Le nombre d or et Fibonacci

Dimension: px
Commencer à balayer dès la page:

Download "Le nombre d or et Fibonacci"

Transcription

1 Août 2004, Bordeaux

2 Pentagone et nombre d or Irrationalité Séries géométriques Equation Remarques et exercice Le pentagramme magique se retrouve partout dans la nature et hors de la nature est le symbole d une très ancienne secte sous sa forme usuelle ou sous sa forme étoilée

3 Pentagone et nombre d or Irrationalité Séries géométriques Equation Remarques et exercice Le pentagramme magique se retrouve partout dans la nature et hors de la nature est le symbole d une très ancienne secte sous sa forme usuelle ou sous sa forme étoilée

4 Pentagone et nombre d or Irrationalité Séries géométriques Equation Remarques et exercice Le pentagramme magique se retrouve partout dans la nature et hors de la nature est le symbole d une très ancienne secte sous sa forme usuelle ou sous sa forme étoilée

5 Pentagone et nombre d or Irrationalité Séries géométriques Equation Remarques et exercice Le pentagramme magique se retrouve partout dans la nature et hors de la nature est le symbole d une très ancienne secte sous sa forme usuelle ou sous sa forme étoilée

6 Pentagone et nombre d or Irrationalité Séries géométriques Equation Remarques et exercice Le pentagramme magique se retrouve partout dans la nature et hors de la nature est le symbole d une très ancienne secte sous sa forme usuelle ou sous sa forme étoilée

7 Pentagone et nombre d or Irrationalité Séries géométriques Equation Remarques et exercice Le pentagramme magique se retrouve partout dans la nature et hors de la nature est le symbole d une très ancienne secte sous sa forme usuelle ou sous sa forme étoilée

8 Pentagone et nombre d or Irrationalité Séries géométriques Equation Remarques et exercice Le pentagramme magique se retrouve partout dans la nature et hors de la nature est le symbole d une très ancienne secte sous sa forme usuelle ou sous sa forme étoilée

9 Pentagone et nombre d or Irrationalité Séries géométriques Equation Remarques et exercice Le pentagramme magique se retrouve partout dans la nature et hors de la nature est le symbole d une très ancienne secte sous sa forme usuelle ou sous sa forme étoilée Les pythagoriciens!

10 Pentagone et nombre d or Irrationalité Séries géométriques Equation Remarques et exercice Le pentagramme magique se retrouve partout dans la nature et hors de la nature est le symbole d une très ancienne secte sous sa forme usuelle ou sous sa forme étoilée

11 Pentagone et nombre d or Irrationalité Séries géométriques Equation Remarques et exercice Le pentagramme magique se retrouve partout dans la nature et hors de la nature est le symbole d une très ancienne secte sous sa forme usuelle ou sous sa forme étoilée

12 Pentagone et nombre d or Irrationalité Séries géométriques Equation Remarques et exercice Un nombre naturel... Pour les pythagoriciens, le rapport des mesures sur le pentagone est si naturel qu il ne peut être que rationnel! Trouver p q Q tel que φ = D C = p q? C = p(d/q) D = q(d/q) Trouver un petit segment telle que le côté et la diagonale soient tous deux des multiples entiers de ce segment?

13 Pentagone et nombre d or Irrationalité Séries géométriques Equation Remarques et exercice Un nombre naturel... Pour les pythagoriciens, le rapport des mesures sur le pentagone est si naturel qu il ne peut être que rationnel! Trouver p q Q tel que φ = D C = p q? C = p(d/q) D = q(d/q) Trouver un petit segment telle que le côté et la diagonale soient tous deux des multiples entiers de ce segment?

14 Pentagone et nombre d or Irrationalité Séries géométriques Equation Remarques et exercice Irrationnalité Théorème Le rapport φ de la diagonale par le côté d un pentagone est un nombre irrationnel appelé nombre d or. (et probablement le plus ancien connu) Le pentagone contient un plus petit pentagone On introduit les mesures c et d des petits côtés Symétries dans le pentagone C = c + d Non rationnel D = c + 2d

15 Pentagone et nombre d or Irrationalité Séries géométriques Equation Remarques et exercice Irrationnalité Théorème Le rapport φ de la diagonale par le côté d un pentagone est un nombre irrationnel appelé nombre d or. (et probablement le plus ancien connu) Le pentagone contient un plus petit pentagone On introduit les mesures c et d des petits côtés Symétries dans le pentagone C = c + d Non rationnel D = c + 2d

16 Pentagone et nombre d or Irrationalité Séries géométriques Equation Remarques et exercice Irrationnalité Théorème Le rapport φ de la diagonale par le côté d un pentagone est un nombre irrationnel appelé nombre d or. (et probablement le plus ancien connu) Le pentagone contient un plus petit pentagone On introduit les mesures c et d des petits côtés Symétries dans le pentagone C = c + d Non rationnel D = c + 2d

17 Pentagone et nombre d or Irrationalité Séries géométriques Equation Remarques et exercice Irrationnalité Théorème Le rapport φ de la diagonale par le côté d un pentagone est un nombre irrationnel appelé nombre d or. (et probablement le plus ancien connu) Le pentagone contient un plus petit pentagone On introduit les mesures c et d des petits côtés Symétries dans le pentagone C = c + d Non rationnel D = c + 2d

18 Pentagone et nombre d or Irrationalité Séries géométriques Equation Remarques et exercice Irrationnalité Théorème Le rapport φ de la diagonale par le côté d un pentagone est un nombre irrationnel appelé nombre d or. (et probablement le plus ancien connu) Le pentagone contient un plus petit pentagone On introduit les mesures c et d des petits côtés Symétries dans le pentagone C = c + d Non rationnel D = c + 2d

19 Pentagone et nombre d or Irrationalité Séries géométriques Equation Remarques et exercice Irrationnalité Théorème Le rapport φ de la diagonale par le côté d un pentagone est un nombre irrationnel appelé nombre d or. (et probablement le plus ancien connu) Le pentagone contient un plus petit pentagone On introduit les mesures c et d des petits côtés Symétries dans le pentagone C = c + d Non rationnel D = c + 2d

20 Pentagone et nombre d or Irrationalité Séries géométriques Equation Remarques et exercice Irrationnalité Théorème Le rapport φ de la diagonale par le côté d un pentagone est un nombre irrationnel appelé nombre d or. (et probablement le plus ancien connu) Le pentagone contient un plus petit pentagone On introduit les mesures c et d des petits côtés Symétries dans le pentagone C = c + d Non rationnel D = c + 2d

21 Pentagone et nombre d or Irrationalité Séries géométriques Equation Remarques et exercice Irrationnalité Théorème Le rapport φ de la diagonale par le côté d un pentagone est un nombre irrationnel appelé nombre d or. (et probablement le plus ancien connu) Le pentagone contient un plus petit pentagone On introduit les mesures c et d des petits côtés Symétries dans le pentagone C = c + d Non rationnel D = c + 2d

22 Pentagone et nombre d or Irrationalité Séries géométriques Equation Remarques et exercice Irrationnalité Théorème Le rapport φ de la diagonale par le côté d un pentagone est un nombre irrationnel appelé nombre d or. (et probablement le plus ancien connu) Le pentagone contient un plus petit pentagone On introduit les mesures c et d des petits côtés Symétries dans le pentagone C = c + d Non rationnel D = c + 2d d = D C c = 2C D Une mesure commune à C et D est commune à c et d et donc nulle

23 Pentagone et nombre d or Irrationalité Séries géométriques Equation Remarques et exercice Irrationnalité Théorème Le rapport φ de la diagonale par le côté d un pentagone est un nombre irrationnel appelé nombre d or. (et probablement le plus ancien connu) Le pentagone contient un plus petit pentagone On introduit les mesures c et d des petits côtés Symétries dans le pentagone C = c + d Non rationnel D = c + 2d φ = D C = d c = p q (c + d)p (c + 2d)q = 0 cp dq = 0 dp cq dq = 0 d c = q p q = p q q 2 = p(p q) p divise q

24 Pentagone et nombre d or Irrationalité Séries géométriques Equation Remarques et exercice Irrationnalité Théorème Le rapport φ de la diagonale par le côté d un pentagone est un nombre irrationnel appelé nombre d or. (et probablement le plus ancien connu) Le pentagone contient un plus petit pentagone On introduit les mesures c et d des petits côtés Symétries dans le pentagone C = c + d Non rationnel D = c + 2d

25 Pentagone et nombre d or Irrationalité Séries géométriques Equation Remarques et exercice Série géométrique Prop n=0 1 φ n = φ 2 Pentagone de côté C 0 et de diagonale D 0 Nouveau pentagone de diagonale D 1 = C 0. On itère la construction Passage à la limite C 1 = D 0 C 0 = D 1 φ = C 0 φ C n = C 0 φ n n=0 C 0 φ n = D 1 = φc 1 = φd 0 = φ 2 C 0

26 Pentagone et nombre d or Irrationalité Séries géométriques Equation Remarques et exercice Série géométrique Prop n=0 1 φ n = φ 2 Pentagone de côté C 0 et de diagonale D 0 Nouveau pentagone de diagonale D 1 = C 0. On itère la construction Passage à la limite C 1 = D 0 C 0 = D 1 φ = C 0 φ C n = C 0 φ n n=0 C 0 φ n = D 1 = φc 1 = φd 0 = φ 2 C 0

27 Pentagone et nombre d or Irrationalité Séries géométriques Equation Remarques et exercice Série géométrique Prop n=0 1 φ n = φ 2 Pentagone de côté C 0 et de diagonale D 0 Nouveau pentagone de diagonale D 1 = C 0. On itère la construction Passage à la limite C 1 = D 0 C 0 = D 1 φ = C 0 φ C n = C 0 φ n n=0 C 0 φ n = D 1 = φc 1 = φd 0 = φ 2 C 0

28 Pentagone et nombre d or Irrationalité Séries géométriques Equation Remarques et exercice Série géométrique Prop n=0 1 φ n = φ 2 Pentagone de côté C 0 et de diagonale D 0 Nouveau pentagone de diagonale D 1 = C 0. On itère la construction Passage à la limite C 1 = D 0 C 0 = D 1 φ = C 0 φ C n = C 0 φ n n=0 C 0 φ n = D 1 = φc 1 = φd 0 = φ 2 C 0

29 Pentagone et nombre d or Irrationalité Séries géométriques Equation Remarques et exercice Série géométrique Prop n=0 1 φ n = φ 2 Pentagone de côté C 0 et de diagonale D 0 Nouveau pentagone de diagonale D 1 = C 0. On itère la construction Passage à la limite C 1 = D 0 C 0 = D 1 φ = C 0 φ C n = C 0 φ n n=0 C 0 φ n = D 1 = φc 1 = φd 0 = φ 2 C 0

30 Pentagone et nombre d or Irrationalité Séries géométriques Equation Remarques et exercice Série géométrique Prop n=0 1 φ n = φ 2 Pentagone de côté C 0 et de diagonale D 0 Nouveau pentagone de diagonale D 1 = C 0. On itère la construction Passage à la limite C 1 = D 0 C 0 = D 1 φ = C 0 φ C n = C 0 φ n n=0 C 0 φ n = D 1 = φc 1 = φd 0 = φ 2 C 0

31 Pentagone et nombre d or Irrationalité Séries géométriques Equation Remarques et exercice (Autre) série géométrique Prop 1 n=0 = 1 φ 2n+1

32 Pentagone et nombre d or Irrationalité Séries géométriques Equation Remarques et exercice Equation algébrique Théorème Le nombre d or φ, rapport de la diagonale au côté du pentagone régulier, est l unique racine positive du polynome X 2 X 1. φ 2 = φ + 1 Valeur exacte φ = , Développement en racines Développement en fractions continues

33 Pentagone et nombre d or Irrationalité Séries géométriques Equation Remarques et exercice Equation algébrique Théorème Le nombre d or φ, rapport de la diagonale au côté du pentagone régulier, est l unique racine positive du polynome X 2 X 1. φ 2 = φ + 1 Valeur exacte φ = , Développement en racines Développement en fractions continues

34 Pentagone et nombre d or Irrationalité Séries géométriques Equation Remarques et exercice Equation algébrique Théorème Le nombre d or φ, rapport de la diagonale au côté du pentagone régulier, est l unique racine positive du polynome X 2 X 1. φ 2 = φ + 1 Valeur exacte φ = , Développement en racines Développement en fractions continues Prop φ = u 0 = 1 R u n+1 = 1 + u n x 1 + x contractante sur R + lim u n = φ

35 Pentagone et nombre d or Irrationalité Séries géométriques Equation Remarques et exercice Equation algébrique Théorème Le nombre d or φ, rapport de la diagonale au côté du pentagone régulier, est l unique racine positive du polynome X 2 X 1. φ 2 = φ + 1 Valeur exacte φ = , Développement en racines Développement en fractions continues Prop φ =

36 Pentagone et nombre d or Irrationalité Séries géométriques Equation Remarques et exercice Diverses remarques Le pentagone apparaît dans diverses autres figures géométriques Les puissances de φ sont des combinaisons de 1 et φ.

37 Pentagone et nombre d or Irrationalité Séries géométriques Equation Remarques et exercice Diverses remarques Le pentagone apparaît dans diverses autres figures géométriques Les puissances de φ sont des combinaisons de 1 et φ. φ 2 = 1 + φ φ 3 = φ 2 + φ = 1 + 2φ

38 Pentagone et nombre d or Irrationalité Séries géométriques Equation Remarques et exercice Diverses remarques Le pentagone apparaît dans diverses autres figures géométriques Les puissances de φ sont des combinaisons de 1 et φ. Exercice Trouver les coefficients a n et b n tels que φ n = a n + b n φ.

39 Leonardo de Pise Suite de Fibonacci Définition Biologie Propriétés algébriques Calcul explicite Leonardo de Pise fils de Guglielmo Bonacci: filius Bonacci ou Fibonacci né en 1270 ; meurt en 1340 voyage en Algérie et autour de la méditerranée apprend les techniques de l ouzbek Al-Khwarizmi publie son livre de l abaque Le contenu de ses livres correspondait à un DEA de math financières ; ces techniques sont maintenant enseignées en CM2!

40 Leonardo de Pise Suite de Fibonacci Définition Biologie Propriétés algébriques Calcul explicite Leonardo de Pise fils de Guglielmo Bonacci: filius Bonacci ou Fibonacci né en 1270 ; meurt en 1340 voyage en Algérie et autour de la méditerranée apprend les techniques de l ouzbek Al-Khwarizmi publie son livre de l abaque Le contenu de ses livres correspondait à un DEA de math financières ; ces techniques sont maintenant enseignées en CM2!

41 Leonardo de Pise Suite de Fibonacci Définition Biologie Propriétés algébriques Calcul explicite Leonardo de Pise fils de Guglielmo Bonacci: filius Bonacci ou Fibonacci né en 1270 ; meurt en 1340 voyage en Algérie et autour de la méditerranée apprend les techniques de l ouzbek Al-Khwarizmi publie son livre de l abaque Le contenu de ses livres correspondait à un DEA de math financières ; ces techniques sont maintenant enseignées en CM2!

42 Leonardo de Pise Suite de Fibonacci Définition Biologie Propriétés algébriques Calcul explicite Leonardo de Pise fils de Guglielmo Bonacci: filius Bonacci ou Fibonacci né en 1270 ; meurt en 1340 voyage en Algérie et autour de la méditerranée apprend les techniques de l ouzbek Al-Khwarizmi publie son livre de l abaque Le contenu de ses livres correspondait à un DEA de math financières ; ces techniques sont maintenant enseignées en CM2!

43 Leonardo de Pise Suite de Fibonacci Définition Biologie Propriétés algébriques Calcul explicite Leonardo de Pise fils de Guglielmo Bonacci: filius Bonacci ou Fibonacci né en 1270 ; meurt en 1340 voyage en Algérie et autour de la méditerranée apprend les techniques de l ouzbek Al-Khwarizmi publie son livre de l abaque Le contenu de ses livres correspondait à un DEA de math financières ; ces techniques sont maintenant enseignées en CM2!

44 Leonardo de Pise Suite de Fibonacci Définition Biologie Propriétés algébriques Calcul explicite Leonardo de Pise fils de Guglielmo Bonacci: filius Bonacci ou Fibonacci né en 1270 ; meurt en 1340 voyage en Algérie et autour de la méditerranée apprend les techniques de l ouzbek Al-Khwarizmi publie son livre de l abaque Le contenu de ses livres correspondait à un DEA de math financières ; ces techniques sont maintenant enseignées en CM2!

45 Leonardo de Pise Suite de Fibonacci Définition Biologie Propriétés algébriques Calcul explicite Croissance démographique an 0: un couple de lapins nait an 1: le couple est déposé sur une île an 2: le couple engendre un couple an 3: le premier couple engendre encore un couple ; le second grandit an 4: les deux couples engendrent chacun un nouveau couple ; le couple de l an 3 grandit les lapins sont immortels

46 Leonardo de Pise Suite de Fibonacci Définition Biologie Propriétés algébriques Calcul explicite Croissance démographique an 0: un couple de lapins nait an 1: le couple est déposé sur une île an 2: le couple engendre un couple an 3: le premier couple engendre encore un couple ; le second grandit an 4: les deux couples engendrent chacun un nouveau couple ; le couple de l an 3 grandit les lapins sont immortels

47 Leonardo de Pise Suite de Fibonacci Définition Biologie Propriétés algébriques Calcul explicite Croissance démographique an 0: un couple de lapins nait an 1: le couple est déposé sur une île an 2: le couple engendre un couple an 3: le premier couple engendre encore un couple ; le second grandit an 4: les deux couples engendrent chacun un nouveau couple ; le couple de l an 3 grandit les lapins sont immortels

48 Leonardo de Pise Suite de Fibonacci Définition Biologie Propriétés algébriques Calcul explicite Croissance démographique an 0: un couple de lapins nait an 1: le couple est déposé sur une île an 2: le couple engendre un couple an 3: le premier couple engendre encore un couple ; le second grandit an 4: les deux couples engendrent chacun un nouveau couple ; le couple de l an 3 grandit les lapins sont immortels

49 Leonardo de Pise Suite de Fibonacci Définition Biologie Propriétés algébriques Calcul explicite Croissance démographique an 0: un couple de lapins nait an 1: le couple est déposé sur une île an 2: le couple engendre un couple an 3: le premier couple engendre encore un couple ; le second grandit an 4: les deux couples engendrent chacun un nouveau couple ; le couple de l an 3 grandit les lapins sont immortels

50 Leonardo de Pise Suite de Fibonacci Définition Biologie Propriétés algébriques Calcul explicite Croissance démographique an 0: un couple de lapins nait an 1: le couple est déposé sur une île an 2: le couple engendre un couple an 3: le premier couple engendre encore un couple ; le second grandit an 4: les deux couples engendrent chacun un nouveau couple ; le couple de l an 3 grandit les lapins sont immortels

51 Leonardo de Pise Suite de Fibonacci Définition Biologie Propriétés algébriques Calcul explicite Suite de Fibonacci Définition On appelle suite de Fibonacci la suite (F n ) n N définie par F 0 = 0, F 1 = 1 et, si n 0, F n+2 = F n + F n+1. F n est le nombre de couples de lapins présent sur l île dans l année n après les naissances. L année n + 2, il y a tous les lapins de l année précédente (Fn+1 ) ; les bébés engendrés par les adultes, qui sont vieux d au moins deux ans (F n ) ; F n+2 = F n+1 + F n

52 Leonardo de Pise Suite de Fibonacci Définition Biologie Propriétés algébriques Calcul explicite Suite de Fibonacci Définition On appelle suite de Fibonacci la suite (F n ) n N définie par F 0 = 0, F 1 = 1 et, si n 0, F n+2 = F n + F n+1. F n est le nombre de couples de lapins présent sur l île dans l année n après les naissances. L année n + 2, il y a tous les lapins de l année précédente (Fn+1 ) ; les bébés engendrés par les adultes, qui sont vieux d au moins deux ans (F n ) ; F n+2 = F n+1 + F n

53 Leonardo de Pise Suite de Fibonacci Définition Biologie Propriétés algébriques Calcul explicite Suite de Fibonacci Définition On appelle suite de Fibonacci la suite (F n ) n N définie par F 0 = 0, F 1 = 1 et, si n 0, F n+2 = F n + F n+1. F n est le nombre de couples de lapins présent sur l île dans l année n après les naissances. L année n + 2, il y a tous les lapins de l année précédente (Fn+1 ) ; les bébés engendrés par les adultes, qui sont vieux d au moins deux ans (F n ) ; F n+2 = F n+1 + F n

54 Leonardo de Pise Suite de Fibonacci Définition Biologie Propriétés algébriques Calcul explicite Fibonacci dans la nature Les végétaux composés présentent des spirales qui sont organisées suivant les nombres de Fibonacci fleurs (ou pommes de pin) les marguerites non abimées ont toujours 21 pétales les paquerettes en ont 8 ou spirales dans un sens et 55 dans l autre arbres et ananas

55 Leonardo de Pise Suite de Fibonacci Définition Biologie Propriétés algébriques Calcul explicite Fibonacci dans la nature Les végétaux composés présentent des spirales qui sont organisées suivant les nombres de Fibonacci fleurs (ou pommes de pin) les marguerites non abimées ont toujours 21 pétales les paquerettes en ont 8 ou spirales dans un sens et 55 dans l autre arbres et ananas

56 Leonardo de Pise Suite de Fibonacci Définition Biologie Propriétés algébriques Calcul explicite Fibonacci dans la nature Les végétaux composés présentent des spirales qui sont organisées suivant les nombres de Fibonacci fleurs (ou pommes de pin) les marguerites non abimées ont toujours 21 pétales les paquerettes en ont 8 ou spirales dans un sens et 55 dans l autre arbres et ananas

57 Leonardo de Pise Suite de Fibonacci Définition Biologie Propriétés algébriques Calcul explicite Fibonacci dans la nature Les végétaux composés présentent des spirales qui sont organisées suivant les nombres de Fibonacci fleurs (ou pommes de pin) les marguerites non abimées ont toujours 21 pétales les paquerettes en ont 8 ou spirales dans un sens et 55 dans l autre arbres et ananas

58 Leonardo de Pise Suite de Fibonacci Définition Biologie Propriétés algébriques Calcul explicite Fibonacci dans la nature Les végétaux composés présentent des spirales qui sont organisées suivant les nombres de Fibonacci fleurs (ou pommes de pin) les marguerites non abimées ont toujours 21 pétales les paquerettes en ont 8 ou spirales dans un sens et 55 dans l autre arbres et ananas

59 Leonardo de Pise Suite de Fibonacci Définition Biologie Propriétés algébriques Calcul explicite Fibonacci dans la nature Les végétaux composés présentent des spirales qui sont organisées suivant les nombres de Fibonacci fleurs (ou pommes de pin) les marguerites non abimées ont toujours 21 pétales les paquerettes en ont 8 ou spirales dans un sens et 55 dans l autre arbres et ananas

60 Leonardo de Pise Suite de Fibonacci Définition Biologie Propriétés algébriques Calcul explicite Fibonacci dans la nature Les végétaux composés présentent des spirales qui sont organisées suivant les nombres de Fibonacci fleurs (ou pommes de pin) les marguerites non abimées ont toujours 21 pétales les paquerettes en ont 8 ou spirales dans un sens et 55 dans l autre arbres et ananas

61 Leonardo de Pise Suite de Fibonacci Définition Biologie Propriétés algébriques Calcul explicite Fibonacci dans la nature Les végétaux composés présentent des spirales qui sont organisées suivant les nombres de Fibonacci fleurs (ou pommes de pin) les marguerites non abimées ont toujours 21 pétales les paquerettes en ont 8 ou spirales dans un sens et 55 dans l autre arbres et ananas

62 Leonardo de Pise Suite de Fibonacci Définition Biologie Propriétés algébriques Calcul explicite Fibonacci dans la nature Les végétaux composés présentent des spirales qui sont organisées suivant les nombres de Fibonacci fleurs (ou pommes de pin) les marguerites non abimées ont toujours 21 pétales les paquerettes en ont 8 ou spirales dans un sens et 55 dans l autre arbres et ananas

63 Leonardo de Pise Suite de Fibonacci Définition Biologie Propriétés algébriques Calcul explicite Premières propriétés Lien avec le nombre d or Nombreuses formules Nombres premiers entre eux φ n = F n φ + F n 1 récurrence F n F n+2 F 2 n+1 = ( 1)n

64 Leonardo de Pise Suite de Fibonacci Définition Biologie Propriétés algébriques Calcul explicite Premières propriétés Lien avec le nombre d or Nombreuses formules Nombres premiers entre eux φ n = F n φ + F n 1 récurrence F n F n+2 F 2 n+1 = ( 1)n

65 Leonardo de Pise Suite de Fibonacci Définition Biologie Propriétés algébriques Calcul explicite Premières propriétés Lien avec le nombre d or Nombreuses formules Nombres premiers entre eux φ n = F n φ + F n 1 récurrence F n F n+2 F 2 n+1 = ( 1)n

66 Leonardo de Pise Suite de Fibonacci Définition Biologie Propriétés algébriques Calcul explicite Croissance Les nombres de Fibonacci ont une croissance proportionnelle au nombre d or Prop lim n F n+1 F n = φ r n = F n+1 F n = r n 1 x x préserve [1, 2] et est contractante sur cet intervalle r n converge vers un point fixe de x x. Les r n sont les meilleures approximations rationnelles de φ

67 Leonardo de Pise Suite de Fibonacci Définition Biologie Propriétés algébriques Calcul explicite Croissance Les nombres de Fibonacci ont une croissance proportionnelle au nombre d or Prop lim n F n+1 F n = φ r n = F n+1 F n = r n 1 x x préserve [1, 2] et est contractante sur cet intervalle r n converge vers un point fixe de x x. Les r n sont les meilleures approximations rationnelles de φ

68 Leonardo de Pise Suite de Fibonacci Définition Biologie Propriétés algébriques Calcul explicite Croissance Les nombres de Fibonacci ont une croissance proportionnelle au nombre d or Prop lim n F n+1 F n = φ r n = F n+1 F n = r n 1 x x préserve [1, 2] et est contractante sur cet intervalle r n converge vers un point fixe de x x. Les r n sont les meilleures approximations rationnelles de φ

69 Leonardo de Pise Suite de Fibonacci Définition Biologie Propriétés algébriques Calcul explicite Croissance Les nombres de Fibonacci ont une croissance proportionnelle au nombre d or Prop lim n F n+1 F n = φ r n = F n+1 F n = r n 1 x x préserve [1, 2] et est contractante sur cet intervalle r n converge vers un point fixe de x x. Les r n sont les meilleures approximations rationnelles de φ

70 Leonardo de Pise Suite de Fibonacci Définition Biologie Propriétés algébriques Calcul explicite Croissance Les nombres de Fibonacci ont une croissance proportionnelle au nombre d or Prop lim n F n+1 F n = φ r n = F n+1 F n = r n 1 x x préserve [1, 2] et est contractante sur cet intervalle r n converge vers un point fixe de x x. Les r n sont les meilleures approximations rationnelles de φ

71 Leonardo de Pise Suite de Fibonacci Définition Biologie Propriétés algébriques Calcul explicite Calcul Explicite Théorème F n = φn 5 φn 5 avec φ = 1 φ. Suites du type de Fibonacci : u n+2 = u n + u n+1 Déterminée par ses deux premières valeurs La somme de deux suites du type de Fibonacci est encore une telle suite Deux suites g n et h n non proportionnelles les engendrent toutes (u 0 = Ag 0 + Bh 0, u 1 = Ag 1 + Bh 1 = u n = Ag n + Bh n ) Pour que g n = r n, il faut r 2 = 1 + r r = φ ou r = φ = = 1 φ

72 Leonardo de Pise Suite de Fibonacci Définition Biologie Propriétés algébriques Calcul explicite Calcul Explicite Théorème F n = φn 5 φn 5 avec φ = 1 φ. Suites du type de Fibonacci : u n+2 = u n + u n+1 Déterminée par ses deux premières valeurs La somme de deux suites du type de Fibonacci est encore une telle suite Deux suites g n et h n non proportionnelles les engendrent toutes (u 0 = Ag 0 + Bh 0, u 1 = Ag 1 + Bh 1 = u n = Ag n + Bh n ) Pour que g n = r n, il faut r 2 = 1 + r r = φ ou r = φ = = 1 φ

73 Leonardo de Pise Suite de Fibonacci Définition Biologie Propriétés algébriques Calcul explicite Calcul Explicite Théorème F n = φn 5 φn 5 avec φ = 1 φ. Suites du type de Fibonacci : u n+2 = u n + u n+1 Déterminée par ses deux premières valeurs La somme de deux suites du type de Fibonacci est encore une telle suite Deux suites g n et h n non proportionnelles les engendrent toutes (u 0 = Ag 0 + Bh 0, u 1 = Ag 1 + Bh 1 = u n = Ag n + Bh n ) Pour que g n = r n, il faut r 2 = 1 + r r = φ ou r = φ = = 1 φ

74 Leonardo de Pise Suite de Fibonacci Définition Biologie Propriétés algébriques Calcul explicite Calcul Explicite Théorème F n = φn 5 φn 5 avec φ = 1 φ. Suites du type de Fibonacci : u n+2 = u n + u n+1 Déterminée par ses deux premières valeurs La somme de deux suites du type de Fibonacci est encore une telle suite Deux suites g n et h n non proportionnelles les engendrent toutes (u 0 = Ag 0 + Bh 0, u 1 = Ag 1 + Bh 1 = u n = Ag n + Bh n ) Pour que g n = r n, il faut r 2 = 1 + r r = φ ou r = φ = = 1 φ

75 Leonardo de Pise Suite de Fibonacci Définition Biologie Propriétés algébriques Calcul explicite Calcul Explicite Théorème F n = φn 5 φn 5 avec φ = 1 φ. Suites du type de Fibonacci : u n+2 = u n + u n+1 Déterminée par ses deux premières valeurs La somme de deux suites du type de Fibonacci est encore une telle suite Deux suites g n et h n non proportionnelles les engendrent toutes (u 0 = Ag 0 + Bh 0, u 1 = Ag 1 + Bh 1 = u n = Ag n + Bh n ) Pour que g n = r n, il faut r 2 = 1 + r r = φ ou r = φ = = 1 φ

76 Leonardo de Pise Suite de Fibonacci Définition Biologie Propriétés algébriques Calcul explicite Calcul Explicite Théorème F n = φn 5 φn 5 avec φ = 1 φ. Suites du type de Fibonacci : u n+2 = u n + u n+1 Déterminée par ses deux premières valeurs La somme de deux suites du type de Fibonacci est encore une telle suite Deux suites g n et h n non proportionnelles les engendrent toutes (u 0 = Ag 0 + Bh 0, u 1 = Ag 1 + Bh 1 = u n = Ag n + Bh n ) Pour que g n = r n, il faut r 2 = 1 + r r = φ ou r = φ = = 1 φ

77 Leonardo de Pise Suite de Fibonacci Définition Biologie Propriétés algébriques Calcul explicite Calcul Explicite Théorème F n = φn 5 φn 5 avec φ = 1 φ. Suites du type de Fibonacci : u n+2 = u n + u n+1 Déterminée par ses deux premières valeurs La somme de deux suites du type de Fibonacci est encore une telle suite Deux suites g n et h n non proportionnelles les engendrent toutes (u 0 = Ag 0 + Bh 0, u 1 = Ag 1 + Bh 1 = u n = Ag n + Bh n ) Pour que g n = r n, il faut r 2 = 1 + r r = φ ou r = φ = = 1 φ

78 Formalisation Algèbre Linéaire Comportement asymptotique Formalisation Prestidigitation? Que se passerait-il pour un+2 = 2u n u n+1 Principe de superposition La somme de deux solutions est encore une solution Calcul du terme suivant? Dépend des deux précédents Considérer deux termes à la fois!

79 Formalisation Algèbre Linéaire Comportement asymptotique Formalisation Prestidigitation? Que se passerait-il pour un+2 = 2u n u n+1 Principe de superposition La somme de deux solutions est encore une solution Calcul du terme suivant? Dépend des deux précédents Considérer deux termes à la fois!

80 Formalisation Algèbre Linéaire Comportement asymptotique Formalisation Prestidigitation? Que se passerait-il pour un+2 = 2u n u n+1 Principe de superposition La somme de deux solutions est encore une solution Calcul du terme suivant? Dépend des deux précédents Considérer deux termes à la fois!

AC AB. A B C x 1. x + 1. d où. Avec un calcul vu au lycée, on démontre que cette solution admet deux solutions dont une seule nous intéresse : x =

AC AB. A B C x 1. x + 1. d où. Avec un calcul vu au lycée, on démontre que cette solution admet deux solutions dont une seule nous intéresse : x = LE NOMBRE D OR Présentation et calcul du nombre d or Euclide avait trouvé un moyen de partager en deu un segment selon en «etrême et moyenne raison» Soit un segment [AB]. Le partage d Euclide consiste

Plus en détail

Programme de mathématiques TSI1

Programme de mathématiques TSI1 Programme de mathématiques TSI1 1. PROGRAMME DE DÉBUT D ANNÉE I. Nombres complexes et géométrie élémentaire 1. Nombres complexes 1 2. Géométrie élémentaire du plan 3 3. Géométrie élémentaire de l espace

Plus en détail

UNIVERSITÉ DE CERGY Année 2012-2013 U.F.R. Économie & Gestion Licence d Économie et Mathématiques MATH104 : Mathématiques

UNIVERSITÉ DE CERGY Année 2012-2013 U.F.R. Économie & Gestion Licence d Économie et Mathématiques MATH104 : Mathématiques 1 UNIVERSITÉ DE CERGY Année 2012-201 U.F.R. Économie & Gestion Licence d Économie et Mathématiques MATH104 : Mathématiques Chapitre III : Polynômes 1 Fonctions polynômes & polynômes Définition 1. Soit

Plus en détail

Calculs approchés d un point fixe

Calculs approchés d un point fixe M11 ÉPREUVE COMMUNE DE TIPE 2013 - Partie D TITRE : Calculs approchés d un point fixe Temps de préparation :.. 2 h 15 minutes Temps de présentation devant les examinateurs :.10 minutes Dialogue avec les

Plus en détail

Fibonacci et les paquerettes

Fibonacci et les paquerettes Fibonacci et les paquerettes JOLY Romain & RIVOAL Tanguy Introduction Quand on entend dire que l on peut trouver le nombre d or et la suite de Fibonacci dans les fleurs et les pommes de pin, on est au

Plus en détail

Cours de mathématiques

Cours de mathématiques Cours de mathématiques Thomas Rey classe de première ES ii Table des matières 1 Les pourcentages 1 1.1 Variation en pourcentage............................... 1 1.1.1 Calcul d une variation............................

Plus en détail

Continuité et dérivabilité d une fonction

Continuité et dérivabilité d une fonction DERNIÈRE IMPRESSIN LE 7 novembre 014 à 10:3 Continuité et dérivabilité d une fonction Table des matières 1 Continuité d une fonction 1.1 Limite finie en un point.......................... 1. Continuité

Plus en détail

Programme de Première

Programme de Première BAC TECHNO STAV 66 I. Algèbre Programme de Première Objectif 1 - Effectuer de manière autonome des calculs numériques ou algébriques, résoudre des équations ou inéquations en vue de résoudre des problèmes

Plus en détail

Utiliser les propriétés Savoir réduire un radical savoir +,-,x,: Utiliser les propriétés des puissances Calculer avec des puissances

Utiliser les propriétés Savoir réduire un radical savoir +,-,x,: Utiliser les propriétés des puissances Calculer avec des puissances ARITHMETIQUE 1 C B A Numération Ecrire en lettres et en chiffres Poser des questions fermées autour d un document simple (message, consigne, planning ) Connaître le système décimal Déterminer la position

Plus en détail

est diagonale si tous ses coefficients en dehors de la diagonale sont nuls.

est diagonale si tous ses coefficients en dehors de la diagonale sont nuls. Diagonalisation des matrices http://www.math-info.univ-paris5.fr/~ycart/mc2/node2.html Sous-sections Matrices diagonales Valeurs propres et vecteurs propres Polynôme caractéristique Exemples Illustration

Plus en détail

Cours de spécialité mathématiques en Terminale ES

Cours de spécialité mathématiques en Terminale ES Cours de spécialité mathématiques en Terminale ES O. Lader 2014/2015 Lycée Jean Vilar Spé math terminale ES 2014/2015 1 / 51 Systèmes linéaires Deux exemples de systèmes linéaires à deux équations et deux

Plus en détail

Formulaire de maths Algèbre linéaire et multilinéaire

Formulaire de maths Algèbre linéaire et multilinéaire Formulaire de maths Algèbre linéaire et multilinéaire Nom Formule Espaces vectoriels Famille libre On dit que la famille est libre si Famille liée On dit que la famille est liée si Théorème de la base

Plus en détail

Notes de cours L1 MATH120. Hervé Le Dret

Notes de cours L1 MATH120. Hervé Le Dret Notes de cours L1 MATH120 Hervé Le Dret 18 octobre 2004 40 Chapitre 3 Vecteurs dans R m Dans ce chapitre, nous allons nous familiariser avec la notion de vecteur du point de vue algébrique. Nous reviendrons

Plus en détail

Le corps R des nombres réels

Le corps R des nombres réels Le corps R des nombres réels. Construction de R à l aide des suites de Cauchy de nombres rationnels On explique brièvement dans ce paragraphe comment construire le corps R des nombres réels à partir du

Plus en détail

Cours de Mathématiques

Cours de Mathématiques Cours de Mathématiques Lycee Gustave Eiffel PTSI 02/03 Chapitre 3 Fonctions usuelles 3.1 Théorème de la bijection Une fonction dérivable sur un intervalle I, strictement monotone déþnit une bijection.

Plus en détail

Mathématiques assistées par ordinateur

Mathématiques assistées par ordinateur Mathématiques assistées par ordinateur Chapitre 4 : Racines des polynômes réels et complexes Michael Eisermann Mat249, DLST L2S4, Année 2008-2009 www-fourier.ujf-grenoble.fr/ eiserm/cours # mao Document

Plus en détail

MPSI 3 - Cahier de vacances... MPSI 3-2004/2005

MPSI 3 - Cahier de vacances... MPSI 3-2004/2005 MPSI 3 - Cahier de vacances... MPSI 3-2004/2005 Voici une fiche contenant 100 exercices de difficulté raisonable, plutôt techniques, qui recouvrent l ensemble du programme étudié cette année. A raison

Plus en détail

aux différences est appelé équation aux différences d ordre n en forme normale.

aux différences est appelé équation aux différences d ordre n en forme normale. MODÉLISATION ET SIMULATION EQUATIONS AUX DIFFÉRENCES (I/II) 1. Rappels théoriques : résolution d équations aux différences 1.1. Équations aux différences. Définition. Soit x k = x(k) X l état scalaire

Plus en détail

Suites et Convergence

Suites et Convergence Suites et Convergence Une suite c est se donner une valeur (sans ambigüité) pour chaque N sauf peutêtre les premiers n. Donc une suite est une fonction : I R où I = N: = N. Notation : On note ( ) I R pour

Plus en détail

Correction de l examen de la première session

Correction de l examen de la première session de l examen de la première session Julian Tugaut, Franck Licini, Didier Vincent Si vous trouvez des erreurs de Français ou de mathématiques ou bien si vous avez des questions et/ou des suggestions, envoyez-moi

Plus en détail

PETIT MANUEL DE SURVIE EN MATHÉMATIQUES À L USAGE DES TERMINALES STI2D (OU CE QU ON DOIT APPRENDRE ET CE QU ON PEUT RETROUVER SI ON EST MALIN) par M.

PETIT MANUEL DE SURVIE EN MATHÉMATIQUES À L USAGE DES TERMINALES STI2D (OU CE QU ON DOIT APPRENDRE ET CE QU ON PEUT RETROUVER SI ON EST MALIN) par M. PETIT MANUEL DE SURVIE EN MATHÉMATIQUES À L USAGE DES TERMINALES STI2D (OU CE QU ON DOIT APPRENDRE ET CE QU ON PEUT RETROUVER SI ON EST MALIN) par M. Vienney 2 M. VIENNEY Vous trouverez dans ce document

Plus en détail

Espaces vectoriels et applications linéaires

Espaces vectoriels et applications linéaires Espaces vectoriels et applications linéaires Exercice 1 On considère l'ensemble E des matrices carrées d'ordre 3 défini par,,, 1) Montrer que est un sous-espace vectoriel de l'espace vectoriel des matrices

Plus en détail

Introduction à l étude des Corps Finis

Introduction à l étude des Corps Finis Introduction à l étude des Corps Finis Robert Rolland (Résumé) 1 Introduction La structure de corps fini intervient dans divers domaines des mathématiques, en particulier dans la théorie de Galois sur

Plus en détail

I. Polynômes de Tchebychev

I. Polynômes de Tchebychev Première épreuve CCP filière MP I. Polynômes de Tchebychev ( ) 1.a) Tout réel θ vérifie cos(nθ) = Re ((cos θ + i sin θ) n ) = Re Cn k (cos θ) n k i k (sin θ) k Or i k est réel quand k est pair et imaginaire

Plus en détail

Un corrigé de l épreuve de mathématiques du baccalauréat blanc

Un corrigé de l épreuve de mathématiques du baccalauréat blanc Terminale ES Un corrigé de l épreuve de mathématiques du baccalauréat blanc EXERCICE ( points). Commun à tous les candidats On considère une fonction f : définie, continue et doublement dérivable sur l

Plus en détail

Complément d information concernant la fiche de concordance

Complément d information concernant la fiche de concordance Sommaire SAMEDI 0 DÉCEMBRE 20 Vous trouverez dans ce dossier les documents correspondants à ce que nous allons travailler aujourd hui : La fiche de concordance pour le DAEU ; Page 2 Un rappel de cours

Plus en détail

Table des matières. I Mise à niveau 11. Préface

Table des matières. I Mise à niveau 11. Préface Table des matières Préface v I Mise à niveau 11 1 Bases du calcul commercial 13 1.1 Alphabet grec...................................... 13 1.2 Symboles mathématiques............................... 14 1.3

Plus en détail

Cours d analyse 1 Licence 1er semestre. Guy Laffaille Christian Pauly

Cours d analyse 1 Licence 1er semestre. Guy Laffaille Christian Pauly Cours d analyse 1 Licence 1er semestre Guy Laffaille Christian Pauly janvier 006 Table des matières 1 Les nombres réels et complexes 5 1.1 Nombres rationnels................................... 5 1. Nombres

Plus en détail

Limites finies en un point

Limites finies en un point 8 Limites finies en un point Pour ce chapitre, sauf précision contraire, I désigne une partie non vide de R et f une fonction définie sur I et à valeurs réelles ou complees. Là encore, les fonctions usuelles,

Plus en détail

Continuité en un point

Continuité en un point DOCUMENT 4 Continuité en un point En général, D f désigne l ensemble de définition de la fonction f et on supposera toujours que cet ensemble est inclus dans R. Toutes les fonctions considérées sont à

Plus en détail

Exercices - Polynômes : corrigé. Opérations sur les polynômes

Exercices - Polynômes : corrigé. Opérations sur les polynômes Opérations sur les polynômes Exercice 1 - Carré - L1/Math Sup - Si P = Q est le carré d un polynôme, alors Q est nécessairement de degré, et son coefficient dominant est égal à 1. On peut donc écrire Q(X)

Plus en détail

RÉVISION DE CALCUL NUMÉRIQUE

RÉVISION DE CALCUL NUMÉRIQUE RÉVISION DE CALCUL NUMÉRIQUE. Les ensembles numériques. Propriétés des nombres réels. Ordre des opérations. Nombres premiers. Opérations sur les fractions 7. Puissances entières 0.7 Notation scientifique.8

Plus en détail

Formulaire de Mathématique

Formulaire de Mathématique COLLECTION LES LEXIQUES DE L INSEEC CAHIERS MÉTHODOLOGIQUES POUR LES CLASSES PRÉPARATOIRES AUX GRANDES ÉCOLES DE COMMERCE Formulaire de Mathématique par Xavier Chauvet LEXIQUE N 17 COLLECTION DIRIGÉE PAR

Plus en détail

Rappels sur les suites - Algorithme

Rappels sur les suites - Algorithme DERNIÈRE IMPRESSION LE 14 septembre 2015 à 12:36 Rappels sur les suites - Algorithme Table des matières 1 Suite : généralités 2 1.1 Déition................................. 2 1.2 Exemples de suites............................

Plus en détail

0.2.3 Polynômes... 4. 0.2.1 Monômes... 4 0.2.2 Opérations entre monômes... 4

0.2.3 Polynômes... 4. 0.2.1 Monômes... 4 0.2.2 Opérations entre monômes... 4 Table des matières 0 Rappels sur les polynômes et fractions algébriques 1 0.1 Puissances............................................... 1 0.1.1 Puissance d un nombre réel.................................

Plus en détail

Cahier de vacances - Préparation à la Première S

Cahier de vacances - Préparation à la Première S Cahier de vacances - Préparation à la Première S Ce cahier est destiné à vous permettre d aborder le plus sereinement possible la classe de Première S. Je vous conseille de le travailler pendant les 0

Plus en détail

CH1 : Langages de la continuité Limites

CH1 : Langages de la continuité Limites CH : Langages de la continuité Limites I. Continuité- Théorème des valeurs intermédiaires. Définition : Soit f une fonction définie sur un intervalle I de R. Lorsque la courbe représentative de f ne présente

Plus en détail

Applications Bilinéaires et Formes Quadratiques

Applications Bilinéaires et Formes Quadratiques Ce cours peut être librement copié et distribué. Il est recommandé d en télécharger la version la plus récente à partir de : http://www.math.jussieu.fr/~alp. Toute remarque, correction ou suggestion doit

Plus en détail

L essentiel du cours 2014/2015 Terminale S Spécialité Maths, Lycée Français de Valence

L essentiel du cours 2014/2015 Terminale S Spécialité Maths, Lycée Français de Valence L essentiel du cours 2014/2015 Terminale S Spécialité Maths, Lycée Français de Valence Sommaire 1. Arithmétique 2 1.1. Division euclidienne......................... 2 1.2. Congruences.............................

Plus en détail

Épreuve pratique de mathématiques Printemps 2009. Descriptifs. (Page vide)

Épreuve pratique de mathématiques Printemps 2009. Descriptifs. (Page vide) Épreuve pratique de mathématiques Printemps 2009 Descriptifs (Page vide) Sujet 001 Épreuve pratique de mathématiques Descriptif Étude d une fonction dépendant d un paramètre Étant donné une fonction dépendant

Plus en détail

Mathématique - Cours Filière STAV 2014-2015 Centre de Formation aux Métier de la Montagne Marine Estorge

Mathématique - Cours Filière STAV 2014-2015 Centre de Formation aux Métier de la Montagne Marine Estorge Mathématique - Cours Filière STAV 2014-2015 Centre de Formation aux Métier de la Montagne Marine Estorge Le programme se compose ainsi : Rappels collège/seconde Partie STAV 1/3 Partie STAV 2/3 Partie STAV

Plus en détail

CONCOURS SEPTEMBRE 2011 SUJETS

CONCOURS SEPTEMBRE 2011 SUJETS CONCOURS SEPTEMBRE 2011 SUJETS Florilège COPIRELEM Page 155 CERPE groupement 1 - septembre 2011 (corrigé page 171) GROUPEMENT 1 septembre 2011 EXERCICE 1 : Dans cet exercice, six affirmations sont proposées.

Plus en détail

MATHS VUIBERT. Rappels de cours Conseils de méthode Exercices guidés Exercices d approfondissement Problèmes de synthèse Tous les corrigés détaillés

MATHS VUIBERT. Rappels de cours Conseils de méthode Exercices guidés Exercices d approfondissement Problèmes de synthèse Tous les corrigés détaillés VUIBERT MÉTHODES EXERCICES PROBLÈMES MATHS ECE 2 e année Tout le programme Rappels de cours Conseils de méthode Exercices guidés Exercices d approfondissement Problèmes de synthèse Tous les corrigés détaillés

Plus en détail

AGRÉGATION INTERNE: RÉDUCTION DES ENDOMORPHISMES

AGRÉGATION INTERNE: RÉDUCTION DES ENDOMORPHISMES AGRÉGATION INTERNE: RÉDUCTION DES ENDOMORPHISMES VINCENT GUEDJ 1. Notions fondamentales 1.1. Noyau, Image. On se donne E un K-espace vectoriel de dimension finie (K = R, C principalement) et f L(E) un

Plus en détail

Equations différentielles

Equations différentielles Maths PCSI Cours Table des matières Equations différentielles 1 Généralités 2 1.1 Solution d une équation différentielle................................ 2 1.2 Problème de Cauchy.........................................

Plus en détail

Mathématiques pour l informatique. - Soutien - 1 Nombres complexes. 2 Suites. Exercice 1. (Nombres complexes) Soit le nombre complexe z = (2 + 2i) 7.

Mathématiques pour l informatique. - Soutien - 1 Nombres complexes. 2 Suites. Exercice 1. (Nombres complexes) Soit le nombre complexe z = (2 + 2i) 7. Mathématiques pour l informatique IMAC première année - Soutien - Nombres complexes Rappels. Un nombre complexe z admet plusieurs représentations : représentation vectorielle z = (a, b) où a, b R représentation

Plus en détail

Les supports de cours suivants font référence au cours de Mr SOL et à son livre : "Accès à l'université" chez DUNOD

Les supports de cours suivants font référence au cours de Mr SOL et à son livre : Accès à l'université chez DUNOD Les supports de cours suivants font référence au cours de Mr SOL et à son livre : "Accès à l'université" chez DUNOD Les supports de cours ne sont pas complets, ils ne contiennent ni les démonstrations,

Plus en détail

Licence de Sciences et Technologies. Fiche de cours 1 - Nombres réels.

Licence de Sciences et Technologies. Fiche de cours 1 - Nombres réels. Licence de Sciences et Technologies EM21 - Analyse Fiche de cours 1 - Nombres réels. On connaît les ensembles suivants, tous munis d une addition, d une multiplication, et d une relation d ordre compatibles

Plus en détail

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé Baccalauréat S ntilles-guyane 11 septembre 14 Corrigé EXERCICE 1 6 points Commun à tous les candidats Une entreprise de jouets en peluche souhaite commercialiser un nouveau produit et à cette fin, effectue

Plus en détail

Analyse des données et algèbre linéaire

Analyse des données et algèbre linéaire Analyse des données et algèbre linéaire Fondamentaux pour le Big Data c Télécom ParisTech 1/15 Machine-Learning : Une donnée x i = un ensemble de features (caractères) d un individu i x i = (x i,1,...,

Plus en détail

Baccalauréat S Asie 18 juin 2013

Baccalauréat S Asie 18 juin 2013 Baccalauréat S Asie 18 juin 2013 Dans l ensemble du sujet, et pour chaque question, toute trace de recherche même incomplète, ou d initiative même non fructueuse, sera prise en compte dans l évaluation

Plus en détail

Chp. 4. Minimisation d une fonction d une variable

Chp. 4. Minimisation d une fonction d une variable Chp. 4. Minimisation d une fonction d une variable Avertissement! Dans tout ce chapître, I désigne un intervalle de IR. 4.1 Fonctions convexes d une variable Définition 9 Une fonction ϕ, partout définie

Plus en détail

Chapitre IV Bases et dimension d un espace vectoriel

Chapitre IV Bases et dimension d un espace vectoriel Chapitre IV Bases et dimension d un espace vectoriel Objectif : Nous allons voir comment fabriquer des systèmes de coordonnées pour les vecteurs d un espace vectoriel général. Dans ce chapitre désigne

Plus en détail

Les astuces de Maths. par Isabelle Blejean C OLLECTION LES MÉMENTOS DE L INSEEC MÉMENTO N 9

Les astuces de Maths. par Isabelle Blejean C OLLECTION LES MÉMENTOS DE L INSEEC MÉMENTO N 9 C OLLECTION LES MÉMENTOS DE L INSEEC CAHIERS MÉTHODOLOGIQUES POUR LES CLASSES PRÉPARATOIRES AUX GRANDES ÉCOLES DE COMMERCE Les astuces de Maths par Isabelle Blejean MÉMENTO N 9 Les Mémentos de l INSEEC

Plus en détail

6.11 Bases de Lanczos bi-orthogonales pour des matrices non symétriques

6.11 Bases de Lanczos bi-orthogonales pour des matrices non symétriques Chapitre 6 Méthodes de Krylov 611 Bases de Lanczos bi-orthogonales pour des matrices non symétriques Dans le cas où la matrice A n est pas symétrique, comment peut-on retrouver une matrice de corrélation

Plus en détail

Analyse. Gaëtan Bisson. bisson@gaati.org

Analyse. Gaëtan Bisson. bisson@gaati.org Analyse Gaëtan Bisson bisson@gaati.org Table des matières Nombres réels 4. Construction........................................ 4. Densité et distance..................................... 6.3 Exercices...........................................

Plus en détail

Exercices - Réduction des endomorphismes : énoncé. Réduction pratique de matrices

Exercices - Réduction des endomorphismes : énoncé. Réduction pratique de matrices Réduction pratique de matrices Exercice 1 - Diagonalisation - 1 - L1/L2/Math Spé - Diagonaliser les matrices suivantes : 0 2 1 A = 3 2 0 B = 2 2 1 0 3 2 2 5 2 2 3 0 On donnera aussi la matrice de passage

Plus en détail

La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1

La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1 La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1 La licence Mathématiques et Economie-MASS de l Université des Sciences Sociales de Toulouse propose sur les trois

Plus en détail

Tous droits de traduction, de reproduction et d adaptation réservés pour tous pays.

Tous droits de traduction, de reproduction et d adaptation réservés pour tous pays. Maquette de couverture : Graphir Maquette intérieure : Frédéric Jély Mise en page : CMB Graphic Dessins techniques : Gilles Poing Hachette Livre 008, 43, quai de Grenelle, 790 Paris Cedex ISBN : 978--0-8-

Plus en détail

MATHÉMATIQUES TERMINALE ES A. YALLOUZ. Ce polycopié conforme au programme 2012, regroupe des documents distribués aux élèves en cours d année.

MATHÉMATIQUES TERMINALE ES A. YALLOUZ. Ce polycopié conforme au programme 2012, regroupe des documents distribués aux élèves en cours d année. MATHÉMATIQUES TERMINALE ES A. YALLOUZ Ce polycopié conforme au programme 01, regroupe des documents distribués aux élèves en cours d année. CERTAINS CHAPITRES DU PROGRAMME NE SONT PAS TRAITÉS Année 013-014

Plus en détail

ÉCOLE NATIONALE DE L AVIATION CIVILE Session 2007

ÉCOLE NATIONALE DE L AVIATION CIVILE Session 2007 ÉCOLE NATIONALE DE L AVIATION CIVILE Session 27 CONCOURS DE RECRUTEMENT D ÉLÈVES INGÉNIEURS DU CONTRÔLE DE LA NAVIGATION AÉRIENNE Épreuve commune obligatoire de MATHÉMATIQUES Durée : 4 Heures Coefficient

Plus en détail

Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin.

Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin. Exo7 Matrice d une application linéaire Corrections d Arnaud odin. Exercice Soit R muni de la base canonique = ( i, j). Soit f : R R la projection sur l axe des abscisses R i parallèlement à R( i + j).

Plus en détail

Applications des nombres complexes à la géométrie

Applications des nombres complexes à la géométrie Chapitre 6 Applications des nombres complexes à la géométrie 6.1 Le plan complexe Le corps C des nombres complexes est un espace vectoriel de dimension 2 sur R. Il est donc muni d une structure naturelle

Plus en détail

Du Calcul d Aire... ...Au Calcul Intégral

Du Calcul d Aire... ...Au Calcul Intégral Du Calcul d Aire......Au Calcul Intégral Objectifs Définir proprement l aire d une surface plane, au moins pour les domaines usuels (limités par des courbes simples) et fournir un moyen de la calculer.

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)

Plus en détail

Université Joseph Fourier, Grenoble. Suites numériques. Bernard Ycart

Université Joseph Fourier, Grenoble. Suites numériques. Bernard Ycart Université Joseph Fourier, Grenoble Maths en Ligne Suites numériques Bernard Ycart Vous savez déjà étudier une suite et calculer sa limite. La nouveauté réside dans la rigueur. La notion de convergence

Plus en détail

Image d un intervalle par une fonction continue

Image d un intervalle par une fonction continue DOCUMENT 27 Image d un intervalle par une fonction continue La continuité d une fonction en un point est une propriété locale : une fonction est continue en un point x 0 si et seulement si sa restriction

Plus en détail

PROGRAMMES DE MATHÉMATIQUES EN VIGUEUR DE L ENSEIGNEMENT SECONDAIRE GÉNÉRAL TECHNIQUE ET PROFESSIONNEL

PROGRAMMES DE MATHÉMATIQUES EN VIGUEUR DE L ENSEIGNEMENT SECONDAIRE GÉNÉRAL TECHNIQUE ET PROFESSIONNEL MINISTÈRE DE L ÉDUCATION DE L ALPHABÉTISATION ET DES LANGUES NATIONALES RÉPUBLIQUE DU MALI Un Peuple Un But Une Foi PROGRAMMES DE MATHÉMATIQUES EN VIGUEUR DE L ENSEIGNEMENT SECONDAIRE GÉNÉRAL TECHNIQUE

Plus en détail

Cahier de textes Mathématiques

Cahier de textes Mathématiques Cahier de textes Mathématiques Mercredi 6 janvier : cours 2h Début du chapitre 12 - Convergence de suites réelles : 12.1 Convergence de suites : suites convergentes, limites de suites convergentes, unicité

Plus en détail

Concours de recrutement de professeur des écoles session 2014, groupement académique 2

Concours de recrutement de professeur des écoles session 2014, groupement académique 2 Concours de recrutement de professeur des écoles session 014, groupement académique Corrigé non officiel de la deuxième épreuve d admissibilité proposé par http ://primaths.fr 1 Première partie La montée

Plus en détail

Enseignement secondaire. MATHE - Mathématiques Programme

Enseignement secondaire. MATHE - Mathématiques Programme Enseignement secondaire Division supérieure MATHE - Mathématiques Programme 2CC_2CD_2MC_2MD Langue véhiculaire: Français Nombre minimal de devoirs par trimestre: 3 I. Compétences à développer au cours

Plus en détail

Correction du Baccalauréat S Amérique du Nord mai 2007

Correction du Baccalauréat S Amérique du Nord mai 2007 Correction du Baccalauréat S Amérique du Nord mai 7 EXERCICE points. Le plan (P) a une pour équation cartésienne : x+y z+ =. Les coordonnées de H vérifient cette équation donc H appartient à (P) et A n

Plus en détail

Factorisation des matrices creuses

Factorisation des matrices creuses Chapitre 5 Factorisation des matrices creuses 5.1 Matrices creuses La plupart des codes de simulation numérique en mécanique des fluides ou des structures et en électromagnétisme utilisent des discrétisations

Plus en détail

Cours Diagonalisation

Cours Diagonalisation Cours Diagonalisation par Pierre Veuillez 1 Objectif Pour une matrice A donnée, déterminer une matrice D diagonale et une matrice P inversible telle que A = P D P 1. Interprètation : Quelle relation reconnaît-on?

Plus en détail

1 Codes linéaires. G = [I k A]. Dans ce cas on constate que la matrice. H = [ t A I n k ] est une matrice de contrôle de C. Le syndrome de x F n q

1 Codes linéaires. G = [I k A]. Dans ce cas on constate que la matrice. H = [ t A I n k ] est une matrice de contrôle de C. Le syndrome de x F n q 1 Codes linéaires Un code de longueur n est une partie de F n q. Un code linéaire C de longueur n sur le corps ni F q est un sous-espace vectoriel de F n q. Par défaut, un code sera supposé linéaire. La

Plus en détail

EXERCICES : GROUPES, ANNEAUX, CORPS

EXERCICES : GROUPES, ANNEAUX, CORPS EXERCICES : GROUPES, ANNEAUX, CORPS Dans les exercices suivants (G,.) est un groupe dont l élément neutre est noté e. 1. Soient x, y, z trois éléments de G tels que x 3 = y 2, y 3 = z 2, z 3 = x 2. (a)

Plus en détail

Licence STIC, Semestre 1 Algorithmique & Programmation 1

Licence STIC, Semestre 1 Algorithmique & Programmation 1 Licence STIC, Semestre 1 Algorithmique & Programmation 1 Exercices Alexandre Tessier 1 Introduction 2 instruction de sortie 3 expressions 4 variable informatique 5 séquence d instructions, trace Exercice

Plus en détail

PAD - Notes de cours. S. Rigal, D. Ruiz, et J. C. Satgé

PAD - Notes de cours. S. Rigal, D. Ruiz, et J. C. Satgé ALGÈBRE PAD - Notes de cours S. Rigal, D. Ruiz, et J. C. Satgé November 23, 2006 Table des Matières Espaces vectoriels Applications linéaires - Espaces vectoriels............................... 3 -. Approche

Plus en détail

www.h-k.fr/publications/objectif-agregation

www.h-k.fr/publications/objectif-agregation «Sur C, tout est connexe!» www.h-k.fr/publications/objectif-agregation L idée de cette note est de montrer que, contrairement à ce qui se passe sur R, «sur C, tout est connexe». Cet abus de langage se

Plus en détail

Sur l algorithme RSA

Sur l algorithme RSA Sur l algorithme RSA Le RSA a été inventé par Rivest, Shamir et Adleman en 1978. C est l exemple le plus courant de cryptographie asymétrique, toujours considéré comme sûr, avec la technologie actuelle,

Plus en détail

MATIÈRE DU COURS D'ALGÈBRE ET D'ANALYSE

MATIÈRE DU COURS D'ALGÈBRE ET D'ANALYSE MATIÈRE DU COURS D'ALGÈBRE ET D'ANALYSE Titulaire : A.M. Tilkin 8h/semaine 1) MATIERE DE 4 e ANNEE a) ALGEBRE - Rappels algébriques concernant la résolution d équations et d inéquations (fractionnaires

Plus en détail

Cours d algebre pour la licence et le Capes

Cours d algebre pour la licence et le Capes Cours d algebre pour la licence et le Capes Jean-Étienne ROMBALDI 6 juillet 007 ii Table des matières Avant-propos Notation v vii 1 Éléments de logique et de théorie des ensembles 1 11 Quelques notions

Plus en détail

Primitives Cours maths Terminale S

Primitives Cours maths Terminale S Primitives Cours maths Terminale S Dans ce module est introduite la notion de primitive d une fonction sur un intervalle. On définit cette notion puis on montre qu une fonction admet une infinité de primitives

Plus en détail

Modélisation et Simulation

Modélisation et Simulation Cours de modélisation et simulation p. 1/83 Modélisation et Simulation G. Bontempi Département d Informatique Boulevard de Triomphe - CP 212 http://www.ulb.ac.be/di Cours de modélisation et simulation

Plus en détail

MPSI FORMULAIRE LIONEL PORCHERON DANIEL PORCHERON MAGALI DÉCOMBE VASSET. Le Formulaire MPSI

MPSI FORMULAIRE LIONEL PORCHERON DANIEL PORCHERON MAGALI DÉCOMBE VASSET. Le Formulaire MPSI MPSI FORMULAIRE LIONEL PORCHERON DANIEL PORCHERON MAGALI DÉCOMBE VASSET Le Formulaire MPSI Conception et création de couverture : Atelier 3+ Collaboration technique : Thomas Fredon, ingénieur Télécom Bretagne

Plus en détail

Corrigé de l examen partiel du 30 Octobre 2009 L2 Maths

Corrigé de l examen partiel du 30 Octobre 2009 L2 Maths Corrigé de l examen partiel du 30 Octobre 009 L Maths (a) Rappelons d abord le résultat suivant : Théorème 0.. Densité de Q dans R. QUESTIONS DE COURS. Preuve. Il nous faut nous montrer que tout réel est

Plus en détail

Fiche d'exercices Mathématiques Troisième ( ) ( ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ( ) ) ( ( ) ) ( ) ( ) ( ) ( ) ( )

Fiche d'exercices Mathématiques Troisième ( ) ( ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ( ) ) ( ( ) ) ( ) ( ) ( ) ( ) ( ) Fiche d'exercices Mathématiques Troisième Chapitre 0: Révisions de quatrième Révisions et préparation à l'évaluation diagnostique 1. Les nombres relatifs. Exercice 1. ( Exercice 2 : Calculer Exercice 3

Plus en détail

Développement décimal d un réel

Développement décimal d un réel 4 Développement décimal d un réel On rappelle que le corps R des nombres réels est archimédien, ce qui permet d y définir la fonction partie entière. En utilisant cette partie entière on verra dans ce

Plus en détail

P R O G R A M M E E T I N S T R U C T I O N S O F F I C I E L L E S

P R O G R A M M E E T I N S T R U C T I O N S O F F I C I E L L E S P R O G R A M M E E T I N S T R U C T I O N S O F F I C I E L L E S POUR L ENSEIGNEMENT DE L INFORMATIQUE MPSI première année I. Objectifs de la formation II-1 Développement de compétences et d aptitudes

Plus en détail

3 Approximation de solutions d équations

3 Approximation de solutions d équations 3 Approximation de solutions d équations Une équation scalaire a la forme générale f(x) =0où f est une fonction de IR dans IR. Un système de n équations à n inconnues peut aussi se mettre sous une telle

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo7 Continuité (étude globale). Diverses fonctions Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr * très facile ** facile *** difficulté moyenne **** difficile *****

Plus en détail

Notes de cours de spé maths en Terminale ES

Notes de cours de spé maths en Terminale ES Spé maths Terminale ES Lycée Georges Imbert 05/06 Notes de cours de spé maths en Terminale ES O. Lader Table des matières Recherche de courbes sous contraintes, matrices. Systèmes linéaires.......................................

Plus en détail

Chaînes de Markov au lycée

Chaînes de Markov au lycée Journées APMEP Metz Atelier P1-32 du dimanche 28 octobre 2012 Louis-Marie BONNEVAL Chaînes de Markov au lycée Andreï Markov (1856-1922) , série S Problème 1 Bonus et malus en assurance automobile Un contrat

Plus en détail

Licence MIMP Semestre 1. Math 12A : Fondements de l Analyse 1. http ://math.univ-lille1.fr/ mimp/math12.html

Licence MIMP Semestre 1. Math 12A : Fondements de l Analyse 1. http ://math.univ-lille1.fr/ mimp/math12.html Licence MIMP Semestre 1 Math 12A : Fondements de l Analyse 1 http ://math.univ-lille1.fr/ mimp/math12.html Septembre 2013 Table des matières Chapitre I. Les nombres réels et les suites numériques 1 1

Plus en détail

Cours Mathématiques PACES UHP-Nancy

Cours Mathématiques PACES UHP-Nancy Cours Mathématiques PACES UHP-Nancy V. Latocha PACES UHP septembre 2010 remerciements à D. Schmitt et V. Ries V. Latocha (PACES UHP) Cours mathématiques Paces septembre 2010 1 / 48 1 Fonctions d une variable

Plus en détail

Cahier de vacances. Exercices PCSI - PC, Lycée Dupuy de Lôme

Cahier de vacances. Exercices PCSI - PC, Lycée Dupuy de Lôme Cahier de vacances Exercices PCSI - PC, Lycée Dupuy de Lôme Votre année de PCSI a été bien remplie et il est peu probable que l année de PC qui arrive vous paraisse plus facile. C est pourquoi, je vous

Plus en détail

Formulaire de Maths. par Xavier Chauvet C OLLECTION LES MÉMENTOS DE L INSEEC MÉMENTO N 10

Formulaire de Maths. par Xavier Chauvet C OLLECTION LES MÉMENTOS DE L INSEEC MÉMENTO N 10 C OLLECTION LES MÉMENTOS DE L INSEEC CAHIERS MÉTHODOLOGIQUES POUR LES CLASSES PRÉPARATOIRES AUX GRANDES ÉCOLES DE COMMERCE Formulaire de Maths par Xavier Chauvet MÉMENTO N 10 Les Mémentos de l INSEEC Depuis

Plus en détail

Olympiade Mathématique internationale. Année 2015/2016. Tour 1 Problèmes pour le niveau R5

Olympiade Mathématique internationale. Année 2015/2016. Tour 1 Problèmes pour le niveau R5 Problèmes pour le niveau R5 1. Peter, Basil et Anatoly ont mis ensemble leurs économies pour s acheter un ballon. On sait que chacun a contribué pas plus que la moitié de ce que les deux autres ensemble.

Plus en détail

BREVET BLANC DE MAI 2012

BREVET BLANC DE MAI 2012 COLLEGE GASPARD DES MONTAGNES BREVET BLANC DE MAI 2012 Ce sujet comporte 8 pages numérotées de 1/8 à 8/8, dont une feuille annexe à remettre avec la copie. L usage de la calculatrice est autorisé. Notation

Plus en détail

2. u 3 = 16, u 7 = 1 et u p = 1 8.

2. u 3 = 16, u 7 = 1 et u p = 1 8. EXERCICE 1 (u n ) est une suite arithmétique de raison a, déterminer l entier k dans chacun des cas suivants : 1. u 21 = 34, a=1,5 et u k = 1 2. u 10 = 64, u 5 = 14 et u k = 114. EXERCICE 2 (u n ) est

Plus en détail