Processus de comptage, Poisson mélange, fonction de perte exponentielle, système bonus-malus.

Dimension: px
Commencer à balayer dès la page:

Download "Processus de comptage, Poisson mélange, fonction de perte exponentielle, système bonus-malus."

Transcription

1 JF WALHIN* J PARIS* * Université Catholique de Louvain, Belgique Le Mans Assurances, Belgique RÉSUMÉ Nous proposons une méthodologie générale pour construire un système bonus-malus équilibré basé sur une fonction de perte exponentielle Ce travail englobe les travaux sur le sujet et en simplifie les écritures MOTS-CLÉS Processus de comptage, Poisson mélange, fonction de perte exponentielle, système bonus-malus 1 INTRODUCTION - LE PROCESSUS DE COMPTAGE L'introduction d'un système bonus-malus en assurance RC auto se justifie principalement par le fait que le nombre N( de sinistres déclarés par un assuré dans l'intervalle (,t] ne suit pas une loi de Poisson simple Cela conduit naturellement à traduire la diversité des assurés en supposant que N( suit une loi de Poisson mélange caractérisée par Π ( nt, ) t ( ( Nt ( ) n) e λ λ P n! n Généralement on fait choix de la fonction U pour trouver la loi de N( Lemaire (1979) a choisi la loi gamma pour U, ce qui conduit à la loi binomiale négative pour N( Morillo et Bermudez (1999) ont choisi la loi inverse gaussienne pour U, ce qui conduit à la loi Poisson inverse gaussienne pour N( Ces choix se justifient plus pour des raisons de facilité mathématique que pour des raisons objectives liées aux observations En effet, l'observation porte sur le nombre de sinistres déclarés sur une période de temps (l'année en pratique) Comme la fréquence est faible, le nombre de degrés de liberté est peu élevé, ce qui rend difficile la distinction entre BULLETIN FRANÇAIS D ACTUARIAT, Vol 3, N 6, 1999, pp 35-43

2 36 JF WALHIN & J PARIS les modèles Les deux choix particuliers indiqués plus haut appartiennent en réalité à la même famille obtenue en choisissant pour U une fonction de répartition infiniment divisible Ceci se traduit de manière équivalente par une expression simple pour Π ( n, : où n n (, ) ( 1) t ( n) Π n t Π (, n! θ( Π(, e θ( θ( ) d θ ( complètement monotone dt Un choix intéressant pour la fonction θ ( est celui fait par Hofmann (1955) et utilisé par Kestemont et Paris (1985) : p θ ( p >, c >, a a (1 + c Par intégration, on trouve θ ( t ) pt si a p θ ( t ) ln(1 + c si a1 c p 1 a θ( t ) (1 + c 1 ailleurs c(1 a) Les cas particuliers sont : a (Poisson) ; a5 (Poisson Inverse Gaussienne) ; a1 (Binomiale Négative) ; a2 (Polya-Aeppli) ; a, c, ac b (Neymann Type A) Dans les problèmes d'assurance, il est naturel de supposer lim Π(, t

3 37 ce qui limite le choix possible à la sous-famille pour laquelle a 1 Par ailleurs le choix le plus général montre qu'une fonction complètement monotone ne diffère d'une autre que par une constante Dans le cas de la famille Hofmann, on prend donc θ étendu( δ + θ ( Ceci indique que le processus N( le plus général est la somme de deux processus indépendants Le premier est un processus de Poisson simple, de paramètre δ, qui correspond aux sinistres purement fortuits, le second est un processus de Hofmann et correspond aux sinistres liés au comportement du conducteur Dans le cas étendu, il est facile de montrer que la loi de probabilité s'écrit : θ( δt f N ( () e pt t t f θ δ N t t ( ) ( )(1) δ + e a ct (1 + ) 1 pt f N( ( x) δt + f ( 1) + ( ) x a N t x (1 + c) 1 pt x i 1 ct Γ( a + i 1) f ( )( x i) a N t, x 2 x(1 + c i 2 ( i 1)! 1 + ct Γ( a) Dans le cas de la loi Binomiale Négative sans composante Poissonienne, la densité est donnée de manière explicite Dans le cas de la loi Poisson Inverse Gaussienne sans composante Poissonienne, la densité est donnée sous forme d'une récursion du 2ème ordre L'utilisation de ces processus Poisson mélange a déjà été décrite dans Walhin et Paris (1999) pour la construction de systèmes bonus-malus Par la suite, nous aurons besoin de la propriété suivante : Pour la classe des processus de Poisson mélange, la distribution de la fréquence conditionnellement à l'historique sinistre ne dépend que du nombre de sinistres En effet

4 38 JF WALHIN & J PARIS du ( λ N ( t ) N ( t 1) t, K, N (1) N () 1) P Nt ( ) Nt ( 1) t,, N(1) N() 1 λ P [ Nt ( ) Nt ( 1),, N(1) N() ] t 1 λt e ( λ λt e ( λ λt e ( λ λ t e ( λ λt e ( λ! λt e ( λ! du ( λ N( ) t avec j j 1 t j j 1 Cette propriété n est pas utilisée dans les systèmes bonus-malus avec un nombre limité de classes et ceci explique en partie pourquoi ces derniers sont en déséquilibre A l'avenir, nous travaillerons donc avec la fonction de distribution a posteriori du ( λ N( ) 2 SYSTÈME BONUS-MALUS ET FONCTION DE PERTE La construction d'un système bonus-malus avec une fonction de perte a été décrite dans Lemaire (1979) et est utilisée dans Morillo et Bermudez (1999) La motivation pour l'introduction d'un tel système bonus-malus est la suivante La construction classique est basée sur le principe de l espérance : λ t+ 1 ( ) E ( Λ N ( t ) )

5 39 qui est en fait l'intensité conditionnelle du processus Cette dernière provient de la minimisation de la fonction de perte quadratique 2 ( λ λ ( )) ( ( ) ) t + 1 du λ N t Comme le fait remarquer Lemaire (1979), cette méthode traite les mali et les boni de manière symétrique pour la classe des assurés ayant déclaré sinistres en t années Si la compagnie d'assurance souhaite maintenir un niveau élevé de solidarité parmi ses assurés, elle doit utiliser une méthode qui pondère les mali et boni différemment Choisissons une fonction de perte exponentielle : 1 ( 1 ( )) e 1 N( ) t γ λ λ + λ γ Une telle fonction de perte nous permet d'indexer nos préférences vis-à-vis des boni et mali à attribuer Par exemple si γ25, deux polices avec une sous-tarification de 2 compensent une police avec une sur-tarification de 4 tandis que avec γ25 il faut 4 polices avec sous-tarification de 2 pour compenser une police avec sur-tarification de 4 Cette dernière situation représente donc une plus grande solidarité entre assurés Une solution n est possible au problème de minimisation min 1 ( 1 ( )) 1 ( ( ) ) ) 1 ( e t γ λ λ + du λ N t λt + γ que si λt +1( ) est contraint La contrainte naturelle est celle qui assure l'équilibre financier du système : Eλ t+ 1( Nt ( )) E Λ La solution de ce problème de minimisation sous contrainte est donnée par Lemaire (1979) au moyen du Lagrangien et de manière plus élégante par Morillo et Bermudez (1999) au moyen de l'inégalité de Jensen La solution s écrit : 1 γλ γλ λ t+ 1( ) E Λ+ ln ( e N( ) ln ( e N( ) γ E E E

6 4 JF WALHIN & J PARIS Quelques lignes d'algèbre permettent de réécrire cette expression comme 1 t Nt () Π ( N(, t+γ) t Π (, t+γ) λ t+ 1( ) EΛ+ E ln ( ) ln ( ) γ t+γ Π ( N(, t+γ Π(, La prime sera exprimée sous la forme d'un pourcentage, en référence à la prime a priori, E Λ Ce pourcentage est : P t t Nt () Π ( N(, t+γ) t Π (, t+γ) ( ) 1 + E ln ( ) ln ( ) E Λγ t+γ Π ( N(, t+γ Π(, 3 APPLICATIONS NUMÉRIQUES Dans cette section, nous reprenons le portefeuille utilisé par Morillo et Bermudez (1999) et nous l'ajustons suivant une binomiale négative, une Poisson Inverse Gaussienne et une loi de Hofmann L'ajustement Binomiale Négative avec une composante Poisson simple est également donné Nombre de sinistres Obs BN PIG Hof BN + Po l χ ddl δ 695 p c a

7 41 Nous sommes en mesure de construire les tables suivantes ( t + 1( )) : 1 Binomiale Négative Espérance γ25 γ25 γ25 t/ Poisson Inverse Gaussienne Espérance γ25 γ25 γ25 t/ Binomiale Négative + Poisson Espérance γ25 γ25 γ25 t/ On voit immédiatement apparaître la solidarité croissante entre assurés lorsque le γ augmente

8 42 JF WALHIN & J PARIS CONCLUSION Nous avons revu l'intérêt d'utiliser des processus de comptage pour la construction de systèmes bonus-malus L'aspect Poisson mélange de ces processus permet d'obtenir des écritures compactes pour les formules de systèmes bonus-malus, même lorsqu elles sont obtenues au moyen de fonctions de perte exponentielle En particulier le processus de Hofmann englobe la Binomiale Négative et la Poisson Inverse Gaussienne Les écritures sont simplifiées dans ce dernier cas En particulier, il n est pas nécessaire de faire appel aux fonctions de Bessel de troisième type De plus, le choix du paramètre a du processus de Hofmann permet d'utiliser une gamme d'hétérogénéité dans la construction du système bonus-malus Le cas a, pour lequel on retrouve le processus de Poisson amène un système bonus-malus neutre Le cas a1, Binomiale Négative, entraîne une tension importante au sein des primes du système bonus-malus Enfin, nous avons vu que l'actuaire dispose d'un autre outil pour faire varier boni et mali, tout en gardant un système équilibré : il s'agit du paramètre gamma de la fonction de perte exponentielle Le choix de ce dernier, combiné au choix de la loi de comptage, permet à la compagnie de construire un système bonus-malus correspondant au niveau de solidarité qu elle souhaite maintenir au sein de son portefeuille RÉFÉRENCES HOFMANN, M (1955) Über zusammengesetzte Poisson-Prozesse un ihre Anwendungen in der Unfallversicherung Bulletin of the Swiss Actuaries, 55 : KESTEMONT, RM and PARIS, J (1985) Sur l Ajustement du Nombre de Sinistres Bulletin of the Swiss Actuaries, 85 : LEMAIRE, J (1979) How to Define a Bonus-Malus System with an Exponential Utility Function Astin Bulletin, 19 : MORILLO, I and BERMUDEZ, L (1999) An Optimal Bonus-Malus System Papers presented at the third congress on Insurance : Mathematics and Economics, 6 WALHIN, JF and PARIS, J (1999) Using Mixed Poisson Distributions in Connection with Bonus-Malus Systems Astin Bulletin, 29 : 81-99

9 43 Jean-François WALHIN* José PARIS* * Institut de Statistique Voie du Roman Pays, 2 B-1348 Louvain-la-Neuve Belgique Le Mans Assurances Avenue Louise, 222 B-15 Bruxelles Belgique

CNAM 2002-2003 2léments de cours Bonus-malus et Crédibilité

CNAM 2002-2003 2léments de cours Bonus-malus et Crédibilité 1 CNAM 2002-2003 2léments de cours Bonus-malus et Crédibilité Une situation fréquente en pratique est de disposer non pas d un résultat mais de plusieurs. Le cas se présente en assurance, par exemple :

Plus en détail

Prévention et gestion des risques naturels et environnementaux

Prévention et gestion des risques naturels et environnementaux Prévention et gestion des risques naturels et environnementaux Risque et assurance : quelques éléments théoriques Ecole des Ponts - Le 6 Avril 01 Jacques Pelletan 1 Théorie du risque et pérennité de l

Plus en détail

SOMMAIRES D OUVRAGES PARUS

SOMMAIRES D OUVRAGES PARUS SOMMAIRES D OUVRAGES PARUS TITRE : MÉTHODES ACTUARIELLES DE L'ASSURANCE VIE (cours et exercices corrigés) AUTEUR : Christian HESS ÉDITEUR : ÉCONOMICA, PARIS DATE DE PARUTION : NOVEMBRE 2000 357 pages prix

Plus en détail

Théorie de la crédibilité

Théorie de la crédibilité ISFA - Année 2008-2009 Théorie de la crédibilité Chapitre 2 : Prime de Bayes Pierre-E. Thérond Email, Page web, Ressources actuarielles Langage bayesien (1/2) Considérons une hypothèse H et un événement

Plus en détail

Contents. 1 Introduction Objectifs des systèmes bonus-malus Système bonus-malus à classes Système bonus-malus : Principes

Contents. 1 Introduction Objectifs des systèmes bonus-malus Système bonus-malus à classes Système bonus-malus : Principes Université Claude Bernard Lyon 1 Institut de Science Financière et d Assurances Système Bonus-Malus Introduction & Applications SCILAB Julien Tomas Institut de Science Financière et d Assurances Laboratoire

Plus en détail

Mémoire d Actuariat Tarification de la branche d assurance des accidents du travail Aymeric Souleau aymeric.souleau@axa.com 3 Septembre 2010 Plan 1 Introduction Les accidents du travail L assurance des

Plus en détail

Gestion du niveau de la franchise d un contrat avec bonus-malus. Pierre THEROND & Stéphane BONCHE

Gestion du niveau de la franchise d un contrat avec bonus-malus. Pierre THEROND & Stéphane BONCHE Gestion du niveau de la franchise d un contrat avec bonus-malus Pierre THEROND & Stéphane BONCHE SOMMAIRE 1. Réduction de franchise en l absence de système bonus-malus A - Bonnes propriétés du modèle collectif

Plus en détail

TECH. INFOTECH # 34 Solvabilité 2 : Le calcul du capital économique dans le cadre d un modèle interne. Introduction

TECH. INFOTECH # 34 Solvabilité 2 : Le calcul du capital économique dans le cadre d un modèle interne. Introduction INFO # 34 dans le cadre d un modèle interne Comment les méthodes d apprentissage statistique peuvent-elles optimiser les calculs? David MARIUZZA Actuaire Qualifié IA Responsable Modélisation et Solvabilité

Plus en détail

Exercices de simulation 1

Exercices de simulation 1 Licence MIA 2ème année Année universitaire 2009-2010 Simulation stochastique C. Léonard Exercices de simulation 1 Les simulations qui suivent sont à effectuer avec Scilab. Le générateur aléatoire de Scilab.

Plus en détail

Modélisation du risque opérationnel dans le secteur de l assurance

Modélisation du risque opérationnel dans le secteur de l assurance Avril 2011 N 14 Modélisation du risque opérationnel dans le secteur de l assurance Par Julie Gamonet Centre d études actuarielles Lauréate du prix du jeune actuaire 2010 Un texte paraissant dans SCOR Papers

Plus en détail

MODELES DE DUREE DE VIE

MODELES DE DUREE DE VIE MODELES DE DUREE DE VIE Cours 1 : Introduction I- Contexte et définitions II- Les données III- Caractéristiques d intérêt IV- Evènements non renouvelables/renouvelables (unique/répété) I- Contexte et définitions

Plus en détail

Examen Mesures de Risque de Marché

Examen Mesures de Risque de Marché ESILV 2012 D. Herlemont Mesures de Risque de Marché I Examen Mesures de Risque de Marché Durée: 2 heures. Documents non autorisés et calculatrices simples autorisées. 2 pt 1. On se propose d effectuer

Plus en détail

Statistique Descriptive et Inférentielle Méthodes paramétriques et non paramétriques

Statistique Descriptive et Inférentielle Méthodes paramétriques et non paramétriques Fiche TD avec le logiciel : a2-1-c Statistique Descriptive et Inférentielle Méthodes paramétriques et non paramétriques Sylvain Mousset Rappels de probabilités / statistiques Table des matières 1 Probabilités

Plus en détail

Analyse de données et méthodes numériques

Analyse de données et méthodes numériques Analyse de données et méthodes numériques Analyse de données: Que faire avec un résultat? Comment le décrire? Comment l analyser? Quels sont les «modèles» mathématiques associés? Analyse de données et

Plus en détail

Loi binomiale Lois normales

Loi binomiale Lois normales Loi binomiale Lois normales Christophe ROSSIGNOL Année scolaire 204/205 Table des matières Rappels sur la loi binomiale 2. Loi de Bernoulli............................................ 2.2 Schéma de Bernoulli

Plus en détail

Simulation d un système d assurance automobile

Simulation d un système d assurance automobile Simulation d un système d assurance automobile DESSOUT / PLESEL / DACHI Plan 1 Introduction... 2 Méthodes et outils utilisés... 2.1 Chaines de Markov... 2.2 Méthode de Monte Carlo... 2.3 Méthode de rejet...

Plus en détail

Lois de probabilité 3/3. Anita Burgun

Lois de probabilité 3/3. Anita Burgun Lois de probabilité 3/3 Anita Burgun Contenu des cours Loi binomiale Loi hypergéométrique Loi de Poisson Loi normale Loi du Chi2 Loi de Student Loi normale VA continue X Densité de probabilité de X" Loi

Plus en détail

Simulation de variables aléatoires

Simulation de variables aléatoires Simulation de variables aléatoires S. Robin INA PG, Biométrie Décembre 1997 Table des matières 1 Introduction Variables aléatoires discrètes 3.1 Pile ou face................................... 3. Loi de

Plus en détail

Mathématique - Cours Filière STAV 2014-2015 Centre de Formation aux Métier de la Montagne Marine Estorge

Mathématique - Cours Filière STAV 2014-2015 Centre de Formation aux Métier de la Montagne Marine Estorge Mathématique - Cours Filière STAV 2014-2015 Centre de Formation aux Métier de la Montagne Marine Estorge Le programme se compose ainsi : Rappels collège/seconde Partie STAV 1/3 Partie STAV 2/3 Partie STAV

Plus en détail

Lois de probabilité à densité Loi normale

Lois de probabilité à densité Loi normale DERNIÈRE IMPRESSIN LE 31 mars 2015 à 14:11 Lois de probabilité à densité Loi normale Table des matières 1 Lois à densité 2 1.1 Introduction................................ 2 1.2 Densité de probabilité

Plus en détail

Actuariat I ACT2121. septième séance. Arthur Charpentier. Automne 2012. charpentier.arthur@uqam.ca. http ://freakonometrics.blog.free.

Actuariat I ACT2121. septième séance. Arthur Charpentier. Automne 2012. charpentier.arthur@uqam.ca. http ://freakonometrics.blog.free. Actuariat I ACT2121 septième séance Arthur Charpentier charpentier.arthur@uqam.ca http ://freakonometrics.blog.free.fr/ Automne 2012 1 Exercice 1 En analysant le temps d attente X avant un certain événement

Plus en détail

Séminaire de Statistique

Séminaire de Statistique Master 1 - Economie & Management Séminaire de Statistique Support (2) Variables aléatoires & Lois de probabilité R. Abdesselam - 2013/2014 Faculté de Sciences Economiques et de Gestion Université Lumière

Plus en détail

Choix de Portefeuille

Choix de Portefeuille Année 2007-2008 Choix de Portefeuille Christophe Boucher Chapitre 1. Théorie de la décision en avenir incertain Critère d espérance d utilité L attitude vis-à-vis du risque Chapitre 2. Rendements et critères

Plus en détail

Problèmes de fiabilité dépendant du temps

Problèmes de fiabilité dépendant du temps Problèmes de fiabilité dépendant du temps Bruno Sudret Dépt. Matériaux et Mécanique des Composants Pourquoi la dimension temporelle? Rappel Résistance g( RS, ) = R S Sollicitation g( Rt (), St (),) t =

Plus en détail

Probabilités. I- Expérience aléatoire, espace probabilisé : ShotGun. 1- Définitions :

Probabilités. I- Expérience aléatoire, espace probabilisé : ShotGun. 1- Définitions : Probabilités I- Expérience aléatoire, espace probabilisé : 1- Définitions : Ω : Ensemble dont les points w sont les résultats possibles de l expérience Des évènements A parties de Ω appartiennent à A une

Plus en détail

Le polycopié de cours, les notes manuscrites, et les calculatrices sont autorisés.

Le polycopié de cours, les notes manuscrites, et les calculatrices sont autorisés. Université d Orléans Deug MASS, MIAS et SM Unité MA. Probabilités et Graphes Examen partiel du 5 décembre durée: h Le polycopié de cours, les notes manuscrites, et les calculatrices sont autorisés. Le

Plus en détail

Une illustration de l utilisation des modèles de durée en actuariat

Une illustration de l utilisation des modèles de durée en actuariat Une illustration de l utilisation des modèles de durée en actuariat Olivier Lopez Université Paris VI, LSTA Formation IPR ENS Cachan Bretagne, 28-09-11 Outline 1 Introduction 2 Tarification d une rente

Plus en détail

5 Méthodes algorithmiques

5 Méthodes algorithmiques Cours 5 5 Méthodes algorithmiques Le calcul effectif des lois a posteriori peut s avérer extrêmement difficile. En particulier, la prédictive nécessite des calculs d intégrales parfois multiples qui peuvent

Plus en détail

Introduction au modèle linéaire général

Introduction au modèle linéaire général Résumé Introductions au modèle linéaire général Retour au plan du cours Travaux pratiques 1 Introduction L objet de ce chapitre est d introduire le cadre théorique global permettant de regrouper tous les

Plus en détail

Mth2302B - Intra Été 2011

Mth2302B - Intra Été 2011 École Polytechnique de Montréal page 1 Contrôle périodique Été 2011--------------------------------Corrigé--------------------------------------T.Hammouche Question 1 (12 points) Mth2302B - Intra Été 2011

Plus en détail

Approximation polynomiale de la densité de probabilité

Approximation polynomiale de la densité de probabilité Approximation polynomiale de la densité de probabilité Applications en assurance P.O. Goffard Axa France - Institut de Mathématiques de Marseille I2M Aix-Marseille Université Soutenance de thèse de doctorat

Plus en détail

assurance Février 2012

assurance Février 2012 Modèles fréquence coût : Construire un générateur de scénarios Quelles perspectives économiques d évolution en? assurance Version 0.7 Version 1.2 Mars 2014 Février 2012 Frédéric PLANCHET frederic@planchet.net

Plus en détail

DEFINITION et PROPRIETES des PRINCIPALES LOIS de PROBABILITES

DEFINITION et PROPRIETES des PRINCIPALES LOIS de PROBABILITES Université Paris1, Licence 00-003, Mme Pradel : Principales lois de Probabilité 1 DEFINITION et PROPRIETES des PRINCIPALES LOIS de PROBABILITES Notations Si la variable aléatoire X suit la loi L, onnoterax

Plus en détail

Provisionnement face au risque de défaut des emprunteurs

Provisionnement face au risque de défaut des emprunteurs Provisionnement face au risque de défaut des emprunteurs Geoffrey Nichil et Pierre Vallois Institut Elie Cartan de Lorraine. 6-11 Avril 2014 1/12 Geoffrey Nichil et Pierre Vallois Provisionnement face

Plus en détail

Calcul élémentaire des probabilités

Calcul élémentaire des probabilités Myriam Maumy-Bertrand 1 et Thomas Delzant 1 1 IRMA, Université Louis Pasteur Strasbourg, France Licence 1ère Année 16-02-2006 Sommaire La loi de Poisson. Définition. Exemple. 1 La loi de Poisson. 2 3 4

Plus en détail

Méthodes de Simulation

Méthodes de Simulation Méthodes de Simulation JEAN-YVES TOURNERET Institut de recherche en informatique de Toulouse (IRIT) ENSEEIHT, Toulouse, France Peyresq06 p. 1/41 Remerciements Christian Robert : pour ses excellents transparents

Plus en détail

ASSURANCE AUTOMOBILE ÉTUDES ACTUARIELLES ET POLITIQUE TARIFAIRE EN 2001 (x)

ASSURANCE AUTOMOBILE ÉTUDES ACTUARIELLES ET POLITIQUE TARIFAIRE EN 2001 (x) ÉTUDES ACTUARIELLES ET POLITIQUE TARIFAIRE EN 2001 (x) Gilbert THIRY Membre d'honneur de l'iaf E.S.R.A. - Paris Dans toutes les sociétés d'assurances, le rôle de l'actuaire est incontournable pour optimiser

Plus en détail

Mesure et gestion des risques d assurance

Mesure et gestion des risques d assurance Mesure et gestion des risques d assurance Analyse critique des futurs référentiels prudentiel et d information financière Congrès annuel de l Institut des Actuaires 26 juin 2008 Pierre THEROND ptherond@winter-associes.fr

Plus en détail

LA PROGRAMMATION LINEAIRE : UN OUTIL DE MODELISATION

LA PROGRAMMATION LINEAIRE : UN OUTIL DE MODELISATION LA PROGRAMMATION LINEAIRE : UN OUTIL DE MODELISATION Dans les leçons précédentes, nous avons modélisé des problèmes en utilisant des graphes. Nous abordons dans cette leçon un autre type de modélisation.

Plus en détail

Probabilité conditionnelle et indépendance. Couples de variables aléatoires. Exemples

Probabilité conditionnelle et indépendance. Couples de variables aléatoires. Exemples 36 Probabilité conditionnelle et indépendance. Couples de variables aléatoires. Exemples (Ω, B, P est un espace probabilisé. 36.1 Définition et propriétés des probabilités conditionnelles Définition 36.1

Plus en détail

ACT3284 Modèles en assurance IARD Examen Final - 14 décembre 2011

ACT3284 Modèles en assurance IARD Examen Final - 14 décembre 2011 #1 À partir de l'information ci-dessous : Sinistres payés cumulatifs Réserves aux dossiers 12 mois 24 mois 36 mois 12 mois 24 mois 36 mois 2008 240,000 393,600 499,200 2008 160,000 120,000 79,200 2009

Plus en détail

4 Distributions particulières de probabilités

4 Distributions particulières de probabilités 4 Distributions particulières de probabilités 4.1 Distributions discrètes usuelles Les variables aléatoires discrètes sont réparties en catégories selon le type de leur loi. 4.1.1 Variable de Bernoulli

Plus en détail

SAS ENTERPRISE MINER POUR L'ACTUAIRE

SAS ENTERPRISE MINER POUR L'ACTUAIRE SAS ENTERPRISE MINER POUR L'ACTUAIRE Conférence de l Association des Actuaires I.A.R.D. 07 JUIN 2013 Sylvain Tremblay Spécialiste en formation statistique SAS Canada AGENDA Survol d Enterprise Miner de

Plus en détail

MICROSTRUCTURE DES MARCHES FINANCIERS. Comportements stratégiques Production de liquidité

MICROSTRUCTURE DES MARCHES FINANCIERS. Comportements stratégiques Production de liquidité MCROSTRUCTURE DES MARCHES FNANCERS Comportements stratégiques Production de liquidité Plan du cours Préambule : Comportements stratégiques et modèles de stock Le modèle de Ho et Stoll Le modèle de Kyle

Plus en détail

SESSION 2013 BTS ASSURANCE CORRIGE E3

SESSION 2013 BTS ASSURANCE CORRIGE E3 SESSION 2013 BTS ASSURANCE CORRIGE E3 U3 Corrigé Page 1 Sujet n 1 1. Indiquez les éléments pris en compte pour déterminer une cotisation d assurance. La prime dépend de : (3x0,5 pt = 1,5) - La fréquence

Plus en détail

Lois normales, cours, terminale S

Lois normales, cours, terminale S Lois normales, cours, terminale S F.Gaudon 6 mai 2014 Table des matières 1 Variables centrées et réduites 2 2 Loi normale centrée et réduite 2 3 Loi normale N (µ, σ 2 ) 4 1 1 Variables centrées et réduites

Plus en détail

Statistiques et probabilités : Loi Normale. Les I.P.R. et Formateurs de l Académie de LILLE

Statistiques et probabilités : Loi Normale. Les I.P.R. et Formateurs de l Académie de LILLE Statistiques et probabilités : Loi Normale Les I.P.R. et Formateurs de l Académie de LILLE Bulletin officiel spécial 8 du 13 octobre 2011 Cadre général : loi à densité Définition Une fonction f définie

Plus en détail

Cours de mathématiques pour la Terminale S

Cours de mathématiques pour la Terminale S Cours de mathématiques pour la Terminale S Savoir-Faire par chapitre Florent Girod 1 Année scolaire 2015 / 2016 1. Externat Notre Dame - Grenoble Table des matières 1) Suites numériques.................................

Plus en détail

ANALYSE DE FOURIER 1. REPRESENTATION DE FOURIER. 1.1 Représentation d un signal sinusoïdal

ANALYSE DE FOURIER 1. REPRESENTATION DE FOURIER. 1.1 Représentation d un signal sinusoïdal Annexe Fourier I ANNEXE ANALYSE DE FOURIER 1. REPRESENTATION DE FOURIER 1.1 Représentation d un signal sinusoïdal On peut représenter un signal sinusoïdal de la forme s(t) = s 0 cos"t = s 0 cos(2#f 0 t)

Plus en détail

Principes de Finance

Principes de Finance Principes de Finance 13. Théorie des options II Daniel Andrei Semestre de printemps 2011 Principes de Finance 13. Théorie des options II Printemps 2011 1 / 34 Plan I Stratégie de réplication dynamique

Plus en détail

TD n 1 : la Balance des Paiements

TD n 1 : la Balance des Paiements TD n 1 : la Balance des Paiements 1 - Principes d enregistrement L objet de la Balance des Paiements est de comptabiliser les différentes transactions entre résidents et non-résidents au cours d une année.

Plus en détail

Master IMEA 1 Calcul Stochastique et Finance Feuille de T.D. n o 1

Master IMEA 1 Calcul Stochastique et Finance Feuille de T.D. n o 1 Master IMEA Calcul Stochastique et Finance Feuille de T.D. n o Corrigé exercices8et9 8. On considère un modèle Cox-Ross-Rubinstein de marché (B,S) à trois étapes. On suppose que S = C et que les facteurs

Plus en détail

La demande Du consommateur. Contrainte budgétaire Préférences Choix optimal

La demande Du consommateur. Contrainte budgétaire Préférences Choix optimal La demande Du consommateur Contrainte budgétaire Préférences Choix optimal Plan du cours Préambule : Rationalité du consommateur I II III IV V La contrainte budgétaire Les préférences Le choix optimal

Plus en détail

Value at Risk - étude de cas

Value at Risk - étude de cas Value at Risk - étude de cas Daniel Herlemont 17 juin 2011 Table des matières 1 Introduction 1 2 La Value at Risk 1 2.1 La VaR historique................................. 2 2.2 La VaR normale..................................

Plus en détail

Le modèle de Black et Scholes

Le modèle de Black et Scholes Le modèle de Black et Scholes Alexandre Popier février 21 1 Introduction : exemple très simple de modèle financier On considère un marché avec une seule action cotée, sur une période donnée T. Dans un

Plus en détail

Economie de l incertain et de l information Partie 1 : Décision en incertain probabilisé Chapitre 1 : Introduction à l incertitude et théorie de

Economie de l incertain et de l information Partie 1 : Décision en incertain probabilisé Chapitre 1 : Introduction à l incertitude et théorie de Economie de l incertain et de l information Partie 1 : Décision en incertain probabilisé Chapitre 1 : Introduction à l incertitude et théorie de l espérance d utilité Olivier Bos olivier.bos@u-paris2.fr

Plus en détail

EXERCICES SANS PRÉPARATION HEC 2005. Question 11 D après HEC 2005-11 F 2 EXERCICES SANS PRÉPARATION 2008. Question 7 HEC 2006-7 F 1 élève

EXERCICES SANS PRÉPARATION HEC 2005. Question 11 D après HEC 2005-11 F 2 EXERCICES SANS PRÉPARATION 2008. Question 7 HEC 2006-7 F 1 élève 30-1- 2013 J.F.C. p. 1 F 1 F 2 F 3 Assez simple ou proche du cours. Demande du travail. Délicat. EXERCICES SANS PRÉPARATION HEC 2005 Question 11 D après HEC 2005-11 F 2 X est une variable aléatoire de

Plus en détail

TSTI 2D CH X : Exemples de lois à densité 1

TSTI 2D CH X : Exemples de lois à densité 1 TSTI 2D CH X : Exemples de lois à densité I Loi uniforme sur ab ; ) Introduction Dans cette activité, on s intéresse à la modélisation du tirage au hasard d un nombre réel de l intervalle [0 ;], chacun

Plus en détail

Examen d accès - 1 Octobre 2009

Examen d accès - 1 Octobre 2009 Examen d accès - 1 Octobre 2009 Aucun document autorisé - Calculatrice fournie par le centre d examen Ce examen est un questionnaire à choix multiples constitué de 50 questions. Plusieurs réponses sont

Plus en détail

Devoir Surveillé n 5 BTS 2009 groupement B

Devoir Surveillé n 5 BTS 2009 groupement B EXERCICE 1 (12 points) Devoir Surveillé n 5 BTS 2009 groupement B Les trois parties de cet exercice peuvent être traitées de façon indépendante. A. Résolution d une équation différentielle On considère

Plus en détail

STATISTIQUES. Cours I : Test d hypothèses. Télécom Physique Strasbourg Module 2101. Fabrice Heitz. Octobre 2014

STATISTIQUES. Cours I : Test d hypothèses. Télécom Physique Strasbourg Module 2101. Fabrice Heitz. Octobre 2014 Télécom Physique Strasbourg Module 2101 STATISTIQUES Cours I : Test d hypothèses Fabrice Heitz Octobre 2014 Fabrice Heitz (Télécom PS) Statistiques 2014 1 / 75 Cours I TESTS D HYPOTHÈSES Fabrice Heitz

Plus en détail

Méthodes d apprentissage statistique («Machine Learning»)

Méthodes d apprentissage statistique («Machine Learning») Méthodes d apprentissage statistique («Machine Learning») Journées d Etudes IARD Niort, 21 Mars 2014 Fabrice TAILLIEU Sébastien DELUCINGE Rémi BELLINA 2014 Milliman. All rights reserved Sommaire Introduction

Plus en détail

Nouveaux programmes de terminale Probabilités et statistiques

Nouveaux programmes de terminale Probabilités et statistiques Nouveaux programmes de terminale Probabilités et statistiques I. Un guide pour l'année II. La loi uniforme : une introduction III. La loi exponentielle IV. De la loi binomiale à la loi normale V. Échantillonnage

Plus en détail

Soutenance de stage Laboratoire des Signaux et Systèmes

Soutenance de stage Laboratoire des Signaux et Systèmes Soutenance de stage Laboratoire des Signaux et Systèmes Bornes inférieures bayésiennes de l'erreur quadratique moyenne. Application à la localisation de points de rupture. M2R ATSI Université Paris-Sud

Plus en détail

Segmentation en assurance et problématiques de gestion des risques associées en mortalité

Segmentation en assurance et problématiques de gestion des risques associées en mortalité Segmentation en assurance et problématiques de gestion des risques associées en mortalité 13 septembre 2013, version 1.0 Aymric Kamega, Actuaire aymric.kamega@univ-brest.fr www.euria.univ-brest.fr Sommaire

Plus en détail

Pierre Thérond pierre@therond.fr. Année universitaire 2013-2014

Pierre Thérond pierre@therond.fr. Année universitaire 2013-2014 http://www.therond.fr pierre@therond.fr Institut de Science Financière et d Assurances - Université Lyon 1 Année universitaire 2013-2014 Plan du cours 1 Chapitre 1 - Introduction 2 3 4 Bibliographie principale

Plus en détail

Chapitre 4 NOTIONS DE PROBABILITÉS

Chapitre 4 NOTIONS DE PROBABILITÉS Statistique appliquée à la gestion et au marketing http://foucart.thierry.free.fr/statpc Chapitre 4 NOTIONS DE PROBABILITÉS Les chapitres précédents donnent des méthodes graphiques et numériques pour caractériser

Plus en détail

Combiner anticipations et optimisation : le modèle Black-Litterman

Combiner anticipations et optimisation : le modèle Black-Litterman Combiner anticipations et optimisation : le modèle Black-Litterman Université Paris 1, Panthéon-Sorbonne, IAE (Sorbonne Graduate Business School) PLAN Les raisons du modèle 1 Les raisons du modèle 2 1.

Plus en détail

Chapitre 4. Fondements économiques de la demande d'assurance

Chapitre 4. Fondements économiques de la demande d'assurance Chapitre 4. Fondements économiques de la demande d'assurance Laurent Denant Boemont octobre 2008 Chapitre 4. Fondements économiques de la demande d'assurance 2 J. Hamburg (2005) Along came Polly 1 Introduction

Plus en détail

Tutorat 3 de Mathématiques (2ème année)

Tutorat 3 de Mathématiques (2ème année) Tutorat 3 de Mathématiques (2ème année) Marches aléatoires et marchés financiers Groupe 4 tuteur : J. Bouttier 8 février 2010 Résumé Depuis la thèse de Bachelier, les marchés nanciers ont constitué un

Plus en détail

Cours (7) de statistiques à distance, élaboré par Zarrouk Fayçal, ISSEP Ksar-Said, 2011-2012 LES STATISTIQUES INFERENTIELLES

Cours (7) de statistiques à distance, élaboré par Zarrouk Fayçal, ISSEP Ksar-Said, 2011-2012 LES STATISTIQUES INFERENTIELLES LES STATISTIQUES INFERENTIELLES (test de Student) L inférence statistique est la partie des statistiques qui, contrairement à la statistique descriptive, ne se contente pas de décrire des observations,

Plus en détail

Les options : Lien entre les paramètres de pricing et les grecs

Les options : Lien entre les paramètres de pricing et les grecs Cette page est soutenue par ALGOFI Cabinet de conseil, d ingénierie financière et dépositaire de systèmes d information financiers. Par Ingefi, le Pôle Métier Ingénierie Financière d Algofi. ---------------------------------------------------------------------------------------------------------------------

Plus en détail

ECRICOME 2004. Voie Eco. 1 1 + x. f (x) dx n N, u n = 1. 0 xn f (x) dx

ECRICOME 2004. Voie Eco. 1 1 + x. f (x) dx n N, u n = 1. 0 xn f (x) dx ECRICOME 2004 Voie Eco 1 EXERCICE 1 EXERCICE Soient f la fonction numérique de la variable réelle définie par : x R, f (x = 1 2 et (u n la suite de nombres réels déterminée par : { u 0 = 1 f (x dx 0 n

Plus en détail

5255 Av. Decelles, suite 2030 Montréal (Québec) H3T 2B1 T: 514.592.9301 F: 514.340.6850 info@apstat.com www.apstat.com

5255 Av. Decelles, suite 2030 Montréal (Québec) H3T 2B1 T: 514.592.9301 F: 514.340.6850 info@apstat.com www.apstat.com Application des réseaux de neurones au plan de répartition des risques 5255 Av. Decelles, suite 2030 Montréal (Québec) H3T 2B1 T: 514.592.9301 F: 514.340.6850 info@apstat.com www.apstat.com Copyright c

Plus en détail

Le taux d'actualisation en assurance

Le taux d'actualisation en assurance The Geneva Papers on Risk and Insurance, 13 (No 48, July 88), 265-272 Le taux d'actualisation en assurance par Pierre Devolder* Introduction Le taux d'actualisation joue un role determinant dans Ia vie

Plus en détail

Modélisation des risques

Modélisation des risques 2 Modélisation des risques 2. Introduction L objectif de ce chapitre est de présenter les modèles de base utilisés pour décrire le comportement aléatoire d un risque en actuariat pour une période xe. Les

Plus en détail

1 Systèmes triphasés symétriques

1 Systèmes triphasés symétriques 1 Systèmes triphasés symétriques 1.1 Introduction Un système triphasé est un ensemble de grandeurs (tensions ou courants) sinusoïdales de même fréquence, déphasées les unes par rapport aux autres. Le système

Plus en détail

Fiche info-financière Assurance-vie pour une combinaison des branches 21 et 23. For Kids 1. Type d assurance-vie

Fiche info-financière Assurance-vie pour une combinaison des branches 21 et 23. For Kids 1. Type d assurance-vie Fiche info-financière Assurance-vie pour une combinaison des branches 21 et 23 For Kids 1 Type d assurance-vie Assurance-vie individuelle avec taux d intérêt garanti (branche 21). En ce qui concerne la

Plus en détail

Exercices corrigés de probabilités et statistique

Exercices corrigés de probabilités et statistique Exercices corrigés de probabilités et statistique Université Paris 1 Panthéon-Sorbonne Cours de deuxième année de licence de sciences économiques Fabrice Rossi Cette œuvre est mise à disposition selon

Plus en détail

PROBABILITES ET STATISTIQUE I&II

PROBABILITES ET STATISTIQUE I&II PROBABILITES ET STATISTIQUE I&II TABLE DES MATIERES CHAPITRE I - COMBINATOIRE ELEMENTAIRE I.1. Rappel des notations de la théorie des ensemble I.1.a. Ensembles et sous-ensembles I.1.b. Diagrammes (dits

Plus en détail

Plan de la séance. Partie 4: Restauration. Restauration d images. Restauration d images. Traitement d images. Thomas Oberlin

Plan de la séance. Partie 4: Restauration. Restauration d images. Restauration d images. Traitement d images. Thomas Oberlin Plan de la séance Traitement d images Partie 4: Restauration Thomas Oberlin Signaux et Communications, RT/ENSEEHT thomasoberlin@enseeihtfr 1 ntroduction 2 Modélisation des dégradations Modèles de bruit

Plus en détail

Fiche de révision sur les lois continues

Fiche de révision sur les lois continues Exercice 1 Voir la correction Le laboratoire de physique d un lycée dispose d un parc d oscilloscopes identiques. La durée de vie en années d un oscilloscope est une variable aléatoire notée X qui suit

Plus en détail

1.1 Prime d une option d achat dans le modèle de Cox, Ross et Rubinstein

1.1 Prime d une option d achat dans le modèle de Cox, Ross et Rubinstein 1 Examen 1.1 Prime d une option d achat dans le modèle de Cox, Ross et Rubinstein On considère une option à 90 jours sur un actif ne distribuant pas de dividende de nominal 100 francs, et dont le prix

Plus en détail

ACTUARIAT 1, ACT 2121, AUTOMNE 2013 #12

ACTUARIAT 1, ACT 2121, AUTOMNE 2013 #12 ACTUARIAT 1, ACT 2121, AUTOMNE 2013 #12 ARTHUR CHARPENTIER 1 Une compagnie d assurance modélise le montant de la perte lors d un accident par la variable aléatoire continue X uniforme sur l intervalle

Plus en détail

Introduction au cours STA 102 Analyse des données : Méthodes explicatives

Introduction au cours STA 102 Analyse des données : Méthodes explicatives Analyse des données - Méthodes explicatives (STA102) Introduction au cours STA 102 Analyse des données : Méthodes explicatives Giorgio Russolillo giorgio.russolillo@cnam.fr Infos et support du cours Slide

Plus en détail

Chiffres clés de l assurance transport 2010 réalisés par l ABAM

Chiffres clés de l assurance transport 2010 réalisés par l ABAM Chiffres clés de l assurance transport 2010 réalisés par l ABAM Contenu Contenu... 1 1. Facultés... 2 2. CMR... 3 3. Corps fluviaux... 4 4. Corps maritimes... 5 5. Conclusion... 5 Le 8 juin 2011, l Association

Plus en détail

Terminale S - ACP Ex1 : Partie A - Restitution organisée des connaissances Partie B : 1. a. 1. b. 1. c. 2. a. 2. b. Ex2 :

Terminale S - ACP Ex1 : Partie A - Restitution organisée des connaissances Partie B : 1. a. 1. b. 1. c. 2. a. 2. b. Ex2 : Terminale S - ACP Ex1 : Antilles Septembre 2006 Partie A - Restitution organisée des connaissances On suppose connu le résultat suivant : Si est une variable aléatoire qui suit une loi exponentielle de

Plus en détail

Série de TD N 1. On lance un dé dont les faces sont numérotées de 1 à 6, donc

Série de TD N 1. On lance un dé dont les faces sont numérotées de 1 à 6, donc Série de TD N 1 Exercice 1 Combien de " mots " de cinq lettres au plus peut-on former avec les quatre lettres de mot "CLAN". Ces lettres étant répétées ou non, et leur ordre n intervenant pas. Exercice

Plus en détail

Modèles à facteur pour la gestion du risque de crédit

Modèles à facteur pour la gestion du risque de crédit Areski Cousin, Jean-Paul Laurent Université Claude Bernard Lyon 1, ISFA GT Projet ANR AST&Risk - ISFA - 26 septembre et 10 octobre 2008 Introduction Modélisation de la dépendance pour la gestion de portefeuilles

Plus en détail

Examen de Gestion des Risques Financiers

Examen de Gestion des Risques Financiers Examen de Gestion des Risques Financiers Thierry Roncalli 4 janvier 2012 Merci de rédiger entièrement vos réponses. 1 Les réglementations Bâle II et Bâle III 1. Quelles sont les principales différences

Plus en détail

14. Introduction aux files d attente

14. Introduction aux files d attente 14. Introduction aux files d attente MTH2302D S. Le Digabel, École Polytechnique de Montréal H2015 (v2) MTH2302D: Files d attente 1/24 Plan 1. Introduction 2. Modèle M/M/1 3. Modèle M/M/1/K MTH2302D: Files

Plus en détail

Le Modèle de Black-Scholes. DeriveXperts. 27 octobre 2010

Le Modèle de Black-Scholes. DeriveXperts. 27 octobre 2010 27 octobre 2010 Outline 1 Définitions Le modèle de diffusion de Black-Scholes Portefeuille auto-finançant Objectif de BS 2 Portefeuille auto-finançant et formule de Black-Scholes Formulation mathématique

Plus en détail

ACTUARIAT 1, ACT 2121, AUTOMNE 2013 #9

ACTUARIAT 1, ACT 2121, AUTOMNE 2013 #9 ACTUARIAT 1, ACT 2121, AUTOMNE 2013 #9 ARTHUR CHARPENTIER 1 Soit X la variable aléatoire continue de fonction de densité : { (1.4)e 2x + (0.9)e 3x pour x > 0 f X (x) = 0 sinon. Trouver E[X]. A) 9 20 B)

Plus en détail

Moments des variables aléatoires réelles

Moments des variables aléatoires réelles Chapter 6 Moments des variables aléatoires réelles Sommaire 6.1 Espérance des variables aléatoires réelles................................ 46 6.1.1 Définition et calcul........................................

Plus en détail

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures)

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures) CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE Cinquième épreuve d admissibilité STATISTIQUE (durée : cinq heures) Une composition portant sur la statistique. SUJET Cette épreuve est composée d un

Plus en détail

L essentiel sur les tests statistiques

L essentiel sur les tests statistiques L essentiel sur les tests statistiques 21 septembre 2014 2 Chapitre 1 Tests statistiques Nous considérerons deux exemples au long de ce chapitre. Abondance en C, G : On considère une séquence d ADN et

Plus en détail

Régression de Poisson

Régression de Poisson ZHANG Mudong & LI Siheng & HU Chenyang 21 Mars, 2013 Plan Composantes des modèles Estimation Qualité d ajustement et Tests Exemples Conclusion 2/25 Introduction de modèle linéaire généralisé La relation

Plus en détail

Sans avoir la prétention d être exhaustif, nous examinerons dans cet article, successivement :

Sans avoir la prétention d être exhaustif, nous examinerons dans cet article, successivement : Les dividendes SigmaConso Allen White Dominique Galloy La problématique de l élimination des dividendes interne en consolidation semble à priori être un sujet relativement simple. En effet, les financiers

Plus en détail

Les conducteurs automobiles évaluent-ils correctement leur risque de commettre un accident?

Les conducteurs automobiles évaluent-ils correctement leur risque de commettre un accident? Les conducteurs automobiles évaluent-ils correctement leur risque de commettre un accident? Nathalie LEPINE GREMAQ, Université de Toulouse1, 31042 Toulouse, France GRAPE, Université Montesquieu-Bordeaux

Plus en détail