PRECISION - REJET DE PERTURBATIONS T.D. G.E.I.I.

Dimension: px
Commencer à balayer dès la page:

Download "PRECISION - REJET DE PERTURBATIONS T.D. G.E.I.I."

Transcription

1 PRECISION - REJET DE PERTURBATIONS T.D. G.E.I.I.. Donner les erreurs en position, en vitesse et en accélération d un système de transfert F BO = N(p) D(p) (transfert en boucle ouverte) bouclé par retour unitaire, lorsque F BO contient : (a) aucun intégrateur, (b) un intégrateur, (c) deux intégrateurs. (d) Que deviennent ces erreurs si l entrée est ampli ée par A? (e) Préciser les cas où il y aura rejet de perturbation de sortie de type échelon ou rampe. 2. Application On considère l asservissement par retour unitaire du système modélisé par le transfert : à l aide d un régulateur RC(p): F (p) = p( + 3p + 4p 2 ) (a) RC(p) = K donner les conditions de stabilité asymptotique sur K du système asservi; que vaut l erreur statique "() = lim (e(t) s(t)) pour l entrée e(t) = 3 2t + t 2? t! + p (b) RC(p) = K p quelles actions réalise ce régulateur? donner les conditions de stabilité asymptotique sur K et du système asservi; que vaut l erreur statique "() = lim (e(t) s(t)) pour l entrée e(t) = 3 2t + t 2 en t! fonction des paramètres du régulateur? dans toute la suite on utilisera ce régulateur. (c) Ajout d une perturbation de commande L asservissement précédent est en réalité soumis à une perturbation de commande connue, modélisée par d u (t) = At. Calculer l erreur statique "() = lim (e(t) s(t)) lorsque t! l asservissement ne subit que cette perturbation ( e(t) = 0 ). (d) Ajout d une perturbation de sortie L asservissement subit également une perturbation de sortie connue, modélisée par d s (t) = B(t 2 +). Calculer la sortie en régime permanent s ds () = lim (s(t)) lorsque l asservissement t! ne subit que cette perturbation ( e(t) = d u (t) = 0 ).

2 (e) cumul des e ets de l entrée et des di érentes perturbations Déduire des questions précédentes l expression de la sortie en régime permanent s RP (t) lorsque l asservissement subit l entrée e(t) et les perturbations d u (t) et d s (t) simultanément. (f) Conclure sur la position des intégrateurs par rapport aux types d entrées. SOLUTION Rappel Le principe du calcul des erreurs statiques (c est-à-dire en régime permanent en réponse à des entrées-tests) du système : F B0 = + b p + + b n p n a 0 + a p + a 2 p 2 + a d p d bouclé par retour unitaire, est basé sur l observation du transfert F BF = F B0 = N BF ; + F B0 D BF sous réserve de stabilité asymptotique : F BF = + b p + + b n p n a (a + b )p + + (a n + b n )p n a d p d : Rappel 2 Le principe de l analyse du rejet de perturbations consiste à étudier le gain statique du transfert entre la perturbation ramenée à l échelon et la sortie.. (a) F BO = N(p) D(p) sans intégrateur (D(0) 6= 0) erreur statique en position " 0 () en réponse à l entrée échelon e(t) = " 0 () = (a 0 + ) a 0 + = a 0 a 0 + = + K s où K s est le gain statique de F BO : " 0 () étant non nulle, " () et " 2 () sont in nies en module. (b) F BO = N(p) p D(p) avec N(0)D(0) 6= 0, donc a 0 = 0 erreur statique en position " 0 () en réponse à l entrée échelon e(t) = (t) (t) " 0 () = = 0 erreur statique en vitesse " () en réponse à l entrée rampe e(t) = t " () = (a + b ) b = D(0) N(0) " () étant non nulle, " 2 () est in nie en module.

3 (c) F BO = p 2 N(p) D(p) avec N(0)D(0) 6= 0, donc a 0 = a = 0 erreur statique en position " 0 () en réponse à l entrée échelon e(t) = (t) " 0 () = = 0 erreur statique en vitesse " () en réponse à l entrée rampe e(t) = t " () = b b = 0 erreur statique en accélération " 2 () en réponse à l entrée e(t) = t2 2 " 2 () = (a 2 + b 2 ) b 2 = D(0) N(0) (d) Par linéarité, si l entrée est ampli ée par A, toutes les erreurs seront ampli ées par A : (e) Rejet de perturbations de sortie Lorsque le système F BO bouclé par retour unitaire est soumis uniquement à une perturbation de sortie d s, la lecture du schéma fonctionnel conduit à : s = d s F BO s d où : s = + F B0 d s : Ce transfert étant identique au transfert entrée-erreur e! " ( cf. remarque ), le comportement de la sortie en réponse à une perturbation d s de type échelon (respectivement rampe) sera identique à celui de l erreur en réponse à une entrée échelon (respectivement rampe). D après les calculs d erreur précédents, les perturbations d s = A (t) seront rejetées par les systèmes comportant au moins un intégrateur et celles du type rampe d s = At + B le seront par les systèmes comportant au moins deux intégrateurs.

4 2. Application (a) RC(p) = K Le dénominateur du système ainsi bouclé est : D + KN = 4p 3 + 3p 2 + p + K l application du critère de Routh fournit les conditions de stabilité asymptotique : 0 < K < 3=4 l erreur statique "() = lim (e(t) s(t)) = pour l entrée e(t) = 3 2t + t 2 ; d après les t! K résultats de la question, car la boucle ouverte F BO = ne contient qu un p( + 3p + 4p 2 ) intégrateur ( il en faudrait 2 pour qu elle soit constante et trois pour qu elle soit nulle). + p (b) RC(p) = K p Ce régulateur réalise les actions proportionnelle et intégrale. Le dénominateur du système ainsi bouclé est : D + KN = 4p 4 + 3p 3 + p 2 + Kp + K l application du critère de Routh fournit les conditions de stabilité asymptotique : K > 0 K < 3=4 4 3 (K)2 + K 3K > 0 qui correspondent, dans le plan (K; K) ; à la partie comprise entre la parabole et l axe K = 0. Pour l entrée e(t) = 3 2t + t 2 l erreur est la superposition des e ets de chaque entrée élémentaire (caractéristique des systèmes linéaires), soit : le transfert de la boucle ouverte étant : "() = 3" 0 () 2" () + 2" 2 (); F BO = il vient, d après les résultats de la question : K ( + p) p 2 ( + 3p + 4p 2 ) "() = K = 2 K : Lorsque le système subit l entrée e(t) seule, l erreur en régime permanent "() = " e () vaut donc, si les conditions de stabilité sont véri ées : " e () = 2 K :

5 (c) Ajout d une perturbation de commande La lecture du schéma fonctionnel conduit, lorsque e(t) = 0; à : soit : " = s = F (d u + RC") " = F + RCF d u donc en remplaçant F et RC par leurs valeurs : G = F + RCF = p p 2 ( + 3p + 4p 2 ) + K( + p) : Si les conditions de stabilité sont véri ées, l erreur en régime permanent en réponse : à est G(0) = 0 à At est le gain statique de AG(p) p donc : = A K " du () = A K : (d) Ajout d une perturbation de sortie Lorsque e(t) = d u = 0; la sortie s ds due à d s (t) seule véri e, d après la lecture du schéma fonctionnel : s ds = d s + RCF ( s ds ) donc : s ds = + RCF d s donc en remplaçant F et RC par leurs valeurs : H = + RCF = p 2 ( + 3p + 4p 2 ) p 2 ( + 3p + 4p 2 ) + K( + p) : Si les conditions de stabilité sont véri ées, l erreur en régime permanent en réponse : à B est BH(0) = 0 à Bt 2 est le gain statique de 2 BH(p) p 2 donc : = 2B K s ds () = 2B K : Remarque : on aurait pu utiliser ici le résultat de la question (e) avec F B0 = RCF. Le transfert étant identique au transfert entrée-erreur e! " ( cf. remarque + RCF ), le comportement de la sortie en réponse à la perturbation d s sera identique à celui de l erreur en réponse à l entrée e = B(t 2 + ). D après les calculs d erreur de la question, RCF comportant deux intégrateurs, la perturbation B (t) sera rejetée et la perturbation Bt 2 produira à une sortie constante en régime permanent; sa valeur se déduit de celle de

6 l erreur " 2 () obtenue à la question c pondérée par 2B puisque " 2 () a été calculé pour l entrée test t2 2 ; soit : s ds () = 2B D(0) N(0) = 2B K : (e) cumul des e ets de l entrée et des di érentes perturbations La sortie en régime permanent s RP (t) lorsque l asservissement subit l entrée e(t) et les perturbations d u (t) et d s (t) simultanément est donc : soit : s RP (t) = e(t) " e () " du () + s ds () s RP (t) = 3 2t + t 2 + A + 2B 2 : K (f) Conclusion En allant des sorties vers les entrées, on remarque que : entre " et e il y a 2 intégrateurs et l entrée en t 2 conduit à une erreur constante, entre s et d u il y a intégrateur (celui de RC ) et la perturbation en t conduit à une sortie constante, entre s et d s il y a 2 intégrateurs et la perturbation en t 2 conduit à une sortie constante. l annulation d erreur dépend donc du nombre d intégrateurs entre l erreur et l entrée, avec ( cf. cours ) : " 0 () = " () = = " k () = 0 k+ intégrateurs ) " k+ () = constante "i () = i k de même le rejet de perturbation dépend du nombre d intégrateurs entre la sortie et la perturbation, avec les résultats similaires.

Erreur statique. Chapitre 6. 6.1 Définition

Erreur statique. Chapitre 6. 6.1 Définition Chapitre 6 Erreur statique On considère ici le troisième paramètre de design, soit l erreur statique. L erreur statique est la différence entre l entrée et la sortie d un système lorsque t pour une entrée

Plus en détail

Automatique Linéaire 1 Travaux Dirigés 1A ISMIN

Automatique Linéaire 1 Travaux Dirigés 1A ISMIN Automatique Linéaire 1 Travaux Dirigés Travaux dirigés, Automatique linéaire 1 J.M. Dutertre 2014 TD 1 Introduction, modélisation, outils. Exercice 1.1 : Calcul de la réponse d un 2 nd ordre à une rampe

Plus en détail

Automatique (AU3): Précision. Département GEII, IUT de Brest contact: vincent.choqueuse@univ-brest.fr

Automatique (AU3): Précision. Département GEII, IUT de Brest contact: vincent.choqueuse@univ-brest.fr Automatique (AU3): Précision des systèmes bouclés Département GEII, IUT de Brest contact: vincent.choqueuse@univ-brest.fr Plan de la présentation Introduction 2 Écart statique Définition Expression Entrée

Plus en détail

Analyse des Systèmes Asservis

Analyse des Systèmes Asservis Analyse des Systèmes Asservis Après quelques rappels, nous verrons comment évaluer deux des caractéristiques principales d'un système asservi : Stabilité et Précision. Si ces caractéristiques ne sont pas

Plus en détail

M1/UE CSy - module P8 1

M1/UE CSy - module P8 1 M1/UE CSy - module P8 1 PROJET DE SIMULATION AVEC MATLAB RÉGULATION DU NIVEAU ET DE LA TEMPÉRATURE DANS UN BAC En vue de disposer d un volume constant de fluide à une température désirée, un processus

Plus en détail

Chapitre 4 : Identification

Chapitre 4 : Identification Chapitre 4 : Identification 1- Généralités - Identification en boucle ouverte.1 Méthodologie. Méthode directe : confrontation de la réponse théorique et expérimentale.3 Méthode de Strejc.4 Méthode de Broida.5

Plus en détail

Analyse et Commande des systèmes linéaires

Analyse et Commande des systèmes linéaires Analyse et Commande des systèmes linéaires Frédéric Gouaisbaut LAAS-CNRS Tel : 05 61 33 63 07 email : fgouaisb@laas.fr webpage: www.laas.fr/ fgouaisb September 24, 2009 Présentation du Cours Volume Horaire:

Plus en détail

Cours AQ 6. Stabilité

Cours AQ 6. Stabilité Cours AQ 6 Stabilité Qu est-ce que la stabilité? Un Système est stable quand il revient à son état d équilibre après une perturbation Stable ou Instable? S(t)(réponse impulsionnelle ) e -2t e 2t e -t sin2t

Plus en détail

MODÉLISATION D UNE SUSPENSION DE VOITURE T.D. G.E.I.I.

MODÉLISATION D UNE SUSPENSION DE VOITURE T.D. G.E.I.I. 1. Modèle de voiture MODÉLISATION D UNE SUSPENSION DE VOITURE T.D. G.E.I.I. Un modèle simpli é de voiture peut être obtenu en supposant le véhicule soumis uniquement à la force de traction u dûe au moteur

Plus en détail

IUT Toulouse II - Automatique et Systèmes Génie Industriel et Maintenance GIM 2 Promo 14 Année 2007-2008. AUTOMATIQUE et SYSTEMES

IUT Toulouse II - Automatique et Systèmes Génie Industriel et Maintenance GIM 2 Promo 14 Année 2007-2008. AUTOMATIQUE et SYSTEMES IUT Toulouse II - Automatique et Systèmes Génie Industriel et Blagnac Maintenance GIM 2 Promo 14 Année 2007-2008 AUTOMATIQUE et SYSTEMES Les cours, TD et TP seront entièrement programmés en 2 ème année.

Plus en détail

TP d asservissement numérique sur maquette Feedback

TP d asservissement numérique sur maquette Feedback SOUBIGOU Antoine GE3S Semestre 5 2002 PAILLARD Jean-Noël TP d asservissement numérique sur maquette Feedback ECOLE NATIONALE SUPERIEURE DES ARTS ET INDUSTRIES DE STRASBOURG 24, Boulevard de la Victoire

Plus en détail

Chapitre 1 Régime transitoire dans les systèmes physiques

Chapitre 1 Régime transitoire dans les systèmes physiques Chapitre 1 Régime transitoire dans les systèmes physiques Savoir-faire théoriques (T) : Écrire l équation différentielle associée à un système physique ; Faire apparaître la constante de temps ; Tracer

Plus en détail

Régulation par PID Mickaël CAMUS Etienne DEGUINE Daniel ROSS

Régulation par PID Mickaël CAMUS Etienne DEGUINE Daniel ROSS Régulation par PID Mickaël CAMUS Etienne DEGUINE Daniel ROSS 26/02/10 Plan Définition 1. Proportionnel 2. Intégral 3. Dérivé Réglages des coefficients 1. Différentes approches 2. Ziegler-Nichols 3. Process

Plus en détail

Courant électrique et distributions de courants

Courant électrique et distributions de courants Cours d électromagnétisme Courant électrique et distributions de courants 1 Courant électrique 1.1 Définition du courant électrique On appelle courant électrique tout mouvement d ensemble des particules

Plus en détail

Cours 4 : Analyse de stabilité et de performances des systèmes linéaires bouclés

Cours 4 : Analyse de stabilité et de performances des systèmes linéaires bouclés Cours 4 : Analyse de stabilité et de performances des systèmes linéaires bouclés Olivier Sename GIPSA-lab Septembre 2017 Olivier Sename (GIPSA-lab) Asservissement Septembre 2017 1 / 26 O. Sename [GIPSA-lab]

Plus en détail

Notions d asservissements et de Régulations

Notions d asservissements et de Régulations I. Introduction I. Notions d asservissements et de Régulations Le professeur de Génie Electrique doit faire passer des notions de régulation à travers ses enseignements. Les notions principales qu'il a

Plus en détail

AUTOMATIQUE. EXERCICE I Synthèse et analyse de correcteurs

AUTOMATIQUE. EXERCICE I Synthèse et analyse de correcteurs ENSIEG 1 ère année août 28 AUTOMATIQUE Durée totale de l épreuve : 3 heures Documents autorisés L épreuve comprend 3 exercices indépendants Mettre votre nom et répondre directement sur les feuilles de

Plus en détail

Commande par retour d états ou placement des pôles

Commande par retour d états ou placement des pôles Cas continu Commande par retour d états ou placement des pôles Position de problème Soit le système décrit par l équation d état. = + X AX BU Y = CX est dont le polynôme caractéristique est n P( λ) = λ

Plus en détail

a. Les éléments de base rectangle : représente un élément ou un groupe d éléments du système et son action associée

a. Les éléments de base rectangle : représente un élément ou un groupe d éléments du système et son action associée REGULATION 1/9 I. Présentation 1. Structure d'un système asservi L'objectif d'un système automatisé étant de remplacer l'homme dans une tâche, nous allons pour établir la structure d'un système automatisé

Plus en détail

Automatique Linéaire 1 1A ISMIN

Automatique Linéaire 1 1A ISMIN Automatique linéaire 1 J.M. Dutertre 2014 Sommaire. I. Introduction, définitions, position du problème. p. 3 I.1. Introduction. p. 3 I.2. Définitions. p. 5 I.3. Position du problème. p. 6 II. Modélisation

Plus en détail

Performances des SLCI

Performances des SLCI Fichier : _SLCI_performances. Définitions.. Stabilité Il existe plusieurs définition de la stabilité : Pour une entrée e(t) constante, la sortie s(t) du système doit tendre vers une constante. Un système

Plus en détail

Identification et réglage assisté par ordinateur d un processus thermique

Identification et réglage assisté par ordinateur d un processus thermique I- But de la manipulation : Identification et réglage assisté par ordinateur d un processus thermique Le but est de procéder à la modélisation et à l identification paramétrique d un procédé considéré

Plus en détail

ATS Génie électrique session 2005

ATS Génie électrique session 2005 Calculatrice scientifique autorisée Avertissements : Les quatre parties sont indépendantes mais il est vivement conseillé de les traiter dans l ordre ce qui peut aider à mieux comprendre le dispositif

Plus en détail

Automatique. Commande des Systèmes Linéaires Continus

Automatique. Commande des Systèmes Linéaires Continus Automatique Commande des Systèmes Linéaires Continus M1 U.E. Csy module P2 Christophe Calmettes christophe.calmettes@univ-jfc.fr séquence d enseignement... Concernant la partie Analyse et Synthèse des

Plus en détail

TP3 : Régulation d un système hydraulique

TP3 : Régulation d un système hydraulique TP3 : Régulation d un système hydraulique I. PRESENTATION GENERALE Le banc de TP est composé de 3 entités : un calculateur, un module d interface pour la régulation et une unité de régulation. L unité

Plus en détail

Compte rendu de LA37 B, TP numéro 1. Evolution de la température et du degrée d'hydratation

Compte rendu de LA37 B, TP numéro 1. Evolution de la température et du degrée d'hydratation 4 6 8 2 4 8 22 26 3 34 38 42 46 5 54 58 62 66 7 74 78 83 89 96 8 44 Bertin Morgan Compte rendu de LA37 B, TP numéro. Les essais effectués par le laboratoire des ponts et chaussés nous ont fournis la température

Plus en détail

TABLE DES MATIÈRES. 1.6.1 Schéma fonctionnel ou schéma bloc... 27

TABLE DES MATIÈRES. 1.6.1 Schéma fonctionnel ou schéma bloc... 27 TABLE DES MATIÈRES Caractérisation et étude des systèmes asservis. Systèmes asservis................................. Structure d un système asservi.....................2 Régulation et asservissement....................

Plus en détail

Probabilités Loi exponentielle Exercices corrigés

Probabilités Loi exponentielle Exercices corrigés Probabilités Loi exponentielle Exercices corrigés Sont abordés dans cette fiche : (cliquez sur l exercice pour un accès direct) Exercice 1 : densité de probabilité Exercice 2 : loi exponentielle de paramètre

Plus en détail

4.1 Charges en mouvement - Courant et intensité électriques

4.1 Charges en mouvement - Courant et intensité électriques Chapitre 4 Distributions de courants En électrostatique, les charges restent immobiles. Leur déplacement est à l origine des courants électriques qui sont la source du champ magnétique que nous étudierons

Plus en détail

Fiche Module Sciences et Technologies Informatique industrielle Licence

Fiche Module Sciences et Technologies Informatique industrielle Licence Ministère de l Enseignement Supérieur, de la Recherche Scientifique et des Technologies de l Information et de la Communication Université de Carthage Institut Supérieur des Technologies de l Information

Plus en détail

Cours AQ 7. Correction des systèmes asservis

Cours AQ 7. Correction des systèmes asservis Cours AQ 7 Correction des systèmes asservis Rappel On étudie un système à retour unitaire: C(p) est la commande H(p) est la transmittance du système Jusqu à présent, on a considéré que C(p)=k k=cte commande

Plus en détail

CI-2-1 PRÉVOIR ET VÉRIFIER LES

CI-2-1 PRÉVOIR ET VÉRIFIER LES CI-2-1 PRÉVOIR ET VÉRIFIER LES PERFORMANCES DES SYSTÈMES LI- NÉAIRES CONTINUS INVARIANTS. Objectifs A l issue de la séquence, l élève doit être capable : B3 Valider un modèle SIMULER - VALIDER Réduire

Plus en détail

SYSTEMES LINEAIRES CONTINUS INVARIANTS PERFORMANCES DES SYSTEMES ASSERVIS

SYSTEMES LINEAIRES CONTINUS INVARIANTS PERFORMANCES DES SYSTEMES ASSERVIS YTM LINAIR CONTINU INVARIANT tabilité des systèmes asservis PRFORMANC D YTM ARVI. Notion de stabilité La stabilité est communément reconnue comme étant associée à la notion d équilibre : Prenons les deux

Plus en détail

MOBILITE ET HYPERSTATISME

MOBILITE ET HYPERSTATISME MOBILITE ET HPERSTATISME 1- Objectifs : Le cours sur les chaînes de solides nous a permis de déterminer le degré de mobilité et le degré d hyperstatisme pour un mécanisme donné : m = Nc - rc et h = Ns

Plus en détail

I. Notations. 1 ) Structure générale. 2 ) Boucle ouverte, Boucle fermée. Master 1ère Année SEE Aide mémoire Automatique Continue

I. Notations. 1 ) Structure générale. 2 ) Boucle ouverte, Boucle fermée. Master 1ère Année SEE Aide mémoire Automatique Continue Ce pense bête de l automatique continue contient des recettes dont certaines (beaucoup!) ne marchent que pour des systèmes réguliers... I. Notations 1 ) Structure générale e = Entr ée + ɛ = Er r eur Correcteur

Plus en détail

Module : boucle à verrouillage de phase

Module : boucle à verrouillage de phase BS2EL - Physique appliquée Module : boucle à verrouillage de phase Diaporama : la boucle à verrouillage de phase Résumé de cours 1- Principe de la boucle à verrouillage de phase 2- Applications en modulation

Plus en détail

Système linéaire invariant Licence GEEA ULSI 502

Système linéaire invariant Licence GEEA ULSI 502 Système linéaire invariant Licence GEEA ULSI 52 6 octobre 27 Dénition Système Linéaires Invariants Dénitions équivalentes Equation diérentielle On appelle système linéaire invariant, un système dont le

Plus en détail

C est un mouvement plan dont la trajectoire est un cercle ou une portion de cercle. Le module du vecteur position OM est constant et il est égal au

C est un mouvement plan dont la trajectoire est un cercle ou une portion de cercle. Le module du vecteur position OM est constant et il est égal au 1 2 C est un mouvement plan dont la trajectoire est un cercle ou une portion de cercle. Le module du vecteur position est constant et il est égal au rayon du cercle. = 3 A- ouvement circulaire non uniforme

Plus en détail

Cours de Systèmes Asservis

Cours de Systèmes Asservis Cours de Systèmes Asservis J.Baillou, J.P.Chemla, B. Gasnier, M.Lethiecq Polytech Tours 2 Chapitre 1 Introduction 1.1 Définition de l automatique Automatique : Qui fonctionne tout seul ou sans intervention

Plus en détail

Electronique Générale. Convertisseur Numérique/Analogique (C.N.A.) et Convertisseur Analogique/Numérique (C.A.N.)

Electronique Générale. Convertisseur Numérique/Analogique (C.N.A.) et Convertisseur Analogique/Numérique (C.A.N.) Convertisseur umérique/analogique (C..A.) et Convertisseur Analogique/umérique (C.A..) I- Introduction : En électronique, un signal électrique est le plus souvent porteur d une information. Il existe deux

Plus en détail

Le corps R des nombres réels

Le corps R des nombres réels Le corps R des nombres réels. Construction de R à l aide des suites de Cauchy de nombres rationnels On explique brièvement dans ce paragraphe comment construire le corps R des nombres réels à partir du

Plus en détail

TP Numéro 1. AUTOMATIQUE LOGIQUE (programmation et simulation) Durée: 2 heures

TP Numéro 1. AUTOMATIQUE LOGIQUE (programmation et simulation) Durée: 2 heures TP Numéro 1 AUTOMATIQUE LOGIQUE (programmation et simulation) Durée: 2 heures On considère dans ce sujet un dispositif de remplissage de bacs. Le dispositif concerné est représenté sur la figure ci-dessous,

Plus en détail

M4 OSCILLATEUR HARMONIQUE

M4 OSCILLATEUR HARMONIQUE M4 OSCILLATEUR HARMONIQUE I Modèle de l oscillateur harmonique (O.H.) I. Exemples Cf Cours I. Définition Définition : Un oscillateur harmonique à un degré de liberté x (X, θ,... ) est un système physique

Plus en détail

La commande basée vision : une nouvelle approche pour la commande en boucle fermée des écoulements fluides

La commande basée vision : une nouvelle approche pour la commande en boucle fermée des écoulements fluides La commande basée vision : une nouvelle approche pour la commande en boucle fermée des écoulements fluides Xuan Quy Dao Christophe Collewet EPC Fluminance Cemagref Rennes / INRIA Rennes Bretagne-Atlantique

Plus en détail

Le raisonnement par récurrence

Le raisonnement par récurrence Le raisonnement par récurrence Nous notons N l ensemble des entiers naturels : N = {0,,, } Nous dirons naturel au lieu de entier naturel Le principe du raisonnement par récurrence Soit A une partie de

Plus en détail

Automatique (AU3): Introduction à l automatique. Département GEII, IUT de Brest contact: vincent.choqueuse@univ-brest.fr

Automatique (AU3): Introduction à l automatique. Département GEII, IUT de Brest contact: vincent.choqueuse@univ-brest.fr Automatique (AU3): Introduction à l automatique Département GEII, IUT de Brest contact: vincent.choqueuse@univ-brest.fr Plan de la présentation 1 Considérations pratiques 2 Introduction Définitions Exemple

Plus en détail

Chapitre 4 : systèmes asservis linéaires.

Chapitre 4 : systèmes asservis linéaires. Chapitre 4 : systèmes asservis linéaires. A) Structure d'un système asservi : nécessité du système bouclé : Système en boucle ouverte : consigne venant du cerveau Poussée des muscles. vitesse, trajectoire,

Plus en détail

M1/UE CSy - module P8 1

M1/UE CSy - module P8 1 M1/UE CSy - module P8 1 PROJET DE SIMULATION AVEC MATLAB MODÉLISATION D UNE SUSPENSION ET ÉTUDE DE SON COMPORTEMENT DYNAMIQUE La suspension d une automobile est habituellement assurée par quatre systèmes

Plus en détail

Premier ordre Expression de la fonction de transfert : H(p) = K

Premier ordre Expression de la fonction de transfert : H(p) = K Premier ordre Expression de la fonction de transfert : H(p) = K + τ.p. K.e τ K.e /τ τ 86% 95% 63% 5% τ τ 3τ 4τ 5τ Temps Caractéristiques remarquables de la réponse à un échelon e(t) = e.u(t). La valeur

Plus en détail

La maison Ecole d ' Baccalauréat blanc Classe de terminale ES. Exercice 1 - sur 4 points

La maison Ecole d ' Baccalauréat blanc Classe de terminale ES. Exercice 1 - sur 4 points La maison Ecole d ' Baccalauréat blanc Classe de terminale ES Année scolaire 00-004 Copyright c 004 J.- M. Boucart GNU Free Documentation Licence On veillera à détailler et à rédiger clairement les raisonnements,

Plus en détail

Automatique. Stabilité. F. Rotella I. Zambettakis. F. Rotella I. Zambettakis Automatique 1

Automatique. Stabilité. F. Rotella I. Zambettakis.  F. Rotella I. Zambettakis Automatique 1 Automatique Stabilité F. Rotella I. Zambettakis rotella@enit.fr, izambettakis@iut-tarbes.fr F. Rotella I. Zambettakis Automatique 1 La réponse fréquentielle La réponse fréquentielle réponses temporelles

Plus en détail

CI 2 SLCI : ÉTUDE DU COMPORTEMENT DES SYSTÈMES LINÉAIRES CONTINUS INVARIANTS

CI 2 SLCI : ÉTUDE DU COMPORTEMENT DES SYSTÈMES LINÉAIRES CONTINUS INVARIANTS CI 2 SLCI : ÉTUDE DU COMPORTEMENT DES SYSTÈMES LINÉAIRES CONTINUS INVARIANTS CHAPITRE 2 MODÉLISATION DES SYSTÈMES LINÉAIRES CONTINUS INVARIANTS TRANSFORMÉE DE LAPLACE TRAVAIL DIRIGÉ Robot Ericc Le robot

Plus en détail

Primitives Cours maths Terminale S

Primitives Cours maths Terminale S Primitives Cours maths Terminale S Dans ce module est introduite la notion de primitive d une fonction sur un intervalle. On définit cette notion puis on montre qu une fonction admet une infinité de primitives

Plus en détail

COMPOSITION DE PHYSIQUE ET SCIENCES DE L INGÉNIEUR. Propulsion et sustentation magnétiques

COMPOSITION DE PHYSIQUE ET SCIENCES DE L INGÉNIEUR. Propulsion et sustentation magnétiques ÉCOLE POLYTECHNIQUE FILIÈRE MP Option Physique et Sciences de l Ingénieur CONCOURS D ADMISSION 2009 COMPOSITION DE PHYSIQUE ET SCIENCES DE L INGÉNIEUR (Durée : 4 heures) L utilisation des calculatrices

Plus en détail

NOM : PRENOM : Centre d écrit : N Inscription : Série STI2D et STL. Mercredi 15 mai 2013. Epreuves Geipi Polytech

NOM : PRENOM : Centre d écrit : N Inscription : Série STI2D et STL. Mercredi 15 mai 2013. Epreuves Geipi Polytech NOM : PRENOM : Centre d écrit : N Inscription : SUJET DE MATHÉMATIQUES Ne rien inscrire ci-dessous Série STI2D et STL Mercredi 15 mai 2013 Epreuves Geipi Polytech 1 2 Nous vous conseillons de répartir

Plus en détail

Cours 1: lois discrétes classiques en probabilités

Cours 1: lois discrétes classiques en probabilités Cours 1: lois discrétes classiques en probabilités Laboratoire de Mathématiques de Toulouse Université Paul Sabatier-IUT GEA Ponsan Module: Stat inférentielles Définition Quelques exemples loi d une v.a

Plus en détail

DOCUMENTS RESSOURCES

DOCUMENTS RESSOURCES CORRECTIONS DES ASSERVISSEMENTS DES SYSTEMES LINEAIRES 1- MODELISATION DES SYSTEMES ASSERVIS LINEAIRES Afin d éviter des éventuelles perturbations pouvant agir sur le circuit de la chaîne directe et déstabiliser

Plus en détail

LA PROGRAMMATION LINEAIRE : ANALYSE DE SENSIBILITE

LA PROGRAMMATION LINEAIRE : ANALYSE DE SENSIBILITE LA PROGRAMMATION LINEAIRE : ANALYSE DE SENSIBILITE Nous abordons dans cette leçon la partie analyse de sensibilité de la résolution d'un problème de programmation linéaire. Il s'agit d'étudier les conséquences

Plus en détail

Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé

Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé A. P. M. E. P. Exercice 1 5 points 1. Réponse d. : 1 e Le coefficient directeur de la tangente est négatif et n est manifestement pas 2e

Plus en détail

Module : systèmes asservis linéaires

Module : systèmes asservis linéaires BS2EL - Physique appliquée Module : systèmes asservis linéaires Diaporamas : les asservissements Résumé de cours 1- Structure d un système asservi 2- Transmittances en boucle ouverte et ermée 3- Stabilité

Plus en détail

Les systèmes asservis linéaires. échantillonnés. Mohamed AKKARI

Les systèmes asservis linéaires. échantillonnés. Mohamed AKKARI Ministère de l Enseignement Supérieur, de la Recherche Scientifique Université Virtuelle de Tunis Les systèmes asservis linéaires échantillonnés Mohamed AKKARI Attention! Ce produit pédagogique numérisé

Plus en détail

ELECTROTECHNIQUE. Chapitre 5 Bobines couplées magnétiquement Inductances mutuelles. Électromagnétisme. Michel PIOU. Édition: 01/06/2010

ELECTROTECHNIQUE. Chapitre 5 Bobines couplées magnétiquement Inductances mutuelles. Électromagnétisme. Michel PIOU. Édition: 01/06/2010 ELECTROTECHNIQUE Électromagnétisme Michel PIOU Chapitre 5 Bobines couplées magnétiquement Inductances mutuelles Édition: 0/06/00 Extrait de la ressource en ligne MagnElecPro sur le site Internet Table

Plus en détail

Théorème du point fixe - Théorème de l inversion locale

Théorème du point fixe - Théorème de l inversion locale Chapitre 7 Théorème du point fixe - Théorème de l inversion locale Dans ce chapitre et le suivant, on montre deux applications importantes de la notion de différentiabilité : le théorème de l inversion

Plus en détail

Ensemble pour l étude d une régulation de température

Ensemble pour l étude d une régulation de température ENSP Montrouge N. 205 Ensemble pour l étude d une régulation de température L ensemble est constitué des éléments suivants : - élément A : un boîtier contenant un bloc de cuivre, muni d une thermistance,

Plus en détail

Fiche sur les capteurs de courant à zéro de flux (application de l effet Hall et des systèmes asservis)

Fiche sur les capteurs de courant à zéro de flux (application de l effet Hall et des systèmes asservis) Fiche sur les capteurs de courant à zéro de flux (application de l effet Hall et des systèmes asservis) Bibliographie. «Les capteurs en instrumentation industrielle», G. Asch & collaborateurs, DUNOD «Capteurs

Plus en détail

Corrigé Bac ES Spécialité Maths Antilles Guyane 2011

Corrigé Bac ES Spécialité Maths Antilles Guyane 2011 Corrigé Bac ES Spécialité Maths Antilles Guyane 2011 Christian CYRILLE A quoi servent les mathématiques? : C est pour l honneur de l esprit humain? Jacobi 1 Exercice 1-5 points - Commun à tous les candidats

Plus en détail

(Use Case Diagram : uc) Unité de sélection de tubes. Approvisionner régulièrement. radiateur. uc [cas d utilisation]

(Use Case Diagram : uc) Unité de sélection de tubes. Approvisionner régulièrement. radiateur. uc [cas d utilisation] TD : LE YTEME AERVI Dans une unité de production de radiateurs de chauffage central, un système est utilisé pour permettre l approvisionnement régulier en tubes de l unité de production des radiateurs.

Plus en détail

Chapitre 3 Les régimes de fonctionnement de quelques circuits linéaires

Chapitre 3 Les régimes de fonctionnement de quelques circuits linéaires Chapitre 3 Les régimes de fonctionnement de quelques circuits linéaires 25 Lechapitreprécédent avait pour objet l étude decircuitsrésistifsalimentéspar dessourcesde tension ou de courant continues. Par

Plus en détail

Systèmes de transmission

Systèmes de transmission Systèmes de transmission Conception d une transmission série FABRE Maxime 2012 Introduction La transmission de données désigne le transport de quelque sorte d'information que ce soit, d'un endroit à un

Plus en détail

Licence IOVIS 2011/2012. Optique géométrique. Lucile Veissier lucile.veissier@spectro.jussieu.fr

Licence IOVIS 2011/2012. Optique géométrique. Lucile Veissier lucile.veissier@spectro.jussieu.fr Licence IOVIS 2011/2012 Optique géométrique Lucile Veissier lucile.veissier@spectro.jussieu.fr Table des matières 1 Systèmes centrés 2 1.1 Vergence................................ 2 1.2 Eléments cardinaux..........................

Plus en détail

BTS Groupement A. Mathématiques Session 2011. Spécialités CIRA, IRIS, Systèmes électroniques, TPIL

BTS Groupement A. Mathématiques Session 2011. Spécialités CIRA, IRIS, Systèmes électroniques, TPIL BTS Groupement A Mathématiques Session 11 Exercice 1 : 1 points Spécialités CIRA, IRIS, Systèmes électroniques, TPIL On considère un circuit composé d une résistance et d un condensateur représenté par

Plus en détail

MATLAB/Simulink pour l Enseignement des Sciences Industrielles de l Ingénieur

MATLAB/Simulink pour l Enseignement des Sciences Industrielles de l Ingénieur MATLAB/Simulink pour l Enseignement des Sciences Industrielles de l Ingénieur Ivan LIEBGOTT Professeur de Chaire Supérieure Classes Préparatoires aux Grandes Ecoles Lycée des Eucalyptus de Nice Formateur

Plus en détail

La fonction exponentielle

La fonction exponentielle DERNIÈRE IMPRESSION LE 2 novembre 204 à :07 La fonction exponentielle Table des matières La fonction exponentielle 2. Définition et théorèmes.......................... 2.2 Approche graphique de la fonction

Plus en détail

Examen - septembre 2012. Question de cours Enoncer et démontrer l inégalité de Cauchy-Schwarz dans un espace euclidien. Quel est le cas d égalité?

Examen - septembre 2012. Question de cours Enoncer et démontrer l inégalité de Cauchy-Schwarz dans un espace euclidien. Quel est le cas d égalité? Université Paris Dauphine DEMIE e année Algèbre linéaire 3 Examen - septembre 01 Le sujet comporte pages. L épreuve dure heures. Les documents, calculatrices et téléphones portables sont interdits. Question

Plus en détail

Continuité d une fonction de plusieurs variables

Continuité d une fonction de plusieurs variables Chapitre 2 Continuité d une fonction de plusieurs variables Maintenant qu on a défini la notion de limite pour des suites dans R n, la notion de continuité s étend sans problème à des fonctions de plusieurs

Plus en détail

Devoir Commun : 3 heures -27.01.10- Terminales ES - Lycée Newton - Y. Angeli et L. Arab

Devoir Commun : 3 heures -27.01.10- Terminales ES - Lycée Newton - Y. Angeli et L. Arab Exercice Devoir Commun : 3 heures -7..- Terminales ES - Lycée Newton - Y. Angeli et L. Arab Soient f : R { } R, x x3 + x + x + (x + ), et C la courbe de f dans un repère orthonormé d unité, 5cm.. Limites.

Plus en détail

USTHB Faculté d Electronique et d Informatique Année : 2016/2017. TD n 4

USTHB Faculté d Electronique et d Informatique Année : 2016/2017. TD n 4 USTHB Faculté d Electronique et d Informatique Année : 2016/2017 TD n 4 Exercice 1 Soit le système représenté par sa FT échantillonnée suivante : H(z)=Y(z ) / U(z) = α 1. z + α 0 / z² + λ1.z + λ2 Etudier

Plus en détail

Circuits RL et RC. Chapitre 5. 5.1 Inductance

Circuits RL et RC. Chapitre 5. 5.1 Inductance Chapitre 5 Circuits RL et RC Ce chapitre présente les deux autres éléments linéaires des circuits électriques : l inductance et la capacitance. On verra le comportement de ces deux éléments, et ensuite

Plus en détail

1.1 Définitions... 2 1.2 Opérations élémentaires... 2 1.3 Systèmes échelonnés et triangulaires... 3

1.1 Définitions... 2 1.2 Opérations élémentaires... 2 1.3 Systèmes échelonnés et triangulaires... 3 Chapitre 5 Systèmes linéaires 1 Généralités sur les systèmes linéaires 2 11 Définitions 2 12 Opérations élémentaires 2 13 Systèmes échelonnés et triangulaires 3 2 Résolution des systèmes linéaires 3 21

Plus en détail

Animation d un robot

Animation d un robot nimation d un robot IFT3355 : Infographie - TP #1 Jérémie Dumas Baptiste De La Robertie 3 février 2010 Université de Montréal Table des matières Introduction au problème 2 1 Transformations 2 1.1 Passage

Plus en détail

TS Physique D Aristote à aujourd hui Exercice résolu

TS Physique D Aristote à aujourd hui Exercice résolu P a g e 1 TS Physique Eercice résolu Enoncé -34 avant JC : Aristote déclare qu une masse d or, de plomb ou de tout autre corps pesant tombe d autant plus vite qu elle est plus grosse et, en particulier,

Plus en détail

TP3 Modélisation et commande d un pendule inversé

TP3 Modélisation et commande d un pendule inversé TP3 Modélisation et commande d un pendule inversé 1 Objectifs L objectif de ce TP est de contrôler un pendule inversé. Pour parvenir à cet objectif, il est nécessaire au préalable de : modéliser le chariot

Plus en détail

Exercice n 1: PRINCIPE DE L'ALLUMAGE D'UNE VOITURE (6,5 points)

Exercice n 1: PRINCIPE DE L'ALLUMAGE D'UNE VOITURE (6,5 points) Exercice n 1: PRINCIPE DE L'ALLUMAGE D'UNE VOITURE (6,5 points) Afrique 2007 http://labolycee.org 1.La batterie : principe de fonctionnement La batterie d'une voiture est un accumulateur au plomb constitué

Plus en détail

INTRODUCTION À LA THÉORIE DE STABILITÉ DES SYSTÈMES CONSERVATIFS

INTRODUCTION À LA THÉORIE DE STABILITÉ DES SYSTÈMES CONSERVATIFS INTRODUCTION À LA THÉORIE DE STABILITÉ DES SYSTÈMES CONSERVATIFS David Ryckelynck Centre des Matériaux, Mines ParisTech David.Ryckelynck@mines-paristech.fr Bibliographie : Stabilité et mécanique non linéaire,

Plus en détail

TD 4 : CI-2-3 PRÉVOIR LES RÉPONSES TEMPORELLES ET FRÉ-

TD 4 : CI-2-3 PRÉVOIR LES RÉPONSES TEMPORELLES ET FRÉ- TD : CI-- PRÉVOIR LES RÉPONSES TEMPORELLES ET FRÉ- QUENTIELLES D UN SYSTÈME DU PREMIER OU SECOND ORDRE Exercice : Analyse de courbes Q - : Associer à chacune des courbes suivantes (repérées par les chiffres

Plus en détail

1 Préparation : asservissement de position

1 Préparation : asservissement de position EPU ELEC 3 Travaux Pratiques d Automatique n 4 Asservissement de position d un moteur Le but de cette manipulation est d étudier l asservissement de position d un moteur à courant continu. Le châssis comprend

Plus en détail

ÉVALUATION FORMATIVE. On considère le circuit électrique RC représenté ci-dessous où R et C sont des constantes strictement positives.

ÉVALUATION FORMATIVE. On considère le circuit électrique RC représenté ci-dessous où R et C sont des constantes strictement positives. L G L G Prof. Éric J.M.DELHEZ ANALYSE MATHÉMATIQUE ÉALUATION FORMATIE Novembre 211 Ce test vous est proposé pour vous permettre de faire le point sur votre compréhension du cours d Analyse Mathématique.

Plus en détail

Chapitre 5. Plan. Stabilité des systèmes 13/11/11. n 1. Condition générale de stabilité. n 2. Critère de Routh-Hurwitz

Chapitre 5. Plan. Stabilité des systèmes 13/11/11. n 1. Condition générale de stabilité. n 2. Critère de Routh-Hurwitz Chapitre 5 Stabilité des systèmes Aymeric Histace 1 Plan n 1. Condition générale de stabilité n 2. n 3. Critère simplifié de Nyquist (critère du revers) Aymeric Histace 2 1 Plan n 1. Condition générale

Plus en détail

Mathématiques pour l informatique 1 notes de cours sur la seconde partie

Mathématiques pour l informatique 1 notes de cours sur la seconde partie Mathématiques pour l informatique notes de cours sur la seconde partie L Université Paris-Est, Marne-la-Vallée Cyril Nicaud Organisation Ce demi-cours est composé de 6 séances de cours et 6 séances de

Plus en détail

TD Correction des SLCI

TD Correction des SLCI TD Correction des SLCI Compétences travaillées : Déterminer la précision en régime permanent, Quantifier les performances d un SLCI : o calculer rapidement l erreur, caractérisant la précision, o appliquer

Plus en détail

Commande industrielle GEL-4100 / GEL-7063

Commande industrielle GEL-4100 / GEL-7063 Commande industrielle GEL-4100 / GEL-7063 Cours 02 Éric Poulin Département de génie électrique et de génie informatique Automne 2011 Plan du cours 02 2. Réglage des régulateurs PID 2.6 Analyse des performances

Plus en détail

Utilisation d informations visuelles dynamiques en asservissement visuel Armel Crétual IRISA, projet TEMIS puis VISTA L asservissement visuel géométrique Principe : Réalisation d une tâche robotique par

Plus en détail

Commande auto-adaptative par auto-séquencement, avec application à un avion instable

Commande auto-adaptative par auto-séquencement, avec application à un avion instable Commande auto-adaptative par auto-séquencement, avec application à un avion instable Patrice ANTOINETTE 1 2 Gilles FERRERES 1 1 ONERA-DCSD, Toulouse 2 ISAE, Toulouse GT MOSAR, 4 juin 2009 Plan Introduction

Plus en détail

Systèmes asservis linéaires

Systèmes asservis linéaires Systèmes asservis linéaires I Systèmes asservis 1. définition 2. transmittance 3. schéma bloc 4. transmittance d une chaîne II système commandé en boucle fermée 1. système asservi 2. principe de fonctionnement

Plus en détail

Automatisation d une scie à ruban

Automatisation d une scie à ruban Automatisation d une scie à ruban La machine étudiée est une scie à ruban destinée à couper des matériaux isolants pour leur conditionnement (voir annexe 1) La scie à lame verticale (axe z ), et à tête

Plus en détail

Etude d une Trottinette électrique

Etude d une Trottinette électrique A l attention de : M. Boitier M. Baget Rapport de projet : Etude d une Trottinette électrique Sommaire I. Présentation de la trottinette... 5 1. Caractéristiques principales... 5 2. Décomposition de la

Plus en détail

Université Bordeaux 1 Master d informatique UE Bases de Données Sujet et correction de l examen du 27 mai 2004 8h00 9h30 (sans documents)

Université Bordeaux 1 Master d informatique UE Bases de Données Sujet et correction de l examen du 27 mai 2004 8h00 9h30 (sans documents) Numéro d anonymat: 1 Université Bordeaux 1 Master d informatique UE Bases de Données Sujet et correction de l examen du 27 mai 2004 8h00 9h30 (sans documents) Sauf mention contraire en caractères gras,

Plus en détail

Machine synchrone autopilotée : application aux asservissements : moteur brushless

Machine synchrone autopilotée : application aux asservissements : moteur brushless Machine synchrone autopilotée : application aux asservissements : moteur brushless Cours non exhaustif destiné aux étudiants de BTS maintenance industrielle (les textes en italiques ne sont pas à être

Plus en détail

1ES DS commun du jeudi 5 mai 2011. MATHEMATIQUES

1ES DS commun du jeudi 5 mai 2011. MATHEMATIQUES 1ES DS commun du jeudi 5 mai 011. MATHEMATIQUES NOM. Exercice 1 (8 points/40) Cet exercice est un QCM. Pour chaque question une seule réponse est exacte. On demande d entourer la bonne réponse et aucune

Plus en détail

Comment les forces agissent sur le mouvement?

Comment les forces agissent sur le mouvement? SP. 5 forces et principe d inertie cours Comment les forces agissent sur le mouvement? 1) notion d action et de force : a) Actions exercées sur un système : Actions de contact : Solide posé sur une table

Plus en détail