Plan général du cours

Dimension: px
Commencer à balayer dès la page:

Download "Plan général du cours"

Transcription

1 BTS GPN 1ERE ANNEE-MATHEMATIQUES-PROBABILITES-DENOMBREMENT,COMBINATOIRE PROBABILITES Plan général du cours 1. Dénombrement et combinatoire (permutations, arrangements, combinaisons). 2. Les probabilités générales et conditionnelles. 3. Les variables aléatoires discrètes et continues : loi de probabilité d'une variable aléatoire, variance, écart type. 4. Modèles statistiques discrets : loi binomiale, approche d'une loi binomiale par une loi de Poisson. 5. Modèles statistiques continus : loi uniforme, loi normale N( μ, σ 2 ) ; loi normale centrée réduite N(0;1). 6. Intervalle de fluctuation, intervalle de confiance, échantillonnage. Dans tous ces chapitres, l'utilisation de la calculatrice sera privilégiée mais toutefois des tables seront fournies principalement dans les paragraphes traitant de la loi de Poisson et des lois normales. I. DENOMBREMENT-COMBINATOIRE Nous adopterons la notation (n!) qui se dit «factorielle de n» le produit : (n 1) n 5!= =120, faire ce calcul à la calculatrice. 10!= , faire ce calcul à la calculatrice. On admettra que 0!=1 (cela provient du fait, que nous verrons ultérieurement, qu'il n'y a qu'une seule façon de ranger un ensemble contenant 0 élément...) Exercice : a) Démontrer que 6! 7!=10! sans utiliser la calculatrice et vérifier ce résultat à la calculatrice

2 BTS GPN 1ERE ANNEE-MATHEMATIQUES-PROBABILITES-DENOMBREMENT,COMBINATOIRE b) Simplifier l'expression (n+1)! n! c) Démontrer que pour tout nombre entier k, on a (k+1)! k!=k k! 1. Principes de bases du dénombrement On rappelle que le cardinal d'un ensemble fini E noté Card (E) représente son nombre d'éléments. Exemples E={0;1; 2 ;3; 4;5;6 ;7 ;8;9} et Card (E)=10 a) Principe de la somme Si des ensembles A 1, A 2,... A p constituent une partition de l'ensemble E c'est à dire qu'ils font tous partie de l'ensemble E (ils sont tous inclus dans E ) mais ils n'ont aucun élément commun entre eux. Alors : Card (E)=Card ( A 1 )+Card ( A 2 )+...+Card ( A p )

3 BTS GPN 1ERE ANNEE-MATHEMATIQUES-PROBABILITES-DENOMBREMENT,COMBINATOIRE Exemple : Combien y a-t-il de carrés dont les côtés sont matérialisés sur la figure ci-dessous? Soit E l'ensemble de tous les carrés. Notons A 1, A 2, A 3 et A 4 l'ensemble de ces carrés qui ont pour côté respectif 1 carreau, 2 carreaux, 3 carreaux et 4 carreaux. Les sous-ensembles A 1, A 2, A 3, A 4 constituent une partition de l'ensemble E (en effet, ils font tous partie de l'ensemble E leur réunion constitue l'ensemble E et ils n'ont aucun élément en commun). Card (A 1 )=16 : il y a 16 carrés qui ont pour côté 1 carreau. Card (A 2 )=9 : il y a 9 carrés qui ont pour côté 2 carreaux. Card (A 3 )=4 : il y a 4 carrés qui ont pour côté 3 carreaux. Card (A 4 )=1 : il y a un carré qui a pour côté 4 carreaux. D'après le principe de la somme, on a : Card (E)=Card ( A 1 )+Card ( A 2 )+Card ( A 3 )+Card ( A 4 )= =30 Il y a au total 30 carrés dont les côtés sont matérialisés sur la figure ci-dessus. Conséquences : Soient A et B deux parties d'un ensemble E. Il ne faut pas confondre «partie» et «partition» d'un ensemble. Les partitions n'ont aucun élément commun entre eux, des parties peuvent avoir des éléments communs entre eux. 1. Lien entre le Cardinal de l'union et le Cardinal de l'intersection A A B A B B Card ( A B)=Card ( A)+Card ( B) Card ( A B)

4 BTS GPN 1ERE ANNEE-MATHEMATIQUES-PROBABILITES-DENOMBREMENT,COMBINATOIRE 2. Dans le cas où A et B sont disjoints, c'est à dire qu'ils n'ont aucun élément en commun, autrement que leur intersection est vide : A B=, alors : Card ( A B)=Card ( A)+Card ( B) 3. Lien entre le cardinal d'une partie A et celui de son complémentaire noté Ā : les sous-ensembles A et Ā sont des partitions de l'ensemble (ils sont inclus dans E et n'ont aucun élément en commun) Card ( Ā)=Card (E) Card ( A) NB : nous retrouverons ces notions lors des calculs de probabilité. En effet un événement est constitué du quotient du nombre de cas favorables Card (A) par le nombre de cas possibles Card (E) et on écrira Card (A) ainsi p (A)= Card ( E) Exercice : Dans un camp de vacances hébergeant 80 personnes, 55 personnes pratiquent la natation, 33 pratiquent le tennis, et 16 ne pratiquent aucun de ces deux sports. Combien de personnes pratiquent à la fois le tennis et la natation. Conseil : un schéma peut aider à la compréhension

5 BTS GPN 1ERE ANNEE-MATHEMATIQUES-PROBABILITES-DENOMBREMENT,COMBINATOIRE b) Principe du produit (ou principe multiplicatif) Si une situation comporte p étapes offrant chacune n 1, n 2. n p possibilités alors le nombre total d'issues est égal à n 1 n 2... n p. C'est la règle utilisée lorsque nous utilisons un arbre pondéré. Exemple Un code comporte deux lettres distinctes suivies d'un chiffre non nul. Combien peut-on former de codes différents? Nombre de possibilités pour la première lettre : 26 Nombre de possibilités pour la seconde lettre : 25 (les lettres sont différentes) Nombre de possibilités pour le chiffre : 9 Il y a donc =5850 codes différents possibles. Exercice 1 : Nombre de codes possibles pour un cadenas «à combinaison» comportant 4 mollettes de 10 chiffres chacune (de 0 à 9) Cas 1 : les chiffres peuvent être identiques Cas 2 : les chiffres sont tous différents Exercice 2 : Nombre d'itinéraires distincts menant de A à C A B C Cas 1 : Nombres d'itinéraires directs menant de A à C? Cas 2 : Nombre d'itinéraires «aller-retour» A-C-A n'empruntant que des chemins distincts?

6 BTS GPN 1ERE ANNEE-MATHEMATIQUES-PROBABILITES-DENOMBREMENT,COMBINATOIRE 2. Dénombrement des «p-listes» Définition : Soient n un nombre entier non nul et E un ensemble de n éléments (Card (E)=n) Une p-liste (ou liste de longueur p) est un p-uplet d'éléments de E Exemples : E={0;1; 2 ;3;... ;99}. Une 5-liste de E est par exemple (12 ;17; 21;56 ;97). E={a ;b; c ;... ; z}. Le 6-uplet (a ;n;a ;n;a ; s) est une 6-liste de E de même que {m ;a ;c ;h ;i ;n ;e} est une 7-liste de E Remarques : On précise quelquefois p-liste «avec répétition» pour les distinguer des arrangements qui seront évoqués au paragraphe suivant. On suppose que la 0-liste existe, c'est la liste qui ne comporte aucun élément. Soit E un ensemble de cardinal fini n : Card ( E)=n. Le cardinal de l'ensemble des p-listes de E est égal à n p Si E={0;1; 2;3;... ;99}, Card (E)=100, il y a listes possibles (les chiffres peuvent être identiques bien entendu) Si E={a ;b; c ;... ; z}, Card (E)=26, il y a listes possibles (les lettres peuvent être identiques bien entendu) Exercices d'application Exercice 1 : au loto sportif on coche l'une des trois cases 1, N ou 2 pour chacun des 13 matches sélectionnés. Dénombrer le nombre de grilles distinctes Exercice 2 : Combien y a-t-il de numéros de téléphone à 10 chiffres commençant par , de numéros de téléphones commençant par Exercice 3 : Nombre de codes possibles pour une carte bleue?

7 BTS GPN 1ERE ANNEE-MATHEMATIQUES-PROBABILITES-DENOMBREMENT,COMBINATOIRE 3. Dénombrement des arrangements et des permutations a) Définition : Soit E un ensemble de cardinal fini n : Card (E)=n et p un entier naturel tel que 0 p n. Un p-arrangement (ou arrangement de p éléments) de E est une p-liste de p éléments distincts de E. Une permutation de E est un arrangement des n éléments de E Un arrangement est donc une p-liste dans laquelle il n'y a pas de répétitions. Exemples : E={a ;b; c ;... ; z}. Les listes suivantes beau, matin, hiver, lun e sont des arrangements de 4 et 5 éléments de E parce que ses éléments sont distincts. Par contre arrangement n'est pas un arrangement de 11 éléments de E car ses éléments ne sont pas distincts E={s; u; c; r ;e}. Les anagrammes du mot sucr e (que les mots aient un sens ou non) sont des permutations de E. b) Soit E un ensemble fini de n éléments et p un entier naturel tel que 0 p n le nombre d'arrangements de p éléments de E est A n p =n (n 1)...(n p 1)= n! (n p)! le nombre de permutations de E est A n n =n! par convention, le nombre d'arrangements de 0 élément de E est A n 0 =1 Exercices d'application : Exercice 1 : le tiercé : Une course de chevaux comporte 20 partants. Combien peut-il y avoir de tiercés dans l'ordre? Exercice 2 : De combien de façons peut-on répartir 7 personnes sur 7 chaises? Exercice 3 : Un porte-manteau comporte 5 patères. De combien de façons peut-on y accrocher 3 manteaux différents, chaque patère portant au maximum un manteau.

8 BTS GPN 1ERE ANNEE-MATHEMATIQUES-PROBABILITES-DENOMBREMENT,COMBINATOIRE Exercice 4 : Nombre de mots (ayant un sens ou non) de 5 lettres distinctes de notre alphabet Exercice 5 : Une urne contient 10 boules numérotées 0,1,2,...,9. On en tire successivement 3 sans remise. Combien obtient-on de tirages différents.? Exercice 6 : Un bureau est fermé par une serrure à code qui comporte 6 symboles. Combien de codes peuton concevoir lorsque celui-ci : comporte 6 chiffres tous différents? Comporte 6 chiffres, éventuellement identiques? Comporte 4 chiffres suivies de 2 lettres, éventuellement identiques? Commence par une voyelle, puis comporte 4 consonnes, puis finit par une voyelle, et que toutes les lettres sont différentes?

9 BTS GPN 1ERE ANNEE-MATHEMATIQUES-PROBABILITES-DENOMBREMENT,COMBINATOIRE 4. Dénombrement des combinaisons (fin du cours «Dénombrement et Combinatoire») A) Définition Soit E un ensemble fini de cardinal n et p un entier naturel tel que 0 p n. Une p-combinaison (ou combinaison de p-éléments) de E est une partie de E ayant p éléments. Exemple : E = {a ; b ; c } et p =2. Les combinaisons de deux éléments de E sont les parties : {a ; b }, { a ; c }, {b ; c }. Il est essentiel de noter que : dans une partie, les éléments sont deux à deux distincts, deux parties qui contiennent les mêmes éléments sont distincts. Ainsi {a ; b } = {b ; a } L'ordre dans lequel on écrit les éléments n'a pas d'importance. Dans un p-arrangement, on obtiendrait les parties suivantes : {a ; b }, { a ; c }, {b ; a }, { b ; c }, {c ; a }, { c ; b} soit A 2 3 = 3! (3 2)! = 3! 1! = 6 1 puisque dans ce type d'arrangement, l'ordre compte Dans une p-combinaison on obtient les parties suivantes {a ; b }, { a ; c }, { b ; c } éléments ne compte pas, soit C 2 3! 3 = 2! (3 2)! = 3! 2! 1! = = 6 2 = 3 B) Théorème Soit E un ensemble fini de cardinal n et p un entier naturel tel que 0 p n Le nombre de combinaisons de p éléments de E est : C p n = A p n p! = n! p!(n p)! = 6 issues différentes puisque l'ordre des La notation C n p est abandonnée au profit de la notation ( n p) qui se lit «p parmi n», cette notation subsiste dans les calculatrices sous la formulation ncr sous CASIO. C) Interprétation ( n p) représente le nombre de façons de choisir p éléments parmi n (l'ordre n'importe pas) Applications : 1. Le LOTO (ancienne formule ):on choisit au hasard 6 numéros parmi 49. Combien de tirages possibles? 2. Le LOTO : (nouvelle formule) : on tire au hasard 5 numéros parmi 49 ET on choisit un numéro chance qui est compris entre 0 et 10 : combien de tirages possibles? A-t-on plus de chances de gagner le gros lot avec la nouvelle formule qu 'avec l'ancienne?

10 BTS GPN 1ERE ANNEE-MATHEMATIQUES-PROBABILITES-DENOMBREMENT,COMBINATOIRE 3. L'EUROMILLION : il faut choisir 5 numéros parmi 50 (numérotés de 1 à 50) ET 2 numéros «étoiles» parmi 11 numéros (numérotés de 1 à 11). Combien de grilles possibles? 4. Dans un jeu de 32 cartes, on choisit 5 cartes au hasard (ces 5 cartes représentent une «main») a) Nombre total de mains? b) Nombre de mains contenant exactement 3 as? c) Nombre de mains contenant au moins 3as?

11 BTS GPN 1ERE ANNEE-MATHEMATIQUES-PROBABILITES-DENOMBREMENT,COMBINATOIRE D) EXERCICE DE SYNTHESE Le jeu au poker fermé On joue au poker avec un jeu de 52 cartes sans joker. Pour simplifier le raisonnement, on donne les cinq cartes au joueur dès la première donne. 1. Combien y a-t-il de «mains» de 5 cartes possibles? (nombre d'issues ou éventualités possibles) 2. Combien y a-t-il de possibilités de recevoir (nombre d'issues favorables) : a) Une quinte royale ( 10, V, D, R, A soit 5 cartes majeures dans la même couleur )? b) Une quinte flush ( exemple : 7, 8, 9, 10, V : 5 cartes consécutives de la même couleur, mais pas une quinte royale )? c) Un carré ( par exemple : R, R, R, R, 4 )? d) Un full (brelan+ paire, par exemple : 8, 8, 8, V, V )? e) un flush (par exemple : 3, 7, 8, V, R, 5 cartes de la même couleur mais ni quinte royale ni quinte flush)? f) Une quinte (par exemple : 2, 3, 4, 5, 6, 5 cartes consécutives mais ni quinte flush ni quinte royale)? g) Un brelan (par exemple : A, A, A, 7, 9 )? h) Deux paires ou une double paire ( par exemple : 4, 4, V, V, 10 )? i) Une paire (par exemple : D, D, 3, 6, R )? 3. Avez-vous une idée des probabilités de chacune des issues favorables?

12 BTS GPN 1ERE ANNEE-MATHEMATIQUES-PROBABILITES-DENOMBREMENT,COMBINATOIRE

13 BTS GPN 1ERE ANNEE-MATHEMATIQUES-PROBABILITES GENERALES ET CONDITIONNELLES PROBABILITES GENERALES ET CONDITIONNELLES I. PROBABILITES GENERALES Cadre-type : Un jeu consiste à lancer deux dés cubiques non pipés, l'un de couleur bleue et l'autre de couleur verte dont les faces respectives sont numérotées de 1 à 6, et à noter les numéros obtenus par le dé bleu et le dé vert. On note b le nombre marqué sur la face supérieure du dé bleu et v le nombre marqué sur la face supérieure du dé vert. On obtient ainsi à chaque lancer simultané des deux dés un couple (b, v). Exemple dé bleu : 3 et dé vert : 5 donne le couple (3;5) 1. Dénombrement de tous les cas possibles : l'univers des possibles ou Univers certain La meilleure façon de dénombrer tous les cas, sans en omettre un seul, est sans doute de les répertorier dans un tableau comme ci-dessous. Compléter ce tableau. bleu vert (1;1) (1;2) 2 (2;5) 3 (3;6) 4 (4;3) 5 (5;1) 6 (6;4) Nombre d'issues différentes possibles : obtenir un numéro sur le dé bleu ET obtenir un numéro sur le dé vert. Nombre total d'issues possibles :... L'univers certain est noté conventionnellement et il est formé des... couples de résultats possibles. Il y a...éléments différents dans l'univers. On note Card( )=..., et on parle de Cardinal pour donner le nombre d'éléments d'un ensemble. 2. Un cas particulier : l'évènement On veut connaître la probabilité (la chance) d'obtenir un double six à ce jeu. Il s'agit donc de dénombrer combien il existe dans notre Univers de couples (6;6). Il n'en existe qu 'un seul et on s'intéresse donc à un événement particulier noté A. Nommer l'évènement A : A : «obtenir deux numéros 6» ou «obtenir un double six». Décrire l'événement A : A ={(6 ; 6)} On dit que Card ( A)=1 : A ne contient qu'un seul élément. C'est un événement élémentaire. Un événement est donc un ensemble constitué de 0, 1 ou plusieurs éléments différents. card ( A) La probabilité d'obtenir l'évènement A est alors donné par le rapport p ( A)= card (Ω) = 1 36 Il y a donc 1 chance sur 36 d'obtenir le couple (6;6) à ce jeu. nombre de cas favorables (nombre d ' issues favorables) Règle générale p ( A)= nombre de cas posssibles ( nombre d ' issues possibles) a) Quelle est la probabilité de réaliser l'évènement B : «obtenir deux numéros identiques»? Décrire l'évènement B : B ={(1 ; 1), (2 ; 2), (3 ; 3), (4 ; 4), (5 ; 5), (6 ; 6)} Card ( B) =... Probabilité de l'évènement B : p ( B) =... b) Quelle est la probabilité de réaliser l'évènement C : «obtenir un total de 8» Décrire l'évènement C : C =... Probabilité de l'évènement C : p (C) = /8

14 BTS GPN 1ERE ANNEE-MATHEMATIQUES-PROBABILITES GENERALES ET CONDITIONNELLES 3. Réunion et intersection de deux évènements. On considère l'évènement noté B C Nommer cet événement : B C (lire B union C ) : «obtenir deux numéros identiques» OU «obtenir deux numéros dont la somme est égale à 8». Attention, dans le cadre des probabilités, le OU est à prendre dans son sens inclusif et non exclusif. Le «OU» impliquera nécessairement le PRINCIPE ADDITIF B ={(1 ; 1), (2 ; 2), (3 ; 3), (4 ; 4), (5 ; 5),(6 ; 6)} C = {(2 ; 6), (3 ; 5), (4 ; 4) ; (5 ; 3) ; (6 ; 2)} L'évènement B C correspond aux éléments communs et non communs des deux évènements B et C Il faut prendre garde au doublon (4;4) qui est dans la description des deux évènements. Il ne faut donc le reprendre qu'une seule fois dans la réunion des deux évènements. B C ={(1 ; 1), (2 ; 2), (3 ; 3), (4 ; 4), (5 ; 5), (6 ; 6), (2 ; 6), (3 ; 5), (5 ; 3), (6 ; 2)} Card ( B C )=10 et p ( B C )= Remarque : p ( B)+ p (C )= = et p ( B C )= L'évènement élémentaire {(4;4)} est inclus dans l'évènement B et dans l'évènement C. On dit que (4 ; 4) = B C, c'est l'intersection des deux évènements B et C. p ( B C )= 1 36 p ( B C )= p (B)+ p (C) p (B C ) B C est l'évènement : «obtenir deux numéros identiques ET deux numéros dont la somme vaut 8». La description de cet événement est (4 ; 4) = B C ={(4 ; 4)} p ( B C )= = p ( A B)= p ( A)+ p (B) p ( A B) Remarque : on dit que deux évènements A et B sont incompatibles si A B = Si deux évènements A et B sont incompatibles, on a alors par application de la formule : p ( A B)= p ( A)+ p ( B) la somme des probabilités sur un même univers est égale à 1 p (Ω)= 1 p ( )=0 Pour tout événement A, il existe l'évènement contraire Ā qui se lit «A barre» tel que p ( Ā)=1 p ( A) 2/8

15 BTS GPN 1ERE ANNEE-MATHEMATIQUES-PROBABILITES GENERALES ET CONDITIONNELLES II. PROBABILITES CONDITIONNELLES Cadre-type : Sondage sur Internet Voici les résultats d'un sondage effectué auprès de 1000 personnes à propos d'internet. 40% des personnes interrogées déclarent être intéressées par Internet 35% des personnes interrogées ont moins de 25 ans et parmi celles-ci 80% déclarent être intéressées pas internet 30% des personnes interrogées ont plus de 50 ans et parmi celles-ci 85% ne sont pas intéressées par internet 1. Compléter le tableau suivant Personnes Moins de 25 ans De 25 à 50 ans Plus de 50 ans Intéressés par internet Non intéressés par internet Total Total On choisit au hasard une personne parmi les 1000 interrogées. On considère les évènements suivants : A : «la personne interrogée a moins de 25 ans» B : «la personne interrogée a plus de 50 ans» I : «la personne interrogée est intéressée par Internet» a) calculer les probabilités p A, p B, p I p ( A) = p ( B) = p ( I ) = b) définir par une phrase l'évènement B et calculer p B B : «p ( B) = ou p ( B) = p A I = c) calculer p A I et p A I p A I = 3/8

16 BTS GPN 1ERE ANNEE-MATHEMATIQUES-PROBABILITES GENERALES ET CONDITIONNELLES 3. On sait maintenant que la personne interrogée n'est pas intéressée par Internet. Quelle est la probabilité pour qu'elle ait plus de 50 ans? Qu'elle ait 50 ans ou moins de 50 ans? 4. On sait maintenant que la personne interrogée n'a pas plus de 50 ans. Quelle est la probabilité pour qu'elle soit intéressée par Internet? 4/8

17 BTS GPN 1ERE ANNEE-MATHEMATIQUES-PROBABILITES GENERALES ET CONDITIONNELLES Exercice n 1 : Enquête sur le cinéma Une enquête faite auprès d'une population comprenant 51% de femmes et 49% d'hommes montre que 20% des femmes et 15% des hommes de cette population ne vont jamais au cinéma. On choisit un individu au hasard dans cette population, tous les choix étant équiprobables. On note F l'évènement «l'individu choisi est une femme» C l'évènement «l'individu choisi va au cinéma» 1. Construire un arbre pondéré (arbre de probabilité) décrivant cette enquête. 2. Donner p F, p F C, p F C, p F C, p F C 3. Calculer p F C, p F C 4. En écrivant C= F C F C, calculer p C. En déduire p C. 5/8

18 BTS GPN 1ERE ANNEE-MATHEMATIQUES-PROBABILITES GENERALES ET CONDITIONNELLES Exercice n 2 : Jeu de cartes On tire au hasard une carte d'un jeu de 32 cartes. On considère les évènements suivants : A : «la carte tirée est un cœur» B : «la carte tirée est un roi» 1. Calculer p A, p B, p A B, p B A 2. Comparer p A B à p B puis p B A à p A 3. Comparer p A B à p A p B Exercice n 3 : dénombrement et probabilités Dans une urne, il y a 7 boules blanches et 10 boules rouges indiscernables au toucher. On en prend 4 simultanément. On considère les évènements suivants : A : «obtenir 4 boules blanches» B : «obtenir 2 boules blanches et 2 boules rouges» Calculer p A, p B. 6/8

19 BTS GPN 1ERE ANNEE-MATHEMATIQUES-PROBABILITES GENERALES ET CONDITIONNELLES Exercice d'apprentissage n 1 Les individus d'une population peuvent être atteints de deux maladies M 1 et M 2. On prélève au hasard un individu dans la population. On note A l'évènement : «l'individu est atteint de la maladie M 1.», et B l'évènement : «l'individu est atteint de la maladie M 2.» On admet que p ( A)= 0,3, p ( B)= 0,05, et que la probabilité qu'un individu pris au hasard dans la population soit atteint de la maladie M 2, sachant qu'il est atteint de la maladie M 1 est 0, Calculer la probabilité de l'évènement:«l'individu est atteint de la maladie M 1 et de la maladie M 2.» 2. Calculer la probabilité de l'évènement : «l'individu est atteint de la maladie M 1 sachant qu'il est atteint de la maladie M 2.» 3. Calculer la probabilité de l'évènement:«l'individu est atteint de la maladie M 1 ou de la maladie M 2.» 7/8

20 BTS GPN 1ERE ANNEE-MATHEMATIQUES-PROBABILITES GENERALES ET CONDITIONNELLES Exercice d'apprentissage n 2 Une grande entreprise recrute chaque année des étudiants au niveau Bac + 2. Elle effectue une sélection à l'aide d'un test écrit sous forme de QCM ; les candidats retenus doivent ensuite passer un entretien. Les candidats choisissent, selon leurs compétences, un test parmi deux. On admet que 40 % des candidats choisissent le premier test, à l'issue duquel 10 % sont sélectionnés et que le reste des candidats choisit le second test, à l'issue duquel 30 % sont sélectionnés. On prélève une fiche au hasard dans le fichier des candidats. Toutes les fiches ont la même probabilité d'être prélevées. On définit les évènements suivants : T 1 : «le candidat choisit le premier test» T 2 : «le candidat choisit le second test» S : «le candidat est sélectionné» 1. A l'aide des informations contenues dans l'énoncé, déterminer les probabilités : p (T 1 ), p (T 2 ), p T 1 (S ), p T 2 (S). 2. Calculer p (S T 1 ) et p (S T 2 ). 3. On admet que S =(S T 1 ) (S T 2 ) et que les évènements (S T 1 ) et (S T 2 ) sont incompatibles;calculer p (S). En déduire p ( S) 4. Calculer la probabilité qu'un candidat ait choisi le premier test sachant qu'il est sélectionné. Arrondir le résultat à 10 2 près. 8/8

21 BTS GPN 1ERE ANNEEE-PROBABILITES-VARIABLE ALEATOIRE-LOI DE PROBABILITE VARIABLE ALEATOIRE, LOI DE PROBABILITE D'UNE VARIABLE ALEATOIRE I. VARIABLE ALEATOIRE DISCRETE Activité : Exemple 1 Un patineur artistique participe à une compétition durant laquelle il doit effectuer deux sauts. Il réussit le premier de ces deux sauts dans 95 % des cas. Comme il est émotif, s'il échoue à ce premier saut, il rate le deuxième trois fois sur dix. Sinon, si tout va bien au premier saut, il réussit le second saut dans 90 % des cas. 1. On note l'événement R «le patineur réussit son saut» et l'événement R «le patineur ne réussit pas son saut» Compléter l'arbre de probabilité correspondant à une compétition : on pourra appeler R1 le premier saut et R2 le second saut. Le règlement est tel que manquer le premier saut donne 0,1 point de pénalité ; manquer le second saut donne une pénalité de 0,2 point. Le règlement prévoit également que les pénalités se cumulent. On désigne par X le nombre de pénalités obtenues lors de la compétition. 2. Quelles sont les valeurs que peut prendre X? Compléter le tableau ci-dessous. Réussite des sauts Premier et deuxième sauts réussis Premier réussi et deuxième raté Premier raté et deuxième réussi Premier et deuxième sauts ratés Valeurs prises par X

22 BTS GPN 1ERE ANNEEE-PROBABILITES-VARIABLE ALEATOIRE-LOI DE PROBABILITE 3. On dit ainsi que X est une variable aléatoire discrète : cette variable est issue d'une expérience aléatoire (un saut) et elle ne peut prendre qu'un nombre limité de valeurs (similitude avec les séries à caractère quantitatif discret en statistiques) Pour chacune des valeurs prises par cette variable aléatoire X, on peut calculer une probabilité : par exemple, on peut calculer la probabilité que X prenne la valeur 0 (c'est la même probabilité que celle de réussir les deux sauts, puisque en effet dans ce cas, il ne prend pas de pénalité). Compléter le tableau suivant : Réussite des sauts Valeurs de X Probabilités associées Premier et deuxième sauts réussis Premier réussi et deuxième raté Premier raté et deuxième réussi Premier et deuxième sauts ratés Remarque : Quelle est la somme des probabilités associées? :... Il n'y a pas d'autres valeurs possibles pour X. L'univers est restreint aux valeurs de X précédentes et la somme des probabilités sur un univers certain est égale à... On adoptera la présentation suivante appelée loi de probabilité de la variable aléatoire X a) sous forme d'un tableau X= k p (X = k ) b) Sous forme d'un diagramme à bâtons p r o b a b i l i t é 0, 9 0, 8 0, 7 0, 6 0, 5 0, 4 0, 3 0, 2 0, 1 0-0, 1 0 0, 1 0, 2 0, 3 0, 4 X

23 BTS GPN 1ERE ANNEEE-PROBABILITES-VARIABLE ALEATOIRE-LOI DE PROBABILITE Exemple 2 : On prélève simultanément et au hasard 4 cartes dans un jeu de 32 cartes. On note X la variable aléatoire associée au nombre de dames dans cette main de 4 cartes. 1. On peut définir la loi de probabilité de cette variable aléatoire X : a) Quelles sont les valeurs prises par X? :... b) Déterminer la loi de probabilité de cette variable aléatoire X : 1. Loi de probabilité de X X= k p (X = k ) 2. Univers certain : : «ensemble des mains de 4 cartes dans un jeu de 32 cartes» Card( ) = nombre de mains de 4 cartes :... Avoir 4 cartes parmi 32 cartes 3. Nombre de mains de 4 cartes ne contenant aucune dame :... Avoir 0 dame parmi 4 dames et 4 cartes parmi les 28 autres cartes restantes On en déduit p(x=0) = 4. Nombre de mains de 4 cartes contenant exactement 1 dame :... Avoir 1 dame parmi 4 dames et 3 autres cartes parmi les 28 restantes On en déduit p(x=1) = 5. Nombre de mains de 4 cartes contenant exactement 2 dames :... Avoir 2 dames parmi les 4 dames et 2 autres cartes parmi les 28 restantes On en déduit p(x=2) = 6. Nombre de mains de 4 cartes contenant exactement 3 dames :... Avoir 3 dames parmi les 4 dames et 1 autre carte parmi les 28 restantes On en déduit p(x=3) = 7. Nombre de mains de 4 cartes contenant exactement 4 dames :... Avoir 4 dames parmi les 4 dames et 0 carte parmi les 28 cartes restantes On en déduit p(x=4) = 2. Espérance d'une variable aléatoire (espoir mathématique,..., oui cela existe réellement!!) Une loi de probabilité s'apparente à une série statistique à caractère quantitatif discret. On peut donc calculer la valeur moyenne de cette série statistique : dans le cas des variables aléatoires, cela s'appelle l'espérance mathématique. L'espérance mathématique est la valeur moyenne que prendrait la variable X si on répétait un grand nombre de fois (loi des grands nombres) la même opération (dans le cas étudié ci-dessus, il s'agirait de prélever un grand nombre de fois une main de 4 cartes). i= n Par définition E(X)= i=1 p (X = x i ) x i

24 BTS GPN 1ERE ANNEEE-PROBABILITES-VARIABLE ALEATOIRE-LOI DE PROBABILITE Dans le cas étudié, calculer la valeur de E(X) E(X) = = Donner une interprétation de l'espérance E(X) de la variable aléatoire X : Exercice d'application Une fabrique artisanale de jouets en bois vérifie la qualité de sa production avant sa commercialisation. Chaque jouet produit par l'entreprise est soumis à deux contrôles : d'une part l'aspect du jouet est examiné afin de vérifier qu'il ne présente pas de défaut de finition, d'autre part sa solidité est testée. Il s'avère, à la suite d'un grand nombre de vérifications, que : 92 % des jouets sont sans défaut de finition ; Parmi ces jouets qui sont sans défaut de finition, 95 % réussissent le test de solidité ; 2 % des jouets ne satisfont à aucun des deux contrôles. On prend au hasard un jouet parmi les jouets produits. On note : F l'événement : «le jouet est sans défaut de finition». S l'événement : «le jouet réussit le test de solidité». 1. Construction d'un arbre pondéré associé à cette situation. a) Traduire les données de l'énoncé en utilisant les notations des probabilités. b) Démontrer que p F ( S)= 1 4 c) Construire l'arbre pondéré correspondant à cette situation. 2. Calculs de probabilités a) démontrer que p(s)=0,934 b) Un jouet a réussi le test de solidité. Calculer la probabilité qu'il soit sans défaut de finition (ce résultat sera arrondi au millième). 3. Etude d'une variable aléatoire B. Les jouets ayant satisfait aux deux contrôles rapportent un bénéfice de 10, ceux qui n'ont pas satisfait au test de solidité sont mis au rebut, les autres jouets rapportent un bénéfice de 5. On désigne par B la variable aléatoire qui associe à chaque jouet le bénéfice rapporté. a) Déterminer la loi de probabilité de la variable aléatoire B. b) Calculer l'espérance mathématique de la variable aléatoire B. c) Interpréter ce résultat.

25 BTS GPN 1ERE ANNEEE-PROBABILITES-VARIABLE ALEATOIRE-LOI DE PROBABILITE

26 BTS GPN 1ERE ANNEEE-PROBABILITES-LOI BINOMIALE VARIABLE ALEATOIRE, LOI BINOMIALE II. LOI BINOMIALE Jacques BERNOULLI (1654 ; 1705) fut un mathématicien suisse. Il posa les principes du calcul des probabilités dans son œuvre Ars Conjectandi (l'art de la conjecture) Activité : Exemple 1 A l'entraînement, un basketteur effectue des tentatives pour marquer un panier. Pour chaque tentative, il dispose de deux essais. On considère que la tentative est réussie si le premier essai est réussi ou si le second essai est réussi. Après plusieurs jours d'entraînement, l'entraîneur constate les faits suivants : la probabilité de réussir le premier essai est égale à 0,5. la probabilité de réussir le second essai sachant que le premier essai est raté est égale à 0,4. On note S l'événement : «la tentative est réussie». Le basketteur va effectuer quatre tentatives durant cet entraînement. On note X le nombre de réussites obtenues lors de ces tentatives. 1. Décrire une tentative par un arbre de probabilité R R 2 R R 2 R1 représente l'événement : «le premier essai est réussi». R2 représente l'événement : «le second essai est réussi».

DENOMBREMENT-COMBINATOIRE-PROBABILITES GENERALES

DENOMBREMENT-COMBINATOIRE-PROBABILITES GENERALES BTS GPN ERE ANNEE-MATHEMATIQUES-DENOMBREMENT-COMBINATOIRE-EXERCICE DE SYNTHESE EXERCICE RECAPITULATIF (DE SYNTHESE) CORRIGE Le jeu au poker fermé DENOMBREMENT-COMBINATOIRE-PROBABILITES GENERALES On joue

Plus en détail

Probabilité. Table des matières. 1 Loi de probabilité 2 1.1 Conditions préalables... 2 1.2 Définitions... 2 1.3 Loi équirépartie...

Probabilité. Table des matières. 1 Loi de probabilité 2 1.1 Conditions préalables... 2 1.2 Définitions... 2 1.3 Loi équirépartie... 1 Probabilité Table des matières 1 Loi de probabilité 2 1.1 Conditions préalables........................... 2 1.2 Définitions................................. 2 1.3 Loi équirépartie..............................

Plus en détail

Probabilités conditionnelles Loi binomiale

Probabilités conditionnelles Loi binomiale Exercices 23 juillet 2014 Probabilités conditionnelles Loi binomiale Équiprobabilité et variable aléatoire Exercice 1 Une urne contient 5 boules indiscernables, 3 rouges et 2 vertes. On tire au hasard

Plus en détail

Exercices de dénombrement

Exercices de dénombrement Exercices de dénombrement Exercice En turbo Pascal, un entier relatif (type integer) est codé sur 6 bits. Cela signifie que l'on réserve 6 cases mémoires contenant des "0" ou des "" pour écrire un entier.

Plus en détail

Devoir Surveillé n 5 BTS 2009 groupement B

Devoir Surveillé n 5 BTS 2009 groupement B EXERCICE 1 (12 points) Devoir Surveillé n 5 BTS 2009 groupement B Les trois parties de cet exercice peuvent être traitées de façon indépendante. A. Résolution d une équation différentielle On considère

Plus en détail

TSTI 2D CH X : Exemples de lois à densité 1

TSTI 2D CH X : Exemples de lois à densité 1 TSTI 2D CH X : Exemples de lois à densité I Loi uniforme sur ab ; ) Introduction Dans cette activité, on s intéresse à la modélisation du tirage au hasard d un nombre réel de l intervalle [0 ;], chacun

Plus en détail

Probabilités. Une urne contient 3 billes vertes et 5 billes rouges toutes indiscernables au toucher.

Probabilités. Une urne contient 3 billes vertes et 5 billes rouges toutes indiscernables au toucher. Lycée Jean Bart PCSI Année 2013-2014 17 février 2014 Probabilités Probabilités basiques Exercice 1. Vous savez bien qu un octet est une suite de huit chiffres pris dans l ensemble {0; 1}. Par exemple 01001110

Plus en détail

Lois de probabilité à densité Loi normale

Lois de probabilité à densité Loi normale DERNIÈRE IMPRESSIN LE 31 mars 2015 à 14:11 Lois de probabilité à densité Loi normale Table des matières 1 Lois à densité 2 1.1 Introduction................................ 2 1.2 Densité de probabilité

Plus en détail

Exercices sur le chapitre «Probabilités»

Exercices sur le chapitre «Probabilités» Arnaud de Saint Julien - MPSI Lycée La Merci 2014-2015 1 Pour démarrer Exercices sur le chapitre «Probabilités» Exercice 1 (Modélisation d un dé non cubique) On considère un parallélépipède rectangle de

Plus en détail

Feuille d exercices 2 : Espaces probabilisés

Feuille d exercices 2 : Espaces probabilisés Feuille d exercices 2 : Espaces probabilisés Cours de Licence 2 Année 07/08 1 Espaces de probabilité Exercice 1.1 (Une inégalité). Montrer que P (A B) min(p (A), P (B)) Exercice 1.2 (Alphabet). On a un

Plus en détail

Distribution Uniforme Probabilité de Laplace Dénombrements Les Paris. Chapitre 2 Le calcul des probabilités

Distribution Uniforme Probabilité de Laplace Dénombrements Les Paris. Chapitre 2 Le calcul des probabilités Chapitre 2 Le calcul des probabilités Equiprobabilité et Distribution Uniforme Deux événements A et B sont dits équiprobables si P(A) = P(B) Si il y a équiprobabilité sur Ω, cad si tous les événements

Plus en détail

Fiche de révision sur les lois continues

Fiche de révision sur les lois continues Exercice 1 Voir la correction Le laboratoire de physique d un lycée dispose d un parc d oscilloscopes identiques. La durée de vie en années d un oscilloscope est une variable aléatoire notée X qui suit

Plus en détail

Probabilités. I Petits rappels sur le vocabulaire des ensembles 2 I.1 Définitions... 2 I.2 Propriétés... 2

Probabilités. I Petits rappels sur le vocabulaire des ensembles 2 I.1 Définitions... 2 I.2 Propriétés... 2 Probabilités Table des matières I Petits rappels sur le vocabulaire des ensembles 2 I.1 s................................................... 2 I.2 Propriétés...................................................

Plus en détail

GEA II Introduction aux probabilités Poly. de révision. Lionel Darondeau

GEA II Introduction aux probabilités Poly. de révision. Lionel Darondeau GEA II Introduction aux probabilités Poly. de révision Lionel Darondeau Table des matières Énoncés 4 Corrigés 10 TD 1. Analyse combinatoire 11 TD 2. Probabilités élémentaires 16 TD 3. Probabilités conditionnelles

Plus en détail

Examen d accès - 1 Octobre 2009

Examen d accès - 1 Octobre 2009 Examen d accès - 1 Octobre 2009 Aucun document autorisé - Calculatrice fournie par le centre d examen Ce examen est un questionnaire à choix multiples constitué de 50 questions. Plusieurs réponses sont

Plus en détail

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre :

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre : Terminale STSS 2 012 2 013 Pourcentages Synthèse 1) Définition : Calculer t % d'un nombre, c'est multiplier ce nombre par t 100. 2) Exemples de calcul : a) Calcul d un pourcentage : Un article coûtant

Plus en détail

Loi binomiale Lois normales

Loi binomiale Lois normales Loi binomiale Lois normales Christophe ROSSIGNOL Année scolaire 204/205 Table des matières Rappels sur la loi binomiale 2. Loi de Bernoulli............................................ 2.2 Schéma de Bernoulli

Plus en détail

Notions de probabilités

Notions de probabilités 44 Notions de probabilités Capacités Expérimenter, d abord à l aide de pièces, de dés ou d urnes, puis à l aide d une simulation informatique prête à l emploi, la prise d échantillons aléatoires de taille

Plus en détail

Coefficients binomiaux

Coefficients binomiaux Probabilités L2 Exercices Chapitre 2 Coefficients binomiaux 1 ( ) On appelle chemin une suite de segments de longueur 1, dirigés soit vers le haut, soit vers la droite 1 Dénombrer tous les chemins allant

Plus en détail

Probabilités Loi binomiale Exercices corrigés

Probabilités Loi binomiale Exercices corrigés Probabilités Loi binomiale Exercices corrigés Sont abordés dans cette fiche : (cliquez sur l exercice pour un accès direct) Exercice 1 : épreuve de Bernoulli Exercice 2 : loi de Bernoulli de paramètre

Plus en détail

Terminale STMG Lycée Jean Vilar 2013/2014. Terminale STMG. O. Lader

Terminale STMG Lycée Jean Vilar 2013/2014. Terminale STMG. O. Lader Terminale STMG O. Lader Table des matières 1 Information chiffrée (4s) 4 1.1 Taux d évolution....................................... 6 1.2 indices............................................. 6 1.3 Racine

Plus en détail

Analyse Combinatoire

Analyse Combinatoire Analyse Combinatoire 1) Équipes On dispose d un groupe de cinq personnes. a) Combien d équipes de trois personnes peut-on former? b) Combien d équipes avec un chef, un sous-chef et un adjoint? c) Combien

Plus en détail

3 Exercices. 3.1 Probabilités simples. 3.2 Probabilités avec dénombrement. Probabilités 3. Exercice 1 On tire au hasard une carte parmi un jeu de 52.

3 Exercices. 3.1 Probabilités simples. 3.2 Probabilités avec dénombrement. Probabilités 3. Exercice 1 On tire au hasard une carte parmi un jeu de 52. Probabilités 3 3 Exercices 3.1 Probabilités simples Exercice 1 On tire au hasard une carte parmi un jeu de 52. Calculer la probabilité d obtenir : 1. un roi 2. le valet de trèfle 3. l as de coeur ou la

Plus en détail

PROBABILITÉS CONDITIONNELLES

PROBABILITÉS CONDITIONNELLES PROBABILITÉS CONDITIONNELLES A.FORMONS DES COUPLES Pour la fête de l école, les élèves de CE 2 ont préparé une danse qui s exécute par couples : un garçon, une fille. La maîtresse doit faire des essais

Plus en détail

Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé

Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé A. P. M. E. P. Exercice 1 5 points 1. Réponse d. : 1 e Le coefficient directeur de la tangente est négatif et n est manifestement pas 2e

Plus en détail

BACCALAUREAT GENERAL MATHÉMATIQUES

BACCALAUREAT GENERAL MATHÉMATIQUES BACCALAUREAT GENERAL FEVRIER 2014 MATHÉMATIQUES SERIE : ES Durée de l épreuve : 3 heures Coefficient : 5 (ES), 4 (L) 7(spe ES) Les calculatrices électroniques de poche sont autorisées, conformement à la

Plus en détail

Fluctuation d une fréquence selon les échantillons - Probabilités

Fluctuation d une fréquence selon les échantillons - Probabilités Fluctuation d une fréquence selon les échantillons - Probabilités C H A P I T R E 3 JE DOIS SAVOIR Calculer une fréquence JE VAIS ÊTRE C APABLE DE Expérimenter la prise d échantillons aléatoires de taille

Plus en détail

Chapitre 3 : Introduction aux probabilités

Chapitre 3 : Introduction aux probabilités IUT de Sceaux Département TC1 Mathématiques Chapitre 3 : Introduction aux probabilités 1. Évènements Les événements élémentaires sont les issues possibles d'une expérience aléatoire. Un événement est un

Plus en détail

I3, Probabilités 2014 Travaux Dirigés F BM F BM F BM F BM F B M F B M F B M F B M 20 20 80 80 100 100 300 300

I3, Probabilités 2014 Travaux Dirigés F BM F BM F BM F BM F B M F B M F B M F B M 20 20 80 80 100 100 300 300 I3, Probabilités 2014 Travaux Dirigés TD 1 : rappels. Exercice 1 Poker simplié On tire 3 cartes d'un jeu de 52 cartes. Quelles sont les probabilités d'obtenir un brelan, une couleur, une paire, une suite,

Plus en détail

Exercices : VAR discrètes

Exercices : VAR discrètes Exercices : VAR discrètes Exercice 1: Une urne contient 2 boules blanches et 4 boules noires. On tire les boules une à une sans les remettre jusqu à ce qu il ne reste que des boules d une seule couleur

Plus en détail

4. Exercices et corrigés

4. Exercices et corrigés 4. Exercices et corrigés. N 28p.304 Dans une classe de 3 élèves, le club théâtre (T) compte 0 élèves et la chorale (C) 2 élèves. Dix-huit élèves ne participent à aucune de ces activités. On interroge au

Plus en détail

Probabilités. Rappel : trois exemples. Exemple 2 : On dispose d un dé truqué. On sait que : p(1) = p(2) =1/6 ; p(3) = 1/3 p(4) = p(5) =1/12

Probabilités. Rappel : trois exemples. Exemple 2 : On dispose d un dé truqué. On sait que : p(1) = p(2) =1/6 ; p(3) = 1/3 p(4) = p(5) =1/12 Probabilités. I - Rappel : trois exemples. Exemple 1 : Dans une classe de 25 élèves, il y a 16 filles. Tous les élèves sont blonds ou bruns. Parmi les filles, 6 sont blondes. Parmi les garçons, 3 sont

Plus en détail

Probabilités. C. Charignon. I Cours 3

Probabilités. C. Charignon. I Cours 3 Probabilités C. Charignon Table des matières I Cours 3 1 Dénombrements 3 1.1 Cardinal.................................................. 3 1.1.1 Définition............................................. 3

Plus en détail

Les probabilités. Chapitre 18. Tester ses connaissances

Les probabilités. Chapitre 18. Tester ses connaissances Chapitre 18 Les probabilités OBJECTIFS DU CHAPITRE Calculer la probabilité d événements Tester ses connaissances 1. Expériences aléatoires Voici trois expériences : - Expérience (1) : on lance une pièce

Plus en détail

FONCTIONS. I Généralités sur les fonctions. Définitions. Remarque. Exercice 01. Remarque

FONCTIONS. I Généralités sur les fonctions. Définitions. Remarque. Exercice 01. Remarque FNCTINS I Généralités sur les fonctions Définitions Soit D une partie de l'ensemble IR. n définit une fonction f de D dans IR, en associant à chaque réel de D, un réel et un seul noté f() et que l'on appelle

Plus en détail

A l'intention des collègues dont les élèves vont tester le sujet "prospectif" de bac ES.

A l'intention des collègues dont les élèves vont tester le sujet prospectif de bac ES. A l'intention des collègues dont les élèves vont tester le sujet "prospectif" de bac ES. Le sujet proposé s'inscrit dans le cadre du texte d'orientation ci-joint. L'exercice I est du type "compréhension

Plus en détail

Probabilités conditionnelles Exercices corrigés

Probabilités conditionnelles Exercices corrigés Terminale S Probabilités conditionnelles Exercices corrigés Exercice : (solution Une compagnie d assurance automobile fait un bilan des frais d intervention, parmi ses dossiers d accidents de la circulation.

Plus en détail

Probabilités et Statistiques. Feuille 2 : variables aléatoires discrètes

Probabilités et Statistiques. Feuille 2 : variables aléatoires discrètes IUT HSE Probabilités et Statistiques Feuille : variables aléatoires discrètes 1 Exercices Dénombrements Exercice 1. On souhaite ranger sur une étagère 4 livres de mathématiques (distincts), 6 livres de

Plus en détail

Séquence 3. Probabilité : conditionnement et indépendance

Séquence 3. Probabilité : conditionnement et indépendance Séquence 3 Probabilité : conditionnement et indépendance Sommaire. Pré-requis. Conditionnement par un événement de probabilité non nulle 3. Indépendance 4. Synthèse Dans cette première séquence sur les

Plus en détail

Probabilités conditionnelles Loi binomiale

Probabilités conditionnelles Loi binomiale Fiche BAC ES 05 Terminale ES Probabilités conditionnelles Loi binomiale Cette fiche sera complétée au fur et à mesure Exercice n 1. BAC ES. Centres étrangers 2012. [RÉSOLU] Un sondage a été effectué auprès

Plus en détail

Eléments de correction du Bac Blanc n 2 de Mathématiquesdu Lundi 8 Avril2013. Calculatrice autorisée - Aucun document n'est autorisé.

Eléments de correction du Bac Blanc n 2 de Mathématiquesdu Lundi 8 Avril2013. Calculatrice autorisée - Aucun document n'est autorisé. TES Spé Maths Eléments de correction du Bac Blanc n 2 de Mathématiquesdu Lundi 8 Avril2013 Calculatrice autorisée - Aucun document n'est autorisé. Vous apporterez un grand soin à la présentation et à la

Plus en détail

Baccalauréat ES Antilles Guyane 12 septembre 2014 Corrigé

Baccalauréat ES Antilles Guyane 12 septembre 2014 Corrigé Baccalauréat ES Antilles Guyane 12 septembre 2014 Corrigé EXERCICE 1 5 points Commun à tous les candidats 1. Réponse c : ln(10)+2 ln ( 10e 2) = ln(10)+ln ( e 2) = ln(10)+2 2. Réponse b : n 13 0,7 n 0,01

Plus en détail

CALCUL DES PROBABILITES

CALCUL DES PROBABILITES CALCUL DES PROBABILITES Exemple On lance une pièce de monnaie une fois. Ensemble des événements élémentaires: E = pile, face. La chance pour obtenir pile vaut 50 %, pour obtenir face vaut aussi 50 %. Les

Plus en détail

Théorie et Codage de l Information (IF01) exercices 2013-2014. Paul Honeine Université de technologie de Troyes France

Théorie et Codage de l Information (IF01) exercices 2013-2014. Paul Honeine Université de technologie de Troyes France Théorie et Codage de l Information (IF01) exercices 2013-2014 Paul Honeine Université de technologie de Troyes France TD-1 Rappels de calculs de probabilités Exercice 1. On dispose d un jeu de 52 cartes

Plus en détail

Baccalauréat ES/L Amérique du Sud 21 novembre 2013

Baccalauréat ES/L Amérique du Sud 21 novembre 2013 Baccalauréat ES/L Amérique du Sud 21 novembre 2013 A. P. M. E. P. EXERCICE 1 Commun à tous les candidats 5 points Une entreprise informatique produit et vend des clés USB. La vente de ces clés est réalisée

Plus en détail

Thème 12: Généralités sur les fonctions

Thème 12: Généralités sur les fonctions GÉNÉRALITÉS SUR LES FONCTIONS 69 Thème 12: Généralités sur les fonctions 12.1 Introduction Qu est-ce qu une fonction? Une fonction est une sorte de "machine". On choisit dans un ensemble de départ A un

Plus en détail

Exercices supplémentaires sur l introduction générale à la notion de probabilité 2009-2010

Exercices supplémentaires sur l introduction générale à la notion de probabilité 2009-2010 Exercices supplémentaires sur l introduction générale à la notion de probabilité 2009-2010 Exercices fortement conseillés : 6, 10 et 14 1) Un groupe d étudiants est formé de 20 étudiants de première année

Plus en détail

Probabilités sur un univers fini

Probabilités sur un univers fini [http://mp.cpgedupuydelome.fr] édité le 7 août 204 Enoncés Probabilités sur un univers fini Evènements et langage ensembliste A quelle condition sur (a, b, c, d) ]0, [ 4 existe-t-il une probabilité P sur

Plus en détail

BACCALAURÉAT GÉNÉRAL SESSION 2012 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE

BACCALAURÉAT GÉNÉRAL SESSION 2012 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE BACCALAURÉAT GÉNÉRAL SESSION 2012 MATHÉMATIQUES Série S Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE Les calculatrices électroniques de poche sont autorisées, conformément à la

Plus en détail

Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire

Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire CHAPITRE N5 FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION Code item D0 D2 N30[S] Items étudiés dans le CHAPITRE N5 Déterminer l'image

Plus en détail

Exemple On lance une pièce de monnaie trois fois de suite. Calculer la probabilité d obtenir exactement deux fois pile.

Exemple On lance une pièce de monnaie trois fois de suite. Calculer la probabilité d obtenir exactement deux fois pile. Probabilités Définition intuitive Exemple On lance un dé. Quelle est la probabilité d obtenir un multiple de 3? Comme il y a deux multiples de 3 parmi les six issues possibles, on a chances sur 6 d obtenir

Plus en détail

Statistique Descriptive et Inférentielle Méthodes paramétriques et non paramétriques

Statistique Descriptive et Inférentielle Méthodes paramétriques et non paramétriques Fiche TD avec le logiciel : a2-1-c Statistique Descriptive et Inférentielle Méthodes paramétriques et non paramétriques Sylvain Mousset Rappels de probabilités / statistiques Table des matières 1 Probabilités

Plus en détail

Qu est-ce qu une probabilité?

Qu est-ce qu une probabilité? Chapitre 1 Qu est-ce qu une probabilité? 1 Modéliser une expérience dont on ne peut prédire le résultat 1.1 Ensemble fondamental d une expérience aléatoire Une expérience aléatoire est une expérience dont

Plus en détail

NOTIONS DE PROBABILITÉS

NOTIONS DE PROBABILITÉS NOTIONS DE PROBABILITÉS Sommaire 1. Expérience aléatoire... 1 2. Espace échantillonnal... 2 3. Événement... 2 4. Calcul des probabilités... 3 4.1. Ensemble fondamental... 3 4.2. Calcul de la probabilité...

Plus en détail

Travaux dirigés d introduction aux Probabilités

Travaux dirigés d introduction aux Probabilités Travaux dirigés d introduction aux Probabilités - Dénombrement - - Probabilités Élémentaires - - Variables Aléatoires Discrètes - - Variables Aléatoires Continues - 1 - Dénombrement - Exercice 1 Combien

Plus en détail

Utiliser les propriétés Savoir réduire un radical savoir +,-,x,: Utiliser les propriétés des puissances Calculer avec des puissances

Utiliser les propriétés Savoir réduire un radical savoir +,-,x,: Utiliser les propriétés des puissances Calculer avec des puissances ARITHMETIQUE 1 C B A Numération Ecrire en lettres et en chiffres Poser des questions fermées autour d un document simple (message, consigne, planning ) Connaître le système décimal Déterminer la position

Plus en détail

Les devoirs en Première STMG

Les devoirs en Première STMG Les devoirs en Première STMG O. Lader Table des matières Devoir sur table 1 : Proportions et inclusions....................... 2 Devoir sur table 1 : Proportions et inclusions (corrigé)..................

Plus en détail

Soit la fonction affine qui, pour représentant le nombre de mois écoulés, renvoie la somme économisée.

Soit la fonction affine qui, pour représentant le nombre de mois écoulés, renvoie la somme économisée. ANALYSE 5 points Exercice 1 : Léonie souhaite acheter un lecteur MP3. Le prix affiché (49 ) dépasse largement la somme dont elle dispose. Elle décide donc d économiser régulièrement. Elle a relevé qu elle

Plus en détail

9 5 2 5 Espaces probabilisés

9 5 2 5 Espaces probabilisés BCPST2 9 5 2 5 Espaces probabilisés I Mise en place du cadre A) Tribu Soit Ω un ensemble. On dit qu'un sous ensemble T de P(Ω) est une tribu si et seulement si : Ω T. T est stable par complémentaire, c'est-à-dire

Plus en détail

Cours de Probabilités et de Statistique

Cours de Probabilités et de Statistique Cours de Probabilités et de Statistique Licence 1ère année 2007/2008 Nicolas Prioux Université Paris-Est Cours de Proba-Stat 2 L1.2 Science-Éco Chapitre Notions de théorie des ensembles 1 1.1 Ensembles

Plus en détail

Épreuve pratique de mathématiques Printemps 2009. Descriptifs. (Page vide)

Épreuve pratique de mathématiques Printemps 2009. Descriptifs. (Page vide) Épreuve pratique de mathématiques Printemps 2009 Descriptifs (Page vide) Sujet 001 Épreuve pratique de mathématiques Descriptif Étude d une fonction dépendant d un paramètre Étant donné une fonction dépendant

Plus en détail

Les probabilités. Guide pédagogique Le présent guide sert de complément à la série d émissions intitulée Les probabilités produite par TFO.

Les probabilités. Guide pédagogique Le présent guide sert de complément à la série d émissions intitulée Les probabilités produite par TFO. Guide pédagogique Le présent guide sert de complément à la série d émissions intitulée produite par TFO. Le guide Édition 1988 Rédacteur (version anglaise) : Ron Carr Traduction : Translatec Conseil Ltée

Plus en détail

Raisonnement par récurrence Suites numériques

Raisonnement par récurrence Suites numériques Chapitre 1 Raisonnement par récurrence Suites numériques Terminale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Raisonnement par récurrence. Limite finie ou infinie d une suite.

Plus en détail

Mercredi 24 Juin 2015

Mercredi 24 Juin 2015 BACCALAURÉAT GÉNÉRAL Session 2015 MATHÉMATIQUES Série ES ENSEIGNEMENT OBLIGATOIRE Durée de l épreuve : 3 heures coefficient : 5 MATHÉMATIQUES Série L ENSEIGNEMENT DE SPÉCIALITÉ Durée de l épreuve : 3 heures

Plus en détail

UVHC - ENSIAME CP1 - Probabilités - Interrogation Enseignante : Madame BOURLARD-JOSPIN Calculatrice autorisée

UVHC - ENSIAME CP1 - Probabilités - Interrogation Enseignante : Madame BOURLARD-JOSPIN Calculatrice autorisée UVHC - ENSIAME CP1 - Probabilités - Interrogation Enseignante : Madame BOURLARD-JOSPIN Calculatrice autorisée 1. On tire successivement et sans remise deux cartes d un jeu de 52 cartes. Soit A l événement

Plus en détail

Travaux Dirigés de Probabilités - Statistiques, TD 4. Lois limites ; estimation.

Travaux Dirigés de Probabilités - Statistiques, TD 4. Lois limites ; estimation. Travaux Dirigés de Probabilités - Statistiques, TD 4 Lois limites ; estimation. Exercice 1. Trois machines, A, B, C fournissent respectivement 50%, 30%, 20% de la production d une usine. Les pourcentages

Plus en détail

Première STMG1 2014-2015 progression. - 1. Séquence : Proportion d une sous population dans une population.

Première STMG1 2014-2015 progression. - 1. Séquence : Proportion d une sous population dans une population. Première STMG1 2014-2015 progression. - 1 Table des matières Fil rouge. 3 Axes du programme. 3 Séquence : Proportion d une sous population dans une population. 3 Information chiffrée : connaître et exploiter

Plus en détail

DÉRIVÉES. I Nombre dérivé - Tangente. Exercice 01 (voir réponses et correction) ( voir animation )

DÉRIVÉES. I Nombre dérivé - Tangente. Exercice 01 (voir réponses et correction) ( voir animation ) DÉRIVÉES I Nombre dérivé - Tangente Eercice 0 ( voir animation ) On considère la fonction f définie par f() = - 2 + 6 pour [-4 ; 4]. ) Tracer la représentation graphique (C) de f dans un repère d'unité

Plus en détail

RÉVISION DE CALCUL NUMÉRIQUE

RÉVISION DE CALCUL NUMÉRIQUE RÉVISION DE CALCUL NUMÉRIQUE. Les ensembles numériques. Propriétés des nombres réels. Ordre des opérations. Nombres premiers. Opérations sur les fractions 7. Puissances entières 0.7 Notation scientifique.8

Plus en détail

Lois de probabilité. Anita Burgun

Lois de probabilité. Anita Burgun Lois de probabilité Anita Burgun Problème posé Le problème posé en statistique: On s intéresse à une population On extrait un échantillon On se demande quelle sera la composition de l échantillon (pourcentage

Plus en détail

Probabilités (méthodes et objectifs)

Probabilités (méthodes et objectifs) Probabilités (méthodes et objectifs) G. Petitjean Lycée de Toucy 10 juin 2007 G. Petitjean (Lycée de Toucy) Probabilités (méthodes et objectifs) 10 juin 2007 1 / 19 1 Déterminer la loi de probabilité d

Plus en détail

I. Cas de l équiprobabilité

I. Cas de l équiprobabilité I. Cas de l équiprobabilité Enoncé : On lance deux dés. L un est noir et l autre est blanc. Calculer les probabilités suivantes : A «Obtenir exactement un as» «Obtenir au moins un as» C «Obtenir au plus

Plus en détail

Probabilités sur un univers fini

Probabilités sur un univers fini [http://mp.cpgedupuydelome.fr] édité le 10 août 2015 Enoncés 1 Proailités sur un univers fini Evènements et langage ensemliste A quelle condition sur (a,, c, d) ]0, 1[ 4 existe-t-il une proailité P sur

Plus en détail

Couples de variables aléatoires discrètes

Couples de variables aléatoires discrètes Couples de variables aléatoires discrètes ECE Lycée Carnot mai Dans ce dernier chapitre de probabilités de l'année, nous allons introduire l'étude de couples de variables aléatoires, c'est-à-dire l'étude

Plus en détail

Baccalauréat ES Amérique du Nord 4 juin 2008

Baccalauréat ES Amérique du Nord 4 juin 2008 Baccalauréat ES Amérique du Nord 4 juin 2008 EXERCICE 1 Commun à tous les candidats f est une fonction définie sur ] 2 ; + [ par : 4 points f (x)=3+ 1 x+ 2. On note f sa fonction dérivée et (C ) la représentation

Plus en détail

Devoir commun Décembre 2014 3 ème LV2

Devoir commun Décembre 2014 3 ème LV2 Devoir commun Décembre 2014 3 ème LV2 Collège OASIS Corrigé de l Epreuve de Mathématiques L usage de la calculatrice est autorisé, mais tout échange de matériel est interdit Les exercices sont indépendants

Plus en détail

Concours de recrutement interne PLP 2009

Concours de recrutement interne PLP 2009 Concours de recrutement interne PLP 2009 Le sujet est constitué de quatre exercices indépendants. Le premier exercice, de nature pédagogique au niveau du baccalauréat professionnel, porte sur le flocon

Plus en détail

Première S2 Chapitre 20 : probabilités. Page n 1 2007 2008

Première S2 Chapitre 20 : probabilités. Page n 1 2007 2008 Preière S2 Chapitre 20 : probabilités. Page n De tous teps, les hoes se sont intéressés aux jeux de hasard. La théorie des probabilités est une branche des athéatiques née de l'étude des jeux de hasard

Plus en détail

Leçon 6. Savoir compter

Leçon 6. Savoir compter Leçon 6. Savoir compter Cette leçon est une introduction aux questions de dénombrements. Il s agit, d une part, de compter certains objets mathématiques (éléments, parties, applications,...) et, d autre

Plus en détail

Ressources pour le lycée général et technologique

Ressources pour le lycée général et technologique éduscol Ressources pour le lycée général et technologique Ressources pour la classe de terminale générale et technologique Exercices de mathématiques Classes de terminale S, ES, STI2D, STMG Ces documents

Plus en détail

Brevet blanc ÉPREUVE DE MATHÉMATIQUES février 2015 page 1/9

Brevet blanc ÉPREUVE DE MATHÉMATIQUES février 2015 page 1/9 Brevet blanc ÉPREUVE DE MATHÉMATIQUES février 2015 page 1/9 C o r r e c t i o n Soigner la rédaction des explications et des réponses : la qualité de cette rédaction et la maîtrise de la langue sont notées

Plus en détail

CONCOURS GÉNÉRAL DES LYCÉES SESSION DE 2009 COMPOSITION DE MATHÉMATIQUES. (Classe terminale S)

CONCOURS GÉNÉRAL DES LYCÉES SESSION DE 2009 COMPOSITION DE MATHÉMATIQUES. (Classe terminale S) MA 09 CONCOURS GÉNÉRAL DES LYCÉES SESSION DE 009 COMPOSITION DE MATHÉMATIQUES (Classe terminale S) DURÉE : 5 heures La calculatrice de poche est autorisée, conformément à la réglementation. La clarté et

Plus en détail

212 année 2013/2014 DM de synthèse 2

212 année 2013/2014 DM de synthèse 2 22 année 20/204 DM de synthèse 2 Exercice Soit f la fonction représentée cicontre.. Donner l'ensemble de définition de la fonction f. 2. Donner l'image de 4 par f.. a. Donner un nombre qui n'a qu'un seul

Plus en détail

Université Paris 8 Introduction aux probabilités 2014 2015 Licence Informatique Exercices Ph. Guillot. 1 Ensemble fondamental loi de probabilité

Université Paris 8 Introduction aux probabilités 2014 2015 Licence Informatique Exercices Ph. Guillot. 1 Ensemble fondamental loi de probabilité Université Paris 8 Introduction aux probabilités 2014 2015 Licence Informatique Exercices Ph. Guillot 1 Ensemble fondamental loi de probabilité Exercice 1. On dispose de deux boîtes. La première contient

Plus en détail

PRÉPARATION DU BACCALAURÉAT MATHÉMATIQUES. SÉRIE ES Obligatoire et Spécialité

PRÉPARATION DU BACCALAURÉAT MATHÉMATIQUES. SÉRIE ES Obligatoire et Spécialité PRÉPARATIN DU BACCALAURÉAT MATHÉMATIQUES SÉRIE ES bligatoire et Spécialité Décembre 0 Durée de l épreuve : heures Coefficient : ou L usage d une calculatrice électronique de poche à alimentation autonome,

Plus en détail

1. Un groupe de dix personnes comprend cinq hommes et cinq femmes.

1. Un groupe de dix personnes comprend cinq hommes et cinq femmes. Dénombrement Exercices 1. Un groupe de dix personnes comprend cinq hommes et cinq femmes. (a) Combien y a-t-il de manières de les disposer autour d une table ronde, en ne tenant compte que de leurs positions

Plus en détail

Cours de mathématiques Partie IV Probabilités MPSI 4

Cours de mathématiques Partie IV Probabilités MPSI 4 Lycée Louis-Le-Grand, Paris Année 2013/2014 Cours de mathématiques Partie IV Probabilités MPSI 4 Alain TROESCH Version du: 30 mai 2014 Table des matières 1 Dénombrement 3 I Combinatoire des ensembles

Plus en détail

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé Baccalauréat S ntilles-guyane 11 septembre 14 Corrigé EXERCICE 1 6 points Commun à tous les candidats Une entreprise de jouets en peluche souhaite commercialiser un nouveau produit et à cette fin, effectue

Plus en détail

Petits jeux de probabilités (Solutions)

Petits jeux de probabilités (Solutions) Petits jeux de probabilités (Solutions) Christophe Lalanne En famille 1. Mon voisin a deux enfants dont l un est une fille, quelle est la probabilité pour que l autre soit un garçon? Une famille de deux

Plus en détail

LES GENERATEURS DE NOMBRES ALEATOIRES

LES GENERATEURS DE NOMBRES ALEATOIRES LES GENERATEURS DE NOMBRES ALEATOIRES 1 Ce travail a deux objectifs : ====================================================================== 1. Comprendre ce que font les générateurs de nombres aléatoires

Plus en détail

Espace de probabilité, indépendance et probabilité conditionnelle

Espace de probabilité, indépendance et probabilité conditionnelle Chapter 2 Espace de probabilité, indépendance et probabilité conditionnelle Sommaire 2.1 Tribu et événements........................................... 15 2.2 Probabilité................................................

Plus en détail

Licence MASS 2000-2001. (Re-)Mise à niveau en Probabilités. Feuilles de 1 à 7

Licence MASS 2000-2001. (Re-)Mise à niveau en Probabilités. Feuilles de 1 à 7 Feuilles de 1 à 7 Ces feuilles avec 25 exercices et quelques rappels historiques furent distribuées à des étudiants de troisième année, dans le cadre d un cours intensif sur deux semaines, en début d année,

Plus en détail

Niveau. Situation étudiée. Type d activité. Durée. Objectifs. Seconde.

Niveau. Situation étudiée. Type d activité. Durée. Objectifs. Seconde. Simuler des expériences aléatoires avec une calculatrice Niveau Seconde. Situation étudiée Différentes selon les séances : Séance 1 : Jeu de pile ou face, tirages de boule dans une urne avec des proportions

Plus en détail

Correction du baccalauréat ES/L Métropole 20 juin 2014

Correction du baccalauréat ES/L Métropole 20 juin 2014 Correction du baccalauréat ES/L Métropole 0 juin 014 Exercice 1 1. c.. c. 3. c. 4. d. 5. a. P A (B)=1 P A (B)=1 0,3=0,7 D après la formule des probabilités totales : P(B)=P(A B)+P(A B)=0,6 0,3+(1 0,6)

Plus en détail

SESSION 2014 MATHÉMATIQUES. Série : SCIENCES ET TECHNOLOGIES DU MANAGEMENT ET DE LA GESTION STMG. DURÉE DE L ÉPREUVE : 3 heures COEFFICIENT : 3

SESSION 2014 MATHÉMATIQUES. Série : SCIENCES ET TECHNOLOGIES DU MANAGEMENT ET DE LA GESTION STMG. DURÉE DE L ÉPREUVE : 3 heures COEFFICIENT : 3 BACCALAURÉAT TECHNOLOGIQUE SESSION 2014 MATHÉMATIQUES Série : SCIENCES ET TECHNOLOGIES DU MANAGEMENT ET DE LA GESTION STMG DURÉE DE L ÉPREUVE : 3 heures COEFFICIENT : 3 Calculatrice autorisée, conformément

Plus en détail

Sujet 1. Problème 1 [2p] Lors d une course de chevaux, il y a 10 chevaux au départ. Combien de possibilités pour le tiercé?

Sujet 1. Problème 1 [2p] Lors d une course de chevaux, il y a 10 chevaux au départ. Combien de possibilités pour le tiercé? Sujet 1 Problème 1 [2p] Lors d une course de chevaux, il y a 10 chevaux au départ. Combien de possibilités pour le tiercé? Il faut choisir 3 chevaux parmi 10, et l ordre compte. Il y a 10 possibilités

Plus en détail

Objets Combinatoires élementaires

Objets Combinatoires élementaires Objets Combinatoires élementaires 0-0 Permutations Arrangements Permutations pour un multi-ensemble mots sous-ensemble à k éléments (Problème du choix) Compositions LE2I 04 1 Permutations Supposons que

Plus en détail

Unité 2 Leçon 2 Les permutations et les combinaisons

Unité 2 Leçon 2 Les permutations et les combinaisons Unité 2 Leçon 2 Les permutations et les combinaisons Qu'apprenons nous dans cette leçon? La différence entre un arrangement ordonné (une permutation) et un arrangement nonordonné (une combinaison). La

Plus en détail

1. Vocabulaire : Introduction au tableau élémentaire

1. Vocabulaire : Introduction au tableau élémentaire L1-S1 Lire et caractériser l'information géographique - Le traitement statistique univarié Statistique : le terme statistique désigne à la fois : 1) l'ensemble des données numériques concernant une catégorie

Plus en détail

SESSION 2011 BACCALAURÉAT TECHNOLOGIQUE. Sciences et Technologies de la Gestion. Communication et Gestion des Ressources Humaines MATHÉMATIQUES

SESSION 2011 BACCALAURÉAT TECHNOLOGIQUE. Sciences et Technologies de la Gestion. Communication et Gestion des Ressources Humaines MATHÉMATIQUES SESSION 2011 BACCALAURÉAT TECHNOLOGIQUE Sciences et Technologies de la Gestion Communication et Gestion des Ressources Humaines MATHÉMATIQUES Durée de l épreuve : 2 heures Coefficient : 2 Dès que le sujet

Plus en détail