Cours de Terminale S - Nombres remarquables dont les nombres premiers. E. Dostal
|
|
|
- Alexis Mongrain
- il y a 10 ans
- Total affichages :
Transcription
1 Cours de Terminale S - Nombres remarquables dont les nombres premiers E. Dostal juin 2015
2 Table des matières 2 Nombres remarquables dont les nombres premiers Introduction Les nombres premiers Décomposition en produit de facteurs premiers Nombres remarquables
3 Chapitre 2 Nombres remarquables dont les nombres premiers 2.1 Introduction Qu est-ce qu un nombre premier? C est un entier naturel strictement supérieur à 1, n admettant que deux entiers naturels diviseurs distincts : 1 et lui-même. A quoi servent-ils? Ces nombres ont une importance centrale en mathématiques : on peut montrer que tout entier naturel peut se décomposer en produit d un ou de plusieurs facteurs premiers. Les nombres premiers peuvent donc être vu comme les composantes de base des nombres entiers. La simplicité de cette définition ainsi que l apparente importance de ce concept ont amené les mathématiciens à s y intéresser dès l antiquité. Les os d Ishango, également appelés bâtons d Ishango, sont des artéfacts archéologiques découverts dans l ancien Congo belge et datés de peut-être ans. Ils sont recouvert d en tailles marquant les nombres premiers 11, 13, 17 et 19. Est-ce ici l ébauche d une table de nombres premiers ou cette correspondance est-elle due au hasard? Aujourd hui, les nombres premiers sont à la base de tous les problèmes de chiffrement qui régissent notre vie de tous les jours (cartes à puces, site internet sécurisé,...). Combien y en a-t-il? Une infinité! (Cf. démonstration faite par Euclide) Y a t-il une régle gouvernant la succession des nombres premiers? Cette question est reliée à l hypothèse de Riemann. Les plus grands mathématiciens se sont confrontés à cette conjecture depuis plus d un siècle...sans succès! Quel est le plus grand nombre premier connu? Découvert le 25 janvier 2013, le plus grand nombre premier connu est le nombre premier de Mersenne , qui comporte chiffres en écriture décimale. On le doit à l équipe de Curtis Cooper, à l université du Central Missouri, dans le cadre de la grande chasse aux nombres premiers de Mersenne (GIMPS). Puis-je participer à la recherche du prochain nombre premier? Oui, en utilisant votre ordinateur!!! (http :// Et ensuite? La résolution de l hypothèse de Riemann est dotée d un prix de $ américains offert par le Clay Mathematical Institute. (Les problèmes du prix du millénaire comptent sept défis mathématiques réputés 2
4 insurmontables posés en l an A ce jour, six des sept problèmes demeurent non résolus.) 2.2 Les nombres premiers Définition 1 Un nombre entier naturel est premier si il admet exactement deux diviseurs positifs : 1 et lui-même. Liste des nombres premiers inférieurs à 100 : Proposition 1 Soit n un entier naturel supérieur ou égal à 2. Le plus petit diviseur de n compris entre 2 et n est premier. démonstration : Soit n un entier naturel supérieur ou égal à 2. Soit p le plus petit des diviseurs de n compris entre 2 et n. Supposons que p n est pas premier, alors il admet un diviseur d tel que 1 < d < p. d est un diviseur de p donc de n et est plus petit que p, ce qui est impossible. Donc p est premier. Théorème 2 L ensemble des nombres premiers est infini. (raisonnement par l absurde en utilisant la proposition 1) On sait qu il y en a une infinité, mais on ne les connait pas tous et on les cherche encore à l heure actuelle!!! Proposition 3 Tout entier naturel n supérieur à 2 qui n est pas premier, admet un diviseur premier au plus égal à n Conséquence : Soit n un entier naturel supérieur ou égal à 2. Si aucun des entiers compris entre 2 et n ne divise n, alors n est premier. Exemple : 149 est-il premier? Il existe différents cribles permettant de trouver les nombres premiers inférieurs à un entier N choisi : Crible d Eratosthène, Crible de Matiassevitch,... 3
5 2.3 Décomposition en produit de facteurs premiers Théorème 4 Tout entier naturel n supérieur ou égal à 2 se décompose en un produit de facteurs premiers. Cette décomposition est unique à l ordre des facteurs près. On écrira n = p α 1 1 pα 2 2 pα pα k k où p 1, p 2,..., p k sont des nombres premiers et α 1, α 2,... α k sont des entiers naturels non nuls. démonstration de l existence. (pour l unicité, nous attendrons le théorème de Gauss (du chapitre 3)) Exemple : Décomposer en produit de facteurs premiers 360, puis Algorithme 1 Un test de primalité est un algorithme permettant de savoir si un nombre entier est premier. Le test le plus simple est le suivant : pour tester N, on vérifie s il est divisible par l un des entiers compris entre 2 et N (2 compris). Si la réponse est négative, alors N est premier, sinon il est composé. Plusieurs changements permettent d améliorer les performances de cet algorithme : il suffit de tester tous les nombres de 2 à N on peut encore diviser par deux le travail en ne testant que les nombres impairs, une fois que la divisibilité par deux a échoué, de façon générale, on peut calculer à l avance une liste des nombres premiers inférieurs à une limite (avec un crible), pour ne tester que ceux-ci. Par exemple, pour tester les nombres inférieurs à , il suffit de tester les nombres premiers inférieurs à 198 (car > 39000), soit 45 nombres premiers. 4
6 2.4 Nombres remarquables Nombres de Fermat Histoire : Pierre Simon de FERMAT, français, Philologue, administrateur puis Conseiller du Roi au Parlement de Toulouse (l équivalent d une cour de justice), cet érudit restera dans la mémoire des hommes comme un des plus grands mathématiciens du 17 è siècle. Il fut un des artisans fondateurs de l Académie des sciences qui vit officiellement le jour un an après sa mort. Définition 2 Nombres de Fermat Un nombre entier de Fermat est un nombre de la forme 2 2n + 1 avec n entier naturel. Une conjecture (fausse) de Fermat est que ces nombres sont premiers (Cf Activité) Nombres de Mersenne Histoire : MERSENNE Marin, français, Philosophe, abbé, ordonné en 1611, après des études de théologie à la Sorbonne, Marin Mersenne compléta ses études au collège royal de la Flèche en compagnie de Descartes avec lequel il nouera une grande amitié. C est ainsi qu il se passionna (1625) pour les sciences physiques et mathématiques. Définition 3 Nombres de Mersenne Un nombre entier de Mersenne est un nombre de la forme M p = 2 p 1 avec p entier naturel. Les nombres de Mersenne sont très utile pour chercher les nombres premiers énormes. Notons d abord que M p est composé si p est composé. Mais si p est premier, il arrive parfois que M p soit lui aussi premier. On ne connait actuellement que 48 cas où cela arrive (Cf Activité) Le plus grand nombre premier connu à ce jour est M découvert le 25 janvier 2013 (http :// 5
7 2.4.3 Nombres de Carmichael Histoire : CARMICHAEL Robert Daniel, américain, Physicien au début de sa carrière (il étudia la théorie de la relativité initiée par Albert Einstein), philosophe et mathématicien (il obtint son doctorat à l université de Princeton sous la houlette de Birkhoff en 1911), Carmichael se consacra tout particulièrement, dès les années 1910, à la théorie des nombres et aux nombres premiers en particulier. Il enseigna à l université de l Illinois. Définition 4 Nombres de Carmichael Un nombre de Carmichael est un nombre entier non premier n qui vérifie la congruence a n 1 1 [n] pour a entier premier avec n. Il revient au même de dire que pour tout entier a tel que 1 < a < n tel que a et n sont premiers entre eux, on a a n et a qui ont le même reste dans la division euclidienne par n. Ces nombres sont peu nombreux, c est un euphémisme! C est dire que leur recherche peut prendre un certain temps, même au moyen de l ordinateur... Les premiers sont les suivants : 561, 1105, 1729, 2465, 2821, 6601, 8911, 10585, 15841, 29341, 41041, 46657, 52633,... Théorème 5 Petit théorème de Fermat (HORS PROGRAMME) Si p est un nombre premier, alors pour tout entier a, l entier a p aura le même reste que a dans la division euclidienne par p. On comprend alors pourquoi les nombres de Carmichael sont appelés aussi les menteurs de Fermat. 6
Nombres premiers. Comment reconnaître un nombre premier? Mais...
Introduction Nombres premiers Nombres premiers Rutger Noot IRMA Université de Strasbourg et CNRS Le 19 janvier 2011 IREM Strasbourg Definition Un nombre premier est un entier naturel p > 1 ayant exactement
Quelques tests de primalité
Quelques tests de primalité J.-M. Couveignes (merci à T. Ezome et R. Lercier) Institut de Mathématiques de Bordeaux & INRIA Bordeaux Sud-Ouest [email protected] École de printemps C2 Mars
FONDEMENTS DES MATHÉMATIQUES
FONDEMENTS DES MATHÉMATIQUES AYBERK ZEYTİN 1. DIVISIBILITÉ Comment on peut écrire un entier naturel comme un produit des petits entiers? Cette question a une infinitude d interconnexions entre les nombres
Cours d arithmétique Première partie
Cours d arithmétique Première partie Pierre Bornsztein Xavier Caruso Pierre Nolin Mehdi Tibouchi Décembre 2004 Ce document est la première partie d un cours d arithmétique écrit pour les élèves préparant
Vous revisiterez tous les nombres rencontrés au collège, en commençant par les nombres entiers pour finir par les nombres réels.
Cette partie est consacrée aux nombres. Vous revisiterez tous les nombres rencontrés au collège, en commençant par les nombres entiers pour finir par les nombres réels. L aperçu historique vous permettra
Exercices - Polynômes : corrigé. Opérations sur les polynômes
Opérations sur les polynômes Exercice 1 - Carré - L1/Math Sup - Si P = Q est le carré d un polynôme, alors Q est nécessairement de degré, et son coefficient dominant est égal à 1. On peut donc écrire Q(X)
Développement décimal d un réel
4 Développement décimal d un réel On rappelle que le corps R des nombres réels est archimédien, ce qui permet d y définir la fonction partie entière. En utilisant cette partie entière on verra dans ce
La question est : dans 450 combien de fois 23. L opération est donc la division. Le diviseur. Le quotient
par un nombre entier I La division euclidienne : le quotient est entier Faire l activité division. Exemple Sur une étagère de 4mm de large, combien peut on ranger de livres de mm d épaisseur? La question
Définition : On obtient les nombres entiers en ajoutant ou retranchant des unités à zéro.
Chapitre : Les nombres rationnels Programme officiel BO du 8/08/08 Connaissances : Diviseurs communs à deux entiers, PGCD. Fractions irréductibles. Opérations sur les nombres relatifs en écriture fractionnaire.
Factorisation d entiers (première partie)
Factorisation d entiers ÉCOLE DE THEORIE DES NOMBRES 0 Factorisation d entiers (première partie) Francesco Pappalardi Théorie des nombres et algorithmique 22 novembre, Bamako (Mali) Factorisation d entiers
Raisonnement par récurrence Suites numériques
Chapitre 1 Raisonnement par récurrence Suites numériques Terminale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Raisonnement par récurrence. Limite finie ou infinie d une suite.
Triangle de Pascal dans Z/pZ avec p premier
Triangle de Pascal dans Z/pZ avec p premier Vincent Lefèvre (Lycée P. de Fermat, Toulouse) 1990, 1991 1 Introduction Nous allons étudier des propriétés du triangle de Pascal dans Z/pZ, p étant un nombre
avec des nombres entiers
Calculer avec des nombres entiers Effectuez les calculs suivants.. + 9 + 9. Calculez. 9 9 Calculez le quotient et le rest. : : : : 0 :. : : 9 : : 9 0 : 0. 9 9 0 9. Calculez. 9 0 9. : : 0 : 9 : :. : : 0
Introduction à l étude des Corps Finis
Introduction à l étude des Corps Finis Robert Rolland (Résumé) 1 Introduction La structure de corps fini intervient dans divers domaines des mathématiques, en particulier dans la théorie de Galois sur
Compter à Babylone. L écriture des nombres
Compter à Babylone d après l article de Christine Proust «Le calcul sexagésimal en Mésopotamie : enseignement dans les écoles de scribes» disponible sur http://www.dma.ens.fr/culturemath/ Les mathématiciens
Logique. Plan du chapitre
Logique Ce chapitre est assez abstrait en première lecture, mais est (avec le chapitre suivant «Ensembles») probablement le plus important de l année car il est à la base de tous les raisonnements usuels
Chapitre 2. Eléments pour comprendre un énoncé
Chapitre 2 Eléments pour comprendre un énoncé Ce chapitre est consacré à la compréhension d un énoncé. Pour démontrer un énoncé donné, il faut se reporter au chapitre suivant. Les tables de vérité données
Chapitre VI - Méthodes de factorisation
Université Pierre et Marie Curie Cours de cryptographie MM067-2012/13 Alain Kraus Chapitre VI - Méthodes de factorisation Le problème de la factorisation des grands entiers est a priori très difficile.
Date : 18.11.2013 Tangram en carré page
Date : 18.11.2013 Tangram en carré page Titre : Tangram en carré Numéro de la dernière page : 14 Degrés : 1 e 4 e du Collège Durée : 90 minutes Résumé : Le jeu de Tangram (appelé en chinois les sept planches
La persistance des nombres
regards logique & calcul La persistance des nombres Quand on multiplie les chiffres d un nombre entier, on trouve un autre nombre entier, et l on peut recommencer. Combien de fois? Onze fois au plus...
108y= 1 où x et y sont des entiers
Polynésie Juin 202 Série S Exercice Partie A On considère l équation ( ) relatifs E :x y= où x et y sont des entiers Vérifier que le couple ( ;3 ) est solution de cette équation 2 Déterminer l ensemble
Petit lexique de calcul à l usage des élèves de sixième et de cinquième par M. PARCABE, professeur au collège Alain FOURNIER de BORDEAUX, mars 2007
Petit lexique de calcul à l usage des élèves de sixième et de cinquième par M. PARCABE, professeur au collège Alain FOURNIER de BORDEAUX, mars 2007 page 1 / 10 abscisse addition additionner ajouter appliquer
Exercices Alternatifs. Quelqu un aurait-il vu passer un polynôme?
Exercices Alternatifs Quelqu un aurait-il vu passer un polynôme? c 2004 Frédéric Le Roux, François Béguin (copyleft LDL : Licence pour Documents Libres). Sources et figures: polynome-lagrange/. Version
Exercices Alternatifs. Quelqu un aurait-il vu passer un polynôme?
Exercices Alternatifs Quelqu un aurait-il vu passer un polynôme? c 2004 Frédéric Le Roux, François Béguin (copyleft LDL : Licence pour Documents Libres). Sources et figures: polynome-lagrange/. Version
De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que
Introduction. On suppose connus les ensembles N (des entiers naturels), Z des entiers relatifs et Q (des nombres rationnels). On s est rendu compte, depuis l antiquité, que l on ne peut pas tout mesurer
UEO11 COURS/TD 1. nombres entiers et réels codés en mémoire centrale. Caractères alphabétiques et caractères spéciaux.
UEO11 COURS/TD 1 Contenu du semestre Cours et TDs sont intégrés L objectif de ce cours équivalent a 6h de cours, 10h de TD et 8h de TP est le suivant : - initiation à l algorithmique - notions de bases
Eteindre. les. lumières MATH EN JEAN 2013-2014. Mme BACHOC. Elèves de seconde, première et terminale scientifiques :
MTH EN JEN 2013-2014 Elèves de seconde, première et terminale scientifiques : Lycée Michel Montaigne : HERITEL ôme T S POLLOZE Hélène 1 S SOK Sophie 1 S Eteindre Lycée Sud Médoc : ROSIO Gauthier 2 nd PELGE
Synthèse «Le Plus Grand Produit»
Introduction et Objectifs Synthèse «Le Plus Grand Produit» Le document suivant est extrait d un ensemble de ressources plus vastes construites par un groupe de recherche INRP-IREM-IUFM-LEPS. La problématique
Conversion d un entier. Méthode par soustraction
Conversion entre bases Pour passer d un nombre en base b à un nombre en base 10, on utilise l écriture polynomiale décrite précédemment. Pour passer d un nombre en base 10 à un nombre en base b, on peut
Cours de mathématiques
DEUG MIAS premier niveau Cours de mathématiques année 2003/2004 Guillaume Legendre (version révisée du 3 avril 2015) Table des matières 1 Éléments de logique 1 1.1 Assertions...............................................
DOCM 2013 http://docm.math.ca/ Solutions officielles. 1 2 10 + 1 2 9 + 1 2 8 = n 2 10.
A1 Trouvez l entier positif n qui satisfait l équation suivante: Solution 1 2 10 + 1 2 9 + 1 2 8 = n 2 10. En additionnant les termes du côté gauche de l équation en les mettant sur le même dénominateur
III- Raisonnement par récurrence
III- Raisonnement par récurrence Les raisonnements en mathématiques se font en général par une suite de déductions, du style : si alors, ou mieux encore si c est possible, par une suite d équivalences,
LE BATON D ISHANGO. Une machine à calculer vieille de 20 000 ans...
LE BATON D ISHANGO Une machine à calculer vieille de 20 000 ans... Les collections du Muséum des Sciences naturelles à Bruxelles abritent un artefact aussi unique que remarquable : le bâton d Ishango.
Licence Sciences et Technologies Examen janvier 2010
Université de Provence Introduction à l Informatique Licence Sciences et Technologies Examen janvier 2010 Année 2009-10 Aucun document n est autorisé Les exercices peuvent être traités dans le désordre.
Quelques algorithmes simples dont l analyse n est pas si simple
Quelques algorithmes simples dont l analyse n est pas si simple Michel Habib [email protected] http://www.liafa.jussieu.fr/~habib Algorithmique Avancée M1 Bioinformatique, Octobre 2008 Plan Histoire
Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre
IUFM du Limousin 2009-10 PLC1 Mathématiques S. Vinatier Rappels de cours Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre 1 Fonctions de plusieurs variables
Par combien de zéros se termine N!?
La recherche à l'école page 79 Par combien de zéros se termine N!? par d es co llèg es An dré Do ucet de Nanterre et Victor Hugo de Noisy le Grand en seignants : Danielle Buteau, Martine Brunstein, Marie-Christine
Introduction. Mathématiques Quantiques Discrètes
Mathématiques Quantiques Discrètes Didier Robert Facultés des Sciences et Techniques Laboratoire de Mathématiques Jean Leray, Université de Nantes email: v-nantes.fr Commençons par expliquer le titre.
Chapitre 1 : Évolution COURS
Chapitre 1 : Évolution COURS OBJECTIFS DU CHAPITRE Savoir déterminer le taux d évolution, le coefficient multiplicateur et l indice en base d une évolution. Connaître les liens entre ces notions et savoir
Carl-Louis-Ferdinand von Lindemann (1852-1939)
Par Boris Gourévitch "L'univers de Pi" http://go.to/pi314 [email protected] Alors ça, c'est fort... Tranches de vie Autour de Carl-Louis-Ferdinand von Lindemann (1852-1939) est transcendant!!! Carl Louis
Fonctions homographiques
Seconde-Fonctions homographiques-cours Mai 0 Fonctions homographiques Introduction Voir le TP Géogébra. La fonction inverse. Définition Considérons la fonction f définie par f() =. Alors :. f est définie
6. Les différents types de démonstrations
LES DIFFÉRENTS TYPES DE DÉMONSTRATIONS 33 6. Les différents types de démonstrations 6.1. Un peu de logique En mathématiques, une démonstration est un raisonnement qui permet, à partir de certains axiomes,
Glossaire des nombres
Glossaire des nombres Numérisation et sens du nombre (4-6) Imprimeur de la Reine pour l'ontario, 008 Nombre : Objet mathématique qui représente une valeur numérique. Le chiffre est le symbole utilisé pour
Université Paris-Dauphine DUMI2E 1ère année, 2009-2010. Applications
Université Paris-Dauphine DUMI2E 1ère année, 2009-2010 Applications 1 Introduction Une fonction f (plus précisément, une fonction réelle d une variable réelle) est une règle qui associe à tout réel x au
Extrait du poly de Stage de Grésillon 1, août 2010
MINI-COURS SUR LES POLYNÔMES À UNE VARIABLE Extrait du poly de Stage de Grésillon 1, août 2010 Table des matières I Opérations sur les polynômes 3 II Division euclidienne et racines 5 1 Division euclidienne
Corps des nombres complexes, J Paul Tsasa
Corps des nombres complexes, J Paul Tsasa One Pager Février 2013 Vol. 5 Num. 011 Copyright Laréq 2013 http://www.lareq.com Corps des Nombres Complexes Définitions, Règles de Calcul et Théorèmes «Les idiots
D'UN THÉORÈME NOUVEAU
DÉMONSTRATION D'UN THÉORÈME NOUVEAU CONCERNANT LES NOMBRES PREMIERS 1. (Nouveaux Mémoires de l'académie royale des Sciences et Belles-Lettres de Berlin, année 1771.) 1. Je viens de trouver, dans un excellent
Seconde Généralités sur les fonctions Exercices. Notion de fonction.
Seconde Généralités sur les fonctions Exercices Notion de fonction. Exercice. Une fonction définie par une formule. On considère la fonction f définie sur R par = x + x. a) Calculer les images de, 0 et
Intégration et probabilités TD1 Espaces mesurés Corrigé
Intégration et probabilités TD1 Espaces mesurés Corrigé 2012-2013 1 Petites questions 1 Est-ce que l ensemble des ouverts de R est une tribu? Réponse : Non, car le complémentaire de ], 0[ n est pas ouvert.
Image d un intervalle par une fonction continue
DOCUMENT 27 Image d un intervalle par une fonction continue La continuité d une fonction en un point est une propriété locale : une fonction est continue en un point x 0 si et seulement si sa restriction
La fonction exponentielle
DERNIÈRE IMPRESSION LE 2 novembre 204 à :07 La fonction exponentielle Table des matières La fonction exponentielle 2. Définition et théorèmes.......................... 2.2 Approche graphique de la fonction
Chaînes de Markov au lycée
Journées APMEP Metz Atelier P1-32 du dimanche 28 octobre 2012 Louis-Marie BONNEVAL Chaînes de Markov au lycée Andreï Markov (1856-1922) , série S Problème 1 Bonus et malus en assurance automobile Un contrat
Intégration et probabilités TD1 Espaces mesurés
Intégration et probabilités TD1 Espaces mesurés 2012-2013 1 Petites questions 1) Est-ce que l ensemble des ouverts de R est une tribu? 2) Si F et G sont deux tribus, est-ce que F G est toujours une tribu?
Fonctions de plusieurs variables
Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme
Continuité d une fonction de plusieurs variables
Chapitre 2 Continuité d une fonction de plusieurs variables Maintenant qu on a défini la notion de limite pour des suites dans R n, la notion de continuité s étend sans problème à des fonctions de plusieurs
CARTE DE VOEUX À L ASSOCIAEDRE
CARTE DE VOEUX À L ASSOCIAEDRE JEAN-LOUIS LODAY Il y a cinq ans le Centre International de Rencontres Mathématiques de Luminy a envoyé ses voeux avec la carte ci-dessus. L illustration choisie par Robert
1 Définition et premières propriétés des congruences
Université Paris 13, Institut Galilée Département de Mathématiques Licence 2ème année Informatique 2013-2014 Cours de Mathématiques pour l Informatique Des nombres aux structures Sylviane R. Schwer Leçon
CORRIGE LES NOMBRES DECIMAUX RELATIFS. «Réfléchir avant d agir!»
Corrigé Cours de Mr JULES v3.3 Classe de Quatrième Contrat 1 Page 1 sur 13 CORRIGE LES NOMBRES DECIMAUX RELATIFS. «Réfléchir avant d agir!» «Correction en rouge et italique.» I. Les nombres décimaux relatifs.
Limites finies en un point
8 Limites finies en un point Pour ce chapitre, sauf précision contraire, I désigne une partie non vide de R et f une fonction définie sur I et à valeurs réelles ou complees. Là encore, les fonctions usuelles,
COURS EULER: PROGRAMME DE LA PREMIÈRE ANNÉE
COURS EULER: PROGRAMME DE LA PREMIÈRE ANNÉE Le cours de la première année concerne les sujets de 9ème et 10ème années scolaires. Il y a bien sûr des différences puisque nous commençons par exemple par
Probabilités conditionnelles Loi binomiale
Exercices 23 juillet 2014 Probabilités conditionnelles Loi binomiale Équiprobabilité et variable aléatoire Exercice 1 Une urne contient 5 boules indiscernables, 3 rouges et 2 vertes. On tire au hasard
Probabilités sur un univers fini
[http://mp.cpgedupuydelome.fr] édité le 7 août 204 Enoncés Probabilités sur un univers fini Evènements et langage ensembliste A quelle condition sur (a, b, c, d) ]0, [ 4 existe-t-il une probabilité P sur
SOCLE COMMUN - La Compétence 3 Les principaux éléments de mathématiques et la culture scientifique et technologique
SOCLE COMMUN - La Compétence 3 Les principaux éléments de mathématiques et la culture scientifique et technologique DOMAINE P3.C3.D1. Pratiquer une démarche scientifique et technologique, résoudre des
THEME : CLES DE CONTROLE. Division euclidienne
THEME : CLES DE CONTROLE Division euclidienne Soit à diviser 12 par 3. Nous pouvons écrire : 12 12 : 3 = 4 ou 12 3 = 4 ou = 4 3 Si par contre, il est demandé de calculer le quotient de 12 par 7, la division
Primaire. analyse a priori. Lucie Passaplan et Sébastien Toninato 1
Primaire l ESCALIER Une activité sur les multiples et diviseurs en fin de primaire Lucie Passaplan et Sébastien Toninato 1 Dans le but d observer les stratégies usitées dans la résolution d un problème
BACCALAURÉAT GÉNÉRAL SESSION 2012 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE
BACCALAURÉAT GÉNÉRAL SESSION 2012 MATHÉMATIQUES Série S Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE Les calculatrices électroniques de poche sont autorisées, conformément à la
Suites numériques 3. 1 Convergence et limite d une suite
Suites numériques 3 1 Convergence et limite d une suite Nous savons que les termes de certaines suites s approchent de plus en plus d une certaine valeur quand n augmente : par exemple, les nombres u n
Probabilités sur un univers fini
[http://mp.cpgedupuydelome.fr] édité le 10 août 2015 Enoncés 1 Proailités sur un univers fini Evènements et langage ensemliste A quelle condition sur (a,, c, d) ]0, 1[ 4 existe-t-il une proailité P sur
Le chiffre est le signe, le nombre est la valeur.
Extrait de cours de maths de 6e Chapitre 1 : Les nombres et les opérations I) Chiffre et nombre 1.1 La numération décimale En mathématique, un chiffre est un signe utilisé pour l'écriture des nombres.
Cours de Probabilités et de Statistique
Cours de Probabilités et de Statistique Licence 1ère année 2007/2008 Nicolas Prioux Université Paris-Est Cours de Proba-Stat 2 L1.2 Science-Éco Chapitre Notions de théorie des ensembles 1 1.1 Ensembles
Tests de primalité et cryptographie
UNIVERSITE D EVRY VAL D ESSONNE Tests de primalité et cryptographie Latifa Elkhati Chargé de TER : Mr.Abdelmajid.BAYAD composé d une courbe de Weierstrass et la fonction (exp(x), cos (y), cos(z) ) Maîtrise
Complément d information concernant la fiche de concordance
Sommaire SAMEDI 0 DÉCEMBRE 20 Vous trouverez dans ce dossier les documents correspondants à ce que nous allons travailler aujourd hui : La fiche de concordance pour le DAEU ; Page 2 Un rappel de cours
Algorithmes récursifs
Licence 1 MASS - Algorithmique et Calcul Formel S. Verel, M.-E. Voge www.i3s.unice.fr/ verel 23 mars 2007 Objectifs de la séance 3 écrire des algorithmes récursifs avec un seul test rechercher un élément
Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/
Recherche opérationnelle Les démonstrations et les exemples seront traités en cours Souad EL Bernoussi Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/ Table des matières 1 Programmation
Représentation des Nombres
Chapitre 5 Représentation des Nombres 5. Representation des entiers 5.. Principe des représentations en base b Base L entier écrit 344 correspond a 3 mille + 4 cent + dix + 4. Plus généralement a n a n...
Objectifs du cours d aujourd hui. Informatique II : Cours d introduction à l informatique et à la programmation objet. Complexité d un problème (2)
Objectifs du cours d aujourd hui Informatique II : Cours d introduction à l informatique et à la programmation objet Complexité des problèmes Introduire la notion de complexité d un problème Présenter
BACCALAUREAT GENERAL MATHÉMATIQUES
BACCALAUREAT GENERAL FEVRIER 2014 MATHÉMATIQUES SERIE : ES Durée de l épreuve : 3 heures Coefficient : 5 (ES), 4 (L) 7(spe ES) Les calculatrices électroniques de poche sont autorisées, conformement à la
Problèmes de Mathématiques Filtres et ultrafiltres
Énoncé Soit E un ensemble non vide. On dit qu un sous-ensemble F de P(E) est un filtre sur E si (P 0 ) F. (P 1 ) (X, Y ) F 2, X Y F. (P 2 ) X F, Y P(E) : X Y Y F. (P 3 ) / F. Première Partie 1. Que dire
Correction du baccalauréat S Liban juin 2007
Correction du baccalauréat S Liban juin 07 Exercice. a. Signe de lnx lnx) : on fait un tableau de signes : x 0 e + ln x 0 + + lnx + + 0 lnx lnx) 0 + 0 b. On afx) gx) lnx lnx) lnx lnx). On déduit du tableau
Définition 0,752 = 0,7 + 0,05 + 0,002 SYSTÈMES DE NUMÉRATION POSITIONNELS = 7 10 1 + 5 10 2 + 2 10 3
8 Systèmes de numération INTRODUCTION SYSTÈMES DE NUMÉRATION POSITIONNELS Dans un système positionnel, le nombre de symboles est fixe On représente par un symbole chaque chiffre inférieur à la base, incluant
Chacun peut-il penser ce qu il veut? - Chacun : concerne l individu, pas la collectivité - Peut-il : a) a-t-il la capacité? b) a-t-il le droit?
Chacun peut-il penser ce qu il veut? - Chacun : concerne l individu, pas la collectivité - Peut-il : a) a-t-il la capacité? b) a-t-il le droit? - Penser : a) avoir des idées, des opinions b) raisonner,
Leçon 01 Exercices d'entraînement
Leçon 01 Exercices d'entraînement Exercice 1 Etudier la convergence des suites ci-dessous définies par leur terme général: 1)u n = 2n3-5n + 1 n 2 + 3 2)u n = 2n2-7n - 5 -n 5-1 4)u n = lnn2 n+1 5)u n =
Comparaison de fonctions Développements limités. Chapitre 10
PCSI - 4/5 www.ericreynaud.fr Chapitre Points importants 3 Questions de cours 6 Eercices corrigés Plan du cours 4 Eercices types 7 Devoir maison 5 Eercices Chap Et s il ne fallait retenir que si points?
1/24. I passer d un problème exprimé en français à la réalisation d un. I expressions arithmétiques. I structures de contrôle (tests, boucles)
1/4 Objectif de ce cours /4 Objectifs de ce cours Introduction au langage C - Cours Girardot/Roelens Septembre 013 Du problème au programme I passer d un problème exprimé en français à la réalisation d
Proposition. Si G est un groupe simple d ordre 60 alors G est isomorphe à A 5.
DÉVELOPPEMENT 32 A 5 EST LE SEUL GROUPE SIMPLE D ORDRE 60 Proposition. Si G est un groupe simple d ordre 60 alors G est isomorphe à A 5. Démonstration. On considère un groupe G d ordre 60 = 2 2 3 5 et
Baccalauréat L spécialité, Métropole et Réunion, 19 juin 2009 Corrigé.
Baccalauréat L spécialité, Métropole et Réunion, 19 juin 2009 Corrigé. L usage d une calculatrice est autorisé Durée : 3heures Deux annexes sont à rendre avec la copie. Exercice 1 5 points 1_ Soit f la
Théorème du point fixe - Théorème de l inversion locale
Chapitre 7 Théorème du point fixe - Théorème de l inversion locale Dans ce chapitre et le suivant, on montre deux applications importantes de la notion de différentiabilité : le théorème de l inversion
Des codes secrets dans la carte bleue. François Dubois 1
Des codes secrets dans la carte bleue François Dubois 1 Kafemath Le Mouton Noir, Paris 11 ième jeudi 25 juin 2009 1 animateur du Kafemath, café mathématique à Paris. Carte bleue Un geste du quotidien...
Algorithme. Table des matières
1 Algorithme Table des matières 1 Codage 2 1.1 Système binaire.............................. 2 1.2 La numérotation de position en base décimale............ 2 1.3 La numérotation de position en base binaire..............
Rappels sur les suites - Algorithme
DERNIÈRE IMPRESSION LE 14 septembre 2015 à 12:36 Rappels sur les suites - Algorithme Table des matières 1 Suite : généralités 2 1.1 Déition................................. 2 1.2 Exemples de suites............................
Cryptographie et fonctions à sens unique
Cryptographie et fonctions à sens unique Pierre Rouchon Centre Automatique et Systèmes Mines ParisTech [email protected] Octobre 2012 P.Rouchon (Mines ParisTech) Cryptographie et fonctions
Résolution de systèmes linéaires par des méthodes directes
Résolution de systèmes linéaires par des méthodes directes J. Erhel Janvier 2014 1 Inverse d une matrice carrée et systèmes linéaires Ce paragraphe a pour objet les matrices carrées et les systèmes linéaires.
* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours
Exo7 Continuité (étude globale). Diverses fonctions Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr * très facile ** facile *** difficulté moyenne **** difficile *****
Arithmétique binaire. Chapitre. 5.1 Notions. 5.1.1 Bit. 5.1.2 Mot
Chapitre 5 Arithmétique binaire L es codes sont manipulés au quotidien sans qu on s en rende compte, et leur compréhension est quasi instinctive. Le seul fait de lire fait appel au codage alphabétique,
IUT de Laval Année Universitaire 2008/2009. Fiche 1. - Logique -
IUT de Laval Année Universitaire 2008/2009 Département Informatique, 1ère année Mathématiques Discrètes Fiche 1 - Logique - 1 Logique Propositionnelle 1.1 Introduction Exercice 1 : Le professeur Leblond
FICHE UE Licence/Master Sciences, Technologies, Santé Mention Informatique
NOM DE L'UE : Algorithmique et programmation C++ LICENCE INFORMATIQUE Non Alt Alt S1 S2 S3 S4 S5 S6 Parcours : IL (Ingénierie Logicielle) SRI (Systèmes et Réseaux Informatiques) MASTER INFORMATIQUE Non
Groupe symétrique. Chapitre II. 1 Définitions et généralités
Chapitre II Groupe symétrique 1 Définitions et généralités Définition. Soient n et X l ensemble 1,..., n. On appelle permutation de X toute application bijective f : X X. On note S n l ensemble des permutations
Éditorial. Tangente ÉDUCATION. Scratch, AlgoBox, Python. Trimestriel - n 15 - janvier 2011 Numéro spécial 16 activités TICE pour le lycée
Tangente ÉDUCATION Trimestriel - n 15 - janvier 2011 Numéro spécial 16 activités TICE pour le lycée et leurs programmes dans les trois langages les plus utilisés : Scratch, AlgoBox, Python Python Éditorial
Calculs de probabilités
Calculs de probabilités Mathématiques Générales B Université de Genève Sylvain Sardy 13 mars 2008 1. Définitions et notations 1 L origine des probabilités est l analyse de jeux de hasard, tels que pile
Introduction à l analyse de concept. Cogmaster - Quinzaine de rentrée
Introduction à l analyse de concept Cogmaster - Quinzaine de rentrée L art de la distinction Une partie de la philosophie consiste à faire des distinctions pour éviter que soient confondues des entités
