Le nombre d or et Fibonacci

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Le nombre d or et Fibonacci"

Transcription

1 Août 2004, Bordeaux

2 Pentagone et nombre d or Irrationalité Séries géométriques Equation Remarques et exercice Le pentagramme magique se retrouve partout dans la nature et hors de la nature est le symbole d une très ancienne secte sous sa forme usuelle ou sous sa forme étoilée

3 Pentagone et nombre d or Irrationalité Séries géométriques Equation Remarques et exercice Le pentagramme magique se retrouve partout dans la nature et hors de la nature est le symbole d une très ancienne secte sous sa forme usuelle ou sous sa forme étoilée

4 Pentagone et nombre d or Irrationalité Séries géométriques Equation Remarques et exercice Le pentagramme magique se retrouve partout dans la nature et hors de la nature est le symbole d une très ancienne secte sous sa forme usuelle ou sous sa forme étoilée

5 Pentagone et nombre d or Irrationalité Séries géométriques Equation Remarques et exercice Le pentagramme magique se retrouve partout dans la nature et hors de la nature est le symbole d une très ancienne secte sous sa forme usuelle ou sous sa forme étoilée

6 Pentagone et nombre d or Irrationalité Séries géométriques Equation Remarques et exercice Le pentagramme magique se retrouve partout dans la nature et hors de la nature est le symbole d une très ancienne secte sous sa forme usuelle ou sous sa forme étoilée

7 Pentagone et nombre d or Irrationalité Séries géométriques Equation Remarques et exercice Le pentagramme magique se retrouve partout dans la nature et hors de la nature est le symbole d une très ancienne secte sous sa forme usuelle ou sous sa forme étoilée

8 Pentagone et nombre d or Irrationalité Séries géométriques Equation Remarques et exercice Le pentagramme magique se retrouve partout dans la nature et hors de la nature est le symbole d une très ancienne secte sous sa forme usuelle ou sous sa forme étoilée

9 Pentagone et nombre d or Irrationalité Séries géométriques Equation Remarques et exercice Le pentagramme magique se retrouve partout dans la nature et hors de la nature est le symbole d une très ancienne secte sous sa forme usuelle ou sous sa forme étoilée Les pythagoriciens!

10 Pentagone et nombre d or Irrationalité Séries géométriques Equation Remarques et exercice Le pentagramme magique se retrouve partout dans la nature et hors de la nature est le symbole d une très ancienne secte sous sa forme usuelle ou sous sa forme étoilée

11 Pentagone et nombre d or Irrationalité Séries géométriques Equation Remarques et exercice Le pentagramme magique se retrouve partout dans la nature et hors de la nature est le symbole d une très ancienne secte sous sa forme usuelle ou sous sa forme étoilée

12 Pentagone et nombre d or Irrationalité Séries géométriques Equation Remarques et exercice Un nombre naturel... Pour les pythagoriciens, le rapport des mesures sur le pentagone est si naturel qu il ne peut être que rationnel! Trouver p q Q tel que φ = D C = p q? C = p(d/q) D = q(d/q) Trouver un petit segment telle que le côté et la diagonale soient tous deux des multiples entiers de ce segment?

13 Pentagone et nombre d or Irrationalité Séries géométriques Equation Remarques et exercice Un nombre naturel... Pour les pythagoriciens, le rapport des mesures sur le pentagone est si naturel qu il ne peut être que rationnel! Trouver p q Q tel que φ = D C = p q? C = p(d/q) D = q(d/q) Trouver un petit segment telle que le côté et la diagonale soient tous deux des multiples entiers de ce segment?

14 Pentagone et nombre d or Irrationalité Séries géométriques Equation Remarques et exercice Irrationnalité Théorème Le rapport φ de la diagonale par le côté d un pentagone est un nombre irrationnel appelé nombre d or. (et probablement le plus ancien connu) Le pentagone contient un plus petit pentagone On introduit les mesures c et d des petits côtés Symétries dans le pentagone C = c + d Non rationnel D = c + 2d

15 Pentagone et nombre d or Irrationalité Séries géométriques Equation Remarques et exercice Irrationnalité Théorème Le rapport φ de la diagonale par le côté d un pentagone est un nombre irrationnel appelé nombre d or. (et probablement le plus ancien connu) Le pentagone contient un plus petit pentagone On introduit les mesures c et d des petits côtés Symétries dans le pentagone C = c + d Non rationnel D = c + 2d

16 Pentagone et nombre d or Irrationalité Séries géométriques Equation Remarques et exercice Irrationnalité Théorème Le rapport φ de la diagonale par le côté d un pentagone est un nombre irrationnel appelé nombre d or. (et probablement le plus ancien connu) Le pentagone contient un plus petit pentagone On introduit les mesures c et d des petits côtés Symétries dans le pentagone C = c + d Non rationnel D = c + 2d

17 Pentagone et nombre d or Irrationalité Séries géométriques Equation Remarques et exercice Irrationnalité Théorème Le rapport φ de la diagonale par le côté d un pentagone est un nombre irrationnel appelé nombre d or. (et probablement le plus ancien connu) Le pentagone contient un plus petit pentagone On introduit les mesures c et d des petits côtés Symétries dans le pentagone C = c + d Non rationnel D = c + 2d

18 Pentagone et nombre d or Irrationalité Séries géométriques Equation Remarques et exercice Irrationnalité Théorème Le rapport φ de la diagonale par le côté d un pentagone est un nombre irrationnel appelé nombre d or. (et probablement le plus ancien connu) Le pentagone contient un plus petit pentagone On introduit les mesures c et d des petits côtés Symétries dans le pentagone C = c + d Non rationnel D = c + 2d

19 Pentagone et nombre d or Irrationalité Séries géométriques Equation Remarques et exercice Irrationnalité Théorème Le rapport φ de la diagonale par le côté d un pentagone est un nombre irrationnel appelé nombre d or. (et probablement le plus ancien connu) Le pentagone contient un plus petit pentagone On introduit les mesures c et d des petits côtés Symétries dans le pentagone C = c + d Non rationnel D = c + 2d

20 Pentagone et nombre d or Irrationalité Séries géométriques Equation Remarques et exercice Irrationnalité Théorème Le rapport φ de la diagonale par le côté d un pentagone est un nombre irrationnel appelé nombre d or. (et probablement le plus ancien connu) Le pentagone contient un plus petit pentagone On introduit les mesures c et d des petits côtés Symétries dans le pentagone C = c + d Non rationnel D = c + 2d

21 Pentagone et nombre d or Irrationalité Séries géométriques Equation Remarques et exercice Irrationnalité Théorème Le rapport φ de la diagonale par le côté d un pentagone est un nombre irrationnel appelé nombre d or. (et probablement le plus ancien connu) Le pentagone contient un plus petit pentagone On introduit les mesures c et d des petits côtés Symétries dans le pentagone C = c + d Non rationnel D = c + 2d

22 Pentagone et nombre d or Irrationalité Séries géométriques Equation Remarques et exercice Irrationnalité Théorème Le rapport φ de la diagonale par le côté d un pentagone est un nombre irrationnel appelé nombre d or. (et probablement le plus ancien connu) Le pentagone contient un plus petit pentagone On introduit les mesures c et d des petits côtés Symétries dans le pentagone C = c + d Non rationnel D = c + 2d d = D C c = 2C D Une mesure commune à C et D est commune à c et d et donc nulle

23 Pentagone et nombre d or Irrationalité Séries géométriques Equation Remarques et exercice Irrationnalité Théorème Le rapport φ de la diagonale par le côté d un pentagone est un nombre irrationnel appelé nombre d or. (et probablement le plus ancien connu) Le pentagone contient un plus petit pentagone On introduit les mesures c et d des petits côtés Symétries dans le pentagone C = c + d Non rationnel D = c + 2d φ = D C = d c = p q (c + d)p (c + 2d)q = 0 cp dq = 0 dp cq dq = 0 d c = q p q = p q q 2 = p(p q) p divise q

24 Pentagone et nombre d or Irrationalité Séries géométriques Equation Remarques et exercice Irrationnalité Théorème Le rapport φ de la diagonale par le côté d un pentagone est un nombre irrationnel appelé nombre d or. (et probablement le plus ancien connu) Le pentagone contient un plus petit pentagone On introduit les mesures c et d des petits côtés Symétries dans le pentagone C = c + d Non rationnel D = c + 2d

25 Pentagone et nombre d or Irrationalité Séries géométriques Equation Remarques et exercice Série géométrique Prop n=0 1 φ n = φ 2 Pentagone de côté C 0 et de diagonale D 0 Nouveau pentagone de diagonale D 1 = C 0. On itère la construction Passage à la limite C 1 = D 0 C 0 = D 1 φ = C 0 φ C n = C 0 φ n n=0 C 0 φ n = D 1 = φc 1 = φd 0 = φ 2 C 0

26 Pentagone et nombre d or Irrationalité Séries géométriques Equation Remarques et exercice Série géométrique Prop n=0 1 φ n = φ 2 Pentagone de côté C 0 et de diagonale D 0 Nouveau pentagone de diagonale D 1 = C 0. On itère la construction Passage à la limite C 1 = D 0 C 0 = D 1 φ = C 0 φ C n = C 0 φ n n=0 C 0 φ n = D 1 = φc 1 = φd 0 = φ 2 C 0

27 Pentagone et nombre d or Irrationalité Séries géométriques Equation Remarques et exercice Série géométrique Prop n=0 1 φ n = φ 2 Pentagone de côté C 0 et de diagonale D 0 Nouveau pentagone de diagonale D 1 = C 0. On itère la construction Passage à la limite C 1 = D 0 C 0 = D 1 φ = C 0 φ C n = C 0 φ n n=0 C 0 φ n = D 1 = φc 1 = φd 0 = φ 2 C 0

28 Pentagone et nombre d or Irrationalité Séries géométriques Equation Remarques et exercice Série géométrique Prop n=0 1 φ n = φ 2 Pentagone de côté C 0 et de diagonale D 0 Nouveau pentagone de diagonale D 1 = C 0. On itère la construction Passage à la limite C 1 = D 0 C 0 = D 1 φ = C 0 φ C n = C 0 φ n n=0 C 0 φ n = D 1 = φc 1 = φd 0 = φ 2 C 0

29 Pentagone et nombre d or Irrationalité Séries géométriques Equation Remarques et exercice Série géométrique Prop n=0 1 φ n = φ 2 Pentagone de côté C 0 et de diagonale D 0 Nouveau pentagone de diagonale D 1 = C 0. On itère la construction Passage à la limite C 1 = D 0 C 0 = D 1 φ = C 0 φ C n = C 0 φ n n=0 C 0 φ n = D 1 = φc 1 = φd 0 = φ 2 C 0

30 Pentagone et nombre d or Irrationalité Séries géométriques Equation Remarques et exercice Série géométrique Prop n=0 1 φ n = φ 2 Pentagone de côté C 0 et de diagonale D 0 Nouveau pentagone de diagonale D 1 = C 0. On itère la construction Passage à la limite C 1 = D 0 C 0 = D 1 φ = C 0 φ C n = C 0 φ n n=0 C 0 φ n = D 1 = φc 1 = φd 0 = φ 2 C 0

31 Pentagone et nombre d or Irrationalité Séries géométriques Equation Remarques et exercice (Autre) série géométrique Prop 1 n=0 = 1 φ 2n+1

32 Pentagone et nombre d or Irrationalité Séries géométriques Equation Remarques et exercice Equation algébrique Théorème Le nombre d or φ, rapport de la diagonale au côté du pentagone régulier, est l unique racine positive du polynome X 2 X 1. φ 2 = φ + 1 Valeur exacte φ = , Développement en racines Développement en fractions continues

33 Pentagone et nombre d or Irrationalité Séries géométriques Equation Remarques et exercice Equation algébrique Théorème Le nombre d or φ, rapport de la diagonale au côté du pentagone régulier, est l unique racine positive du polynome X 2 X 1. φ 2 = φ + 1 Valeur exacte φ = , Développement en racines Développement en fractions continues

34 Pentagone et nombre d or Irrationalité Séries géométriques Equation Remarques et exercice Equation algébrique Théorème Le nombre d or φ, rapport de la diagonale au côté du pentagone régulier, est l unique racine positive du polynome X 2 X 1. φ 2 = φ + 1 Valeur exacte φ = , Développement en racines Développement en fractions continues Prop φ = u 0 = 1 R u n+1 = 1 + u n x 1 + x contractante sur R + lim u n = φ

35 Pentagone et nombre d or Irrationalité Séries géométriques Equation Remarques et exercice Equation algébrique Théorème Le nombre d or φ, rapport de la diagonale au côté du pentagone régulier, est l unique racine positive du polynome X 2 X 1. φ 2 = φ + 1 Valeur exacte φ = , Développement en racines Développement en fractions continues Prop φ =

36 Pentagone et nombre d or Irrationalité Séries géométriques Equation Remarques et exercice Diverses remarques Le pentagone apparaît dans diverses autres figures géométriques Les puissances de φ sont des combinaisons de 1 et φ.

37 Pentagone et nombre d or Irrationalité Séries géométriques Equation Remarques et exercice Diverses remarques Le pentagone apparaît dans diverses autres figures géométriques Les puissances de φ sont des combinaisons de 1 et φ. φ 2 = 1 + φ φ 3 = φ 2 + φ = 1 + 2φ

38 Pentagone et nombre d or Irrationalité Séries géométriques Equation Remarques et exercice Diverses remarques Le pentagone apparaît dans diverses autres figures géométriques Les puissances de φ sont des combinaisons de 1 et φ. Exercice Trouver les coefficients a n et b n tels que φ n = a n + b n φ.

39 Leonardo de Pise Suite de Fibonacci Définition Biologie Propriétés algébriques Calcul explicite Leonardo de Pise fils de Guglielmo Bonacci: filius Bonacci ou Fibonacci né en 1270 ; meurt en 1340 voyage en Algérie et autour de la méditerranée apprend les techniques de l ouzbek Al-Khwarizmi publie son livre de l abaque Le contenu de ses livres correspondait à un DEA de math financières ; ces techniques sont maintenant enseignées en CM2!

40 Leonardo de Pise Suite de Fibonacci Définition Biologie Propriétés algébriques Calcul explicite Leonardo de Pise fils de Guglielmo Bonacci: filius Bonacci ou Fibonacci né en 1270 ; meurt en 1340 voyage en Algérie et autour de la méditerranée apprend les techniques de l ouzbek Al-Khwarizmi publie son livre de l abaque Le contenu de ses livres correspondait à un DEA de math financières ; ces techniques sont maintenant enseignées en CM2!

41 Leonardo de Pise Suite de Fibonacci Définition Biologie Propriétés algébriques Calcul explicite Leonardo de Pise fils de Guglielmo Bonacci: filius Bonacci ou Fibonacci né en 1270 ; meurt en 1340 voyage en Algérie et autour de la méditerranée apprend les techniques de l ouzbek Al-Khwarizmi publie son livre de l abaque Le contenu de ses livres correspondait à un DEA de math financières ; ces techniques sont maintenant enseignées en CM2!

42 Leonardo de Pise Suite de Fibonacci Définition Biologie Propriétés algébriques Calcul explicite Leonardo de Pise fils de Guglielmo Bonacci: filius Bonacci ou Fibonacci né en 1270 ; meurt en 1340 voyage en Algérie et autour de la méditerranée apprend les techniques de l ouzbek Al-Khwarizmi publie son livre de l abaque Le contenu de ses livres correspondait à un DEA de math financières ; ces techniques sont maintenant enseignées en CM2!

43 Leonardo de Pise Suite de Fibonacci Définition Biologie Propriétés algébriques Calcul explicite Leonardo de Pise fils de Guglielmo Bonacci: filius Bonacci ou Fibonacci né en 1270 ; meurt en 1340 voyage en Algérie et autour de la méditerranée apprend les techniques de l ouzbek Al-Khwarizmi publie son livre de l abaque Le contenu de ses livres correspondait à un DEA de math financières ; ces techniques sont maintenant enseignées en CM2!

44 Leonardo de Pise Suite de Fibonacci Définition Biologie Propriétés algébriques Calcul explicite Leonardo de Pise fils de Guglielmo Bonacci: filius Bonacci ou Fibonacci né en 1270 ; meurt en 1340 voyage en Algérie et autour de la méditerranée apprend les techniques de l ouzbek Al-Khwarizmi publie son livre de l abaque Le contenu de ses livres correspondait à un DEA de math financières ; ces techniques sont maintenant enseignées en CM2!

45 Leonardo de Pise Suite de Fibonacci Définition Biologie Propriétés algébriques Calcul explicite Croissance démographique an 0: un couple de lapins nait an 1: le couple est déposé sur une île an 2: le couple engendre un couple an 3: le premier couple engendre encore un couple ; le second grandit an 4: les deux couples engendrent chacun un nouveau couple ; le couple de l an 3 grandit les lapins sont immortels

46 Leonardo de Pise Suite de Fibonacci Définition Biologie Propriétés algébriques Calcul explicite Croissance démographique an 0: un couple de lapins nait an 1: le couple est déposé sur une île an 2: le couple engendre un couple an 3: le premier couple engendre encore un couple ; le second grandit an 4: les deux couples engendrent chacun un nouveau couple ; le couple de l an 3 grandit les lapins sont immortels

47 Leonardo de Pise Suite de Fibonacci Définition Biologie Propriétés algébriques Calcul explicite Croissance démographique an 0: un couple de lapins nait an 1: le couple est déposé sur une île an 2: le couple engendre un couple an 3: le premier couple engendre encore un couple ; le second grandit an 4: les deux couples engendrent chacun un nouveau couple ; le couple de l an 3 grandit les lapins sont immortels

48 Leonardo de Pise Suite de Fibonacci Définition Biologie Propriétés algébriques Calcul explicite Croissance démographique an 0: un couple de lapins nait an 1: le couple est déposé sur une île an 2: le couple engendre un couple an 3: le premier couple engendre encore un couple ; le second grandit an 4: les deux couples engendrent chacun un nouveau couple ; le couple de l an 3 grandit les lapins sont immortels

49 Leonardo de Pise Suite de Fibonacci Définition Biologie Propriétés algébriques Calcul explicite Croissance démographique an 0: un couple de lapins nait an 1: le couple est déposé sur une île an 2: le couple engendre un couple an 3: le premier couple engendre encore un couple ; le second grandit an 4: les deux couples engendrent chacun un nouveau couple ; le couple de l an 3 grandit les lapins sont immortels

50 Leonardo de Pise Suite de Fibonacci Définition Biologie Propriétés algébriques Calcul explicite Croissance démographique an 0: un couple de lapins nait an 1: le couple est déposé sur une île an 2: le couple engendre un couple an 3: le premier couple engendre encore un couple ; le second grandit an 4: les deux couples engendrent chacun un nouveau couple ; le couple de l an 3 grandit les lapins sont immortels

51 Leonardo de Pise Suite de Fibonacci Définition Biologie Propriétés algébriques Calcul explicite Suite de Fibonacci Définition On appelle suite de Fibonacci la suite (F n ) n N définie par F 0 = 0, F 1 = 1 et, si n 0, F n+2 = F n + F n+1. F n est le nombre de couples de lapins présent sur l île dans l année n après les naissances. L année n + 2, il y a tous les lapins de l année précédente (Fn+1 ) ; les bébés engendrés par les adultes, qui sont vieux d au moins deux ans (F n ) ; F n+2 = F n+1 + F n

52 Leonardo de Pise Suite de Fibonacci Définition Biologie Propriétés algébriques Calcul explicite Suite de Fibonacci Définition On appelle suite de Fibonacci la suite (F n ) n N définie par F 0 = 0, F 1 = 1 et, si n 0, F n+2 = F n + F n+1. F n est le nombre de couples de lapins présent sur l île dans l année n après les naissances. L année n + 2, il y a tous les lapins de l année précédente (Fn+1 ) ; les bébés engendrés par les adultes, qui sont vieux d au moins deux ans (F n ) ; F n+2 = F n+1 + F n

53 Leonardo de Pise Suite de Fibonacci Définition Biologie Propriétés algébriques Calcul explicite Suite de Fibonacci Définition On appelle suite de Fibonacci la suite (F n ) n N définie par F 0 = 0, F 1 = 1 et, si n 0, F n+2 = F n + F n+1. F n est le nombre de couples de lapins présent sur l île dans l année n après les naissances. L année n + 2, il y a tous les lapins de l année précédente (Fn+1 ) ; les bébés engendrés par les adultes, qui sont vieux d au moins deux ans (F n ) ; F n+2 = F n+1 + F n

54 Leonardo de Pise Suite de Fibonacci Définition Biologie Propriétés algébriques Calcul explicite Fibonacci dans la nature Les végétaux composés présentent des spirales qui sont organisées suivant les nombres de Fibonacci fleurs (ou pommes de pin) les marguerites non abimées ont toujours 21 pétales les paquerettes en ont 8 ou spirales dans un sens et 55 dans l autre arbres et ananas

55 Leonardo de Pise Suite de Fibonacci Définition Biologie Propriétés algébriques Calcul explicite Fibonacci dans la nature Les végétaux composés présentent des spirales qui sont organisées suivant les nombres de Fibonacci fleurs (ou pommes de pin) les marguerites non abimées ont toujours 21 pétales les paquerettes en ont 8 ou spirales dans un sens et 55 dans l autre arbres et ananas

56 Leonardo de Pise Suite de Fibonacci Définition Biologie Propriétés algébriques Calcul explicite Fibonacci dans la nature Les végétaux composés présentent des spirales qui sont organisées suivant les nombres de Fibonacci fleurs (ou pommes de pin) les marguerites non abimées ont toujours 21 pétales les paquerettes en ont 8 ou spirales dans un sens et 55 dans l autre arbres et ananas

57 Leonardo de Pise Suite de Fibonacci Définition Biologie Propriétés algébriques Calcul explicite Fibonacci dans la nature Les végétaux composés présentent des spirales qui sont organisées suivant les nombres de Fibonacci fleurs (ou pommes de pin) les marguerites non abimées ont toujours 21 pétales les paquerettes en ont 8 ou spirales dans un sens et 55 dans l autre arbres et ananas

58 Leonardo de Pise Suite de Fibonacci Définition Biologie Propriétés algébriques Calcul explicite Fibonacci dans la nature Les végétaux composés présentent des spirales qui sont organisées suivant les nombres de Fibonacci fleurs (ou pommes de pin) les marguerites non abimées ont toujours 21 pétales les paquerettes en ont 8 ou spirales dans un sens et 55 dans l autre arbres et ananas

59 Leonardo de Pise Suite de Fibonacci Définition Biologie Propriétés algébriques Calcul explicite Fibonacci dans la nature Les végétaux composés présentent des spirales qui sont organisées suivant les nombres de Fibonacci fleurs (ou pommes de pin) les marguerites non abimées ont toujours 21 pétales les paquerettes en ont 8 ou spirales dans un sens et 55 dans l autre arbres et ananas

60 Leonardo de Pise Suite de Fibonacci Définition Biologie Propriétés algébriques Calcul explicite Fibonacci dans la nature Les végétaux composés présentent des spirales qui sont organisées suivant les nombres de Fibonacci fleurs (ou pommes de pin) les marguerites non abimées ont toujours 21 pétales les paquerettes en ont 8 ou spirales dans un sens et 55 dans l autre arbres et ananas

61 Leonardo de Pise Suite de Fibonacci Définition Biologie Propriétés algébriques Calcul explicite Fibonacci dans la nature Les végétaux composés présentent des spirales qui sont organisées suivant les nombres de Fibonacci fleurs (ou pommes de pin) les marguerites non abimées ont toujours 21 pétales les paquerettes en ont 8 ou spirales dans un sens et 55 dans l autre arbres et ananas

62 Leonardo de Pise Suite de Fibonacci Définition Biologie Propriétés algébriques Calcul explicite Fibonacci dans la nature Les végétaux composés présentent des spirales qui sont organisées suivant les nombres de Fibonacci fleurs (ou pommes de pin) les marguerites non abimées ont toujours 21 pétales les paquerettes en ont 8 ou spirales dans un sens et 55 dans l autre arbres et ananas

63 Leonardo de Pise Suite de Fibonacci Définition Biologie Propriétés algébriques Calcul explicite Premières propriétés Lien avec le nombre d or Nombreuses formules Nombres premiers entre eux φ n = F n φ + F n 1 récurrence F n F n+2 F 2 n+1 = ( 1)n

64 Leonardo de Pise Suite de Fibonacci Définition Biologie Propriétés algébriques Calcul explicite Premières propriétés Lien avec le nombre d or Nombreuses formules Nombres premiers entre eux φ n = F n φ + F n 1 récurrence F n F n+2 F 2 n+1 = ( 1)n

65 Leonardo de Pise Suite de Fibonacci Définition Biologie Propriétés algébriques Calcul explicite Premières propriétés Lien avec le nombre d or Nombreuses formules Nombres premiers entre eux φ n = F n φ + F n 1 récurrence F n F n+2 F 2 n+1 = ( 1)n

66 Leonardo de Pise Suite de Fibonacci Définition Biologie Propriétés algébriques Calcul explicite Croissance Les nombres de Fibonacci ont une croissance proportionnelle au nombre d or Prop lim n F n+1 F n = φ r n = F n+1 F n = r n 1 x x préserve [1, 2] et est contractante sur cet intervalle r n converge vers un point fixe de x x. Les r n sont les meilleures approximations rationnelles de φ

67 Leonardo de Pise Suite de Fibonacci Définition Biologie Propriétés algébriques Calcul explicite Croissance Les nombres de Fibonacci ont une croissance proportionnelle au nombre d or Prop lim n F n+1 F n = φ r n = F n+1 F n = r n 1 x x préserve [1, 2] et est contractante sur cet intervalle r n converge vers un point fixe de x x. Les r n sont les meilleures approximations rationnelles de φ

68 Leonardo de Pise Suite de Fibonacci Définition Biologie Propriétés algébriques Calcul explicite Croissance Les nombres de Fibonacci ont une croissance proportionnelle au nombre d or Prop lim n F n+1 F n = φ r n = F n+1 F n = r n 1 x x préserve [1, 2] et est contractante sur cet intervalle r n converge vers un point fixe de x x. Les r n sont les meilleures approximations rationnelles de φ

69 Leonardo de Pise Suite de Fibonacci Définition Biologie Propriétés algébriques Calcul explicite Croissance Les nombres de Fibonacci ont une croissance proportionnelle au nombre d or Prop lim n F n+1 F n = φ r n = F n+1 F n = r n 1 x x préserve [1, 2] et est contractante sur cet intervalle r n converge vers un point fixe de x x. Les r n sont les meilleures approximations rationnelles de φ

70 Leonardo de Pise Suite de Fibonacci Définition Biologie Propriétés algébriques Calcul explicite Croissance Les nombres de Fibonacci ont une croissance proportionnelle au nombre d or Prop lim n F n+1 F n = φ r n = F n+1 F n = r n 1 x x préserve [1, 2] et est contractante sur cet intervalle r n converge vers un point fixe de x x. Les r n sont les meilleures approximations rationnelles de φ

71 Leonardo de Pise Suite de Fibonacci Définition Biologie Propriétés algébriques Calcul explicite Calcul Explicite Théorème F n = φn 5 φn 5 avec φ = 1 φ. Suites du type de Fibonacci : u n+2 = u n + u n+1 Déterminée par ses deux premières valeurs La somme de deux suites du type de Fibonacci est encore une telle suite Deux suites g n et h n non proportionnelles les engendrent toutes (u 0 = Ag 0 + Bh 0, u 1 = Ag 1 + Bh 1 = u n = Ag n + Bh n ) Pour que g n = r n, il faut r 2 = 1 + r r = φ ou r = φ = = 1 φ

72 Leonardo de Pise Suite de Fibonacci Définition Biologie Propriétés algébriques Calcul explicite Calcul Explicite Théorème F n = φn 5 φn 5 avec φ = 1 φ. Suites du type de Fibonacci : u n+2 = u n + u n+1 Déterminée par ses deux premières valeurs La somme de deux suites du type de Fibonacci est encore une telle suite Deux suites g n et h n non proportionnelles les engendrent toutes (u 0 = Ag 0 + Bh 0, u 1 = Ag 1 + Bh 1 = u n = Ag n + Bh n ) Pour que g n = r n, il faut r 2 = 1 + r r = φ ou r = φ = = 1 φ

73 Leonardo de Pise Suite de Fibonacci Définition Biologie Propriétés algébriques Calcul explicite Calcul Explicite Théorème F n = φn 5 φn 5 avec φ = 1 φ. Suites du type de Fibonacci : u n+2 = u n + u n+1 Déterminée par ses deux premières valeurs La somme de deux suites du type de Fibonacci est encore une telle suite Deux suites g n et h n non proportionnelles les engendrent toutes (u 0 = Ag 0 + Bh 0, u 1 = Ag 1 + Bh 1 = u n = Ag n + Bh n ) Pour que g n = r n, il faut r 2 = 1 + r r = φ ou r = φ = = 1 φ

74 Leonardo de Pise Suite de Fibonacci Définition Biologie Propriétés algébriques Calcul explicite Calcul Explicite Théorème F n = φn 5 φn 5 avec φ = 1 φ. Suites du type de Fibonacci : u n+2 = u n + u n+1 Déterminée par ses deux premières valeurs La somme de deux suites du type de Fibonacci est encore une telle suite Deux suites g n et h n non proportionnelles les engendrent toutes (u 0 = Ag 0 + Bh 0, u 1 = Ag 1 + Bh 1 = u n = Ag n + Bh n ) Pour que g n = r n, il faut r 2 = 1 + r r = φ ou r = φ = = 1 φ

75 Leonardo de Pise Suite de Fibonacci Définition Biologie Propriétés algébriques Calcul explicite Calcul Explicite Théorème F n = φn 5 φn 5 avec φ = 1 φ. Suites du type de Fibonacci : u n+2 = u n + u n+1 Déterminée par ses deux premières valeurs La somme de deux suites du type de Fibonacci est encore une telle suite Deux suites g n et h n non proportionnelles les engendrent toutes (u 0 = Ag 0 + Bh 0, u 1 = Ag 1 + Bh 1 = u n = Ag n + Bh n ) Pour que g n = r n, il faut r 2 = 1 + r r = φ ou r = φ = = 1 φ

76 Leonardo de Pise Suite de Fibonacci Définition Biologie Propriétés algébriques Calcul explicite Calcul Explicite Théorème F n = φn 5 φn 5 avec φ = 1 φ. Suites du type de Fibonacci : u n+2 = u n + u n+1 Déterminée par ses deux premières valeurs La somme de deux suites du type de Fibonacci est encore une telle suite Deux suites g n et h n non proportionnelles les engendrent toutes (u 0 = Ag 0 + Bh 0, u 1 = Ag 1 + Bh 1 = u n = Ag n + Bh n ) Pour que g n = r n, il faut r 2 = 1 + r r = φ ou r = φ = = 1 φ

77 Leonardo de Pise Suite de Fibonacci Définition Biologie Propriétés algébriques Calcul explicite Calcul Explicite Théorème F n = φn 5 φn 5 avec φ = 1 φ. Suites du type de Fibonacci : u n+2 = u n + u n+1 Déterminée par ses deux premières valeurs La somme de deux suites du type de Fibonacci est encore une telle suite Deux suites g n et h n non proportionnelles les engendrent toutes (u 0 = Ag 0 + Bh 0, u 1 = Ag 1 + Bh 1 = u n = Ag n + Bh n ) Pour que g n = r n, il faut r 2 = 1 + r r = φ ou r = φ = = 1 φ

78 Formalisation Algèbre Linéaire Comportement asymptotique Formalisation Prestidigitation? Que se passerait-il pour un+2 = 2u n u n+1 Principe de superposition La somme de deux solutions est encore une solution Calcul du terme suivant? Dépend des deux précédents Considérer deux termes à la fois!

79 Formalisation Algèbre Linéaire Comportement asymptotique Formalisation Prestidigitation? Que se passerait-il pour un+2 = 2u n u n+1 Principe de superposition La somme de deux solutions est encore une solution Calcul du terme suivant? Dépend des deux précédents Considérer deux termes à la fois!

80 Formalisation Algèbre Linéaire Comportement asymptotique Formalisation Prestidigitation? Que se passerait-il pour un+2 = 2u n u n+1 Principe de superposition La somme de deux solutions est encore une solution Calcul du terme suivant? Dépend des deux précédents Considérer deux termes à la fois!

UNIVERSITÉ DE CERGY Année 2012-2013 U.F.R. Économie & Gestion Licence d Économie et Mathématiques MATH104 : Mathématiques

UNIVERSITÉ DE CERGY Année 2012-2013 U.F.R. Économie & Gestion Licence d Économie et Mathématiques MATH104 : Mathématiques 1 UNIVERSITÉ DE CERGY Année 2012-201 U.F.R. Économie & Gestion Licence d Économie et Mathématiques MATH104 : Mathématiques Chapitre III : Polynômes 1 Fonctions polynômes & polynômes Définition 1. Soit

Plus en détail

Le corps R des nombres réels

Le corps R des nombres réels Le corps R des nombres réels. Construction de R à l aide des suites de Cauchy de nombres rationnels On explique brièvement dans ce paragraphe comment construire le corps R des nombres réels à partir du

Plus en détail

AC AB. A B C x 1. x + 1. d où. Avec un calcul vu au lycée, on démontre que cette solution admet deux solutions dont une seule nous intéresse : x =

AC AB. A B C x 1. x + 1. d où. Avec un calcul vu au lycée, on démontre que cette solution admet deux solutions dont une seule nous intéresse : x = LE NOMBRE D OR Présentation et calcul du nombre d or Euclide avait trouvé un moyen de partager en deu un segment selon en «etrême et moyenne raison» Soit un segment [AB]. Le partage d Euclide consiste

Plus en détail

Suites et Convergence

Suites et Convergence Suites et Convergence Une suite c est se donner une valeur (sans ambigüité) pour chaque N sauf peutêtre les premiers n. Donc une suite est une fonction : I R où I = N: = N. Notation : On note ( ) I R pour

Plus en détail

Fibonacci et les paquerettes

Fibonacci et les paquerettes Fibonacci et les paquerettes JOLY Romain & RIVOAL Tanguy Introduction Quand on entend dire que l on peut trouver le nombre d or et la suite de Fibonacci dans les fleurs et les pommes de pin, on est au

Plus en détail

Formulaire de maths Algèbre linéaire et multilinéaire

Formulaire de maths Algèbre linéaire et multilinéaire Formulaire de maths Algèbre linéaire et multilinéaire Nom Formule Espaces vectoriels Famille libre On dit que la famille est libre si Famille liée On dit que la famille est liée si Théorème de la base

Plus en détail

Licence de Sciences et Technologies. Fiche de cours 1 - Nombres réels.

Licence de Sciences et Technologies. Fiche de cours 1 - Nombres réels. Licence de Sciences et Technologies EM21 - Analyse Fiche de cours 1 - Nombres réels. On connaît les ensembles suivants, tous munis d une addition, d une multiplication, et d une relation d ordre compatibles

Plus en détail

Cahier de vacances - Préparation à la Première S

Cahier de vacances - Préparation à la Première S Cahier de vacances - Préparation à la Première S Ce cahier est destiné à vous permettre d aborder le plus sereinement possible la classe de Première S. Je vous conseille de le travailler pendant les 0

Plus en détail

Utiliser les propriétés Savoir réduire un radical savoir +,-,x,: Utiliser les propriétés des puissances Calculer avec des puissances

Utiliser les propriétés Savoir réduire un radical savoir +,-,x,: Utiliser les propriétés des puissances Calculer avec des puissances ARITHMETIQUE 1 C B A Numération Ecrire en lettres et en chiffres Poser des questions fermées autour d un document simple (message, consigne, planning ) Connaître le système décimal Déterminer la position

Plus en détail

Cours de Mathématiques

Cours de Mathématiques Cours de Mathématiques Lycee Gustave Eiffel PTSI 02/03 Chapitre 3 Fonctions usuelles 3.1 Théorème de la bijection Une fonction dérivable sur un intervalle I, strictement monotone déþnit une bijection.

Plus en détail

Chapitre IV Bases et dimension d un espace vectoriel

Chapitre IV Bases et dimension d un espace vectoriel Chapitre IV Bases et dimension d un espace vectoriel Objectif : Nous allons voir comment fabriquer des systèmes de coordonnées pour les vecteurs d un espace vectoriel général. Dans ce chapitre désigne

Plus en détail

Introduction à l étude des Corps Finis

Introduction à l étude des Corps Finis Introduction à l étude des Corps Finis Robert Rolland (Résumé) 1 Introduction La structure de corps fini intervient dans divers domaines des mathématiques, en particulier dans la théorie de Galois sur

Plus en détail

La fonction exponentielle

La fonction exponentielle DERNIÈRE IMPRESSION LE 2 novembre 204 à :07 La fonction exponentielle Table des matières La fonction exponentielle 2. Définition et théorèmes.......................... 2.2 Approche graphique de la fonction

Plus en détail

Continuité et dérivabilité d une fonction

Continuité et dérivabilité d une fonction DERNIÈRE IMPRESSIN LE 7 novembre 014 à 10:3 Continuité et dérivabilité d une fonction Table des matières 1 Continuité d une fonction 1.1 Limite finie en un point.......................... 1. Continuité

Plus en détail

Applications des nombres complexes à la géométrie

Applications des nombres complexes à la géométrie Chapitre 6 Applications des nombres complexes à la géométrie 6.1 Le plan complexe Le corps C des nombres complexes est un espace vectoriel de dimension 2 sur R. Il est donc muni d une structure naturelle

Plus en détail

Continuité d une fonction de plusieurs variables

Continuité d une fonction de plusieurs variables Chapitre 2 Continuité d une fonction de plusieurs variables Maintenant qu on a défini la notion de limite pour des suites dans R n, la notion de continuité s étend sans problème à des fonctions de plusieurs

Plus en détail

Du Calcul d Aire... ...Au Calcul Intégral

Du Calcul d Aire... ...Au Calcul Intégral Du Calcul d Aire......Au Calcul Intégral Objectifs Définir proprement l aire d une surface plane, au moins pour les domaines usuels (limités par des courbes simples) et fournir un moyen de la calculer.

Plus en détail

Chapitre 2 : Les systèmes d équations récurrentes linéaires. dans

Chapitre 2 : Les systèmes d équations récurrentes linéaires. dans Chapitre 2 : Les systèmes d équations récurrentes linéaires dans Sommaire Sandrine CHARLES 1 Introduction... 3 2 Rappels sur les formes de Jordan réelles dans... 4 2.1 Deux valeurs propres réelles distinctes

Plus en détail

I. Polynômes de Tchebychev

I. Polynômes de Tchebychev Première épreuve CCP filière MP I. Polynômes de Tchebychev ( ) 1.a) Tout réel θ vérifie cos(nθ) = Re ((cos θ + i sin θ) n ) = Re Cn k (cos θ) n k i k (sin θ) k Or i k est réel quand k est pair et imaginaire

Plus en détail

Développement décimal d un réel

Développement décimal d un réel 4 Développement décimal d un réel On rappelle que le corps R des nombres réels est archimédien, ce qui permet d y définir la fonction partie entière. En utilisant cette partie entière on verra dans ce

Plus en détail

Suites numériques. Sommaire :

Suites numériques. Sommaire : Suites numériques I Activité n o 2 page 295 Sommaire : II Généralités sur les suites numériques III Variations et bornes IV Suites arithmétiques V Suites géométriques VI Suites convergentes VII Représentation

Plus en détail

Chapitre 5: Opérateurs dans les espaces de Hilbert. Notions d opérateur adjoint

Chapitre 5: Opérateurs dans les espaces de Hilbert. Notions d opérateur adjoint Chapitre 5: Opérateurs dans les espaces de Hilbert. Notions d opérateur adjoint 18 mars 2008 1 Généralités sur les opérateurs 1.1 Définitions Soient H et H deux espaces de Hilbert sur C. Définition 1.1

Plus en détail

AGRÉGATION INTERNE: RÉDUCTION DES ENDOMORPHISMES

AGRÉGATION INTERNE: RÉDUCTION DES ENDOMORPHISMES AGRÉGATION INTERNE: RÉDUCTION DES ENDOMORPHISMES VINCENT GUEDJ 1. Notions fondamentales 1.1. Noyau, Image. On se donne E un K-espace vectoriel de dimension finie (K = R, C principalement) et f L(E) un

Plus en détail

Olympiade Mathématique internationale. Année 2015/2016. Tour 1 Problèmes pour le niveau R5

Olympiade Mathématique internationale. Année 2015/2016. Tour 1 Problèmes pour le niveau R5 Problèmes pour le niveau R5 1. Peter, Basil et Anatoly ont mis ensemble leurs économies pour s acheter un ballon. On sait que chacun a contribué pas plus que la moitié de ce que les deux autres ensemble.

Plus en détail

La fonction exponentielle

La fonction exponentielle La fonction exponentielle Christophe ROSSIGNOL Année scolaire 2015/2016 Table des matières 1 Existence et unicité de la fonction exponentielle 2 1.1 Deux résultats préliminaires.......................................

Plus en détail

Cours de mathématiques

Cours de mathématiques Cours de mathématiques Thomas Rey classe de première ES ii Table des matières 1 Les pourcentages 1 1.1 Variation en pourcentage............................... 1 1.1.1 Calcul d une variation............................

Plus en détail

Notes de cours L1 MATH120. Hervé Le Dret

Notes de cours L1 MATH120. Hervé Le Dret Notes de cours L1 MATH120 Hervé Le Dret 18 octobre 2004 40 Chapitre 3 Vecteurs dans R m Dans ce chapitre, nous allons nous familiariser avec la notion de vecteur du point de vue algébrique. Nous reviendrons

Plus en détail

Programme de mathématiques TSI1

Programme de mathématiques TSI1 Programme de mathématiques TSI1 1. PROGRAMME DE DÉBUT D ANNÉE I. Nombres complexes et géométrie élémentaire 1. Nombres complexes 1 2. Géométrie élémentaire du plan 3 3. Géométrie élémentaire de l espace

Plus en détail

Espaces vectoriels et applications

Espaces vectoriels et applications Espaces vectoriels et applications linéaires 1 Définitions On parle d espaces vectoriels sur le corps R ou sur le corps C. Les définitions sont les mêmes en substituant R à C ou vice versa. Définition

Plus en détail

Cours de spécialité mathématiques en Terminale ES

Cours de spécialité mathématiques en Terminale ES Cours de spécialité mathématiques en Terminale ES O. Lader 2014/2015 Lycée Jean Vilar Spé math terminale ES 2014/2015 1 / 51 Systèmes linéaires Deux exemples de systèmes linéaires à deux équations et deux

Plus en détail

2. u 3 = 16, u 7 = 1 et u p = 1 8.

2. u 3 = 16, u 7 = 1 et u p = 1 8. EXERCICE 1 (u n ) est une suite arithmétique de raison a, déterminer l entier k dans chacun des cas suivants : 1. u 21 = 34, a=1,5 et u k = 1 2. u 10 = 64, u 5 = 14 et u k = 114. EXERCICE 2 (u n ) est

Plus en détail

Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48

Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48 Méthodes de Polytech Paris-UPMC - p. 1/48 Polynôme d interpolation de Preuve et polynôme de Calcul de l erreur d interpolation Étude de la formule d erreur Autres méthodes - p. 2/48 Polynôme d interpolation

Plus en détail

Cours de terminale S Suites numériques

Cours de terminale S Suites numériques Cours de terminale S Suites numériques V. B. et S. B. Lycée des EK 13 septembre 2014 Introduction Principe de récurrence Exemple En Mathématiques, un certain nombre de propriétés dépendent d un entier

Plus en détail

aux différences est appelé équation aux différences d ordre n en forme normale.

aux différences est appelé équation aux différences d ordre n en forme normale. MODÉLISATION ET SIMULATION EQUATIONS AUX DIFFÉRENCES (I/II) 1. Rappels théoriques : résolution d équations aux différences 1.1. Équations aux différences. Définition. Soit x k = x(k) X l état scalaire

Plus en détail

ÉCOLE NATIONALE DE L AVIATION CIVILE Session 2007

ÉCOLE NATIONALE DE L AVIATION CIVILE Session 2007 ÉCOLE NATIONALE DE L AVIATION CIVILE Session 27 CONCOURS DE RECRUTEMENT D ÉLÈVES INGÉNIEURS DU CONTRÔLE DE LA NAVIGATION AÉRIENNE Épreuve commune obligatoire de MATHÉMATIQUES Durée : 4 Heures Coefficient

Plus en détail

Polynômes à plusieurs variables. Résultant

Polynômes à plusieurs variables. Résultant Polynômes à plusieurs variables. Résultant Christophe Ritzenthaler 1 Relations coefficients-racines. Polynômes symétriques Issu de [MS] et de [Goz]. Soit A un anneau intègre. Définition 1.1. Soit a A \

Plus en détail

Définition 0,752 = 0,7 + 0,05 + 0,002 SYSTÈMES DE NUMÉRATION POSITIONNELS = 7 10 1 + 5 10 2 + 2 10 3

Définition 0,752 = 0,7 + 0,05 + 0,002 SYSTÈMES DE NUMÉRATION POSITIONNELS = 7 10 1 + 5 10 2 + 2 10 3 8 Systèmes de numération INTRODUCTION SYSTÈMES DE NUMÉRATION POSITIONNELS Dans un système positionnel, le nombre de symboles est fixe On représente par un symbole chaque chiffre inférieur à la base, incluant

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)

Plus en détail

Exo7. Sujets de l année 2008-2009. 1 Partiel. Enoncés et corrections : Sandra Delaunay. Exercice 1 Soit A une matrice 2 2 à coefficients réels.

Exo7. Sujets de l année 2008-2009. 1 Partiel. Enoncés et corrections : Sandra Delaunay. Exercice 1 Soit A une matrice 2 2 à coefficients réels. Enoncés et corrections : Sandra Delaunay Exo7 Sujets de l année 28-29 1 Partiel Exercice 1 Soit A une matrice 2 2 à coefficients réels. On suppose a + c = b + d = 1 et a b 1. ( ) a b c d 1. Soient (x 1,x

Plus en détail

Corrigé de l examen partiel du 30 Octobre 2009 L2 Maths

Corrigé de l examen partiel du 30 Octobre 2009 L2 Maths Corrigé de l examen partiel du 30 Octobre 009 L Maths (a) Rappelons d abord le résultat suivant : Théorème 0.. Densité de Q dans R. QUESTIONS DE COURS. Preuve. Il nous faut nous montrer que tout réel est

Plus en détail

CH1 : Langages de la continuité Limites

CH1 : Langages de la continuité Limites CH : Langages de la continuité Limites I. Continuité- Théorème des valeurs intermédiaires. Définition : Soit f une fonction définie sur un intervalle I de R. Lorsque la courbe représentative de f ne présente

Plus en détail

Mathématiques assistées par ordinateur

Mathématiques assistées par ordinateur Mathématiques assistées par ordinateur Chapitre 4 : Racines des polynômes réels et complexes Michael Eisermann Mat249, DLST L2S4, Année 2008-2009 www-fourier.ujf-grenoble.fr/ eiserm/cours # mao Document

Plus en détail

est diagonale si tous ses coefficients en dehors de la diagonale sont nuls.

est diagonale si tous ses coefficients en dehors de la diagonale sont nuls. Diagonalisation des matrices http://www.math-info.univ-paris5.fr/~ycart/mc2/node2.html Sous-sections Matrices diagonales Valeurs propres et vecteurs propres Polynôme caractéristique Exemples Illustration

Plus en détail

Programme de Mathématique Préparation Maths-Physique. Analyse et Géométrie Différentielle. Première Année

Programme de Mathématique Préparation Maths-Physique. Analyse et Géométrie Différentielle. Première Année Programme de Mathématique Préparation Maths-Physique Analyse et Géométrie Différentielle Première Année I NOMBRES REELS ET COMPLEXES, SUITES ET FONCTIONS 1 Nombres réels et complexes 2 Suites de nombres

Plus en détail

Cours Diagonalisation

Cours Diagonalisation Cours Diagonalisation par Pierre Veuillez 1 Objectif Pour une matrice A donnée, déterminer une matrice D diagonale et une matrice P inversible telle que A = P D P 1. Interprètation : Quelle relation reconnaît-on?

Plus en détail

Fonctions homographiques

Fonctions homographiques Fonctions homographiques On donne ci-dessous deux définitions des fonctions homographiques, et on montre que ces deux définitions sont équivalentes. On décrit la courbe représentative d une fonction homographique.

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme

Plus en détail

Coloriages et invariants

Coloriages et invariants DOMAINE : Combinatoire AUTEUR : Razvan BARBULESCU NIVEAU : Débutants STAGE : Montpellier 013 CONTENU : Exercices Coloriages et invariants - Coloriages - Exercice 1 Le plancher est pavé avec des dalles

Plus en détail

Mathématiques pour l informatique. - Soutien - 1 Nombres complexes. 2 Suites. Exercice 1. (Nombres complexes) Soit le nombre complexe z = (2 + 2i) 7.

Mathématiques pour l informatique. - Soutien - 1 Nombres complexes. 2 Suites. Exercice 1. (Nombres complexes) Soit le nombre complexe z = (2 + 2i) 7. Mathématiques pour l informatique IMAC première année - Soutien - Nombres complexes Rappels. Un nombre complexe z admet plusieurs représentations : représentation vectorielle z = (a, b) où a, b R représentation

Plus en détail

TOPOLOGIE DE LA DROITE REELLE

TOPOLOGIE DE LA DROITE REELLE TOPOLOGIE DE LA DROITE REELLE P. Pansu 16 mai 2005 1 Qu est-ce que la topologie? C est l étude des propriétés des objets qui sont conservées par déformation continue. Belle phrase, mais qui nécessite d

Plus en détail

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé Baccalauréat S ntilles-guyane 11 septembre 14 Corrigé EXERCICE 1 6 points Commun à tous les candidats Une entreprise de jouets en peluche souhaite commercialiser un nouveau produit et à cette fin, effectue

Plus en détail

FICHE DE RÉVISION DU BAC

FICHE DE RÉVISION DU BAC Note liminaire Programme selon les sections : - fonctions de références, représentations graphiques, dérivées, tableau de variations : toutes sections - opérations sur les limites, asymptotes : STI2D,

Plus en détail

Théorème du point fixe - Théorème de l inversion locale

Théorème du point fixe - Théorème de l inversion locale Chapitre 7 Théorème du point fixe - Théorème de l inversion locale Dans ce chapitre et le suivant, on montre deux applications importantes de la notion de différentiabilité : le théorème de l inversion

Plus en détail

Représentation des nombres entiers et réels. en binaire en mémoire

Représentation des nombres entiers et réels. en binaire en mémoire L3 Mag1 Phys. fond., cours C 15-16 Rep. des nbs. en binaire 25-09-05 23 :06 :02 page 1 1 Nombres entiers 1.1 Représentation binaire Représentation des nombres entiers et réels Tout entier positif n peut

Plus en détail

Continuité en un point

Continuité en un point DOCUMENT 4 Continuité en un point En général, D f désigne l ensemble de définition de la fonction f et on supposera toujours que cet ensemble est inclus dans R. Toutes les fonctions considérées sont à

Plus en détail

Primitives Cours maths Terminale S

Primitives Cours maths Terminale S Primitives Cours maths Terminale S Dans ce module est introduite la notion de primitive d une fonction sur un intervalle. On définit cette notion puis on montre qu une fonction admet une infinité de primitives

Plus en détail

Correction du Baccalauréat S Amérique du Nord mai 2007

Correction du Baccalauréat S Amérique du Nord mai 2007 Correction du Baccalauréat S Amérique du Nord mai 7 EXERCICE points. Le plan (P) a une pour équation cartésienne : x+y z+ =. Les coordonnées de H vérifient cette équation donc H appartient à (P) et A n

Plus en détail

Calculs approchés d un point fixe

Calculs approchés d un point fixe M11 ÉPREUVE COMMUNE DE TIPE 2013 - Partie D TITRE : Calculs approchés d un point fixe Temps de préparation :.. 2 h 15 minutes Temps de présentation devant les examinateurs :.10 minutes Dialogue avec les

Plus en détail

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. 1 Définitions, notations Calcul matriciel Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. On utilise aussi la notation m n pour le

Plus en détail

Arithmétique Algorithmique. http://www.math.univ-lyon1.fr/~roblot/ens.html

Arithmétique Algorithmique. http://www.math.univ-lyon1.fr/~roblot/ens.html Arithmétique Algorithmique http://www.math.univ-lyon1.fr/~roblot/ens.html Partie III Algorithmes classiques 1 Coût de la multiplication et de la division 2 Exponentiation rapide 3 Algorithme d Euclide

Plus en détail

Problème 1 : applications du plan affine

Problème 1 : applications du plan affine Problème 1 : applications du plan affine Notations On désigne par GL 2 (R) l ensemble des matrices 2 2 inversibles à coefficients réels. Soit un plan affine P muni d un repère (O, I, J). Les coordonnées

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo7 Continuité (étude globale). Diverses fonctions Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr * très facile ** facile *** difficulté moyenne **** difficile *****

Plus en détail

Outils d analyse fonctionnelle Cours 5 Théorie spectrale

Outils d analyse fonctionnelle Cours 5 Théorie spectrale Outils d analyse fonctionnelle Cours 5 Théorie spectrale 22 septembre 2015 Généralités Dans tout ce qui suit V désigne un espace de Hilbert réel muni d un produit scalaire x, y. Définition Soit A une application

Plus en détail

Baccalauréat S Asie 18 juin 2013

Baccalauréat S Asie 18 juin 2013 Baccalauréat S Asie 18 juin 2013 Dans l ensemble du sujet, et pour chaque question, toute trace de recherche même incomplète, ou d initiative même non fructueuse, sera prise en compte dans l évaluation

Plus en détail

Fonctions - Continuité Cours maths Terminale S

Fonctions - Continuité Cours maths Terminale S Fonctions - Continuité Cours maths Terminale S Dans ce module, introduction d une nouvelle notion qu est la continuité d une fonction en un point. En repartant de la définition et de l illustration graphique

Plus en détail

Théorie des graphes. Introduction. Programme de Terminale ES Spécialité. Résolution de problèmes à l aide de graphes. Préparation CAPES UCBL

Théorie des graphes. Introduction. Programme de Terminale ES Spécialité. Résolution de problèmes à l aide de graphes. Préparation CAPES UCBL Introduction Ces quelques pages ont pour objectif de vous initier aux notions de théorie des graphes enseignées en Terminale ES. Le programme de Terminale (voir ci-après) est construit sur la résolution

Plus en détail

MULTIPLICATION RAPIDE : KARATSUBA ET FFT

MULTIPLICATION RAPIDE : KARATSUBA ET FFT MULTIPLICATION RAPIDE : KARATSUBA ET FFT 1. Introduction La multiplication est une opération élémentaire qu on utilise évidemment très souvent, et la rapidité des nombreux algorithmes qui l utilisent dépend

Plus en détail

6.11 Bases de Lanczos bi-orthogonales pour des matrices non symétriques

6.11 Bases de Lanczos bi-orthogonales pour des matrices non symétriques Chapitre 6 Méthodes de Krylov 611 Bases de Lanczos bi-orthogonales pour des matrices non symétriques Dans le cas où la matrice A n est pas symétrique, comment peut-on retrouver une matrice de corrélation

Plus en détail

Table des matières. I Mise à niveau 11. Préface

Table des matières. I Mise à niveau 11. Préface Table des matières Préface v I Mise à niveau 11 1 Bases du calcul commercial 13 1.1 Alphabet grec...................................... 13 1.2 Symboles mathématiques............................... 14 1.3

Plus en détail

CHAPITRE 7 Fonction carré et fonction inverse

CHAPITRE 7 Fonction carré et fonction inverse CHAPITRE 7 Fonction carré et fonction inverse A) La fonction "carré" : f() = ² ) Domaine de définition Elle est définie sur ℝ complet (on peut toujours multiplier deu nombres entre eu). 2) Sens de variation

Plus en détail

+ 1. Qu est ce que cela donne pour notre calcul de 1,01? On pose x = 1,01 donc f (x) 1 + 1 0,01

+ 1. Qu est ce que cela donne pour notre calcul de 1,01? On pose x = 1,01 donc f (x) 1 + 1 0,01 Eo7 Dérivée d une fonction Vidéo partie. Définition Vidéo partie. Calculs Vidéo partie 3. Etremum local, théorème de Rolle Vidéo partie 4. Théorème des accroissements finis Eercices Fonctions dérivables

Plus en détail

Les supports de cours suivants font référence au cours de Mr SOL et à son livre : "Accès à l'université" chez DUNOD

Les supports de cours suivants font référence au cours de Mr SOL et à son livre : Accès à l'université chez DUNOD Les supports de cours suivants font référence au cours de Mr SOL et à son livre : "Accès à l'université" chez DUNOD Les supports de cours ne sont pas complets, ils ne contiennent ni les démonstrations,

Plus en détail

IPT : Cours 2. La représentation informatique des nombres

IPT : Cours 2. La représentation informatique des nombres IPT : Cours 2 La représentation informatique des nombres (3 ou 4 heures) MPSI-Schwarz : Prytanée National Militaire Pascal Delahaye 28 septembre 2015 1 Codage en base 2 Définition 1 : Tout nombre décimal

Plus en détail

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES Théorème - Définition Soit un cercle (O,R) et un point. Une droite passant par coupe le cercle en deux points A et

Plus en détail

1 - INTERPOLATION. J-P. Croisille. Semestre S7, master de mathématiques M1, année 2008/2009. Université Paul Verlaine-Metz

1 - INTERPOLATION. J-P. Croisille. Semestre S7, master de mathématiques M1, année 2008/2009. Université Paul Verlaine-Metz 1 - INTERPOLATION J-P. Croisille Université Paul Verlaine-Metz Semestre S7, master de mathématiques M1, année 2008/2009 1- INTRODUCTION Théorie de l interpolation: approximation de f(x) par une fonction

Plus en détail

Cours Mathématiques PACES UHP-Nancy

Cours Mathématiques PACES UHP-Nancy Cours Mathématiques PACES UHP-Nancy V. Latocha PACES UHP septembre 2010 remerciements à D. Schmitt et V. Ries V. Latocha (PACES UHP) Cours mathématiques Paces septembre 2010 1 / 48 1 Fonctions d une variable

Plus en détail

RAPPELS ET COMPLÉMENTS CALCULATOIRES

RAPPELS ET COMPLÉMENTS CALCULATOIRES RAPPELS ET COMPLÉMENTS CALCULATOIRES ENSEMBLES DE NOMBRES ENSEMBLES,,,ET: On rappelle que : désigne l ensembleprivé de 0 idem pour, et, + désigne l ensemble des réels positifs ou nuls et l ensemble des

Plus en détail

www.h-k.fr/publications/objectif-agregation

www.h-k.fr/publications/objectif-agregation «Sur C, tout est connexe!» www.h-k.fr/publications/objectif-agregation L idée de cette note est de montrer que, contrairement à ce qui se passe sur R, «sur C, tout est connexe». Cet abus de langage se

Plus en détail

Applications linéaires

Applications linéaires Bibliothèque d exercices Énoncés L1 Feuille n 18 Applications linéaires 1 Définition Exercice 1 Déterminer si les applications f i suivantes (de E i dans F i ) sont linéaires : f 1 : (x, y) R (x + y, x

Plus en détail

Un corrigé de l épreuve de mathématiques du baccalauréat blanc

Un corrigé de l épreuve de mathématiques du baccalauréat blanc Terminale ES Un corrigé de l épreuve de mathématiques du baccalauréat blanc EXERCICE ( points). Commun à tous les candidats On considère une fonction f : définie, continue et doublement dérivable sur l

Plus en détail

1 Notion d espace vectoriel

1 Notion d espace vectoriel Arnaud de Saint Julien - MPSI Lycée La Merci 2014-2015 1 Résumé de cours sur les espaces vectoriels et les applications linéaires Les vecteurs du plan, les nombres réels, et les polynômes à coefficients

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 29 décembre 2015 Enoncés 1. b) Soit (u n ) n N une suite d éléments de [0 ; 1]. Montrer

[http://mp.cpgedupuydelome.fr] édité le 29 décembre 2015 Enoncés 1. b) Soit (u n ) n N une suite d éléments de [0 ; 1]. Montrer [http://mp.cpgedupuydelome.fr] édité le 9 décembre 05 Enoncés Familles sommables Ensemble dénombrable a) Calculer n+ Exercice [ 03897 ] [Correction] Soit f : R R croissante. Montrer que l ensemble des

Plus en détail

Exercices - Polynômes : corrigé. Opérations sur les polynômes

Exercices - Polynômes : corrigé. Opérations sur les polynômes Opérations sur les polynômes Exercice 1 - Carré - L1/Math Sup - Si P = Q est le carré d un polynôme, alors Q est nécessairement de degré, et son coefficient dominant est égal à 1. On peut donc écrire Q(X)

Plus en détail

Mathématiques pour l informatique 1 notes de cours sur la seconde partie

Mathématiques pour l informatique 1 notes de cours sur la seconde partie Mathématiques pour l informatique notes de cours sur la seconde partie L Université Paris-Est, Marne-la-Vallée Cyril Nicaud Organisation Ce demi-cours est composé de 6 séances de cours et 6 séances de

Plus en détail

CORRECTION BACCALAUREAT BLANC N 1 - Séries ES et L EXERCICE 1 (4 points) COMMUN A TOUS LES CANDIDATS

CORRECTION BACCALAUREAT BLANC N 1 - Séries ES et L EXERCICE 1 (4 points) COMMUN A TOUS LES CANDIDATS CORRECTION BACCALAUREAT BLANC N 1 - Séries ES et L EXERCICE 1 (4 points) COMMUN A TOUS LES CANDIDATS Extrait Bac. ES - 2008 1) Une baisse de 25 % est compensée par une hausse, arrondie à l unité, de :

Plus en détail

MATIÈRE DU COURS D'ALGÈBRE ET D'ANALYSE

MATIÈRE DU COURS D'ALGÈBRE ET D'ANALYSE MATIÈRE DU COURS D'ALGÈBRE ET D'ANALYSE Titulaire : A.M. Tilkin 8h/semaine 1) MATIERE DE 4 e ANNEE a) ALGEBRE - Rappels algébriques concernant la résolution d équations et d inéquations (fractionnaires

Plus en détail

Représentation géométrique d un nombre complexe

Représentation géométrique d un nombre complexe CHAPITRE 1 NOMBRES COMPLEXES 1 Représentation géométrique d un nombre complexe 1. Ensemble des nombres complexes Soit i le nombre tel que i = 1 L ensemble des nombres complexes est l ensemble des nombres

Plus en détail

SOMMES ET PRODUITS. 1 Techniques de calcul. 1.1 Le symbole. 1.2 Règles de calcul. Laurent Garcin MPSI Lycée Jean-Baptiste Corot

SOMMES ET PRODUITS. 1 Techniques de calcul. 1.1 Le symbole. 1.2 Règles de calcul. Laurent Garcin MPSI Lycée Jean-Baptiste Corot SOMMES ET PRODUITS 1 Techniques de calcul 1.1 Le symbole Notation 1.1 Soient m et n deux entiers naturels. Alors { a m + a m+1 + + a + a n si m n, a = 0 sinon. On peut aussi noter m n =m a ou encore m,n

Plus en détail

Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin.

Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin. Exo7 Matrice d une application linéaire Corrections d Arnaud odin. Exercice Soit R muni de la base canonique = ( i, j). Soit f : R R la projection sur l axe des abscisses R i parallèlement à R( i + j).

Plus en détail

Le raisonnement par récurrence

Le raisonnement par récurrence Le raisonnement par récurrence Nous notons N l ensemble des entiers naturels : N = {0,,, } Nous dirons naturel au lieu de entier naturel Le principe du raisonnement par récurrence Soit A une partie de

Plus en détail

Généralités sur les graphes

Généralités sur les graphes Généralités sur les graphes Christophe ROSSIGNOL Année scolaire 2008/2009 Table des matières 1 Notion de graphe 3 1.1 Un peu de vocabulaire.......................................... 3 1.2 Ordre d un graphe,

Plus en détail

Analyse des données et algèbre linéaire

Analyse des données et algèbre linéaire Analyse des données et algèbre linéaire Fondamentaux pour le Big Data c Télécom ParisTech 1/15 Machine-Learning : Une donnée x i = un ensemble de features (caractères) d un individu i x i = (x i,1,...,

Plus en détail

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre IUFM du Limousin 2009-10 PLC1 Mathématiques S. Vinatier Rappels de cours Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre 1 Fonctions de plusieurs variables

Plus en détail

Table des matières LES FONCTIONS POLYNOMIALES

Table des matières LES FONCTIONS POLYNOMIALES Table des matières LES FONCTIONS POLYNOMIALES 1 Différents types de fonctions polynomiales Étude des différentes fonctions polynomiales.1 Les fonctions constantes.1.1 La fonction constante de base.1. La

Plus en détail

Projet Prép. Préguidance Cours du professeur G. De Meur 2005. Système de numération : les principes de groupement et de position

Projet Prép. Préguidance Cours du professeur G. De Meur 2005. Système de numération : les principes de groupement et de position Ecriture formelle Système de numération : les principes de groupement et de position Ce qu est un système de numération Sur le plan de la REPRESENTATION des nombres, on s est vite rendu compte de la difficulté

Plus en détail

RÉVISION DE CALCUL NUMÉRIQUE

RÉVISION DE CALCUL NUMÉRIQUE RÉVISION DE CALCUL NUMÉRIQUE. Les ensembles numériques. Propriétés des nombres réels. Ordre des opérations. Nombres premiers. Opérations sur les fractions 7. Puissances entières 0.7 Notation scientifique.8

Plus en détail

1 Fonctions de plusieurs variables

1 Fonctions de plusieurs variables Université de Paris X Nanterre U.F.R. Segmi Année 006-007 Licence Economie-Gestion première année Cours de Mathématiques II. Chapitre 1 Fonctions de plusieurs variables Ce chapitre est conscré aux fonctions

Plus en détail

La fonction exponentielle

La fonction exponentielle La fonction exponentielle L expression «croissance exponentielle» est passée dans le langage courant et désigne sans distinction toute variation «hyper rapide» d un phénomène. Ce vocabulaire est cependant

Plus en détail

Aire sous une courbe et calcul de primitives

Aire sous une courbe et calcul de primitives Aire sous une courbe et calcul de primitives Le calcul de primitives d une fonction et celui de l aire de la surface bordée par le graphique de cette fonction sont intimement liés. Les exemples qui suivent

Plus en détail