Analyse des Systèmes Asservis
|
|
- Germain Léonard
- il y a 2 ans
- Total affichages :
Transcription
1 Analyse des Systèmes Asservis Après quelques rappels, nous verrons comment évaluer deux des caractéristiques principales d'un système asservi : Stabilité et Précision. Si ces caractéristiques ne sont pas conformes au cahier de charges, nous verrons dans le cours suivant comment modifier et améliorer les performances d'un système asservi en ajoutant : un correcteur. I) Rappels sur les systèmes asservis a) Intérêt de l'asservissement (rétroaction ou bouclage) Exemple : Un four doit rester à température constante, malgré l'ouverture de la porte lors du chargement ou du déchargement des pièces à chauffer. consigne perturbation Deux structures de commande sont possibles : Commande en chaîne directe Commande asservie Problèmes liés à une commande en chaîne directe : Dans le cas d'une commande en chaîne directe, le système de commande ne prend pas en compte l'ouverture de la porte, cette perturbation entraînera une baisse notable de la température. De plus, le système de commande ne s'apercevra pas du vieillissement de l'appareil (système de chauffe moins performant, fuite de chaleur plus importante. b) Structure générale d'un système asservi (avec une seule boucle). Perturbation Consigne Comparateur + - ε Correcteur Amplificateur Actionneur Système Physique Sortie Capteur 1
2 Remarque : En amont du comparateur, il peut y a voir un bloc supplémentaire pour adapter la consigne à la grandeur de sortie du capteur. c) Fonction de Transfert en Boucle Ouverte, et en Boucle Fermée P ε(p) + + H(p) + - M(p) R(p) On définit la FTBO et la FTBF sans tenir compte de la perturbation Fonction de transfert en boucle ouverte : FTBO(p) = H(p).R(p) = M ( p) ε( p) H ( p) Fonction de transfert en boucle fermée : FTBF(p) = 1+H ( p). R( p) = S ( p) E ( p) Remarque : Si l'on tient compte de la perturbation P, on peut déterminer la sortie en fonction des deux entrées. H ( p) S ( p)= 1+ H ( p). R( p) E ( p)+ 1 PE ( p) 1+ H ( p). R( p) d) Pôles et zéros d'une fonction de transfert On considère la fonction de transfert suivante : F ( p)= b 0+b 1. p b n 1. p n 1 +b n. p n N ( p) a 0 +a 1. p a m 1. p m 1 +a m. p m= D( p) avec (n m) Les zéros de F(p) sont les racine du polynôme N(p) Les pôles de F(p) sont les racine du polynôme D(p) Equation caractéristique : C'est l'équation D(p) = 0, l'étude de cette équation permet de déterminer les pôles de la fonction de transfert permet de déterminer l'allure des réponses aux entrées caractéristiques (Cf Annexe 1) Remarque 1 : On verra dans un complément de cours que certains pôles sont plus importants que d'autres pôles dominants, on pourra ainsi simplifier la fonction de transfert pour ne garder que les éléments les plus significatifs. Remarque 2 : Dans le cas d'un système asservi, FTBO(p) = H(p).R(p) et H ( p) FTBF ( p)= ainsi l'équation caractéristique a les mêmes solutions que : 1+ H ( p).r( p) 1+H(p).R(p) = 0 2
3 II) Stabilité a) Définition Un système est stable, si la réponse à une entrée bornée est elle même un signal borné. Réponse à un échelon : (unitaire) Système stable Système instable b) Condition de stabilité Condition nécessaire et suffisante de stabilité : Un système linéaire et invariant est stable si et seulement si tous ses pôles ont une partie réelle négative lieu des pôles. Cf annexes Im Zone de stabilité Zone d'instabilité Re c) Critère de Routh (Critère algébrique) Cette méthode ne permet pas de calculer précisément les pôles de la fonction de transfert, mais simplement de déterminer le nombre de pôles à partie réelle positive donc de déterminer si le système est stable ou non. Tableau de Routh Cf annexes Système étudié : N(p) / D(p) Remarque : D(p) est le dénominateur de la FTBF dans le cas d'un système asservi. 3
4 Traitons deux exemples : D(p) = p 3 +4p²+8p+8 D(p)= p 3-2p²-p+14 p p p² p² p 6 0 p Pas de changement de signe dans la première colonne. Deux changements de signe dans la première colonne. Le nombre de changement de signes dans la première colonne donne le nombre de pôles à partie réelle positive. Dans le premier cas : Nous avons 3 pôles à partie réelle négative : 2, 1+ j 3, 1 j 3 système stable. Dans le second cas : Nous avons 2 pôles à partie réelle positive et un pôle à partie réelle négative: 2,2+ j 3, 2 j 3 système instable. Systèmes à gain variable : + - H(p) avec H ( p)= 1 p 3 +4p 2 +8p+8 avec > 0, calculons FTBF(p) : FTBF ( p)= p 3 +4p 2 +8p+8+ Tableau de Routh : p Si l'on veut que le système soit stable, il faut que p² tous les termes de la première colonne soient de mêmes signes (positifs) p (32-8-)/ d) Critères graphiques Ces critère permettent de déterminer la stabilité en boucle fermée à partir du comportement fréquentiel en boucle ouverte (à partir de la FTBO). 4 Remarque : L'équation caractéristique à les mêmes solution que l'équation : 1+FTBO=0 point critique -1 de module 1 (0dB) et d'argument de -180
5 1) Règles du revers Ces règles concernent des systèmes dont la FTBO est stable. (voir complément de cours sur le critère de Nyquist pour le cas de FTBO non stables) Dans le plan de Nyquist Si en décrivant le lieu de transfert en Boucle Ouverte d'un système dans le sens des pulsations croissantes, on laisse le point critique -1 à gauche, le système sera stable en Boucle fermée. Sinon le système sera instable ne boucle fermée. Conséquences dans les diagrammes de Bode : (de la FTBO) Pour que le système soit stable en boucle fermée, Il faut que : Lorsque le gain atteint 0dB, ϕ -180 Lorsque la phase atteint -180, le gain doit être négatif. Dans le plan de Black Si en décrivant le lieu de transfert en Boucle Ouverte d'un système dans le sens des pulsations croissantes, on laisse le point critique -1 (-180, 0dB) à droite, le système sera stable en Boucle fermée. 2) Marges de stabilité Elles permettent de mettre en évidence «la distance» entre le lieu de la FTBO et le point critique. Marge de phase : C'est la différence entre la valeur de la phase lorsque le gain en db est nul et -180 Marge de gain : La marge de gain, mesurée en db, est la différence entre 0dB et la valeur du gain (en db) pour lequel la phase est égale à Mesure dans les plans de Nyquist et Black Cf Annexes. Remarque : Très souvent, pour des raisons de rapidité et de stabilité, on prendra : - une marge de gain d'au moins 10dB - une marge de phase de l'ordre de 45 e) Stabilité en Boucle fermée, lorsque la FTBO est du 1 ou du 2 ordre. 1) Premier ordre H ( p)= 1+τ p ( et τ positifs) et R(p) = 1 (retour unitaire) On calcule la FTBF : FTBF ( p)= 1+ +τ p pôle : 1+ τ 0 Système stable quelle que soit la valeur de Remarque : En annexe, vous avez les diagrammes de Bode, Black et Nyquist en régime harmonique d'un premier ordre marges de stabilité : Mϕ 90 et marge de gain infinie. 5
6 2) Second ordre H ( p)= (, z et τ 1+2z τ n p+τ 2 n p 2 n positifs) et R(p) = 1 (retour unitaire) On calcule la FTBF : H ( p)= 1+ +2z τ n p+τ 2 n p 2 Tableau de Routh : p² τ n ² 1+ La première colonne ne présente pas de changement de signes p 2zτ n 0 Système stable quel que soit la valeur de Remarque : En annexe, vous avez les diagrammes de Bode, Black et Nyquist en régime harmonique d'un second ordre marges de stabilité : Mϕ varie de 0 à 180 (suivant la valeur de z) et la marge de gain est infinie. III) Précision Un asservissement est réalisé pour que la variable contrôlée s(t) suive «au plus près «la valeur de la consigne e(t). On mesure la précision d'un système en calculant la valeur de l'erreur e r (t) = e(t) -s(t) Remarque : le système est d'autant plus précis que l'erreur est proche de 0. On peut également utiliser l'erreur relative : e r % = e(t ) s(t).100 e(t ) a) Précision statique On appelle erreur statique, la valeur asymptotique (lorsque t tend vers l'infini) de l'erreur pour une consigne de type échelon unitaire. (cela revient à utiliser l'erreur relative) On appelle erreur de traînage, la valeur asymptotique (lorsque t tend vers l'infini) de l'erreur pour une consigne de type rampe unitaire. b) Influence de la classe de la FTBO sur la précision Les systèmes asservis dont l'entrée et la sortie sont directement comparables (et notamment de même nature) peuvent se mettre sous la forme ci-dessous : + - H(p) (Retour unitaire) 6
7 Avec : H ( p)= p α 1+b 1 p+...+b n p n Gain avec α+m n m 1+a 1 p+...+a m p classe Déterminons l'erreur statique et de traînage de cet asservissement : E r ( p)=e ( p) S ( p)=e ( p) H ( p) 1+ H ( p) E ( p)= 1 1+ H ( p) E ( p) Ce qui donne : E r ( p)= p α (1+a 1 p+...+a m p m ) p α (1+a 1 p +...+a m p m )+ (1+b 1 p+...+b n p n ) E ( p) Si E ( p)= 1 p lim t e r (t)=lim p 0 p α + p α (échelon unitaire et théorème de la valeur finale) Si E ( p)= 1 p² lim t e r (t)=lim p 0 p α + p α 1 p (rampe unitaire et théorème de la valeur finale) Tableau récapitulatif (à apprendre par cœur) Classe de la FTBO Erreur statique Erreur de traînage Classe 0 1/(1+) Classe 1 0 1/ Classe Remarque 1 : La présence d'intégrateur permet d'améliorer l'erreur statique (voire de l'annuler) Remarque 2 : En l'absence d'intégrateurs, la précision statique s'améliore lorsque augmente. c) Notion d'écart statique et de traînage + - ε(p) H(p) M(p) R(p) Lorsque l'entrée et la sortie ne sont pas directement comparables (par exemple, si ils ne sont pas de même nature), on peut quantifier la précision en utilisant la notion d'écart ε(t). (l'écart se mesure directement à la sortie du comparateur) FTBO H ( p). R( p) ε( p)=e ( p) R( p). S ( p)=e ( p) 1+ H ( p). R( p) E ( p)= 1 1+ H ( p). R ( p) E ( p) 7
8 On écrit la FTBO sous la forme : FTBO ( p)= p α 1+b 1 p+...+b n p n Alors ε( p)= p α (1+a 1 p+...+a m p m ) p α (1+a 1 p+...+a m p m )+ (1+b 1 p+...+b n p n ) E ( p) avec α+m n m 1+a 1 p+...+a m p Ecart statique : valeur finale) E ( p)= 1 p lim t e r (t)=lim p 0 p α + p α (échelon unitaire et théorème de la Ecart de traînage : E ( p)= 1 p² lim t e r (t)=lim p 0 valeur finale) p α + p α 1 p (rampe unitaire et théorème de la Tableau de synthèse : (identique au tableau précédent) Classe de la FTBO Ecart statique Ecart de traînage Classe 0 1/(1+) Classe 1 0 1/ Classe
Automatique (AU3): Précision. Département GEII, IUT de Brest contact: vincent.choqueuse@univ-brest.fr
Automatique (AU3): Précision des systèmes bouclés Département GEII, IUT de Brest contact: vincent.choqueuse@univ-brest.fr Plan de la présentation Introduction 2 Écart statique Définition Expression Entrée
Automatique Linéaire 1 Travaux Dirigés 1A ISMIN
Automatique Linéaire 1 Travaux Dirigés Travaux dirigés, Automatique linéaire 1 J.M. Dutertre 2014 TD 1 Introduction, modélisation, outils. Exercice 1.1 : Calcul de la réponse d un 2 nd ordre à une rampe
M1/UE CSy - module P8 1
M1/UE CSy - module P8 1 PROJET DE SIMULATION AVEC MATLAB RÉGULATION DU NIVEAU ET DE LA TEMPÉRATURE DANS UN BAC En vue de disposer d un volume constant de fluide à une température désirée, un processus
SYSTÈMES ASSERVIS CORRECTION
SYSTÈMES ASSERVIS CORRECTION //07 SYSTÈMES ASSERVIS CORRECTION ) Introduction... 3.) Les différents systèmes de commande... 3.2) Performances des systèmes asservis... 4.3) Fonction de transfert en boucle
Performances des SLCI
Fichier : _SLCI_performances. Définitions.. Stabilité Il existe plusieurs définition de la stabilité : Pour une entrée e(t) constante, la sortie s(t) du système doit tendre vers une constante. Un système
Erreur statique. Chapitre 6. 6.1 Définition
Chapitre 6 Erreur statique On considère ici le troisième paramètre de design, soit l erreur statique. L erreur statique est la différence entre l entrée et la sortie d un système lorsque t pour une entrée
IUT Toulouse II - Automatique et Systèmes Génie Industriel et Maintenance GIM 2 Promo 14 Année 2007-2008. AUTOMATIQUE et SYSTEMES
IUT Toulouse II - Automatique et Systèmes Génie Industriel et Blagnac Maintenance GIM 2 Promo 14 Année 2007-2008 AUTOMATIQUE et SYSTEMES Les cours, TD et TP seront entièrement programmés en 2 ème année.
PRECISION - REJET DE PERTURBATIONS T.D. G.E.I.I.
PRECISION - REJET DE PERTURBATIONS T.D. G.E.I.I.. Donner les erreurs en position, en vitesse et en accélération d un système de transfert F BO = N(p) D(p) (transfert en boucle ouverte) bouclé par retour
Automatique Linéaire 1 1A ISMIN
Automatique linéaire 1 J.M. Dutertre 2014 Sommaire. I. Introduction, définitions, position du problème. p. 3 I.1. Introduction. p. 3 I.2. Définitions. p. 5 I.3. Position du problème. p. 6 II. Modélisation
SYSTEMES LINEAIRES CONTINUS INVARIANTS PERFORMANCES DES SYSTEMES ASSERVIS
YTM LINAIR CONTINU INVARIANT tabilité des systèmes asservis PRFORMANC D YTM ARVI. Notion de stabilité La stabilité est communément reconnue comme étant associée à la notion d équilibre : Prenons les deux
Automatique. Commande des Systèmes Linéaires Continus
Automatique Commande des Systèmes Linéaires Continus M1 U.E. Csy module P2 Christophe Calmettes christophe.calmettes@univ-jfc.fr séquence d enseignement... Concernant la partie Analyse et Synthèse des
S tabilité d'un s ys tème as s ervi
Stabilité d'un système asservi page 1 / 5 S tabilité d'un s ys tème as s ervi 1 Notion de stabilité et définition Définition n 1 : on dit que le système est stable si pour une entrée bornée, la sortie
CI-2-1 PRÉVOIR ET VÉRIFIER LES
CI-2-1 PRÉVOIR ET VÉRIFIER LES PERFORMANCES DES SYSTÈMES LI- NÉAIRES CONTINUS INVARIANTS. Objectifs A l issue de la séquence, l élève doit être capable : B3 Valider un modèle SIMULER - VALIDER Réduire
génie électrique asservissement ASSERVISSEMENT Nous allons dans un premier temps lister les éléments nécessaires pour réaliser un système asservi.
ASSERVISSEMENT I - SYSTEMES ASSERVIS NOTIONS A. Structure d'un système asservi Nous allons dans un premier temps lister les éléments nécessaires pour réaliser un système asservi. 1. Présentation Un des
Analyse des diagrammes de Bode d'un filtre passe-bande:
TD N 3: Filtrage, fonction de transfert et diagrammes de Bode. M1107 : Initiation à la mesure du signal Le but de ce TD est de vous permettre d'appréhender les notions indispensables à la compréhension
SYSTEMES LINEAIRES DU PREMIER ORDRE
SYSTEMES LINEIRES DU PREMIER ORDRE 1. DEFINITION e(t) SYSTEME s(t) Un système est dit linéaire invariant du premier ordre si la réponse s(t) est liée à l excitation e(t) par une équation différentielle
Premier ordre Expression de la fonction de transfert : H(p) = K
Premier ordre Expression de la fonction de transfert : H(p) = K + τ.p. K.e τ K.e /τ τ 86% 95% 63% 5% τ τ 3τ 4τ 5τ Temps Caractéristiques remarquables de la réponse à un échelon e(t) = e.u(t). La valeur
Cours de Systèmes Asservis
Cours de Systèmes Asservis J.Baillou, J.P.Chemla, B. Gasnier, M.Lethiecq Polytech Tours 2 Chapitre 1 Introduction 1.1 Définition de l automatique Automatique : Qui fonctionne tout seul ou sans intervention
(Use Case Diagram : uc) Unité de sélection de tubes. Approvisionner régulièrement. radiateur. uc [cas d utilisation]
TD : LE YTEME AERVI Dans une unité de production de radiateurs de chauffage central, un système est utilisé pour permettre l approvisionnement régulier en tubes de l unité de production des radiateurs.
Notions d asservissements et de Régulations
I. Introduction I. Notions d asservissements et de Régulations Le professeur de Génie Electrique doit faire passer des notions de régulation à travers ses enseignements. Les notions principales qu'il a
Chapitre 4 : Identification
Chapitre 4 : Identification 1- Généralités - Identification en boucle ouverte.1 Méthodologie. Méthode directe : confrontation de la réponse théorique et expérimentale.3 Méthode de Strejc.4 Méthode de Broida.5
Cours 4 : Analyse de stabilité et de performances des systèmes linéaires bouclés
Cours 4 : Analyse de stabilité et de performances des systèmes linéaires bouclés Olivier Sename GIPSA-lab Septembre 2017 Olivier Sename (GIPSA-lab) Asservissement Septembre 2017 1 / 26 O. Sename [GIPSA-lab]
a. Les éléments de base rectangle : représente un élément ou un groupe d éléments du système et son action associée
REGULATION 1/9 I. Présentation 1. Structure d'un système asservi L'objectif d'un système automatisé étant de remplacer l'homme dans une tâche, nous allons pour établir la structure d'un système automatisé
I Stabilité, Commandabilité et Observabilité 11. 1 Introduction 13 1.1 Un exemple emprunté à la robotique... 13 1.2 Le plan... 18 1.3 Problème...
TABLE DES MATIÈRES 5 Table des matières I Stabilité, Commandabilité et Observabilité 11 1 Introduction 13 1.1 Un exemple emprunté à la robotique................... 13 1.2 Le plan...................................
Arrivée eau Départ eau
Etude d exemples Système intégrateur 1 er exemple Eau stockée Niveau maxi régulation Niveau mini Pompe Arrivée eau Départ eau Autre exemple q e (t) h(t) variable d entrée : q e (t) variable de sortie :
Chapitre 1 : Évolution COURS
Chapitre 1 : Évolution COURS OBJECTIFS DU CHAPITRE Savoir déterminer le taux d évolution, le coefficient multiplicateur et l indice en base d une évolution. Connaître les liens entre ces notions et savoir
Utilisation de SimApp pour l analyse des systèmes asservis
Utilisation de SimApp pour l analyse des systèmes asservis Étude du maintien en altitude d un avion type Airbus Robert Papanicola Lycée Jacques Amyot 26 janvier 2010 Robert Papanicola (Lycée Jacques Amyot)
PARTIE 2 PROJET ELECTRICITE. Répondre sur des copies différentes de celles utilisées pour la partie Projet Mécanique.
PARTIE PROJET ELECTRICITE Répondre sur des copies différentes de celles utilisées pour la partie Projet Mécanique. AVERTISSEMENT Il est rappelé aux candidats qu'ils doivent impérativement utiliser les
TABLE DES MATIÈRES. 1.6.1 Schéma fonctionnel ou schéma bloc... 27
TABLE DES MATIÈRES Caractérisation et étude des systèmes asservis. Systèmes asservis................................. Structure d un système asservi.....................2 Régulation et asservissement....................
Chapitre 5. Plan. Stabilité des systèmes 13/11/11. n 1. Condition générale de stabilité. n 2. Critère de Routh-Hurwitz
Chapitre 5 Stabilité des systèmes Aymeric Histace 1 Plan n 1. Condition générale de stabilité n 2. n 3. Critère simplifié de Nyquist (critère du revers) Aymeric Histace 2 1 Plan n 1. Condition générale
Analyse et Commande des systèmes linéaires
Analyse et Commande des systèmes linéaires Frédéric Gouaisbaut LAAS-CNRS Tel : 05 61 33 63 07 email : fgouaisb@laas.fr webpage: www.laas.fr/ fgouaisb September 24, 2009 Présentation du Cours Volume Horaire:
AUTOMATIQUE Glossaire
AUTOMATIQUE Glossaire J.J. Orteu 22 septembre 2005 Table des matières 1 Français Anglais 2 2 Anglais Français 5 1 1 Français Anglais Action dérivée Action intégrale Action proportionnelle Actionneur Amorti
CHAP III. PRÉCISION ET STABILITÉ D'UNE BOUCLE
TS2 CIRA Régulation - Chap III Précision et stabilité d'une boucle CHAP III PRÉCISION ET STABILITÉ D'UNE BOUCLE 1 Stabilité d'un système bouclé 11 Etude des pôles de F(p) On considère le système suivant
Le Système de Récupération de l Energie Cinétique (SREC)
Concours EPITA 011 Epreuve de Sciences Industrielles pour l ingénieur Le Système de Récupération de l Energie Cinétique (SREC) Tous documents interdits Calculatrice autorisée Durée : h L augmentation de
26,25h 2 ème année S1 OBJECTIFS GENERAUX:
SYTEMES LINEAIRES CONTINUS INVARIANTS VOLUME HORAIRE RECOMMANDE NIVEAU SEMESTRE 26,25h 2 ème année S1 OBJECTIFS GENERAUX: A partir d un système linéaire continu invariant (mécanique, électrique, thermique,
M1/UE CSy - module P8 1
M1/UE CSy - module P8 1 PROJET DE SIMULATION AVEC MATLAB MODÉLISATION D UNE SUSPENSION ET ÉTUDE DE SON COMPORTEMENT DYNAMIQUE La suspension d une automobile est habituellement assurée par quatre systèmes
REGULATION DE TEMPERATURE
Cours 1ELEEC E2 ETUDE D UN OUVRAGE S4 : Communication et traitement de l information REGULATION DE TEMPERATURE S4.4 : Traitement de l information 1. MISE EN SITUATION : Une chaîne de traitement de surface
XIII. ANALYSE DES FONCTIONS DE TRANSFERT EN REGIME HARMONIQUE LE DIAGRAMMME DE BODE
XIII. ANALYSE DES FONCTIONS DE TRANSFERT EN REGIME HARMONIQUE LE DIAGRAMMME DE BODE A. ANALYSE D'UNE FONCTION DE TRANSFERT Forme canonique ; Exemple ; Limites ; Fréquence de Coupure ; Bande Passante ;
Fonctions de plusieurs variables
Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme
Chapitre 1 Régime transitoire dans les systèmes physiques
Chapitre 1 Régime transitoire dans les systèmes physiques Savoir-faire théoriques (T) : Écrire l équation différentielle associée à un système physique ; Faire apparaître la constante de temps ; Tracer
Chapitre 4 : systèmes asservis linéaires.
Chapitre 4 : systèmes asservis linéaires. A) Structure d'un système asservi : nécessité du système bouclé : Système en boucle ouverte : consigne venant du cerveau Poussée des muscles. vitesse, trajectoire,
CHAPITRE 5 : LIMITE ET ORDRE ASYMPTOTES
CHAPITRE 5 : LIMITE ET ORDRE ASYMPTOTES La lettre grecque α désigne soit, soit, soit a un réel fini ( a R ) Le plan est muni d un repère ( O; i ; j), et on note C f la courbe représentative de la fonction
Cahier de vacances - Préparation à la Première S
Cahier de vacances - Préparation à la Première S Ce cahier est destiné à vous permettre d aborder le plus sereinement possible la classe de Première S. Je vous conseille de le travailler pendant les 0
Identification et réglage assisté par ordinateur d un processus thermique
I- But de la manipulation : Identification et réglage assisté par ordinateur d un processus thermique Le but est de procéder à la modélisation et à l identification paramétrique d un procédé considéré
6GEI305 Dynamique des systèmes II. Laboratoire #4
6GEI305 Dynamique des systèmes II Laboratoire #4 Réponse en Fréquence Hiver 010 1. Objectifs Voir l effet des pôles et des zéros sur le comportement dynamique Examiner le facteur de qualité Étudier le
Cours AQ 6. Stabilité
Cours AQ 6 Stabilité Qu est-ce que la stabilité? Un Système est stable quand il revient à son état d équilibre après une perturbation Stable ou Instable? S(t)(réponse impulsionnelle ) e -2t e 2t e -t sin2t
Etude et mise au point d une boucle de régulation en cascade Cascade control
PFE : 2011-2012 : Filière génie des procédés Etude et mise au point d une boucle de régulation en cascade Cascade control Application à la régulation en cascade de niveau d eau dans une cuve parfaitement
TD Correction des SLCI
TD Correction des SLCI Compétences travaillées : Déterminer la précision en régime permanent, Quantifier les performances d un SLCI : o calculer rapidement l erreur, caractérisant la précision, o appliquer
BTS Informatique Industrielle.
BTS Informatique Industrielle. Session 00. I. Étude du récepteur optique. ) Expression de v : l'amplificateur opérationnel est en régime linéaire, donc nous avons v = R i (loi d'ohm). En remplaçant i par
CH1 : Langages de la continuité Limites
CH : Langages de la continuité Limites I. Continuité- Théorème des valeurs intermédiaires. Définition : Soit f une fonction définie sur un intervalle I de R. Lorsque la courbe représentative de f ne présente
TD1: ANALYSE DE STABILITÉ ET DES PERFORMANCES D UN ASSERVISSEMENT. k p(1+0.5p) 2
TD1: ANALYSE DE STABILITÉ ET DES PERFORMANCES D UN ASSERVISSEMENT On considère l asservissement suivant : k p(1+0.5p) 2 I. Cas où k = 1 1. Donner l allure dans les plan de Bode, Nyquist et Black du lieu
Systèmes asservis linéaires
Systèmes asservis linéaires I Systèmes asservis 1. définition 2. transmittance 3. schéma bloc 4. transmittance d une chaîne II système commandé en boucle fermée 1. système asservi 2. principe de fonctionnement
Chap.4 Commande d un système linéaire : Systèmes bouclés
Chap.4 Commande d un système linéaire : Systèmes bouclés 1. Structure d un système bouclé 1.1. Schéma bloc 1.2. Principe de régulation 1.3. Comportement du système : FTBF 2. Avantages du bouclage Cas d
REGULATION DE TEMPERATURE
REGULATION DE TEMPERATURE I PRESENTATION DU TP I.1 Objectif : L objectif de ce TP est de réguler un système industriel à forte inertie. Après l identification du système en question, l étudiant devra déterminer
Système linéaire invariant Licence GEEA ULSI 502
Système linéaire invariant Licence GEEA ULSI 52 6 octobre 27 Dénition Système Linéaires Invariants Dénitions équivalentes Equation diérentielle On appelle système linéaire invariant, un système dont le
CHAPITRE 7 Fonction carré et fonction inverse
CHAPITRE 7 Fonction carré et fonction inverse A) La fonction "carré" : f() = ² ) Domaine de définition Elle est définie sur ℝ complet (on peut toujours multiplier deu nombres entre eu). 2) Sens de variation
Une centrale nucléaire a pour fonction de produire de l'énergie électrique à partir d'énergie nucléaire (figure 2).
CX9612 Banque commune École Polytechnique ENS de Cachan PSI Session 2009 Épreuve de Modélisation Durée : 5 heures Aucun document n est autorisé L usage de calculatrice électronique de poche à alimentation
Solutions optimales multiples. 3D.1 Unicité de la solution optimale du modèle (FRB)
3D Solutions optimales multiples 3D.1 Unicité de la solution optimale du modèle (FRB) Le modèle (FRB) admet une solution optimale unique. En effet (voir page 182), l'algorithme du simplexe se termine par
http ://ptetoile.free.fr/ Automatique
Notions de base. Définitions Système continu : les variations des grandeurs physiques le caractérisant sont des fonctions de variables continues Système linéaire : Système régit par le principe de proportionnalité
Module : systèmes asservis linéaires
BS2EL - Physique appliquée Module : systèmes asservis linéaires Diaporamas : les asservissements Résumé de cours 1- Structure d un système asservi 2- Transmittances en boucle ouverte et ermée 3- Stabilité
ASSERVISSEMENT DE VITESSE D UN LAVE LINGE
ASSERVISSEMENT DE VITESSE D UN LAVE LINGE Les différentes parties sont indépendantes et à l intérieur de chaque partie, de nombreuses questions sont indépendantes. Présentation Le système étudié est réalisé
Systèmes de contrôle en boucle fermée
CACHAN Département d électronique Systèmes de contrôle en boucle fermée Jacques Weber Février 2004 Systèmes de contrôle en boucle fermée Ces notes de cours sont une introduction à l'étude des systèmes
Amélioration des performances des SLCI
CPGE PTSI/PT - Sciences Industrielles de l'ingénieur Amélioration des performances des SLCI PT Cours v1.1 Lycée Jean Zay 21 rue Jean Zay 633 Thiers Académie de Clermont-Ferrand Compétences visées: B2-1
Fiche Module Sciences et Technologies Informatique industrielle Licence
Ministère de l Enseignement Supérieur, de la Recherche Scientifique et des Technologies de l Information et de la Communication Université de Carthage Institut Supérieur des Technologies de l Information
Mathématiques pour l informatique 1 notes de cours sur la seconde partie
Mathématiques pour l informatique notes de cours sur la seconde partie L Université Paris-Est, Marne-la-Vallée Cyril Nicaud Organisation Ce demi-cours est composé de 6 séances de cours et 6 séances de
Commande par retour d états ou placement des pôles
Cas continu Commande par retour d états ou placement des pôles Position de problème Soit le système décrit par l équation d état. = + X AX BU Y = CX est dont le polynôme caractéristique est n P( λ) = λ
Phase Locked Loop (PLL)
Boucle à Verrouillage de phase Phase Locked Loop () 4ème année Polytech Département EES 2013 Cédric KOENIGUER Plan I. Présentation d une II. Etude des comparateurs de phases III. Mise en évidence de la
13- Stabilité dun système linéaire. H(p) jean-philippe muller. sortie y(t), Y(p) Systèmes asservis linéaires. entrée x(t), X(p)
13- Stabilité dun système linéaire Soit un système linéaire possédant une entrée x(t) et une sortie y(t), et déini par sa transmittance de Laplace G(p) composée dun numérateur N(p) et dun dénominateur
Régulation par PID Mickaël CAMUS Etienne DEGUINE Daniel ROSS
Régulation par PID Mickaël CAMUS Etienne DEGUINE Daniel ROSS 26/02/10 Plan Définition 1. Proportionnel 2. Intégral 3. Dérivé Réglages des coefficients 1. Différentes approches 2. Ziegler-Nichols 3. Process
Équations et inéquations du 1 er degré
Équations et inéquations du 1 er degré I. Équation 1/ Vocabulaire (rappels) Un équation se présente sous la forme d'une égalité constituée de nombres, de lettres et de symboles mathématiques. Par exemple
Fonctions homographiques
Fonctions homographiques On donne ci-dessous deux définitions des fonctions homographiques, et on montre que ces deux définitions sont équivalentes. On décrit la courbe représentative d une fonction homographique.
I. Notations. 1 ) Structure générale. 2 ) Boucle ouverte, Boucle fermée. Master 1ère Année SEE Aide mémoire Automatique Continue
Ce pense bête de l automatique continue contient des recettes dont certaines (beaucoup!) ne marchent que pour des systèmes réguliers... I. Notations 1 ) Structure générale e = Entr ée + ɛ = Er r eur Correcteur
!-.!#- $'( 1&) &) (,' &*- %,!
0 $'( 1&) +&&/ ( &+&& &+&))&( -.#- 2& -.#- &) (,' %&,))& &)+&&) &- $ 3.#( %, (&&/ 0 ' Il existe plusieurs types de simulation de flux Statique ou dynamique Stochastique ou déterministe A événements discrets
Automatique linéaire 1
Cycle ISMIN 1A Automatique linéaire 1 J.M. Dutertre 2016 www.emse.fr/~dutertre Automatique linéaire 1 Cadre du cours : étude des systèmes linéaires continus. Plan du cours : I. Introduction, Définitions,
TP - S2I Centre d intérêt N 4 : prévoir et vérifier les performances des systèmes linéaires continus invariants. TP «Ericc 4» ROBOT ERICC
TP «Ericc 4» ROBOT ERICC 0. Objectifs du TP Documents à disposition - le dossier d étude (disponible ci-après) comprend les activités à mener pendant la durée de cette séance de travaux pratiques - le
Automatique. Stabilité. F. Rotella I. Zambettakis. F. Rotella I. Zambettakis Automatique 1
Automatique Stabilité F. Rotella I. Zambettakis rotella@enit.fr, izambettakis@iut-tarbes.fr F. Rotella I. Zambettakis Automatique 1 La réponse fréquentielle La réponse fréquentielle réponses temporelles
1.1 Définitions... 2 1.2 Opérations élémentaires... 2 1.3 Systèmes échelonnés et triangulaires... 3
Chapitre 5 Systèmes linéaires 1 Généralités sur les systèmes linéaires 2 11 Définitions 2 12 Opérations élémentaires 2 13 Systèmes échelonnés et triangulaires 3 2 Résolution des systèmes linéaires 3 21
S2I. Production électrique et régulation du réseau français
PSI 4 heures Calculatrices autorisées 0 SI Production électrique et régulation du réseau français I Organisation du réseau électrique européen I.A Introduction Depuis la première ligne électrique construite
FONCTION EXPONENTIELLE ( ) 2 = 0.
FONCTION EXPONENTIELLE I. Définition Théorème : Il eiste une unique fonction f dérivable sur R telle que f ' = f et f (0) =. Démonstration de l'unicité (eigible BAC) : L'eistence est admise - Démontrons
Leçon N 1 : Taux d évolution et indices
Leçon N : Taux d évolution et indices En premier un peu de calcul : Si nous cherchons t [0 ;+ [ tel que x 2 = 0,25, nous trouvons une solution unique x = 0, 25 = 0,5. Nous allons utiliser cette année une
Les systèmes asservis linéaires. échantillonnés. Mohamed AKKARI
Ministère de l Enseignement Supérieur, de la Recherche Scientifique Université Virtuelle de Tunis Les systèmes asservis linéaires échantillonnés Mohamed AKKARI Attention! Ce produit pédagogique numérisé
Comparaison de fonctions Développements limités. Chapitre 10
PCSI - 4/5 www.ericreynaud.fr Chapitre Points importants 3 Questions de cours 6 Eercices corrigés Plan du cours 4 Eercices types 7 Devoir maison 5 Eercices Chap Et s il ne fallait retenir que si points?
I Exercices I-1 1... I-1 2... I-1 3... I-2 4... I-2 5... I-2 6... I-2 7... I-3 8... I-3 9... I-4
Chapitre Convexité TABLE DES MATIÈRES page -1 Chapitre Convexité Table des matières I Exercices I-1 1................................................ I-1................................................
SYSTEMES LINEAIRES CONTINUS INVARIANTS
SYSTEMES LINEAIRES CONTINUS INVARIANTS (Partie 1 & 2) L étude détaillée se limite aux systèmes de bases, c est à dire aux systèmes du premier ordre et du second ordre. En effet l étude des autres systèmes
Problème 1 : applications du plan affine
Problème 1 : applications du plan affine Notations On désigne par GL 2 (R) l ensemble des matrices 2 2 inversibles à coefficients réels. Soit un plan affine P muni d un repère (O, I, J). Les coordonnées
Dimensionnement d'un vérin électrique
Dimensionnement d'un vérin électrique Problématique Pour restituer les mouvements (et les accélérations) d'un vol par exemple, une solution classique est l'architecture appelée plate-fome Stewart. Celle-ci
AGRÉGATION INTERNE: RÉDUCTION DES ENDOMORPHISMES
AGRÉGATION INTERNE: RÉDUCTION DES ENDOMORPHISMES VINCENT GUEDJ 1. Notions fondamentales 1.1. Noyau, Image. On se donne E un K-espace vectoriel de dimension finie (K = R, C principalement) et f L(E) un
MPSI PCSI DS N 1 5 Octobre 2014 Système de mesure de cavité (D après concours CCP TSI 2010)
MPSI PCSI DS N 1 5 Octobre 2014 Système de mesure de cavité (D après concours CCP TSI 2010) Nom : Prénom : Classe : Mise en situation Mise en situation et présentation de la mesure Le sous-sol français
ATS Génie électrique session 2005
Calculatrice scientifique autorisée Avertissements : Les quatre parties sont indépendantes mais il est vivement conseillé de les traiter dans l ordre ce qui peut aider à mieux comprendre le dispositif
Fonctions - Continuité Cours maths Terminale S
Fonctions - Continuité Cours maths Terminale S Dans ce module, introduction d une nouvelle notion qu est la continuité d une fonction en un point. En repartant de la définition et de l illustration graphique
t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre :
Terminale STSS 2 012 2 013 Pourcentages Synthèse 1) Définition : Calculer t % d'un nombre, c'est multiplier ce nombre par t 100. 2) Exemples de calcul : a) Calcul d un pourcentage : Un article coûtant
aux différences est appelé équation aux différences d ordre n en forme normale.
MODÉLISATION ET SIMULATION EQUATIONS AUX DIFFÉRENCES (I/II) 1. Rappels théoriques : résolution d équations aux différences 1.1. Équations aux différences. Définition. Soit x k = x(k) X l état scalaire
Fonctions de référence Variation des fonctions associées
DERNIÈRE IMPRESSION LE 9 juin 05 à 8:33 Fonctions de référence Variation des fonctions associées Table des matières Fonction numérique. Définition.................................. Ensemble de définition...........................3
A. N(p) B + C p. + D p2
Polytech Nice ELEC3 T.P. d'electronique TP N 7 S ACTIFS DU SECOND ORDRE 1 - INTRODUCTION Un quadripôle est dit avoir une fonction de transfert en tension, du second ordre, lorsque le rapport tension de
CI2 : Analyse du comportement des systèmes invariants continus
CI2 : Analyse du comportement des systèmes invariants continus Points étudiés : Simulation fonctionnelle d'un système complexe Correction des systèmes asservis (Proportionnelle et Proportionnelle Dérivée)
Département de physique
Département de physique Etude de la densité spectrale de puissance du bruit thermique dans une résistance Travail expérimental et rédaction du document : Jean-Baptiste Desmoulins (P.R.A.G.) mail : desmouli@physique.ens-cachan.fr
Stabilité. Chapitre 5. Jusqu à présent, on a discuté de représentation de systèmes et de réponse transitoire. La prochaine étape est la stabilité.
Chapitre 5 Stabilité Jusqu à présent, on a discuté de représentation de systèmes et de réponse transitoire. La prochaine étape est la stabilité. La stabilité est le critère le plus important dans le design
Td 3 - CI-2-2: Modifier les performances des systèmes linéaires continus invariants.
Td 3 - CI-2-2: Modifier les performances des systèmes linéaires continus invariants. CI-2 Prévoir, modifier et vérifier les performances des systèmes linéaires continus invariants. LYCÉE CARNOT (DIJON),
MPSI FORMULAIRE LIONEL PORCHERON DANIEL PORCHERON MAGALI DÉCOMBE VASSET. Le Formulaire MPSI
MPSI FORMULAIRE LIONEL PORCHERON DANIEL PORCHERON MAGALI DÉCOMBE VASSET Le Formulaire MPSI Conception et création de couverture : Atelier 3+ Collaboration technique : Thomas Fredon, ingénieur Télécom Bretagne
1 Préparation : asservissement de position
EPU ELEC 3 Travaux Pratiques d Automatique n 4 Asservissement de position d un moteur Le but de cette manipulation est d étudier l asservissement de position d un moteur à courant continu. Le châssis comprend