attente 1/24 Plan 1. Introduction 2. Modèle M/M/1 3. Modèle M/M/1/K MTH2302D: Files

Plus en détail

Modèles à Événements Discrets. Réseaux de Petri Stochastiques

Modèles à Événements Discrets. Réseaux de Petri Stochastiques Modèles à Événements Discrets Réseaux de Petri Stochastiques Table des matières 1 Chaînes de Markov Définition formelle Idée générale Discrete Time Markov Chains Continuous Time Markov Chains Propriétés

Plus en détail

Soutien illimité 7j/7 en maths: Coach, profs, exercices & annales, cours. Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Liban

Soutien illimité 7j/7 en maths: Coach, profs, exercices & annales, cours. Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Liban Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Liban EXERCICE 1 : 4 Points Cet exercice est un questionnaire à choix multiples. Aucune justification n est demandée. Pour chacune des questions, une

Plus en détail

Notes de cours de spé maths en Terminale ES

Notes de cours de spé maths en Terminale ES Spé maths Terminale ES Lycée Georges Imbert 05/06 Notes de cours de spé maths en Terminale ES O. Lader Table des matières Recherche de courbes sous contraintes, matrices. Systèmes linéaires.......................................

Plus en détail

FaceBook aime les Maths!

FaceBook aime les Maths! FaceBook aime les Maths! Michel Rigo http://www.discmath.ulg.ac.be/ http://orbi.ulg.ac.be/ Réseaux Visualizing my Twitter Network by number of followers. Michael Atkisson http://woknowing.wordpress.com/

Plus en détail

Big Data et Graphes : Quelques pistes de recherche

Big Data et Graphes : Quelques pistes de recherche Big Data et Graphes : Quelques pistes de recherche Hamamache Kheddouci http://liris.cnrs.fr/hamamache.kheddouci Laboratoire d'informatique en Image et Systèmes d'information LIRIS UMR 5205 CNRS/INSA de

Plus en détail

Chapitre 2 Maîtrise des flux. - Chapitre 2 - Maîtrise des flux

Chapitre 2 Maîtrise des flux. - Chapitre 2 - Maîtrise des flux - - Facteurs agissant sur les flux Les modèles pour les SP Les réseaux de files d attente 1 Facteurs agissant sur les flux Au niveau physique : L implantation Le nombre de machines Automatisation (robots,

Plus en détail

Big Data et Graphes : Quelques pistes de recherche

Big Data et Graphes : Quelques pistes de recherche Big Data et Graphes : Quelques pistes de recherche Hamamache Kheddouci Laboratoire d'informatique en Image et Systèmes d'information LIRIS UMR 5205 CNRS/INSA de Lyon/Université Claude Bernard Lyon 1/Université

Plus en détail

Graphes, réseaux et internet

Graphes, réseaux et internet Graphes, réseaux et internet Clémence Magnien clemence.magnien@lip6.fr LIP6 CNRS et Université Pierre et Marie Curie (UPMC Paris 6) avec Matthieu Latapy, Frédéric Ouédraogo, Guillaume Valadon, Assia Hamzaoui,...

Plus en détail

Introduction à l Analyse des Réseaux Sociaux

Introduction à l Analyse des Réseaux Sociaux Introduction à l Analyse des Réseaux Sociaux Erick Stattner Laboratoire LAMIA Université des Antilles et de la Guyane, France erick.stattner@univ-ag.fr Guadeloupe, Novembre 2012 Erick Stattner Introduction

Plus en détail

Arbres binaires. Hélène Milhem. Institut de Mathématiques de Toulouse, INSA Toulouse, France IUP SID, 2011-2012

Arbres binaires. Hélène Milhem. Institut de Mathématiques de Toulouse, INSA Toulouse, France IUP SID, 2011-2012 Arbres binaires Hélène Milhem Institut de Mathématiques de Toulouse, INSA Toulouse, France IUP SID, 2011-2012 H. Milhem (IMT, INSA Toulouse) Arbres binaires IUP SID 2011-2012 1 / 35 PLAN Introduction Construction

Plus en détail

IFT6561. Simulation: aspects stochastiques

IFT6561. Simulation: aspects stochastiques IFT 6561 Simulation: aspects stochastiques DIRO Université de Montréal Automne 2013 Détails pratiques Professeur:, bureau 3367, Pav. A.-Aisenstadt. Courriel: bastin@iro.umontreal.ca Page web: http://www.iro.umontreal.ca/~bastin

Plus en détail

Contents. 1 Introduction Objectifs des systèmes bonus-malus Système bonus-malus à classes Système bonus-malus : Principes

Contents. 1 Introduction Objectifs des systèmes bonus-malus Système bonus-malus à classes Système bonus-malus : Principes Université Claude Bernard Lyon 1 Institut de Science Financière et d Assurances Système Bonus-Malus Introduction & Applications SCILAB Julien Tomas Institut de Science Financière et d Assurances Laboratoire

Plus en détail

Une nouvelle approche de détection de communautés dans les réseaux sociaux

Une nouvelle approche de détection de communautés dans les réseaux sociaux UNIVERSITÉ DU QUÉBEC EN OUTAOUAIS Département d informatique et d ingénierie Une nouvelle approche de détection de communautés dans les réseaux sociaux Mémoire (INF 6021) pour l obtention du grade de Maîtrise

Plus en détail

Introduction à la simulation de Monte Carlo

Introduction à la simulation de Monte Carlo Introduction à la simulation de 6-601-09 Simulation Geneviève Gauthier HEC Montréal e 1 d une I Soit X 1, X,..., X n des variables aléatoires indépendantes et identiquement distribuées. Elles sont obtenues

Plus en détail

Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé

Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé A. P. M. E. P. Exercice 1 5 points 1. Réponse d. : 1 e Le coefficient directeur de la tangente est négatif et n est manifestement pas 2e

Plus en détail

L'ANALYSE DYNAMIQUE DE RESEAUX SOCIAUX METHODE ET APPLICATION (SIENA POUR LES NULS) COMPLETS AVEC SIENA. Ainhoa de Federico de la Rúa

L'ANALYSE DYNAMIQUE DE RESEAUX SOCIAUX METHODE ET APPLICATION (SIENA POUR LES NULS) COMPLETS AVEC SIENA. Ainhoa de Federico de la Rúa L'ANALYSE DYNAMIQUE DE RESEAUX SOCIAUX COMPLETS AVEC SIENA METHODE ET APPLICATION (SIENA POUR LES NULS) Ainhoa de Federico de la Rúa Université de Toulouse II Le Mirail CERS LISST RESEAUX CAUSES OU EFFETS?

Plus en détail

Baccalauréat ES/L Amérique du Sud 21 novembre 2013

Baccalauréat ES/L Amérique du Sud 21 novembre 2013 Baccalauréat ES/L Amérique du Sud 21 novembre 2013 A. P. M. E. P. EXERCICE 1 Commun à tous les candidats 5 points Une entreprise informatique produit et vend des clés USB. La vente de ces clés est réalisée

Plus en détail

Projet CLANU en 3GE: Compléments d algèbre linéaire numérique

Projet CLANU en 3GE: Compléments d algèbre linéaire numérique Projet CLANU en 3GE: Compléments d algèbre linéaire numérique Année 2008/2009 1 Décomposition QR On rappelle que la multiplication avec une matrice unitaire Q C n n (c est-à-dire Q 1 = Q = Q T ) ne change

Plus en détail

Processus aléatoires avec application en finance

Processus aléatoires avec application en finance Genève, le 16 juin 2007. Processus aléatoires avec application en finance La durée de l examen est de deux heures. N oubliez pas d indiquer votre nom et prénom sur chaque feuille. Toute documentation et

Plus en détail

Introduction au modèle linéaire général

Introduction au modèle linéaire général Résumé Introductions au modèle linéaire général Retour au plan du cours Travaux pratiques 1 Introduction L objet de ce chapitre est d introduire le cadre théorique global permettant de regrouper tous les

Plus en détail

UNIVERSITE PARIS 1 PANTHEON SORBONNE LICENCE DE SCIENCES ECONOMIQUES. STATISTIQUE APPLIQUEE F. Gardes / P. Sevestre. Fiche N 7.

UNIVERSITE PARIS 1 PANTHEON SORBONNE LICENCE DE SCIENCES ECONOMIQUES. STATISTIQUE APPLIQUEE F. Gardes / P. Sevestre. Fiche N 7. UNIVERSITE PARIS 1 PANTHEON SORBONNE LICENCE DE SCIENCES ECONOMIQUES STATISTIQUE APPLIQUEE F. Gardes / P. Sevestre Fiche N 7 (avec corrigé) L objet de ce TD est de vous initier à la démarche et à quelques

Plus en détail

Simulations de Monte Carlo

Simulations de Monte Carlo Simulations de Monte Carlo 2 février 261 CNAM GFN 26 Gestion d actifs et des risques Gréory Taillard GFN 26 Gestion d actifs et des risques 2 Biblioraphie Hayat, Sere, Patrice Poncet et Roland Portait,

Plus en détail

Clustering par quantification en présence de censure

Clustering par quantification en présence de censure Clustering par quantification en présence de censure Svetlana Gribkova 1 Laboratoire de Statistique Théorique et Appliquée, Université Pierre et Marie Curie Paris 6, 4 place Jussieu, 75005 Paris Résumé.

Plus en détail

Introduction à l approche bootstrap

Introduction à l approche bootstrap Introduction à l approche bootstrap Irène Buvat U494 INSERM buvat@imedjussieufr 25 septembre 2000 Introduction à l approche bootstrap - Irène Buvat - 21/9/00-1 Plan du cours Qu est-ce que le bootstrap?

Plus en détail

Dynamique des vues ego-centrées de la topologie de l internet : analyse et modélisation

Dynamique des vues ego-centrées de la topologie de l internet : analyse et modélisation C. Magnien Dynamique de la topologie de l internet 1/28 Dynamique des vues ego-centrées de la topologie de l internet : analyse et modélisation Clémence Magnien Amélie Medem, Fabien Tarissan, Sergey Kirgizov

Plus en détail

DEFINITION et PROPRIETES des PRINCIPALES LOIS de PROBABILITES

DEFINITION et PROPRIETES des PRINCIPALES LOIS de PROBABILITES Université Paris1, Licence 00-003, Mme Pradel : Principales lois de Probabilité 1 DEFINITION et PROPRIETES des PRINCIPALES LOIS de PROBABILITES Notations Si la variable aléatoire X suit la loi L, onnoterax

Plus en détail

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. 1 Définitions, notations Calcul matriciel Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. On utilise aussi la notation m n pour le

Plus en détail

Les indicateurs structurels d'un graphe: calculs, visualisation, interactivité

Les indicateurs structurels d'un graphe: calculs, visualisation, interactivité Les indicateurs structurels d'un graphe: calculs, visualisation, interactivité Brigitte GAY (*), Bernard DOUSSET (**), Radwen WANASSI (**) b.gay@esc-toulouse.fr, bernard.dousset@irit.fr, wanesradwen@gmail.com

Plus en détail

Introduction et définition

Introduction et définition Loi de puissance Introduction et définition Propriétés de la loi de puissance(ldp) LdP et loi probabilités LdP et loi d échelle LdP et graphes complexes LdP et SOC Exemples d applicabilité Economie Réseaux

Plus en détail

Théorie des Langages

Théorie des Langages Théorie des Langages Automates Claude Moulin Université de Technologie de Compiègne Printemps 2013 Sommaire 1 Automate fini 2 Automate et langages réguliers 3 Automate à pile Automate fini déterministe

Plus en détail

Sujet de Bac 2013 Maths ES Obligatoire & Spécialité - Pondichéry

Sujet de Bac 2013 Maths ES Obligatoire & Spécialité - Pondichéry Sujet de Bac 2013 Maths ES Obligatoire & Spécialité - Pondichéry Exercice 1 : 4 points Commun à tous les candidats Cet exercice est un questionnaire à choix multiples. Une réponse exacte rapporte 1 point.

Plus en détail

COURS SYRRES RÉSEAUX SOCIAUX INTRODUCTION. Jean-Loup Guillaume

COURS SYRRES RÉSEAUX SOCIAUX INTRODUCTION. Jean-Loup Guillaume COURS SYRRES RÉSEAUX SOCIAUX INTRODUCTION Jean-Loup Guillaume Le cours Enseignant : Jean-Loup Guillaume équipe Complex Network Page du cours : http://jlguillaume.free.fr/www/teaching-syrres.php Évaluation

Plus en détail

Travail d Initiative Personnel Encadré : Chaines de Markov et protocole de gestion des communications radios par satellite relais.

Travail d Initiative Personnel Encadré : Chaines de Markov et protocole de gestion des communications radios par satellite relais. Yongwe Jean-Luc Travail d Initiative Personnel Encadré : Chaines de Markov et protocole de gestion des communications radios par satellite relais. (Système ALOHA) (Sous la tutelle de Madame Anne Perrut)

Plus en détail

Le Multidimensional Scaling et la cartographie des préférences

Le Multidimensional Scaling et la cartographie des préférences Le Multidimensional Scaling et la cartographie des préférences Gilbert Saporta Conservatoire National des Arts et Métiers http://cedric.cnam.fr/~saporta Avril 2014 Multidimensional scaling Egalement appelé

Plus en détail

Feuille de TP n 1 Initiation à Matlab

Feuille de TP n 1 Initiation à Matlab Université de l Anonyme XXII Préparation à l épreuve de modélisation - Agrégation Externe de Mathématiques 2004. Page n 1. Feuille de TP n 1 Initiation à Matlab Ce TP porte sur les entrées et sorties,

Plus en détail

Prévention et gestion des risques naturels et environnementaux

Prévention et gestion des risques naturels et environnementaux Prévention et gestion des risques naturels et environnementaux Risque et assurance : quelques éléments théoriques Ecole des Ponts - Le 6 Avril 01 Jacques Pelletan 1 Théorie du risque et pérennité de l

Plus en détail

- Mobiliser les résultats sur le second degré dans le cadre de la résolution d un problème.

- Mobiliser les résultats sur le second degré dans le cadre de la résolution d un problème. Mathématiques - classe de 1ère des séries STI2D et STL. 1. Analyse On dote les élèves d outils mathématiques permettant de traiter des problèmes relevant de la modélisation de phénomènes continus ou discrets.

Plus en détail

L enseignement des probabilités à Telecom Paristech

L enseignement des probabilités à Telecom Paristech L enseignement des probabilités à Telecom Paristech L. Decreusefond TPT L. Decreusefond (TPT) L enseignement des probabilités à Telecom Paristech 1 / 39 1 Enjeux 2 Difficultés 3 Modèle de Cox-Ross-Rubinstein

Plus en détail

Support du cours de Probabilités IUT d Orléans, Département d informatique

Support du cours de Probabilités IUT d Orléans, Département d informatique Support du cours de Probabilités IUT d Orléans, Département d informatique Pierre Andreoletti IUT d Orléans Laboratoire MAPMO (Bât. de Mathématiques UFR Sciences) - Bureau 126 email: pierre.andreoletti@univ-orleans.fr

Plus en détail

Examen de rattrapage

Examen de rattrapage Université Denis Diderot Paris 7 7 juin 4 Probabilités et Simulations UPS36 Examen de rattrapage durée : 3 heures Les documents et calculatrices ne sont pas autorisés. On prendra soin de bien justifier

Plus en détail

Théorie des ensembles

Théorie des ensembles Théorie des ensembles Cours de licence d informatique Saint-Etienne 2002/2003 Bruno Deschamps 2 Contents 1 Eléments de théorie des ensembles 3 1.1 Introduction au calcul propositionnel..................

Plus en détail

Un corrigé de l épreuve de mathématiques du baccalauréat blanc

Un corrigé de l épreuve de mathématiques du baccalauréat blanc Terminale ES Un corrigé de l épreuve de mathématiques du baccalauréat blanc EXERCICE ( points). Commun à tous les candidats On considère une fonction f : définie, continue et doublement dérivable sur l

Plus en détail

Modélisation coalescente pour la détection précoce d un cancer

Modélisation coalescente pour la détection précoce d un cancer Modélisation coalescente pour la détection précoce d un cancer Mathieu Emily 27 Novembre 2007 Bioinformatics Research Center - Université d Aarhus Danemark Mathieu Emily Coalescence et cancer 1 Introduction

Plus en détail

Le Data Mining au service du Scoring ou notation statistique des emprunteurs!

Le Data Mining au service du Scoring ou notation statistique des emprunteurs! France Le Data Mining au service du Scoring ou notation statistique des emprunteurs! Comme le rappelle la CNIL dans sa délibération n 88-083 du 5 Juillet 1988 portant adoption d une recommandation relative

Plus en détail

Loi binomiale Lois normales

Loi binomiale Lois normales Loi binomiale Lois normales Christophe ROSSIGNOL Année scolaire 204/205 Table des matières Rappels sur la loi binomiale 2. Loi de Bernoulli............................................ 2.2 Schéma de Bernoulli

Plus en détail

Principes de mathématiques 12 SÉRIE DE PROBLÈMES. Septembre 2001. Student Assessment and Program Evaluation Branch

Principes de mathématiques 12 SÉRIE DE PROBLÈMES. Septembre 2001. Student Assessment and Program Evaluation Branch Principes de mathématiques 12 SÉRIE DE PROBLÈMES Septembre 2001 Student Assessment and Program Evaluation Branch REMERCIEMENTS Le Ministère de l Éducation tient à remercier chaleureusement les professionnels

Plus en détail

Applications #2 Problème du voyageur de commerce (TSP)

Applications #2 Problème du voyageur de commerce (TSP) Applications #2 Problème du voyageur de commerce (TSP) MTH6311 S. Le Digabel, École Polytechnique de Montréal H2014 (v2) MTH6311: Heuristiques pour le TSP 1/34 Plan 1. Introduction 2. Formulations MIP

Plus en détail

1 Sujets donnés en option scientifique

1 Sujets donnés en option scientifique Les sujets suivants, posés aux candidats des options scientifique, économique, technologique et littéraire BL constituent la première version d un échantillon des sujets proposés lors des épreuves orales

Plus en détail

Baccalauréat ES/L Métropole La Réunion 13 septembre 2013 Corrigé

Baccalauréat ES/L Métropole La Réunion 13 septembre 2013 Corrigé Baccalauréat S/L Métropole La Réunion 13 septembre 2013 Corrigé A. P. M.. P. XRCIC 1 Commun à tous les candidats Partie A 1. L arbre de probabilité correspondant aux données du problème est : 0,3 0,6 H

Plus en détail

Le théorème de Perron-Frobenius, les chaines de Markov et un célèbre moteur de recherche

Le théorème de Perron-Frobenius, les chaines de Markov et un célèbre moteur de recherche Le théorème de Perron-Frobenius, les chaines de Markov et un célèbre moteur de recherche Bachir Bekka Février 2007 Le théorème de Perron-Frobenius a d importantes applications en probabilités (chaines

Plus en détail

Méthodes de Résolution de problèmes En Intelligence Artificielle

Méthodes de Résolution de problèmes En Intelligence Artificielle Méthodes de Résolution de problèmes En Intelligence Artificielle Résolution de Problèmes et Intelligence Artificielle Résoudre des puzzles Jouer aux échecs Faire des mathématiques Et même conduire une

Plus en détail

Les processus d évolution génétique en filtrage de signaux et en analyse de risques

Les processus d évolution génétique en filtrage de signaux et en analyse de risques Les processus d évolution génétique en filtrage de signaux et en analyse de risques P. Del Moral IRIA Centre Bordeaux-Sud Ouest Séminaire de Stat. et Santé Publique de l IFR 99, décembre 08 qq-références

Plus en détail

Texte Agrégation limitée par diffusion interne

Texte Agrégation limitée par diffusion interne Page n 1. Texte Agrégation limitée par diffusion interne 1 Le phénomène observé Un fût de déchets radioactifs est enterré secrètement dans le Cantal. Au bout de quelques années, il devient poreux et laisse

Plus en détail

Distributions bayésiennes nonparamétriques sur les matrices binaires triangulaires infinies : Applications aux modèles graphiques

Distributions bayésiennes nonparamétriques sur les matrices binaires triangulaires infinies : Applications aux modèles graphiques Distributions bayésiennes nonparamétriques sur les matrices binaires triangulaires infinies : Applications aux modèles graphiques Patrick Dallaire Université Laval Département d informatique et de génie

Plus en détail

CI-4 PRÉVOIR ET SUPPRIMER LES

CI-4 PRÉVOIR ET SUPPRIMER LES CI-4 LES CONTRAINTES DE MONTAGE D UN SYSTÈME. Objectifs ANALYSER - OPTIMISER A la fin de la séquence de révision, l élève doit être capable de B2 Proposer un modèle de connaissance et de comportement Déterminer

Plus en détail

Notes de cours (ENS Lyon, M1) Chapitre 4 : Internet et le Web

Notes de cours (ENS Lyon, M1) Chapitre 4 : Internet et le Web Notes de cours (ENS Lyon, M1) Chapitre 4 : Internet et le Web Table des matières 4 Internet et le Web 68 4.1 Le graphe du Web.......................... 68 4.1.1 Structure du Web...................... 68

Plus en détail

RECHERCHE OPERATIONNELLE

RECHERCHE OPERATIONNELLE RECHERCHE OPERATIONNELLE PROBLEME DE L ARBRE RECOUVRANT MINIMAL I - INTRODUCTION (1) Définitions (2) Propriétés, Conditions d existence II ALGORITHMES (1) Algorithme de KRUSKAL (2) Algorithme de PRIM I

Plus en détail

FIMA, 7 juillet 2005

FIMA, 7 juillet 2005 F. Corset 1 S. 2 1 LabSAD Université Pierre Mendes France 2 Département de Mathématiques Université de Franche-Comté FIMA, 7 juillet 2005 Plan de l exposé plus court chemin Origine du problème Modélisation

Plus en détail

Modélisation aléatoire en fiabilité des logiciels

Modélisation aléatoire en fiabilité des logiciels collection Méthodes stochastiques appliquées dirigée par Nikolaos Limnios et Jacques Janssen La sûreté de fonctionnement des systèmes informatiques est aujourd hui un enjeu économique et sociétal majeur.

Plus en détail

Probabilités. I- Expérience aléatoire, espace probabilisé : ShotGun. 1- Définitions :

Probabilités. I- Expérience aléatoire, espace probabilisé : ShotGun. 1- Définitions : Probabilités I- Expérience aléatoire, espace probabilisé : 1- Définitions : Ω : Ensemble dont les points w sont les résultats possibles de l expérience Des évènements A parties de Ω appartiennent à A une

Plus en détail

Capacité d un canal Second Théorème de Shannon. Théorie de l information 1/34

Capacité d un canal Second Théorème de Shannon. Théorie de l information 1/34 Capacité d un canal Second Théorème de Shannon Théorie de l information 1/34 Plan du cours 1. Canaux discrets sans mémoire, exemples ; 2. Capacité ; 3. Canaux symétriques ; 4. Codage de canal ; 5. Second

Plus en détail

Cours de mathématiques - Alternance Gea

Cours de mathématiques - Alternance Gea Cours de mathématiques - Alternance Gea Anne Fredet 11 décembre 005 1 Calcul matriciel Une matrice n m est un tableau de nombres à n lignes( et m colonnes. 1 0 Par exemple, avec n = et m =, on peut considérer

Plus en détail

Modélisation aléatoire en fiabilité des logiciels

Modélisation aléatoire en fiabilité des logiciels collection Méthodes stochastiques appliquées dirigée par Nikolaos Limnios et Jacques Janssen La sûreté de fonctionnement des systèmes informatiques est aujourd hui un enjeu économique et sociétal majeur.

Plus en détail

1 Récupération des données

1 Récupération des données Lycée Buffon MP*/PSI 014-15 Épreuve d informatique du concours blanc, jeudi 5 mars 015 (3h00) Les documents, téléphones portables, ordinateurs et calculatrices sont interdits. Le sujet de cette épreuve

Plus en détail

BACCALAURÉAT GÉNÉRAL Hiver 2015

BACCALAURÉAT GÉNÉRAL Hiver 2015 BACCALAURÉAT GÉNÉRAL Hiver 2015 Épreuve : MATHÉMATIQUES Séries SCIENCES ÉCONOMIQUES ET SOCIALES, toutes spécialités LITTÉRAIRE, spécialité Mathématiques Classes TES1, TES2, TES3, TES ET TL1ES Durée de

Plus en détail

Modélisation des transports

Modélisation des transports Modélisation des transports Cinzia Cirillo, Eric Cornelis & Philippe TOINT D.E.S. interuniversitaire en gestion des transports Les Modèles de choix discrets Dr. CINZIA CIRILLO Facultés Universitaires Notre-Dame

Plus en détail

VIII Relations d ordre

VIII Relations d ordre VIII Relations d ordre 20 février 2015 Dans tout ce chapitre, E est un ensemble. 1. Relations binaires Définition 1.0.1. On appelle relation binaire sur E tout triplet R = (E, E, Γ) où Γ est une partie

Plus en détail

Chapitre I Le jeu de pile ou face. Introduction aux marches aléatoires

Chapitre I Le jeu de pile ou face. Introduction aux marches aléatoires Chapitre I Le jeu de pile ou face. Introduction aux marches aléatoires 1. 1 Expérimentation, simulation 1. 1. 1 Attente du premier, du deuxième,, du kème pile Expérience : elle se fait en deux temps. Dans

Plus en détail

Objectif du groupe GT1.1 Fusion de Données

Objectif du groupe GT1.1 Fusion de Données Objectif du groupe GT1.1 Fusion de Données Le groupe travaille dans trois directions Le vocabulaire (piloté par ADVITAM et l aide de SITE) L état de l art (piloté par SYROKKO) Deux applications illustratives

Plus en détail

Table des matières. I Mise à niveau 11. Préface

Table des matières. I Mise à niveau 11. Préface Table des matières Préface v I Mise à niveau 11 1 Bases du calcul commercial 13 1.1 Alphabet grec...................................... 13 1.2 Symboles mathématiques............................... 14 1.3

Plus en détail

Chapitre 4 NOTIONS DE PROBABILITÉS

Chapitre 4 NOTIONS DE PROBABILITÉS Statistique appliquée à la gestion et au marketing http://foucart.thierry.free.fr/statpc Chapitre 4 NOTIONS DE PROBABILITÉS Les chapitres précédents donnent des méthodes graphiques et numériques pour caractériser

Plus en détail

Examen d accès - 28 Septembre 2012

Examen d accès - 28 Septembre 2012 Examen d accès - 28 Septembre 2012 Aucun document autorisé - Calculatrice fournie par le centre d examen Cet examen est un questionnaire à choix multiples constitué de 50 questions. Plusieurs réponses

Plus en détail

Exercices de simulation 1

Exercices de simulation 1 Licence MIA 2ème année Année universitaire 2009-2010 Simulation stochastique C. Léonard Exercices de simulation 1 Les simulations qui suivent sont à effectuer avec Scilab. Le générateur aléatoire de Scilab.

Plus en détail

Réseaux complexes et physique statistique

Réseaux complexes et physique statistique Réseaux complexes et physique statistique Les physiciens statisticiens portent une attention sans cesse croissante à des systèmes extérieurs à leur champ d étude traditionnel. La physique statistique possède

Plus en détail

Chaînes de Markov. Mireille de Granrut

Chaînes de Markov. Mireille de Granrut Chaînes de Markov Mireille de Granrut Quelques précisions à propos de ce cours : Préambule 1. Tel que je l ai conçu, le cours sur les chaînes de Markov interviendra dès la rentrée, pour faire un peu de

Plus en détail

Chaînes de Markov au lycée

Chaînes de Markov au lycée Journées APMEP Metz Atelier P1-32 du dimanche 28 octobre 2012 Louis-Marie BONNEVAL Chaînes de Markov au lycée Andreï Markov (1856-1922) , série S Problème 1 Bonus et malus en assurance automobile Un contrat

Plus en détail

Modélisation de systèmes complexes et éléments de finance computationnelle

Modélisation de systèmes complexes et éléments de finance computationnelle Professeur Olivier BRANDOUY Modélisation de systèmes complexes et éléments de finance computationnelle Master Recherche (séance 6) 2009-2010 Olivier Brandouy - 2009/10-1 Plan de la séance 1. Faits stylisés,

Plus en détail

La programmation linéaire : une introduction. Qu est-ce qu un programme linéaire? Terminologie. Écriture mathématique

La programmation linéaire : une introduction. Qu est-ce qu un programme linéaire? Terminologie. Écriture mathématique La programmation linéaire : une introduction Qu est-ce qu un programme linéaire? Qu est-ce qu un programme linéaire? Exemples : allocation de ressources problème de recouvrement Hypothèses de la programmation

Plus en détail

Principales caractéristiques de Mixmod

Principales caractéristiques de Mixmod Modèle de mélanges Principales caractéristiques de Mixmod Gérard Govaert et Gilles Celeux 24 octobre 2006 1 Plan Le modèledemélange Utilisations du modèle de mélange Les algorithmes de Mixmod Modèle de

Plus en détail

Chapitre 6 : Génération aléatoire

Chapitre 6 : Génération aléatoire Chapitre 6 : Génération aléatoire Alexandre Blondin Massé Laboratoire d informatique formelle Université du Québec à Chicoutimi 12 février 2013 Cours 8STT105 Département d informatique et mathématique

Plus en détail

Baccalauréat ES Polynésie 7 juin 2013

Baccalauréat ES Polynésie 7 juin 2013 Baccalauréat ES Polnésie 7 juin 2013 EXERCICE 1 Cet exercice est un questionnaire à choix multiples. Pour chaque question, une seule des quatre réponses proposées est correcte. Une réponse juste rapporte

Plus en détail

Cours de Probabilités et statistiques L1 2011-2012 Maths-PC-SVT

Cours de Probabilités et statistiques L1 2011-2012 Maths-PC-SVT Cours de Probabilités et statistiques L1 2011-2012 Maths-PC-SVT Université d Avignon Fichier dispo sur http://fredericnaud.perso.sfr.fr/ Une étude statistique dans la population montre que le Q.I. est

Plus en détail

Simulation de variables aléatoires

Simulation de variables aléatoires Simulation de variables aléatoires S. Robin INA PG, Biométrie Décembre 1997 Table des matières 1 Introduction Variables aléatoires discrètes 3.1 Pile ou face................................... 3. Loi de

Plus en détail

Cours 3: Inversion des matrices dans la pratique...

Cours 3: Inversion des matrices dans la pratique... Cours 3: Inversion des matrices dans la pratique... Laboratoire de Mathématiques de Toulouse Université Paul Sabatier-IUT GEA Ponsan Module complémentaire de maths, année 2012 1 Rappel de l épisode précédent

Plus en détail