Appliquer la maîtrise statistique des processus (MSP/SPC)

Dimension: px
Commencer à balayer dès la page:

Download "Appliquer la maîtrise statistique des processus (MSP/SPC)"

Transcription

1 Maurice PILLET Professeur des Universités IUT Annecy Université de Savoie, Laboratoire LISTIC Ancien élève de l'ecole Normale Supérieure de CACHAN Appliquer la maîtrise statistique des processus (MSP/SPC) Quatrième édition Éditions d Organisation, 1995, 2000, 2002, 2005 ISBN :

2 Chapitre 2 Les concepts de la Maîtrise Statistique des Processus (MSP) Après avoir détaillé dans le premier chapitre les aspects culturels qui conduisent les entreprises à maîtriser la variabilité des productions, nous aborderons dans ce chapitre les concepts de base de la MSP qui sont : le suivi de la variabilité et le pilotage par les cartes de contrôle l'évaluation de l'aptitude des processus par les capabilités Ce chapitre est volontairement dépourvu de calculs statistiques afin que le lecteur se consacre à l'essentiel : la compréhension des principes de base. Nous profiterons des chapitres suivants pour approfondir les concepts énoncés notamment en ce qui concerne les aspects statistiques et les cas d'application dans les situations particulières telles que les petites séries. Toutes les bases statistiques nécessaires dans cet ouvrage se trouvent dans l'annexe statistique en fin d'ouvrage. Éditions d Organisation 31

3 Appliquer la maîtrise statistique des processus (MSP/SPC) 1. Les 5 «M» du processus Tous les processus, quels qu ils soient, sont incapables de produire toujours exactement le même produit. Cela tous les opérateurs le savent bien et c est d ailleurs un des problèmes principaux auxquels les régleurs sont confrontés tous les jours. Quelle que soit la machine étudiée, la caractéristique observée, on note toujours une dispersion dans la répartition de la caractéristique. Une cote sur un lot de pièces ne fera jamais exactement 10 mm, mais sera répartie entre 9,97 et 10,03 mm par exemple. Un lot de résistances électriques dont la valeur nominale est de 10 ohms, aura en fait des valeurs comprises entre 9,9 et 10,1 ohms. Cette variabilité est incontournable et il faut être capable de «vivre avec». Ces variations proviennent de l'ensemble du processus de production. L'analyse des processus de fabrication permet de dissocier 5 éléments élémentaires qui contribuent à créer cette dispersion. On désigne généralement par les 5 M ces 5 causes fondamentales responsables de dispersion, et donc de non-qualité : Machine Main-d œuvre Matière Méthodes Milieu Méthodes Matière Gamme Milieu Machine Main-d'œuvre Figure 1 Les 5 M du Processus La méthode MSP a pour objectif la maîtrise des processus en partant de l analyse de ces 5 M. Elle apporte une plus grande rigueur et des outils méthodologiques qui vont aider les opérateurs et la maîtrise dans leur tâche d amélioration de la qualité. 32 Éditions d Organisation

4 Les concepts de la Maîtrise Statistique des Processus (MSP) Et la mesure! Nous avons coutume de ne pas placer la «Mesure» parmi les M. En effet, la mesure ne modifie pas la vraie dispersion vendue au client, mais l'image que l'on a de cette dispersion. La dispersion vue dans un histogramme sera la «somme» de la vraie dispersion de la production et de la dispersion due à l'instrument de mesure. Or ce qui crée la non qualité, ce n'est pas la dispersion vue mais la dispersion vraie. La mesure est un processus à lui tout seul avec ses propres 5M. Un préalable à la maîtrise d'un processus de fabrication et la maîtrise du processus de mesure. 2. Analyse de la forme de la dispersion 2.1. Répartition en forme de cloche L'analyse des productions sur une machine montre que, en l'absence de déréglage, la répartition des produits suit une courbe en cloche selon une loi : la loi normale. On trouve également d'autres appellations pour cette loi telle que loi de Gauss, loi de Laplace Gauss, mais nous ne rentrerons pas dans les détails statistiques au cours de ce chapitre. moyenne µ Écart type σ Modèle : loi de Gauss Observation d'un échantillon Dispersion = 6 σ Figure 2 Courbe en cloche Éditions d Organisation 33

5 Appliquer la maîtrise statistique des processus (MSP/SPC) Cette répartition se rencontre très fréquemment dans la nature et pas seulement dans le cas des machines de production. Ainsi, la hauteur des hommes en Europe suit une telle répartition. De nombreuses personnes mesurent autour de 1,73 m (la moyenne) mais peu d'hommes mesurent aux environs de 1,95 m ou de 1,50 m. Le théorème statistique à l'origine de cette convergence vers la loi normale est appelé «théorème central limite». On peut l'écrire sous la forme suivante : Tout système, soumis à de nombreux facteurs, indépendants les uns des autres, et d'un ordre de grandeur équivalent, génère une loi normale. Dans le cas d'une machine de production, nous sommes bien dans le cadre de ce théorème. En effet, de nombreux facteurs (les 5M) agissent sur la caractéristique. Ces facteurs sont en grande partie indépendants et l'ordre de grandeur de ces effets est faible dans un processus maîtrisé. Désormais, lorsque nous parlerons de la production d'une machine, nous la modéliserons par une courbe en cloche, dont les deux caractéristiques importantes seront la position et l'échelle. La position moyenne (notée X ) des pièces donne une bonne indication de la position de réglage de la machine. X représente la moyenne de l'échantillon alors que µ représente la vraie moyenne de la production (voir annexe statistique). Pour mesurer l importance des variations autour de la moyenne (facteur d'échelle), il suffit de mesurer la largeur de base de la courbe. La largeur de base de la courbe est appelée : dispersion. Nous verrons plus loin que l'on définit cette largeur de base de la courbe par un calcul statistique D = 6σ. Dans ce cas également nous devrons différentier σ qui est le vrai écart type de la population et S qui est l'estimateur de ce σ calculé à partir des données de l'échantillon. Et si la courbe obtenue n'est pas une cloche? Pour la plupart des caractéristiques obtenues en production, on devrait obtenir une courbe en cloche. Il y a quelques exceptions comme les défauts de forme ou les défauts de position où il est normal de ne pas obtenir une courbe en cloche. Mais ces cas sortent de l'objectif de ce chapitre. 34 Éditions d Organisation

6 Les concepts de la Maîtrise Statistique des Processus (MSP) Premier réglage Cause spéciale Second réglage Causes Communes -3 Cible +3 Figure 3 Courbe bimodale Dans les cas traditionnels, si une distribution n a pas la courbe en forme de cloche, c est qu il se passe quelque chose, le théorème central limite n'est pas vérifié. Il y a donc un (ou plusieurs) facteur qui agit avec un ordre de grandeur plus important que les autres. Le processus n est pas réglé sur la même position. En effet, si l on produit 50 pièces réglées sur la valeur -3, et 50 pièces réglées sur +3, on obtient la courbe figure 3. Il est donc important lorsqu on regarde une distribution de bien vérifier que la courbe à la forme d une cloche. Si ce n est pas le cas c est probablement le signe qu'un ou plusieurs déréglages importants se sont produits pendant la production Causes communes Causes spéciales On sait que dans une production, deux pièces ne sont jamais parfaitement identiques. Les dimensions précises d une pièce usinée sur une machine outil dépendent de nombreux facteurs. Il s ensuit une dispersion sur la cote que l on peut séparer en deux catégories : les dispersions dues aux causes communes, les dispersions dues aux causes spéciales. Éditions d Organisation 35

7 Appliquer la maîtrise statistique des processus (MSP/SPC) Cette dichotomie entre les causes de dispersion est une des bases fondamentales de la méthode MSP. Il convient donc de les expliciter davantage. Causes spéciales Causes communes Tolérance Maxi Cible Tolérance Mini Figure 4 Causes communes et causes spéciales Les causes communes Ce sont les nombreuses sources de variation attribuables au hasard qui sont toujours présentes à des degrés divers dans différents processus. Les statistiques étant l étude des phénomènes perturbés par le hasard, on sait modéliser le comportement des causes aléatoires, et par conséquent, prévoir la performance d un processus qui n est soumis qu à des causes communes de dispersion. De toutes manières, ces causes étant toujours présentes et de plus, en grand nombre, il faudra «vivre avec». L'ensemble de ces causes communes forme la variabilité intrinsèque du processus. Si toutes les nombreuses causes qui agissent sont d'un ordre de grandeur équivalent, alors la caractéristique doit suivre une répartition en forme de cloche. Le but de la MSP sera de ne laisser subsister que les dispersions dues aux causes communes. On parlera alors de processus «sous contrôle» Exemples de causes communes : jeux dans la chaîne cinématique de la machine ; défaut de la broche de la machine ; Éditions d Organisation

8 Les concepts de la Maîtrise Statistique des Processus (MSP) Les causes spéciales Ce sont les causes de dispersion identifiables, souvent irrégulières et instables, et par conséquent difficiles à prévoir. L apparition d une cause spéciale nécessite une intervention sur le processus. Contrairement aux causes communes, les causes spéciales sont en général peu nombreuses. Exemple de causes spéciales : déréglage d'un outil ; usure d'un outil ; mauvaise lubrification ;... En fait, lorsqu'on analyse les causes spéciales qui interviennent sur le processus, on s'aperçoit qu'on peut classer les causes spéciales en 2 catégories (figure 4) : celles qui agissent sur la position de la valeur surveillée (déréglage d'un outil par exemple) ; celles qui agissent sur la dispersion et donc sur la capabilité du processus (défaut de lubrification par exemple). Les cartes de contrôle (développées au 5) ont pour objectifs de prévenir l'apparition des causes spéciales et de dissocier celles qui ne nécessiteront qu'un réglage de celles qui risquent de modifier la capabilité habituellement rencontrée Processus «sous contrôle» et «hors contrôle» Processus «sous contrôle» Processus «hors contrôle» Figure 5 Processus «sous et hors contrôle» Éditions d Organisation 37

9 Appliquer la maîtrise statistique des processus (MSP/SPC) Un processus «sous contrôle» est un processus dans lequel seules subsistent les causes communes. La répartition de la production suit alors une courbe en cloche et elle est centrée sur la cible. Un processus «hors contrôle» est soumis à la présence de causes spéciales. Le résultat de la production ne suit donc pas nécessairement une courbe en cloche et la production peut être décentrée par rapport à la cible. La maîtrise de la variabilité dont nous avons montré la nécessité dans le premier chapitre consiste donc à mettre tous les processus «sous contrôle», c'est l'objectif de la MSP. 3. Surveiller un processus par cartes de contrôle 3.1. Le principe de la carte de contrôle Les limites naturelles d'un processus On a vu au paragraphe précédent, que les processus de production et même tous les systèmes étaient soumis à des variations naturelles aléatoires. Ces variations ont pour origine de très nombreuses causes que nous avons appelées les causes communes. Ces causes communes agissent de manière aléatoire sur le processus de fabrication. Ainsi, les caractéristiques fabriquées ne sont pas toujours identiques et suivent une loi de Gauss (théorème central limite). Cible - 3σ Limite naturelle inférieure σ cible Dispersion naturelle du processus Cible + 3σ Limite naturelle supérieure Figure 6 Dispersion naturelle du processus 38 Éditions d Organisation

10 Les concepts de la Maîtrise Statistique des Processus (MSP) Si la moyenne de la production est centrée sur la cible, il est donc naturel de trouver des valeurs comprises entre ± 3 écarts types (σ) de cette cible. Les valeurs «cible + 3.σ» et «cible - 3.σ» représentent les limites naturelles du processus. Tant qu'une valeur est dans ces limites, il n'y a pas de raison d'agir sur le processus, on risquerait de décentrer un processus bien centré. Si une valeur sort de ces limites, on a une forte probabilité que le processus ne soit plus centré sur la cible, il faut alors le recentrer Le pilotage par les limites naturelles Souvent, les opérateurs pilotent les processus à partir des limites de tolérance plutôt que d'utiliser les limites naturelles. Cela peut conduire à deux types d'erreurs illustrées par la figure 7. Tolérance Tolérance Pièce prélevée Limite Naturelle Dispersion Dispersion Limite Limite Cas 1 Naturelle Naturelle Cas 2 Limite Naturelle Figure 7 Pilotage à partir des tolérances Dans le cas 1, processus capable, l'opérateur prélève une pièce qui se situe à l'intérieur des tolérances. Traditionnellement, cette pièce étant «bonne», il continue sa production. Pourtant, la pièce est en dehors des limites naturelles. Le processus n'est pas centré sur la cible, il faut régler. Dans le cas 2, processus non capable, l'opérateur prélève une pièce qui se situe à l'extérieur des tolérances. Traditionnellement, cette pièce étant «mauvaise», il règle le processus. Pourtant, la pièce est dans les limites naturelles. Il est possible que le processus soit parfaitement centré. Dans ce cas on ne doit pas toucher au processus. Éditions d Organisation 39

11 Appliquer la maîtrise statistique des processus (MSP/SPC) Comme le montrent les deux exemples précédents, il faut dissocier l'action sur le processus (réglage) et l'action sur le produit (acceptation, tri, contrôle ). Les tolérances servent à déterminer si les pièces qu'on vient de faire sont bonnes ou mauvaises. Elles servent à agir sur les pièces pour décider de l'acceptation ou du refus des pièces que l'on a fabriquées. On regarde en arrière. Les limites naturelles servent à déterminer si le processus de fabrication est toujours centré sur la cible. Elles servent à agir sur le processus pour que les prochaines pièces à réaliser restent bonnes. On regarde en avant. La figure 8 montre clairement l'avantage à utiliser les limites naturelles pour piloter un processus plutôt que les limites de tolérance. Et ceci même dans le cas de petites séries avec un contrôle à 100 %. En effet, nous avons souvent entendu certains commentaires sur la MSP tels que : «Cela ne s'applique pas dans mon entreprise, je fais des petites séries» ou encore «Les statistiques me sont inutiles, je fais du contrôle à 100 %». Nous montrerons tout au long de cet ouvrage que ces raisonnements sont faux et prouvent que les personnes qui tiennent ces discours n'ont pas bien compris les fondements de la démarche MSP. Figure 8 Limites naturelles et tolérances Considérons un processus qui fabrique un lot de 25 produits au rythme de un produit par heure (petite série). Chaque produit est contrôlé (contrôle à 100 %). Si on pilote le processus à partir des tolérances, on attend de trouver un produit hors tolérance (ou au 40 Éditions d Organisation

12 Les concepts de la Maîtrise Statistique des Processus (MSP) voisinage avant d'intervenir). Si on fait un raisonnement statistique, on note beaucoup plus rapidement le décentrage du processus (hors des limites naturelles). Les produits fabriqués sont plus proches de la cible, de meilleure qualité. Le contrôle à 100 % valide les produits qui sont déjà fabriqués, le raisonnement statistique prévoit la qualité des produits que l'on va fabriquer! Dans le cas de la figure 8, dès le produit n 11, nous avions le signal statistique de décentrage, confirmé par le produit 13 (voir les règles en 4.5). Il fallait recentrer le processus avant de faire un produit défectueux. Ainsi, même dans le cas d'un contrôle à 100 % en petite série, on a intérêt d'utiliser un raisonnement statistique Pourquoi prélever des échantillons? Le travail d un régleur consiste principalement à bien régler sa machine, puis à veiller à ce que celle-ci ne se dérègle pas. Pour surveiller la position, les régleurs ont l habitude de prélever une pièce de temps en temps et de régler la machine en fonction de la mesure qu ils ont faite. Lorsque les capabilités ne sont pas excellentes, cette méthode conduit généralement à des erreurs de jugement, car on confond la dispersion de la machine avec son décentrage. L'origine de ces erreurs de jugement provient de la dispersion. En fait une mesure effectuée représente la somme de deux effets (figure 9) : un effet d'écart de réglage de la machine (systématique) ; un effet de la dispersion (aléatoire). Tolérance inférieure 1 valeur = déréglage + dispersion Cible Déréglage Tolérance supérieure Moyenne de plusieurs valeurs (on élimine en partie l'effet de la dispersion) Dispersion Figure 9 Addition du réglage et de la dispersion Éditions d Organisation 41

13 Appliquer la maîtrise statistique des processus (MSP/SPC) Pour être capable de piloter une machine, il faut arriver à éliminer l'effet de la dispersion afin de déterminer où se trouve le réglage de la machine. La seule solution est de ne pas raisonner sur une seule valeur, mais sur la moyenne de plusieurs valeurs. Le fait de faire une moyenne élimine en grande partie l'effet de la dispersion. La figure 10 et la figure 11 illustrent l'efficacité d'une moyenne par rapport à une valeur individuelle pour détecter un petit décentrage. En effet, la dispersion sur les moyennes est plus faible que la dispersion sur les valeurs individuelles dans un rapport de n (avec n le nombre de valeurs de l'échantillon). Ainsi, lorsque le processus se décentre, comme dans le cas de la figure 11, on note que la probabilité de sortir des limites naturelles est supérieure à 50 % dans le cas de la moyenne, alors qu'elle n'est que de quelques pour cent dans le cas des valeurs individuelles. On privilégiera donc systématiquement un prélèvement d'échantillons par rapport à un prélèvement de valeurs individuelles. Dispersion sur la moyenne Dispersion Probabilité de détecter le décentrage avec une seule valeur Limite naturelle sur les valeurs individuelles Limite naturelle sur la moyenne Figure 10 Pouvoir de détection d'une moyenne 42 Éditions d Organisation

14 Les concepts de la Maîtrise Statistique des Processus (MSP) Répartition des valeurs Répartition des moyennes Limite naturelle dans le cas d'une moyenne Limite naturelle dans le cas d'une valeur Probabilité de détecter le décentrage avec la moyenne Tolérance maxi Tolérance mini Probabilité de détecter le décentrage avec une seule valeur Figure 11 Intérêt de faire une moyenne Il existe cependant des cas où le prélèvement d'un échantillon n'a pas de sens ou n'est pas souhaitable. C'est le cas notamment lorsque l'on suit des paramètres «procédé» comme un écart de température. Dans ce cas, on raisonnera sur des valeurs individuelles. Nous traiterons ce cas dans les prochains chapitres La carte de pilotage (de contrôle) moyenne/étendue Dans le but d'aider l'opérateur à détecter si le processus qu'il conduit ne subit que des causes communes ou s'il y a présence de causes spéciales, Shewhart 1 a, dès le début du 20 ème siècle, mis au point un outil graphique performant appelé : la carte de contrôle. Nous avons choisi de présenter dans ce chapitre la carte moyenne/étendue car c'est historiquement la plus importante et probablement la plus utilisée. Pour une utilisation manuelle des cartes de contrôle au poste de travail par un opérateur, nous préférons cependant utiliser la carte médiane/étendue qui est plus simple. 1. W. Shewhart Economic Control of Quality of Manufactured Product Van Nostrand Co. Inc Princeton Éditions d Organisation 43

15 Appliquer la maîtrise statistique des processus (MSP/SPC) Principe de remplissage Date 23/02 Heure 6h00 6h30 7h00 7h30 8h00 8h30 8h35 9h00 9h30 Mesure Mesure Mesure Mesure Mesure Total Moyenne 0,2-0,6-0,2-0,8 0,6 2,0-0,2 0-0,8 Étendue Limite supérieure de contrôle Cible Moyenne de l'échantillon Point hors contrôle Limite inférieure de contrôle -1-2 Vérification du réglage Limite supérieure de contrôle Moyenne étendues Journal de bord Réglage Étendue de l'échantillon Figure 12 Principe d'une carte de pilotage La figure 14 montre un exemple de carte de contrôle moyennes/ étendues. Pour suivre l évolution du processus, on prélève régulièrement (par exemple toutes les heures) un échantillon de pièces consécutives (par exemple 5 pièces) de la production. Dans l exemple, on note sur la carte les écarts par rapport à la cible. 44 Éditions d Organisation

16 Les concepts de la Maîtrise Statistique des Processus (MSP) On calcule la moyenne (notée X ) de la caractéristique à surveiller et on porte cette moyenne sur le graphique (les points dans l'exemple). De même, on calcule l'étendue sur l'échantillon, c'est-à-dire la distance entre la plus forte valeur et la plus faible. On porte également cette valeur (notée R = Range en anglais) sur le graphique. À mesure que l on prélève des échantillons, la carte va se remplir et donner une image de l évolution du processus. Sur la carte des moyennes, la ligne en pointillé matérialise la valeur sur laquelle on souhaite être réglé (la cible). La ligne supérieure est appelée limite supérieure de contrôle des moyennes ( LSC X ), la ligne inférieure est appelée limite inférieure de contrôle des moyennes ( LIC X ). Les limites de contrôle inférieure et supérieure (limites naturelles du processus) déterminent une zone dans laquelle doivent se situer les valeurs portées sur la carte. Un processus sera dit «sous contrôle» lorsque les points seront répartis en forme de courbe en cloche à l'intérieur des limites de contrôle. Si un point sort de la carte de contrôle, il faut intervenir et noter cette intervention dans le journal de bord. Sur la carte des étendues, c'est le même principe de fonctionnement. Carte précédente Carte actuelle Cp Pp Ppk Cp Pp Ppk Figure 13 Carte aux médianes Éditions d Organisation 45

17 Appliquer la maîtrise statistique des processus (MSP/SPC) La figure 13 montre un autre exemple de carte de contrôle : La carte de contrôle médiane/étendue. Sur cette carte, on ne fait pas de calcul. On note les points mesurés, et on fait ressortir la tendance centrale en entourant le point central (la médiane). Cette carte est préférable à la carte aux moyennes dans le cas de remplissage manuel. En effet, bien qu'un peu moins efficace que la moyenne, elle est beaucoup plus simple à remplir et passe beaucoup mieux auprès des opérateurs. Nous reviendrons sur cette carte dans le chapitre 5. Pour la suite de ce chapitre nous nous focaliserons sur la carte la plus connue : la carte moyenne/étendue Moyenne et étendue, deux fonctions différentes Sur la carte de contrôle on ne note pas seulement la moyenne, mais également l'étendue. Les deux graphiques ont une fonction très différente car ils ne détectent pas le même type de causes spéciales. La figure 14 illustre les deux fonctions. Dans le cas 1, on note une dérive de la position du processus, il faut détecter cette dérive pour ne pas fabriquer des pièces mauvaises. La carte des moyennes détectera les dérives de position du processus. Dans le cas 2, le processus reste centré sur la cible, mais la dispersion se dégrade (par exemple une butée se desserre et prend du jeu). Il faut également détecter ce type de dérives car il conduit également à une production de mauvaise qualité. C'est l'objectif de la carte de contrôle des étendues. Dérive détectée par la carte des moyennes Cible Cas 1 Cas 2 Dérive détectée par la carte des étendues Figure 14 Carte de contrôle des moyennes et des étendues 46 Éditions d Organisation

18 Les concepts de la Maîtrise Statistique des Processus (MSP) La figure 15 illustre les deux types de causes spéciales. Dans l exemple de la voiture qui dépasse le car, il y a présence de cause spéciale, on note ce type de cause (les déréglages) sur la carte des moyennes. En effet, le chauffeur sent une variation de la position de son véhicule supérieure aux variations communes et il corrige par un coup de volant. En revanche, pour l exemple de la conduite «hasardeuse» d'un conducteur en état d'ébriété, il n y a pas forcément variation de la position moyenne (certains arrivent à rentrer!), il y a modification de la dispersion du processus. C est donc sur la carte des étendues que l on notera ce type de causes spéciales. Figure 15 Deux cartes pour deux fonctions différentes Les deux exemples précédents sont significatifs. Dans le premier cas, un réglage suffit pour ramener le «processus» sur la cible, dans le deuxième cas, la position moyenne est peut-être bonne, mais la dispersion devient importante. Il est impératif d arrêter le processus, car il risque fortement de générer du rebut! Éditions d Organisation 47

19 Appliquer la maîtrise statistique des processus (MSP/SPC) 4. Mise en place des cartes de contrôle Définir Mesurer Analyser Contrôler Standardise r Innover Améliorer 4.1. Démarche DMAICS Définir Identification des paramètres critiques du processus Mesurer Vérification de la capabilité du moyen de mesure Mesurer Observation du processus (Réaliser une carte de contrôle sans limite) Analyser Calcul des capabilités, Choix de la carte et calcul des limites de contrôle Problèmes de capabilité Amélioration continue Contrôler Suivi et pilotage par carte de contrôle Détection des causes spéciales Mise «sous contrôle» du processus Analyser Recherche des sources de variabilité Analyse des 5 M Analyse de la variance Etudes des corrélations Innover - Améliorer Réduction de la variabilité Plans d expériences, plans produits Mise en place des améliorations Standardiser Optimisation du processus, Le processus est mis «sur rails» Diminution de la fréquence des contrôles Figure 16 Mise en sous contrôle d'un processus La figure 16 illustre les étapes de mise sous contrôle d'un processus. On note sur ce diagramme les deux étapes préalables très importantes qui sont : définir le choix des caractéristiques à suivre ; l'étude de la capabilité du moyen de mesure. 48 Éditions d Organisation

20 Les concepts de la Maîtrise Statistique des Processus (MSP) En fait la mise sous contrôle d'un processus consiste à suivre la démarche DMAICS (Définir, Mesurer, Analyser, Innover, Contrôler, Standardiser) de Six Sigma. Les étapes Analyser et Améliorer pouvant parfois être court-circuitées lorsque les capabilités du processus sont bonnes Définir Le choix des caractéristiques à piloter en MSP Le nombre de caractéristiques suivies en production est en règle général très important et il n'est pas concevable ni même souhaitable de suivre toutes les caractéristiques par cartes de contrôle. La première étape dans la maîtrise de la variabilité consiste donc à choisir les caractéristiques candidates au suivi par carte. En règle générale, on retient trois critères de sélection de ces caractéristiques candidates : 1. L'importance de la caractéristique pour la satisfaction du client final ou d'un client sur un processus aval. Comme nous l'avons souligné dans le premier chapitre, seule compte la satisfaction totale du client final. Il est donc indispensable de sélectionner les caractéristiques corrélées fortement aux fonctions attendues du produit fini. 2. L'historique de non-qualité sur cette caractéristique. Il est bien sûr inutile de suivre par carte de contrôle une caractéristique qui n'a jamais posé de problèmes de qualité. On privilégiera les caractéristiques ayant déjà un historique de rebut, de retouche ou qui sont difficiles à garantir. Lors de l'industrialisation, on choisira les caractéristiques qui potentiellement (en fonction de l'historique de l'entreprise, de la précision demandée ) vont poser des problèmes lors de la réalisation. 3. La corrélation existante entre plusieurs caractéristiques. Dans le cas par exemple où plusieurs cotes sont réalisées par le même outil, il y a souvent une forte corrélation entre les différentes caractéristiques. Il est dans ce cas inutile de les suivre toutes, une seule carte est mise en place. Éditions d Organisation 49

21 Appliquer la maîtrise statistique des processus (MSP/SPC) La matrice d'impact La matrice d'impact est un outil permettant de choisir les caractéristiques les plus importantes à suivre sous MSP. L'objectif de cet outil et de rechercher les caractéristiques qui ont un impact fort sur la satisfaction des clients. Il est facilement réalisable à partir d'un tableur Excel. Pièce A Pièce B Caractéristiques client sur le produit (Tous les clients Assemblage, produit fini ) Importance Largeur 10 Parallélisme Hauteur 8 Profondeur 2 Diamètre 2 Longueur Diam7tre4 Fonctionnement souple Pas de jeu visible Assemblage sans forcer Fiabilité Importance Capabilité prévisionelle Ppk L'impact est noté 1 (Faible); 3 (Moyen); 9 (Fort) Figure 17 Matrice d impact Exemple Dans un premier temps on donne une note d'importance à chaque caractéristique client, puis on pondère l'impact de chaque caractéristique élémentaire sur les caractéristiques clients. Exemple : le diamètre 2 de la pièce B impacte fortement (9) la fiabilité du produit et moyennement (3) le jeu. L'importance de cette caractéristique est alors calculée par : Importance = 9x5 + 3x3 = 54 Dans un second temps en fonction de l'historique ou de la connaissance des experts, on évalue la capabilité prévisionnelle de chaque caractéristique. Enfin, les caractéristiques candidates au suivi MSP sont parmi celles les plus importantes pour les clients et celles qui ont une capabilité attendue faible. 50 Éditions d Organisation

22 Les concepts de la Maîtrise Statistique des Processus (MSP) 4.3. Mesurer La capabilité des moyens de mesure Ce point est un point essentiel dans la réussite de la mise sous contrôle d'un processus. Il est inutile de placer une carte de contrôle si la dispersion de l'instrument de mesure occupe déjà la presque totalité de la tolérance comme nous l'avons vu parfois! La première étape consiste à vérifier si on sait mesurer dans de bonnes conditions de répétabilité et de reproductibilité. Nous conseillons vivement au lecteur de se reporter au chapitre 3 sur les capabilités des moyens de mesure notamment de la méthode R&R avant de mettre en place une carte d'observation Observation du processus Les cartes de contrôle ont pour objectif de surveiller que les variations observées sur le processus ne sont pas supérieures aux variations «normales» générées par les causes communes. Il faut donc connaître, avant de mettre en place une carte de contrôle, quelles sont ces variations. C'est le but de cette phase d'observation. Une méthode très simple pour réaliser cette phase d'observation consiste à remplir une carte de contrôle sur laquelle aucune limite n'aura été portée. Les prélèvements s effectuent par petits sousgroupes de taille constante et identique à celle qui sera retenue pour la carte de contrôle (on prend en général de 3 à 6 pièces consécutives prélevées de façon périodique par exemple toutes les 15 minutes, 2 fois par équipe, un prélèvement par bac...). Cependant, avant de mettre en place la carte d'observation, il faut éliminer au préalable toutes les sources de variations possibles. Lorsqu'on observe un processus, on trouve toujours de nombreuses petites actions qui contribuent à accroître la variabilité comme par exemple : la façon dont on dépose le produit sur le posage ; la force avec laquelle on serre un écrou ; un mélange de produits d'origine différente ; Éditions d Organisation 51

Plan II-1. Généralités II-1-1. Définitions et principes II-1-2. Mise en place

Plan II-1. Généralités II-1-1. Définitions et principes II-1-2. Mise en place SPC 1 Plan II-1. Généralités II-1-1. Définitions et principes II-1-2. Mise en place II-2-1. Définitions II-1-2. Capabilité machine et capabilité procédé II-2-3. Ppm 2 II-1. GénéralitG ralités Définitions

Plus en détail

SIMDI - Simulateur de tournage

SIMDI - Simulateur de tournage SIMDI - Simulateur de tournage «Les élèves pilotent un processus de fabrication dans le temps réduit d une formation» Objectifs du simulateur «Appliquer la Maîtrise Statistique des procédés (MSP/SPC)»

Plus en détail

Le suivi de la qualité. Méthode MSP : généralités

Le suivi de la qualité. Méthode MSP : généralités Le suivi de la qualité La politique qualité d une entreprise impose que celle maîtrise sa fabrication. Pour cela, elle doit être capable d évaluer la «qualité» de son processus de production et ceci parfois

Plus en détail

Le tolérancement inertiel appliqué en décolletage

Le tolérancement inertiel appliqué en décolletage Le tolérancement inertiel appliqué en décolletage Mondialisation, augmentation du coût de l énergie et des matières, pressions sur les coûts. Les entreprises doivent évoluer dans un contexte changeant

Plus en détail

TP Maîtrise Statistique des Procédés

TP Maîtrise Statistique des Procédés TP Maîtrise Statistique des Procédés Vous allez utiliser un programme informatique «SIMDI Tour» qui simule (sommairement) le fonctionnement d un tour à commande numérique. Pendant ce TP, qui se déroule

Plus en détail

CI n 1 La démarche qualité

CI n 1 La démarche qualité TGM Sciences et Techniques Industrielles Pédagogique page 1 sur 4 Productique Secteur Production Génie Mécanique Terminale Ph10 a dresser b percer CI n 1 La démarche qualité COMPÉTENCES TERMINALES ATTENDUES

Plus en détail

Cartes de contrôle aux mesures

Cartes de contrôle aux mesures Cartes de contrôle aux mesures 1 Une introduction à la maîtrise statistique des processus Deux objets ne sont jamais rigoureusement identiques. Quelles que soient les techniques utilisées pour fabriquer

Plus en détail

STATISTIQUES I) UN PEU DE VOCABULAIRE

STATISTIQUES I) UN PEU DE VOCABULAIRE STATISTIQUES I) UN PEU DE VOCABULAIRE Toute étude statistique s'appuie sur des données. Dans le cas ou ces données sont numériques (99% des cas), on distingue les données discrètes (qui prennent un nombre

Plus en détail

TECHNIQUES STATISTIQUES

TECHNIQUES STATISTIQUES TECHNIQUES STATISTIQUES, enseignant à l'institut d'administration des Entreprises, Université Nancy 2 SOMMAIRE 1. Introduction 3 2. Contrôle statistique des lots 3 2.1 Champ d'application 3 2.2 Niveau

Plus en détail

Leçon 5. Systèmes de gestion à recomplétement périodique et stock de sécurité

Leçon 5. Systèmes de gestion à recomplétement périodique et stock de sécurité CANEGE Leçon 5 Systèmes de gestion à recomplétement périodique et stock Objectif : A l'issue de la leçon l'étudiant doit être capable : dans le cadre des calendriers d approvisionnement à recomplètement

Plus en détail

ANALYSE de CAPACITÉ : processus fabrication

ANALYSE de CAPACITÉ : processus fabrication ANALYSE de CAPACITÉ : processus fabrication aptitude d'un processus à satisfaire des exigences / spécifications Définition Limites "naturelles" de variabilité Distinction entre 3 sortes de limites Étapes

Plus en détail

LA MÉTHODE S.P.C. (STATISTICAL PROCESS CONTROL)

LA MÉTHODE S.P.C. (STATISTICAL PROCESS CONTROL) 1GM Sciences et Techniques Industrielles Page 1 sur 5 Productique - Cours Génie Mécanique Première LA MÉTHODE S.P.C. (STATISTICAL PROCESS CONTROL) Née aux USA, la méthode S. P. C. est traduite le plus

Plus en détail

Les dossiers techniques du CRTA. Comment réaliser une carte de contrôle?

Les dossiers techniques du CRTA. Comment réaliser une carte de contrôle? Les dossiers techniques du CRTA Comment réaliser une carte de contrôle? Comment réaliser une carte de contrôle Les enjeux du contrôle Au-delà du prix de vente, la satisfaction du client passe de manière

Plus en détail

L'Analyse de l'aptitude d'un Procédé à l'aide de MINITAB (I)

L'Analyse de l'aptitude d'un Procédé à l'aide de MINITAB (I) Résumé L'Analyse de l'aptitude d'un Procédé à l'aide de MINITAB (I) Keith M. Bower, M.S. L'utilisation d'indices d'aptitude tels que les valeurs C p, C pk, et Sigma" est très répandue au sein de l'industrie.

Plus en détail

Un processus se décline par un ensemble d activités liées les unes aux autres selon une méthodologie décrivant leur cadre et leur mode opératoire.

Un processus se décline par un ensemble d activités liées les unes aux autres selon une méthodologie décrivant leur cadre et leur mode opératoire. ARTICLE STATISTIQUE N 2 LES INDICATEURS Un processus se décline par un ensemble d activités liées les unes aux autres selon une méthodologie décrivant leur cadre et leur mode opératoire. Ainsi l on distingue

Plus en détail

Leçon 12. Qualité. de définir les avantages et inconvénients de chaque type de contrôle,

Leçon 12. Qualité. de définir les avantages et inconvénients de chaque type de contrôle, Leçon 12 Qualité L'objectif principal de la leçon est de connaître et de comprendre les principaux types de contrôle mis en place pour assurer la qualité des produits et des processus. A l'issue de la

Plus en détail

LE RÔLE DE LA STATISTIQUE DANS UN PROCESSUS DE PRISE DE DÉCISION

LE RÔLE DE LA STATISTIQUE DANS UN PROCESSUS DE PRISE DE DÉCISION LE RÔLE DE LA STATISTIQUE DANS UN PROCESSUS DE PRISE DE DÉCISION Sylvie Gervais Service des enseignements généraux École de technologie supérieure (sylvie.gervais@etsmtl.ca) Le laboratoire des condensateurs

Plus en détail

VIII : Gestion des prévisions

VIII : Gestion des prévisions CHTIBI Chafik Une prévision est une prédiction des événements à venir qu'on utilise à des fins de planification. Les méthodes de prévision peuvent se fonder sur des modèles mathématiques utilisant les

Plus en détail

Séances 5 et 6 4-530-03. La gestion de la qualité. Gestion des opérations et de la logistique

Séances 5 et 6 4-530-03. La gestion de la qualité. Gestion des opérations et de la logistique Gestion des opérations et de la logistique Séances 5 et 6 4-530-03 La gestion de la qualité 2011, Service d enseignement de la Gestion des Opérations et de la Logistique, HEC Montréal. Points importants

Plus en détail

11 OSMOLARITÉ, MULTIPLES SOURCES DE VARIATION

11 OSMOLARITÉ, MULTIPLES SOURCES DE VARIATION 11 OSMOLARITÉ, MULTIPLES SOURCES DE VARIATION Dans cette étude de cas nous nous retrouvons face à des données dont la variabilité court terme est très différente de celle à long terme. Les cartes de contrôle

Plus en détail

Supports de formation du GCE Inventaires nationaux des gaz à effet de serre

Supports de formation du GCE Inventaires nationaux des gaz à effet de serre Supports de formation du GCE Inventaires nationaux des gaz à effet de serre Gestion du manque de données Version 2, avril 2012 Public cible et objectif des supports de formation Ces supports de formation

Plus en détail

Activité 1 : échantillonnage

Activité 1 : échantillonnage Activité échantillonnage, intervalle de fluctuation, prise de décision (à partir d un même thème) Les trois activités qui suivent s inspirent du document «ressources pour la classe de première générale

Plus en détail

23. Interprétation clinique des mesures de l effet traitement

23. Interprétation clinique des mesures de l effet traitement 23. Interprétation clinique des mesures de l effet traitement 23.1. Critères de jugement binaires Plusieurs mesures (indices) sont utilisables pour quantifier l effet traitement lors de l utilisation d

Plus en détail

Evaluation de la variabilité d'un système de mesure

Evaluation de la variabilité d'un système de mesure Evaluation de la variabilité d'un système de mesure Exemple 1: Diamètres des injecteurs de carburant Problème Un fabricant d'injecteurs de carburant installe un nouveau système de mesure numérique. Les

Plus en détail

un jeu pédagogique pour découvrir la Maîtrise Statistique des Procédés Sommaire OBJECTIFS...2

un jeu pédagogique pour découvrir la Maîtrise Statistique des Procédés Sommaire OBJECTIFS...2 NOTICE TECHNIQUE DE un jeu pédagogique pour découvrir la Maîtrise Statistique des Procédés Sommaire OBJECTIFS...2 CONTEXTE D'UTILISATION...3 POUR L'ENTREPRISE :...3 POUR LES ORGANISMES D E FORMATION ET

Plus en détail

Optimisation de la performance. d un processus d usinage à commande numérique

Optimisation de la performance. d un processus d usinage à commande numérique Jacques ALEXIS 20 Novembre 2001 Optimisation de la performance d un processus d usinage à commande numérique 1 Exposé du problème à résoudre L exemple utilisé pour cette présentation a été présenté par

Plus en détail

Christophe Fournier. Clinique de Thuys. Aunége - Christophe Fournier

Christophe Fournier. Clinique de Thuys. Aunége - Christophe Fournier Christophe Fournier Clinique de Thuys Aunége - Christophe Fournier 2 Table des matières Information sur l'échantillon 3 Structure de l'échantillon...4 Point méthodologique 6 Point méthodologique...7 Représentativité

Plus en détail

Qualité en production

Qualité en production Daniel DURET et Maurice PILLET Qualité en production De l ISO 9000 à Six Sigma Troisième édition Éditions d Organisation, 1998, 2001, 2005 ISBN : 2-7081-3388-8 Sommaire INTRODUCTION... 17 Première partie

Plus en détail

SIMDI Six Sigma «Les élèves résolvent un problème complexe avec Six Sigma dans le temps réduit d une formation»

SIMDI Six Sigma «Les élèves résolvent un problème complexe avec Six Sigma dans le temps réduit d une formation» SIMDI Six Sigma «Les élèves résolvent un problème complexe avec Six Sigma dans le temps réduit d une formation» Objectifs du simulateur Le simulateur Six Sigma reproduit l'ensemble d'un processus de production

Plus en détail

ANNEXE 1 BTS AGENCEMENT DE L'ENVIRONNEMENT ARCHITECTURAL Programme de mathématiques

ANNEXE 1 BTS AGENCEMENT DE L'ENVIRONNEMENT ARCHITECTURAL Programme de mathématiques ANNEXE BTS AGENCEMENT DE L'ENVIRONNEMENT ARCHITECTURAL Programme de mathématiques L'enseignement des mathématiques dans les sections de techniciens supérieurs Agencement de l'environnement architectural

Plus en détail

Bouteilles récipients-mesures

Bouteilles récipients-mesures RECOMMANDATION OIML R 96 INTERNATIONALE Edition 1990 (F) Bouteilles récipients-mesures Measuring container bottles OIML R 96 Edition 1990 (F) ORGANISATION INTERNATIONALE DE MÉTROLOGIE LÉGALE INTERNATIONAL

Plus en détail

METHODOLOGIE SIX SIGMA POUR LES PME

METHODOLOGIE SIX SIGMA POUR LES PME C.Q.H.N. Centre Qualité Hainaut-Namur MAISON DE L INDUSTRIE Rue Auguste Piccard, 20 6041 GOSSELIES Tél. : 071/235.722 Fax. : 071/235.720 E-mail : info@cqhn.com METHODOLOGIE SIX SIGMA POUR LES PME OBJECTIFS

Plus en détail

Mesure, précision, unités...

Mesure, précision, unités... 1. Introduction Mesure, précision, unités... La physique, science expérimentale, impose un recours à l'expérience pour élaborer, infirmer ou confirmer les théories. Mais cette démarche qui fait qu'une

Plus en détail

Statistiques Descriptives à une dimension

Statistiques Descriptives à une dimension I. Introduction et Définitions 1. Introduction La statistique est une science qui a pour objectif de recueillir et de traiter les informations, souvent en très grand nombre. Elle regroupe l ensemble des

Plus en détail

CONTRÔLE DE LA QUALITE ANALYTIQUE AU LABO. Août 2009 Hilde De Boeck

CONTRÔLE DE LA QUALITE ANALYTIQUE AU LABO. Août 2009 Hilde De Boeck CONTRÔLE DE LA QUALITE ANALYTIQUE AU LABO Août 2009 Hilde De Boeck SOMMAIRE 1. Introduction 2. Mise en œuvre d un CQI 3. Préparation d un échantillon CQI 4. Calcule des valeurs cibles 5. Réalisation du

Plus en détail

Annexe commune aux séries ES, L et S : boîtes et quantiles

Annexe commune aux séries ES, L et S : boîtes et quantiles Annexe commune aux séries ES, L et S : boîtes et quantiles Quantiles En statistique, pour toute série numérique de données à valeurs dans un intervalle I, on définit la fonction quantile Q, de [,1] dans

Plus en détail

2010 My Maths Space Page 1/6

2010 My Maths Space Page 1/6 A. Des statistiques aux probabilités 1. Statistiques descriptives, analyse de données. Vocabulaire des statistiques : Population : c'est l'ensemble étudié. Individu : c'est un élément de la population.

Plus en détail

Cours (7) de statistiques à distance, élaboré par Zarrouk Fayçal, ISSEP Ksar-Said, 2011-2012 LES STATISTIQUES INFERENTIELLES

Cours (7) de statistiques à distance, élaboré par Zarrouk Fayçal, ISSEP Ksar-Said, 2011-2012 LES STATISTIQUES INFERENTIELLES LES STATISTIQUES INFERENTIELLES (test de Student) L inférence statistique est la partie des statistiques qui, contrairement à la statistique descriptive, ne se contente pas de décrire des observations,

Plus en détail

L'APPROCHE EXPERIMENTALE EN RECHERCHE: introduction aux statistiques.

L'APPROCHE EXPERIMENTALE EN RECHERCHE: introduction aux statistiques. L'APPROCHE EXPERIMENTALE EN RECHERCHE: introduction aux statistiques 1 BUTS DU COURS : se familiariser avec le vocabulaire statistique o variable dépendante, variable indépendante o statistique descriptive,

Plus en détail

Gestion de projet - les chaînes critiques

Gestion de projet - les chaînes critiques Gestion de projet - les chaînes critiques GÉRARD CASANOVA - DENIS ABÉCASSIS Paternité - Pas d'utilisation Commerciale - Pas de Modification : http://creativecommons.org/licenses/by-nc-nd/2.0/fr/ Table

Plus en détail

Réunion des comités roulements et GPS

Réunion des comités roulements et GPS 24 Réunion des comités roulements et GPS Dès publication de la nouvelle version de la norme ISO 492, les tolérances dimensionnelles des roulements et les systèmes ISO de limites et d ajustements pourront

Plus en détail

DOCUMENT 2.1 : INFORMATIONS COMPLEMENTAIRES SUR LA METHODE D ENQUETE

DOCUMENT 2.1 : INFORMATIONS COMPLEMENTAIRES SUR LA METHODE D ENQUETE DOCUMENT 2.1 : INFORMATIONS COMPLEMENTAIRES SUR LA METHODE D ENQUETE 1 Définir le type de variable Dans notre cas, la variable est quantitative nominale. Note : Une variable est qualitative nominale quand

Plus en détail

ANALYSE de CAPACITÉ d'un PROCESSUS

ANALYSE de CAPACITÉ d'un PROCESSUS ANALYSE de CAPACITÉ d'un PROCESSUS ( aptitude d'un processus à satisfaire des exigences / spécifications) Définition Limites "naturelles" de variabilité Distinction entre 3 sortes de limites Étapes pour

Plus en détail

Bienvenue dans le monde de la construction logicielle

Bienvenue dans le monde de la construction logicielle Chapitre 1 Bienvenue dans le monde de la construction logicielle Sommaire : 1.1 La construction logicielle, qu est-ce que c est? : page 3 1.2 Pourquoi la construction logicielle est-elle importante? :

Plus en détail

Étude de Cas Client LINPAC Packaging poursuit sa stratégie de gains de performance avec Shopfloor- Online, le MES de Lighthouse Systems

Étude de Cas Client LINPAC Packaging poursuit sa stratégie de gains de performance avec Shopfloor- Online, le MES de Lighthouse Systems Étude de Cas Client LINPAC Packaging poursuit sa stratégie de gains de performance avec Shopfloor- Online, le MES de Lighthouse Systems Gains de productivité et réduction des coûts assurent le retour sur

Plus en détail

CANTONS, SIGNAUX ET DETECTEURS en MODELISME FERROVIAIRE UNE APPROCHE SIMPLIFIÉE

CANTONS, SIGNAUX ET DETECTEURS en MODELISME FERROVIAIRE UNE APPROCHE SIMPLIFIÉE CANTONS, SIGNAUX ET DETECTEURS en MODELISME FERROVIAIRE UNE APPROCHE SIMPLIFIÉE version 1.0 du 10 avril 2009 Jean-Pierre PILLOU 1 SOMMAIRE 1 CANTONS ET ZONES D'AIGUILLES... 3 1.1 CANTONS... 3 1.2 ZONES

Plus en détail

Gestion multi-stocks

Gestion multi-stocks Gestion multi-stocks Dans l architecture initiale du logiciel IDH-STOCK, 11 champs obligatoires sont constitués. Ces champs ne peuvent être supprimés. Ils constituent l ossature de base de la base de données

Plus en détail

SOCLE COMMUN - La Compétence 3 Les principaux éléments de mathématiques et la culture scientifique et technologique

SOCLE COMMUN - La Compétence 3 Les principaux éléments de mathématiques et la culture scientifique et technologique SOCLE COMMUN - La Compétence 3 Les principaux éléments de mathématiques et la culture scientifique et technologique DOMAINE P3.C3.D1. Pratiquer une démarche scientifique et technologique, résoudre des

Plus en détail

Chapitre I - Introduction et conseils au lecteur

Chapitre I - Introduction et conseils au lecteur Chapitre I - Introduction et conseils au lecteur Cette partie introductive situe la place de l'algorithmique dans le développement logiciel et fournit au lecteur des conseils : conseils pour bien analyser

Plus en détail

À votre service...? Let s drive business

À votre service...? Let s drive business À votre service...? Analyse du marché : L entreprise satisfaitelle les attentes des consommateurs européens en ce qui concerne la prise de rendez-vous et les délais de livraison? Étude de marché : Prestation

Plus en détail

Refonte du Formulaire Statistique. - Guide d utilisation pour Organismes -

Refonte du Formulaire Statistique. - Guide d utilisation pour Organismes - Refonte du Formulaire Statistique - Guide d utilisation pour Organismes - Sommaire 1. Nouveautés conviviales du Formulaire statistique en ligne de CADAC 1.1 Rationalisation des données selon le type d

Plus en détail

Chapitre 3 : INFERENCE

Chapitre 3 : INFERENCE Chapitre 3 : INFERENCE 3.1 L ÉCHANTILLONNAGE 3.1.1 Introduction 3.1.2 L échantillonnage aléatoire 3.1.3 Estimation ponctuelle 3.1.4 Distributions d échantillonnage 3.1.5 Intervalles de probabilité L échantillonnage

Plus en détail

3 - Salaires. Il va falloir compléter une succession de fenêtres pour arriver au graphique final.

3 - Salaires. Il va falloir compléter une succession de fenêtres pour arriver au graphique final. 3 - Objectif : Traiter les statistiques descriptives à l'aide du tableur Excel. Partie 1 : Représentations graphiques 1.1 Histogrammes Les données brutes sont placées dans les deux premières colonnes 1

Plus en détail

Fractions et décimaux

Fractions et décimaux Fractions et décimaux Scénario : le pliage des bandes de papier Cette fiche n est pas un programme pédagogique. Elle a pour but de faire apercevoir la portée de l approche «pliage de bandes» et les conséquences

Plus en détail

LES DECIMALES DE π BERNARD EGGER

LES DECIMALES DE π BERNARD EGGER LES DECIMALES DE π BERNARD EGGER La génération de suites de nombres pseudo aléatoires est un enjeu essentiel pour la simulation. Si comme le dit B Ycard dans le cours écrit pour le logiciel SEL, «Paradoxalement,

Plus en détail

Lycée Cassini BTS CGO 2014-2015. Test de début d année

Lycée Cassini BTS CGO 2014-2015. Test de début d année Lycée assini BTS GO 4-5 Exercice Test de début d année Pour chaque question, plusieurs réponses sont proposées. Déterminer celles qui sont correctes. On a mesuré, en continu pendant quatre heures, la concentration

Plus en détail

Fidélité des méthodes analytiques (Résolution oeno 5/99)

Fidélité des méthodes analytiques (Résolution oeno 5/99) (Résolution oeno 5/99) Les données concernant la fidélité des méthodes analytiques déterminées par des études collaboratives sont applicables dans les cas suivants : ) Vérification de l'acceptabilité des

Plus en détail

JEUX AVEC LES CHIFFRES DES DÉVELOPPEMENTS DÉCIMAUX DE QUELQUES RATIONNELS

JEUX AVEC LES CHIFFRES DES DÉVELOPPEMENTS DÉCIMAUX DE QUELQUES RATIONNELS JEUX AVEC LES CHIFFRES DES DÉVELOPPEMENTS DÉCIMAUX DE QUELQUES RATIONNELS Jean Luc Bovet, Auvernier Notre merveilleuse manière d écrire les nombres, due, dit-on, aux Indiens via les Arabes, présente en

Plus en détail

Ch.12 : Loi binomiale

Ch.12 : Loi binomiale 4 e - programme 2007 - mathématiques ch.12 - cours Page 1 sur 5 1 RÉPÉTITION D'EXPÉRIENCES INDÉPENDANTES Lancer plusieurs fois un dé et noter les résultats successifs. Ch.12 : Loi binomiale Prélever des

Plus en détail

Identifier les sources d erreur lors d une pesée

Identifier les sources d erreur lors d une pesée Discipline : Mesure et instrumentation Intitulé de la séance : D'après : Objectifs Objectifs : Identifier les différentes sources d erreur par le diagramme 5M Identifier les sources d erreur lors d une

Plus en détail

(Statistical Package for the Social Sciences)

(Statistical Package for the Social Sciences) Initiation à l utilisation de SPSS (Statistical Package for the Social Sciences) 1 SPSS 2 3 Plan de l exposé Faire une recherche (bibliographique) sur le test; Définir le test à mesurer; Expliquer les

Plus en détail

I] ETUDE STATISTIQUES SIMPLE

I] ETUDE STATISTIQUES SIMPLE INTRODUCTION Scilab (contraction de Scientific Laboratory) est un logiciel libre, développé à l'inria Rocquencourt. C'est un environnement de calcul numérique qui permet d'effectuer rapidement toutes les

Plus en détail

Loi normale ou loi de Laplace-Gauss

Loi normale ou loi de Laplace-Gauss LivreSansTitre1.book Page 44 Mardi, 22. juin 2010 10:40 10 Loi normale ou loi de Laplace-Gauss I. Définition de la loi normale II. Tables de la loi normale centrée réduite S il y avait une seule loi de

Plus en détail

Emilien Suquet, suquet@automaths.com

Emilien Suquet, suquet@automaths.com STATISTIQUES Emilien Suquet, suquet@automaths.com I Comment réagir face à un document statistique? Les deux graphiques ci-dessous représentent l évolution du taux de chômage en France sur les 1 mois de

Plus en détail

Concours EXTERNE d ingénieur des systèmes d information et de communication. «Session 2009»

Concours EXTERNE d ingénieur des systèmes d information et de communication. «Session 2009» Concours EXTERNE d ingénieur des systèmes d information et de communication «Session 2009» Meilleure copie "Rapport Technique" Thème : conception et développement logiciel Note : 15,75/20 Rapport technique

Plus en détail

Traitement des données avec EXCEL 2007

Traitement des données avec EXCEL 2007 Traitement des données avec EXCEL 2007 Vincent Jalby Octobre 2010 1 Saisie des données Les données collectées sont saisies dans une feuille Excel. Chaque ligne correspond à une observation (questionnaire),

Plus en détail

Exploitation et analyse des données appliquées aux techniques d enquête par sondage. Introduction.

Exploitation et analyse des données appliquées aux techniques d enquête par sondage. Introduction. Exploitation et analyse des données appliquées aux techniques d enquête par sondage. Introduction. Etudes et traitements statistiques des données : le cas illustratif de la démarche par sondage INTRODUCTION

Plus en détail

Chapitre 1 GRAPHIQUES

Chapitre 1 GRAPHIQUES Statistique appliquée à la gestion et au marketing http://foucart.thierry.free.fr/statpc Chapitre 1 GRAPHIQUES On entend souvent qu un schéma vaut mieux qu un long discours. Effectivement, lorsque l on

Plus en détail

Calcul d erreur (ou Propagation des incertitudes)

Calcul d erreur (ou Propagation des incertitudes) Travaux Pratiques de Physique vers. septembre 014 Calcul d erreur (ou Propagation des incertitudes) 1) Introduction Le mot "erreur" se réfère à quelque chose de juste ou de vrai. On parle d erreur sur

Plus en détail

Déclassement d'actifs et stock brut de capital

Déclassement d'actifs et stock brut de capital Extrait de : La mesure du capital - Manuel de l'ocde 2009 Deuxième édition Accéder à cette publication : http://dx.doi.org/10.1787/9789264067752-fr Déclassement d'actifs et stock brut de capital Merci

Plus en détail

3 Les premiers résultats des plans d'actions

3 Les premiers résultats des plans d'actions 3 Les premiers résultats des plans d'actions Les résultats que nous avons obtenus en ce qui concerne les plans d'action, résultent de l'analyse de 48 entreprises seulement. Revenons sur notre échantillon.

Plus en détail

Réalisation du travail de recherche

Réalisation du travail de recherche Ph. Pélissier / Rédaction mémoire - 1 Réalisation du travail de recherche «Ce qui se conçoit bien s énonce clairement et les mots pour le dire arrivent aisément» Boileau Pour la validation du D.U., il

Plus en détail

Master 1 de Psychologie du Travail et des Organisations : Recueil et analyse des données - Corrigés des T.D. ( 2014/2015) -

Master 1 de Psychologie du Travail et des Organisations : Recueil et analyse des données - Corrigés des T.D. ( 2014/2015) - Dominique Ferrieux - Université Paul Valéry - Montpellier III Master de Psychologie du Travail et des Organisations : Recueil et analyse des données - Corrigés des T.D. ( /) - Deuxième partie : Plans :

Plus en détail

RESUME DES NORMES ISO

RESUME DES NORMES ISO RESUME DES NORMES ISO Travail réalisé par : Selma FERKOUS O8301 ISO 19011 : La norme internationale ISO 9011, se focalise sur le management de programmes d audit, la réalisation d audits internes ou externes

Plus en détail

Guide d utilisation de l outil d audit de sécurité. AUDITSec. Version 3.0

Guide d utilisation de l outil d audit de sécurité. AUDITSec. Version 3.0 Guide d utilisation de l outil d audit de sécurité AUDITSec Version 3.0 Mai 2011 Historique du document Version Date Auteur Description 1.0 6 novembre 2010 Éric Clairvoyant http://ca.linkedin.com/pub/ericclairvoyant/7/ba/227

Plus en détail

Cours (8) de statistiques à distance, élaboré par Zarrouk Fayçal, ISSEP Ksar-Said, 2011-2012. Test du Khi 2

Cours (8) de statistiques à distance, élaboré par Zarrouk Fayçal, ISSEP Ksar-Said, 2011-2012. Test du Khi 2 Test du Khi 2 Le test du Khi 2 (khi deux ou khi carré) fournit une méthode pour déterminer la nature d'une répartition, qui peut être continue ou discrète. Domaine d application du test : Données qualitatives

Plus en détail

Pour utiliser les menus statistiques fournis par excel

Pour utiliser les menus statistiques fournis par excel Pour utiliser les menus statistiques fournis par excel Préalable: Dans Outils/Macro complémentaires, cocher si ce n'est pas déjà fait "utilitaires d'analyse": Partie 1 Analyse de variance A] Plan S n

Plus en détail

Le diagramme des relations met en évidence les multiples relations entre les différents éléments, causes et effets d'un système.

Le diagramme des relations met en évidence les multiples relations entre les différents éléments, causes et effets d'un système. Sept outils du management (Les) Introduction Diagramme des relations Diagramme des affinités Diagramme en arbre Diagramme matriciel Diagramme des décisions d'action (PDPC) Diagramme sagittal (CPM) Analyse

Plus en détail

Chapitre VI Échantillonages et simulations

Chapitre VI Échantillonages et simulations Chapitre VI Commentaires : Récursivement, les commentaires ne sont pas à l attention des élèves.. Fluctuation d échantillonnage Définition : En statistiques, un échantillon de taille n est la liste des

Plus en détail

Séance 4. Gestion de la capacité. Gestion des opérations et de la logistique 4-530-03

Séance 4. Gestion de la capacité. Gestion des opérations et de la logistique 4-530-03 Gestion des opérations et de la logistique Séance 4 4-530-03 Gestion de la capacité Points importants présentés au dernier cours Les principaux types d aménagement Étude du travail et l amélioration des

Plus en détail

Le tableur en 1 heure

Le tableur en 1 heure Le tableur en 1 heure Table des matières 1Notion de tableur...4 1.1Des cellules pour déposer des nombres...4 1.2Des cellules pour déposer des calculs...4 1.3Des cellules pour déposer des formules...5 2Notion

Plus en détail

Figure 2.1 : fenêtre de travail d'excel v7.0

Figure 2.1 : fenêtre de travail d'excel v7.0 2.1. Excel 2.1.1. Présentation Les tableurs sont des utilitaires parfois intégrés aux éditeurs de texte (Works, Word, Kspread) ou non (Excel) et qui permettent la gestion de données numériques, le graphisme

Plus en détail

CHAPITRE 3 LA MAITRISE STATISTIQUE DES PROCEDES MSP

CHAPITRE 3 LA MAITRISE STATISTIQUE DES PROCEDES MSP CHAPITRE LA MAITRISE STATISTIQUE DES PROCEDES Chap. Plan du cours Objectifs généraux Comprendre les concepts Qualité, en apprécier l intérêt fondamental pour l entreprise industrielle. Appliquer l outil

Plus en détail

FICHE TECHNIQUE N 1 CADRE 47/2

FICHE TECHNIQUE N 1 CADRE 47/2 FICHE TECHNIQUE N 1 CADRE 47/2 Cadre 47/2 : enchaînements dans le carré central La direction technique de la fédération vous propose une série de fiches dédiées au cadre 47/2. Les situations de jeu proposées

Plus en détail

C3 : Manipulations statistiques

C3 : Manipulations statistiques C3 : Manipulations statistiques Dorat Rémi 1- Génération de valeurs aléatoires p 2 2- Statistiques descriptives p 3 3- Tests statistiques p 8 4- Régression linéaire p 8 Manipulations statistiques 1 1-

Plus en détail

2. Formalisation ... Or les variables sont indépendantes. Donc si

2. Formalisation ... Or les variables sont indépendantes. Donc si L'estimation 1. Concrètement... Dernièrement un quotidien affichait en première page : en 30 ans les françaises ont grandi de... je ne sais plus exactement, disons 7,1 cm. C'est peut-être un peu moins

Plus en détail

DOSSIER N 01. Exemples simples de problèmes de dénombrement dans différentes situations.

DOSSIER N 01. Exemples simples de problèmes de dénombrement dans différentes situations. DOSSIER N 01 Question : Présenter un choix d exercices sur le thème suivant : Exemples simples de problèmes de dénombrement dans différentes situations. Consignes de l épreuve : Pendant votre préparation

Plus en détail

Programmation C++ (débutant)/les tableaux statiques

Programmation C++ (débutant)/les tableaux statiques Programmation C++ (débutant)/les tableaux statiques 1 Programmation C++ (débutant)/les tableaux statiques Le cours du chapitre 6 : les tableaux statiques Les tableaux Une variable entière de type int ne

Plus en détail

TESA MULTICOTES. Avec palpeurs inductifs. Lorsque la précision submicronique et la productivité sont essentielles CAS D APPLICATIONS

TESA MULTICOTES. Avec palpeurs inductifs. Lorsque la précision submicronique et la productivité sont essentielles CAS D APPLICATIONS CAS D APPLICATIONS TESA MULTICOTES Avec palpeurs inductifs Lorsque la précision submicronique et la productivité sont essentielles Les palpeurs inductifs restent inégalés lors de mesures multidimensionnelles

Plus en détail

Introduction aux épreuves de logique des concours ACCÈS et SESAME

Introduction aux épreuves de logique des concours ACCÈS et SESAME Introduction aux épreuves de logique des concours ACCÈS et SESAME «La chance aide parfois, le travail toujours» Vous vous apprêtez à vous lancer dans cette course contre la montre qu est l admission en

Plus en détail

Corrigé non officiel de la partie mathématique du CRPE, session 2011 (Rouen)

Corrigé non officiel de la partie mathématique du CRPE, session 2011 (Rouen) Corrigé non officiel de la partie mathématique du CRPE, session 2011 (Rouen) Problème 1 Partie A On peut remarquer que la définition de Da est très ambigüe : l expression «le moment ou le conducteur voit

Plus en détail

GERER SA MAINTENANCE INFORMATIQUE

GERER SA MAINTENANCE INFORMATIQUE L AFNOR définit la maintenance comme l «ensemble des actions permettant de maintenir et de rétablir un bien dans un état spécifié ou en mesure d assurer un service déterminé.» De nos jours, les systèmes

Plus en détail

STATISTIQUES. I. Un peu de vocabulaire. II. Representations graphiques. 1. Diagramme circulaire

STATISTIQUES. I. Un peu de vocabulaire. II. Representations graphiques. 1. Diagramme circulaire STATISTIQUES I. Un peu de vocabulaire Toute étude statistique s'appuie sur des données. Dans le cas où ces données sont numériques, on distingue les données discrètes (qui prennent un nombre fini de valeurs

Plus en détail

CHOIX OPTIMAL DU CONSOMMATEUR. A - Propriétés et détermination du choix optimal

CHOIX OPTIMAL DU CONSOMMATEUR. A - Propriétés et détermination du choix optimal III CHOIX OPTIMAL DU CONSOMMATEUR A - Propriétés et détermination du choix optimal La demande du consommateur sur la droite de budget Résolution graphique Règle (d or) pour déterminer la demande quand

Plus en détail

Maîtrise Statistique des Procédés (MSP) Statistical Process Control (SPC)

Maîtrise Statistique des Procédés (MSP) Statistical Process Control (SPC) Maîtrise Statistique des Procédés (MSP) Statistical Process Control (SPC) Plan Qu est-ce que la qualité? Qu est-ce que la MSP/le SPC? Variabilité Loi Normale Cartes de contrôle Capabilités Application

Plus en détail

LA PROGRAMMATION LINEAIRE : UN OUTIL DE MODELISATION

LA PROGRAMMATION LINEAIRE : UN OUTIL DE MODELISATION LA PROGRAMMATION LINEAIRE : UN OUTIL DE MODELISATION Dans les leçons précédentes, nous avons modélisé des problèmes en utilisant des graphes. Nous abordons dans cette leçon un autre type de modélisation.

Plus en détail

Première STMG1 2014-2015 progression. - 1. Séquence : Proportion d une sous population dans une population.

Première STMG1 2014-2015 progression. - 1. Séquence : Proportion d une sous population dans une population. Première STMG1 2014-2015 progression. - 1 Table des matières Fil rouge. 3 Axes du programme. 3 Séquence : Proportion d une sous population dans une population. 3 Information chiffrée : connaître et exploiter

Plus en détail

Le «data mining», une démarche pour améliorer le ciblage des contrôles

Le «data mining», une démarche pour améliorer le ciblage des contrôles MINISTERE DE L ECONOMIE ET DES FINANCES Le «data mining», une démarche pour améliorer le ciblage des contrôles La lutte contre la fraude aux finances publiques a été renforcée ces dernières années et a

Plus en détail

Etude de cas. Porter l optimisation au plus haut niveau

Etude de cas. Porter l optimisation au plus haut niveau Etude de cas Porter l optimisation au plus haut niveau Après la mise en oeuvre du Quintiq Company Planner, Vlisco a réduit ses délais de production de 50%. L étape suivante, le déploiement du Scheduler,

Plus en détail

EXPÉRIENCE EN CLASSE SUR LE TABLEUR

EXPÉRIENCE EN CLASSE SUR LE TABLEUR EXPÉRIENCE EN CLASSE SUR LE TABLEUR Thème : STATISTIQUES en ème Alain JUILLAC (Collège Condorcet - Puy Guillaume) Véronique JUILLAC (Lycée Montdory - Thiers) Cet article est paru sur le Bulletin Vert de

Plus en détail