Chapitre 3: Analyse des signaux non périodiques
|
|
|
- Madeleine Perrot
- il y a 10 ans
- Total affichages :
Transcription
1 Chapitre 3: Analyse des signaux non périodiques Mahjoub DRIDI Contents 1 Transformation de Fourier 1.1 PassagedelasérieàlatransformationdeFourier DéfinitiondelatransforméedeFourier Propriétés Exemple de spectres continus 6.1 Spectred uneimpulsionrectangulaire Spectred unsinusamorti Spectredeimpulsions Calcul de quelques transformées Exponentielledécroissante Exponentielledécroissantesymétrique Signalunité(oufonctioncste) Sautunité Phaseur Signalsinusoidal
2 1 Transformation de Fourier 1.1 PassagedelasérieàlatransformationdeFourier Dans le chapitre précédent, nous avons traité le cas particulier des fonctions périodiques. Nous allons à présent étendre ces résultats à des fonctions non périodiques. Le passage d un signal périodique à un signal apériodique peut se faire en considérant que la période T devient de plus en plus grande pour finalement tendre vers l infini. Lesraiesspectralesdistantesf = 1 T serapprochentpourpeuàpeusetransformerenspectrecontinu. Reprenons l exemple de la fonction créneau périodique: Nous pouvons constater que: si la période T augmente, l espacement entre deux fréquences harmoniquesconsécutives diminue: Si nous faisons tendre la période vers l infini, la fonction f(t) n est plus périodique. ladistance 1 T quisépareunefréquenceharmoniquedel autredanslespectrevatendreverszéro = le spectre devient un continuum = la sommation de Fourier sur des fréquences harmoniques discrètes, cède la place à une intégration sur toutes les fréquences.
3 x(t)= + k= C k.e iwkt = quand T,f df k.f f 1 T C(f)exp(iπft)df + k= 1. Définition de la transformée de Fourier X k.e iπ T kt = + k= Unefonctionx(t)peutêtredéfinieàl aidedesonintégraledefourier: X k.e iπf kt x(t)= X(i.f).e iπft df X(i.f)= 1 T x(t).e iπft df OnditqueX(i.f)estlatransforméedeFourierdirectedex(t).Lacourbey=X(i.f)estlespectre de la fonction x(t). x(t) exp( iπft)dt Onditquex(t)estlatransforméedeFourierinversedeX(f) OnlesnotesparfoisparlesopérateursTF{}etTF 1 {} X(f)=TF{x(t)} ; x(t)=tf 1 {X(f)} 3
4 Si la fonction x(t) ne possède pas de symétries particulières, sa densité spectrale d amplitude X(i.f) est une fonction complexe: x(t) X(if)=X r (f)+i.x i (f) Les densités spectrale du module et de la phase valent alors: X(if) =X(f)= X r(f)+x i (f) X(if)=α(f)=arctan( X i(f) X r (f) ) Ainsi,sionaunsignalnonpériodique(fonctionx(t)),onpeutledécomposer(ouanalyser)enses composantes spectrales à l aide de la transformée de Fourier. TF{x(t)}= Analysespectraledex(t)-AnalysedeFourier Inversement, si on connait le spectre X(i.f) d une fonction, on peut la synthétiser à l aide de la transformée de Fourier inverse TF 1 {X(i.f)}=x(t) = Synthèsespectrale-SynthèsedeFourier Une fonction non périodique x(t) peut être considérée comme l addition(superposition) d un nombre infinidefonctionsharmoniquese iπft,chacuneayantun poids (enamplitudeetenphase)donnée parlespectredex(i.f). x(t)= X(f).e iπft df Remarque: Si le signal n est pas périodique, les signaux élémentaires résultent de la décomposition couvrent un domaine continu de l espace des fréquences. 4
5 1.3 Propriétés Linéarité: { x1 (t) X 1 (if) x (t) X (if) } = a 1.x 1 (t)+a.x (t) a 1.X 1 (if)+a.x (if) (a 1,a ) C La transformée de Fourier est donc une transformation linéaire. Translation(ou décalage temporel): six(t) X(if)onaalors: décalage fréquentiel: x(t+t ) X(if).e i..π.f.t t R x(t).e i..π.f.t X(i(f f )) f R La multiplication par une exponentielle entraine un décalage en fréquence du signal. Changement d échelle: Produit de convolution: F{x(a.t)}= 1 a X(f a ) x(t) X(if) et y(t) X(if) x(t) y(t) X(if).X(if) x(t).y(t) X(if) X(if) 5
6 La transformation de Fourier transforme convolution en multiplication et multiplication en convolution. Parité: Sixestpaire. Onsaitquee iθ =cos(θ)+i.sin(θ). Doncl intégraledefouriers écrit: X(f)= x(t).[cos(.π.f.t) i sin(.π.f.t)].dt Orlesfonctionst x(t).cos(πft)ett x(t).sin(πft)sontrespectivementpaireetimpaire Donc: x(t).[cos(.π.f.t)].dt=. x(t)[cos(.π.f.t)].dt et x(t).[sin(.π.f.t)].dt= Donc sixestpaire,x(f)estunnombreréelet X(f)=. x(t)(cos(.π.f.t)dt Sixestimpairealorsonadelamêmefaçon: X(f)=.i x(t).[sin(.π.f.t)].dt Propriétés de parité et symétrie x(t) X(f) Réelle et paire Réelle et paire Réelle et impaire Imaginaire et impaire Imaginaire et paire Imaginaire et paire Imaginaire et impaire réelle et impaire Complexe et paire Complexe et paire Complexe et impaire Complexe et impaire Exemple de spectres continus.1 Spectre d une impulsion rectangulaire Considéronsuneimpulsionx(t)delargeur tetd amplitudeacentréeent=. Pardéfinitionde latransformationdefourier,ona: x(t) exp( iπft)dt or d après la définition de l impulsion rectangulaire centrée, on a: 6
7 { si t > t x(t)= A si t t } ona: + t t A.e iπft dt X(i.f)= A iπf.e iπft + t t X(i.f)= A iπf [e iπf t e +iπf t ] X(i.f)= A πf.e+iπf t e iπf t.i X(i.f)=A. t. sin(π.f. t) π.f. t =A. t.sinc(π.f. t) R La densité spectrale d amplitude d une impulsion rectangulaire centrée en t = [s] est décrite par un sinus cardinal. Remarque: le spectre passe par zéro chaque fois que le sinus cardinal s annule, c est-à-dire, chaque foisquelafréquenceestunmultiplede 1 t. unsignaldecourteduréepossèdeunspectrelargebande; àunspectreétroitcorrespondunsignaldelonguedurée. 7
8 . Spectre d un sinus amorti y(t)= Y(i.f)= Y(i.f)= { si t< A.e a.t.sin(.π.f p.t) si t Y(i.f)= y(t)e ( iπft) dt } A.e a.t.sin(.π.f p.t)e ( iπft) dt A.e a.t. e+iπfpt e iπfpt.e iπft dt.i π.f p Y(i.f)=A. (a+i..π.f) +(.π.f p ) C Ici on n a pas de symétrie particulière, donc Y(i.f) est non réelle(complexe).3 Spectre de impulsions tt Considéronsunsignalconstituédedeuximpulsionsd amplitudeaplacéessymétriquementen± t Le spectre se calcule facilement à partir de celui d une impulsion centrée en t = et à l aide du théorème du décalage. z(t)=x(t+ t )+x(t t ) 8
9 Z(i.f)=A. t. sin(π.f. t).e +iπft +A. t. sin(π.f. t) e iπft π.f. t π.f. t Z(i.f)=A. t. sin(π.f. t) [e +iπft +e iπft ] π.f. t Z(i.f)=.A. t. sin(π.f. t).cos(π.f.t ) π.f. t 3 Calcul de quelques transformées 3.1 Exponentielle décroissante x(t)= { si t< e a.t si t } X(i.f)= e a.t.e i..π.f.t 1 a+i..π.f 9
10 3. Exponentielle décroissante symétrique Cesignalestdécritpar: Onaalors: x(t)=e a. t <t<+ e +a.t.e i..π.f.t.dt+ e a.t.e i..π.f.t.dt d où: X(i.f)estreellecarx(t)estpair 3.3 Signal unité(ou fonction cste) 1 a i..π.f + 1 (a+i..π.f) =.a a +(.π.f) Lesignalconstantunitévautsimplement1quelquesoitt.Ausensdeslimites,ilpeutêtredécrità partir de l exponentielle symétrique: x(t)=1= lim a e a. t <t<+ 1
11 Ce passage par la limite est nécessaire car le signal constant n est pas intégrable en valeur absolue et satransforméedefouriernepeutdoncpasêtrecalculéeàpartirdesadéfinition. Onadonc: { }.a si f X(i.f)= lim a a +(.π.f) = si f = Cerésultatcoïncideavecladéfinitiond uneimpulsiondedirac. LaTF d unsignalunitéestdonc uneimpulsiondediracsituéeenf = 3.4 Saut unité 3.5 Phaseur δ(f) unphaseurdefréquencef peuts écrirecommesuit: Utilisant la TF de l exponentielle symétrique et la propriété de modulation x(t)=e +i..π.f.t = lim a e a. t.e +i..π.f.t.a a +(.π.f) ona: x(t).e +i..π.f.t X(i.(f f ) {.a si X(i.f)= lim a a +(.π.(f f )) = f f si f=f } LaTFd unphaseurdefréquencef estdoncuneimpulsiondediracsituéeenf=f : X(i.f)=δ(f f ) 3.6 Signal sinusoidal un signal sinusoïdal est constitué de phaseurs conjugués complexes(formule d Euler), sa TF comporteraimpulsionsdediracsituéeen±f. Onaalors: x(t)=cos(.π.f.t)= 1.[e+i..π.f.t +e i..π.f.t ] X(i.f)= δ(f f )+δ(f+f ) x(t)=sin(.π.f.t)= 1.i.[e+i..π.f.t e i..π.f.t ] X(i.f)= δ(f f ) δ(f+f ).i 11
12 LapremièreTFestréelle,carlacosinusoïdeestpaire,alorsqueladeuxièmeTFestimaginairecar la sinusoïde est impaire. On notera que les modules des densités spectrales sont les mêmes et que seuls diffèrent leurs arguments. afaire......,tfpeignedirac 1
5. Analyse des signaux non périodiques
5. Analyse des signaux non périodiques 5.. Transformation de Fourier 5... Passage de la série à la transformation de Fourier Le passage d'un signal périodique à un signal apériodique peut se faire en considérant
TD1 Signaux, énergie et puissance, signaux aléatoires
TD1 Signaux, énergie et puissance, signaux aléatoires I ) Ecrire l'expression analytique des signaux représentés sur les figures suivantes à l'aide de signaux particuliers. Dans le cas du signal y(t) trouver
Traitement du signal avec Scilab : la transformée de Fourier discrète
Traitement du signal avec Scilab : la transformée de Fourier discrète L objectif de cette séance est de valider l expression de la transformée de Fourier Discrète (TFD), telle que peut la déterminer un
M1107 : Initiation à la mesure du signal. T_MesSig
1/81 M1107 : Initiation à la mesure du signal T_MesSig Frédéric PAYAN IUT Nice Côte d Azur - Département R&T Université de Nice Sophia Antipolis [email protected] 15 octobre 2014 2/81 Curriculum
INTRODUCTION A L ELECTRONIQUE NUMERIQUE ECHANTILLONNAGE ET QUANTIFICATION I. ARCHITECTURE DE L ELECRONIQUE NUMERIQUE
INTRODUCTION A L ELECTRONIQUE NUMERIQUE ECHANTILLONNAGE ET QUANTIFICATION I. ARCHITECTURE DE L ELECRONIQUE NUMERIQUE Le schéma synoptique ci-dessous décrit les différentes étapes du traitement numérique
LABO 5-6 - 7 PROJET : IMPLEMENTATION D UN MODEM ADSL SOUS MATLAB
LABO 5-6 - 7 PROJET : IMPLEMENTATION D UN MODEM ADSL SOUS MATLAB 5.1 Introduction Au cours de séances précédentes, nous avons appris à utiliser un certain nombre d'outils fondamentaux en traitement du
Communications numériques
Communications numériques 1. Modulation numérique (a) message numérique/signal numérique (b) transmission binaire/m-aire en bande de base (c) modulation sur fréquence porteuse (d) paramètres, limite fondamentale
1.1.1 Signaux à variation temporelle continue-discrète
Chapitre Base des Signaux. Classi cation des signaux.. Signaux à variation temporelle continue-discrète Les signaux à variation temporelle continue sont des fonctions d une ou plusieurs variables continues
ÉVALUATION FORMATIVE. On considère le circuit électrique RC représenté ci-dessous où R et C sont des constantes strictement positives.
L G L G Prof. Éric J.M.DELHEZ ANALYSE MATHÉMATIQUE ÉALUATION FORMATIE Novembre 211 Ce test vous est proposé pour vous permettre de faire le point sur votre compréhension du cours d Analyse Mathématique.
Chapitre I La fonction transmission
Chapitre I La fonction transmission 1. Terminologies 1.1 Mode guidé / non guidé Le signal est le vecteur de l information à transmettre. La transmission s effectue entre un émetteur et un récepteur reliés
CHAPITRE V. Théorie de l échantillonnage et de la quantification
CHAPITRE V Théorie de l échantillonnage et de la quantification Olivier FRANÇAIS, SOMMAIRE I INTRODUCTION... 3 II THÉORIE DE L ÉCHANTILLONNAGE... 3 II. ACQUISITION DES SIGNAUX... 3 II. MODÉLISATION DE
Licence Professionnelle de Génie Industriel Université Paris VI-Jussieu ; CFA Mecavenir Année 2003-2004. Cours de Génie Electrique G.
Licence Professionnelle de Génie Industriel Université Paris VI-Jussieu ; CFA Mecavenir Année 2003-2004 Cours de Génie Electrique G. CHAGNON 2 Table des matières Introduction 11 1 Quelques mathématiques...
Systèmes de communications numériques 2
Systèmes de Communications Numériques Philippe Ciuciu, Christophe Vignat Laboratoire des Signaux et Systèmes cnrs supélec ups supélec, Plateau de Moulon, 9119 Gif-sur-Yvette [email protected] Université
Didier Pietquin. Timbre et fréquence : fondamentale et harmoniques
Didier Pietquin Timbre et fréquence : fondamentale et harmoniques Que sont les notions de fréquence fondamentale et d harmoniques? C est ce que nous allons voir dans cet article. 1. Fréquence Avant d entamer
Communication parlée L2F01 TD 7 Phonétique acoustique (1) Jiayin GAO <[email protected]> 20 mars 2014
Communication parlée L2F01 TD 7 Phonétique acoustique (1) Jiayin GAO 20 mars 2014 La phonétique acoustique La phonétique acoustique étudie les propriétés physiques du signal
SUJET ZÉRO Epreuve d'informatique et modélisation de systèmes physiques
SUJET ZÉRO Epreuve d'informatique et modélisation de systèmes physiques Durée 4 h Si, au cours de l épreuve, un candidat repère ce qui lui semble être une erreur d énoncé, d une part il le signale au chef
- Instrumentation numérique -
- Instrumentation numérique - I.Présentation du signal numérique. I.1. Définition des différents types de signaux. Signal analogique: Un signal analogique a son amplitude qui varie de façon continue au
Data first, ou comment piloter l analyse par les données
CNRS & Patrick Flandrin École Normale Supérieure de Lyon Data first, ou comment piloter l analyse par les données M2 de Physique Cours 2012-2013 1 Table des matières 1 Introduction 4 2 Rappel sur les analyses
Chapitre 1 Régime transitoire dans les systèmes physiques
Chapitre 1 Régime transitoire dans les systèmes physiques Savoir-faire théoriques (T) : Écrire l équation différentielle associée à un système physique ; Faire apparaître la constante de temps ; Tracer
Cours. Un premier pas en traitement du signal
2ème année d IUT de Mesures Physiques Cours Un premier pas en traitement du signal Olivier BACHELIER Courriel : [email protected] Tel : 5-49-45-36-79 ; Fax : 5-49-45-4-34 Les commentaires
n N = u N u N+1 1 u pour u 1. f ( uv 1) v N+1 v N v 1 1 2 t
3.La méthode de Dirichlet 99 11 Le théorème de Dirichlet 3.La méthode de Dirichlet Lorsque Dirichlet, au début des années 180, découvre les travaux de Fourier, il cherche à les justifier par des méthodes
I. Polynômes de Tchebychev
Première épreuve CCP filière MP I. Polynômes de Tchebychev ( ) 1.a) Tout réel θ vérifie cos(nθ) = Re ((cos θ + i sin θ) n ) = Re Cn k (cos θ) n k i k (sin θ) k Or i k est réel quand k est pair et imaginaire
SYSTEMES LINEAIRES DU PREMIER ORDRE
SYSTEMES LINEIRES DU PREMIER ORDRE 1. DEFINITION e(t) SYSTEME s(t) Un système est dit linéaire invariant du premier ordre si la réponse s(t) est liée à l excitation e(t) par une équation différentielle
Intérêt du découpage en sous-bandes pour l analyse spectrale
Intérêt du découpage en sous-bandes pour l analyse spectrale David BONACCI Institut National Polytechnique de Toulouse (INP) École Nationale Supérieure d Électrotechnique, d Électronique, d Informatique,
P1PY7204 Acquisition de données Cours
ANNEE 2012-2013 Semestre d Automne 2012 Master de Sciences, Technologies, Santé Mention Physique- Spécialité Instrumentation P1PY7204 Acquisition de données Cours Denis Dumora [email protected]
Moments des variables aléatoires réelles
Chapter 6 Moments des variables aléatoires réelles Sommaire 6.1 Espérance des variables aléatoires réelles................................ 46 6.1.1 Définition et calcul........................................
Christian JUTTEN Théorie du signal
Christian UTTEN Théorie du signal Cours de deuxième année (3i4) du département 3i Université oseph Fourier - Polytech Grenoble novembre 2009 1 Table des matières 1 Introduction à la théorie du signal 6
Chapitre 2 Le problème de l unicité des solutions
Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)
Transmission des signaux numériques
Transmission des signaux numériques par Hikmet SARI Chef de Département d Études à la Société Anonyme de Télécommunications (SAT) Professeur Associé à Télécom Paris. Transmission en bande de base... E
Les Conditions aux limites
Chapitre 5 Les Conditions aux limites Lorsque nous désirons appliquer les équations de base de l EM à des problèmes d exploration géophysique, il est essentiel, pour pouvoir résoudre les équations différentielles,
Traitement numérique du signal. Première partie : Bases mathématiques
1 Traitement numérique du signal. Première partie : Bases mathématiques J.Idier H. Piet-Lahanier G. Le Besnerais F. Champagnat Première version du document : 1993 Date de la dernière remise à jour : mars
Signaux numériques : Multiplexage temporel : TDM
Signaux numériques : Multiplexage temporel : TDM Pour la hiérarchie TDM, il y a deux catégorie : Le multiplexage dans les systèmes informatiques : La transmission TDM dans des lignes haute vitesse à partir
Introduction. Mathématiques Quantiques Discrètes
Mathématiques Quantiques Discrètes Didier Robert Facultés des Sciences et Techniques Laboratoire de Mathématiques Jean Leray, Université de Nantes email: v-nantes.fr Commençons par expliquer le titre.
Chapitre 2 : Techniques de transmission
Chapitre 2 : Techniques de transmission /home/kouna/d01/adp/bcousin/repr/cours/2.fm - 14 Janvier 1998 20:09 Plan. Introduction. Phénomènes caractéristiques. Les éléments de la transmission. La modulation.
Programme Pédagogique National du DUT «Réseaux et Télécommunications» Présentation de la formation
Programme Pédagogique National du DUT «Réseaux et Télécommunications» Présentation de la formation PPN Réseaux et Télécommunications publié par arrêté du 24 juillet 2008 Sommaire 1 Présentation générale
Automatique Linéaire 1 1A ISMIN
Automatique linéaire 1 J.M. Dutertre 2014 Sommaire. I. Introduction, définitions, position du problème. p. 3 I.1. Introduction. p. 3 I.2. Définitions. p. 5 I.3. Position du problème. p. 6 II. Modélisation
Projet de Traitement du Signal Segmentation d images SAR
Projet de Traitement du Signal Segmentation d images SAR Introduction En analyse d images, la segmentation est une étape essentielle, préliminaire à des traitements de haut niveau tels que la classification,
J AUVRAY Systèmes Electroniques TRANSMISSION DES SIGNAUX NUMERIQUES : SIGNAUX EN BANDE DE BASE
RANSMISSION DES SIGNAUX NUMERIQUES : SIGNAUX EN BANDE DE BASE Un message numérique est une suite de nombres que l on considérera dans un premier temps comme indépendants.ils sont codés le plus souvent
INTERPRÉTATION ET ANOMALIES DE LA PROSPECTION À RÉSONANCE MAGNÉTIQUE (MRS)
1 Géologie, géotechnique, risques naturels, hydrogéologie, environnement et services scientifico-techniques INTERPRÉTATION ET ANOMALIES DE LA PROSPECTION À RÉSONANCE MAGNÉTIQUE (MRS) INTERPRETATION DES
Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme
Chapitre 3 Quelques fonctions usuelles 1 Fonctions logarithme et eponentielle 1.1 La fonction logarithme Définition 1.1 La fonction 7! 1/ est continue sur ]0, +1[. Elle admet donc des primitives sur cet
Systèmes de communications numériques 2
Systèmes de Communications Numériques Philippe Ciuciu, Christophe Vignat Laboratoire des Signaux et Systèmes CNRS SUPÉLEC UPS SUPÉLEC, Plateau de Moulon, 91192 Gif-sur-Yvette [email protected] Université
LES CARACTERISTIQUES DES SUPPORTS DE TRANSMISSION
LES CARACTERISTIQUES DES SUPPORTS DE TRANSMISSION LES CARACTERISTIQUES DES SUPPORTS DE TRANSMISSION ) Caractéristiques techniques des supports. L infrastructure d un réseau, la qualité de service offerte,
Analyse spectrale. jean-philippe muller. version juillet 2002. jean-philippe muller
Analyse spectrale version juillet 2002 Analyse spectrale des signaux continus 1) La représentation temporelle d un signal 2) La représentation fréquentielle d un signal simple 3) Exemples de spectres de
Programmes des classes préparatoires aux Grandes Ecoles
Programmes des classes préparatoires aux Grandes Ecoles Filière : scientifique Voie : Biologie, chimie, physique et sciences de la Terre (BCPST) Discipline : Mathématiques Seconde année Préambule Programme
Chapitre 7 : Intégration sur un intervalle quelconque
Universités Paris 6 et Paris 7 M1 MEEF Analyse (UE 3) 2013-2014 Chapitre 7 : Intégration sur un intervalle quelconque 1 Fonctions intégrables Définition 1 Soit I R un intervalle et soit f : I R + une fonction
Traitement du signal avec Scilab : transmission numérique en bande de base
Traitement du signal avec Scilab : transmission numérique en bande de base La transmission d informations numériques en bande de base, même si elle peut paraître simple au premier abord, nécessite un certain
Commun à tous les candidats
EXERCICE 3 (9 points ) Commun à tous les candidats On s intéresse à des courbes servant de modèle à la distribution de la masse salariale d une entreprise. Les fonctions f associées définies sur l intervalle
Expérience 3 Formats de signalisation binaire
Expérience 3 Formats de signalisation binaire Introduction Procédures Effectuez les commandes suivantes: >> xhost nat >> rlogin nat >> setenv DISPLAY machine:0 >> setenv MATLABPATH /gel/usr/telecom/comm_tbx
5. Les conducteurs électriques
5. Les conducteurs électriques 5.1. Introduction Un conducteur électrique est un milieu dans lequel des charges électriques sont libres de se déplacer. Ces charges sont des électrons ou des ions. Les métaux,
Continuité et dérivabilité d une fonction
DERNIÈRE IMPRESSIN LE 7 novembre 014 à 10:3 Continuité et dérivabilité d une fonction Table des matières 1 Continuité d une fonction 1.1 Limite finie en un point.......................... 1. Continuité
Oscillations libres des systèmes à deux degrés de liberté
Chapitre 4 Oscillations libres des systèmes à deux degrés de liberté 4.1 Introduction Les systèmes qui nécessitent deux coordonnées indépendantes pour spécifier leurs positions sont appelés systèmes à
Fonction inverse Fonctions homographiques
Fonction inverse Fonctions homographiques Année scolaire 203/204 Table des matières Fonction inverse 2. Définition Parité............................................ 2.2 Variations Courbe représentative...................................
I Stabilité, Commandabilité et Observabilité 11. 1 Introduction 13 1.1 Un exemple emprunté à la robotique... 13 1.2 Le plan... 18 1.3 Problème...
TABLE DES MATIÈRES 5 Table des matières I Stabilité, Commandabilité et Observabilité 11 1 Introduction 13 1.1 Un exemple emprunté à la robotique................... 13 1.2 Le plan...................................
Cours d Analyse. Fonctions de plusieurs variables
Cours d Analyse Fonctions de plusieurs variables Licence 1ère année 2007/2008 Nicolas Prioux Université de Marne-la-Vallée Table des matières 1 Notions de géométrie dans l espace et fonctions à deux variables........
F411 - Courbes Paramétrées, Polaires
1/43 Courbes Paramétrées Courbes polaires Longueur d un arc, Courbure F411 - Courbes Paramétrées, Polaires Michel Fournié [email protected] http://www.math.univ-toulouse.fr/ fournie/ Année 2012/2013
Chapitre VI Fonctions de plusieurs variables
Chapitre VI Fonctions de plusieurs variables 6. 1 Fonctions différentiables de R 2 dans R. 6. 1. 1 Définition de la différentiabilité Nous introduisons la différentiabilité sous l angle des développements
Représentation géométrique d un nombre complexe
CHAPITRE 1 NOMBRES COMPLEXES 1 Représentation géométrique d un nombre complexe 1. Ensemble des nombres complexes Soit i le nombre tel que i = 1 L ensemble des nombres complexes est l ensemble des nombres
Calcul fonctionnel holomorphe dans les algèbres de Banach
Chapitre 7 Calcul fonctionnel holomorphe dans les algèbres de Banach L objet de ce chapitre est de définir un calcul fonctionnel holomorphe qui prolonge le calcul fonctionnel polynômial et qui respecte
Physique quantique et physique statistique
Physique quantique et physique statistique 7 blocs 11 blocs Manuel Joffre Jean-Philippe Bouchaud, Gilles Montambaux et Rémi Monasson nist.gov Crédits : J. Bobroff, F. Bouquet, J. Quilliam www.orolia.com
Fonctions Analytiques
5 Chapitre Fonctions Analytiques. Le plan complexe.. Rappels Soit z C, alors!(x,y) IR 2 tel que z = x + iy. On définit le module de z comme z = x 2 + y 2. On peut aussi repérer z par des coordonnées polaires,
BTS Groupement A. Mathématiques Session 2011. Spécialités CIRA, IRIS, Systèmes électroniques, TPIL
BTS Groupement A Mathématiques Session 11 Exercice 1 : 1 points Spécialités CIRA, IRIS, Systèmes électroniques, TPIL On considère un circuit composé d une résistance et d un condensateur représenté par
Correction de l examen de la première session
de l examen de la première session Julian Tugaut, Franck Licini, Didier Vincent Si vous trouvez des erreurs de Français ou de mathématiques ou bien si vous avez des questions et/ou des suggestions, envoyez-moi
EP 2 339 758 A1 (19) (11) EP 2 339 758 A1 (12) DEMANDE DE BREVET EUROPEEN. (43) Date de publication: 29.06.2011 Bulletin 2011/26
(19) (12) DEMANDE DE BREVET EUROPEEN (11) EP 2 339 758 A1 (43) Date de publication: 29.06.2011 Bulletin 2011/26 (21) Numéro de dépôt: 09179459.4 (51) Int Cl.: H04B 1/69 (2011.01) H03K 5/08 (2006.01) H03K
Equipement. électronique
MASTER ISIC Les générateurs de fonctions 1 1. Avant-propos C est avec l oscilloscope, le multimètre et l alimentation stabilisée, l appareil le plus répandu en laboratoire. BUT: Fournir des signau électriques
1 Systèmes triphasés symétriques
1 Systèmes triphasés symétriques 1.1 Introduction Un système triphasé est un ensemble de grandeurs (tensions ou courants) sinusoïdales de même fréquence, déphasées les unes par rapport aux autres. Le système
Signalisation, codage, contrôle d'erreurs
Signalisation, codage, contrôle d'erreurs Objectifs: Plan Comprendre les mécanismes utilisés pour transmettre des informations sur un support physique Comprendre la nécessité de regrouper les informations
Notions d asservissements et de Régulations
I. Introduction I. Notions d asservissements et de Régulations Le professeur de Génie Electrique doit faire passer des notions de régulation à travers ses enseignements. Les notions principales qu'il a
TSTI 2D CH X : Exemples de lois à densité 1
TSTI 2D CH X : Exemples de lois à densité I Loi uniforme sur ab ; ) Introduction Dans cette activité, on s intéresse à la modélisation du tirage au hasard d un nombre réel de l intervalle [0 ;], chacun
Compter à Babylone. L écriture des nombres
Compter à Babylone d après l article de Christine Proust «Le calcul sexagésimal en Mésopotamie : enseignement dans les écoles de scribes» disponible sur http://www.dma.ens.fr/culturemath/ Les mathématiciens
10ème Congrès Français d'acoustique Lyon, 12-16 Avril 2010
10ème Congrès Français d'acoustique Lyon, 12-16 Avril 2010 Le compressed sensing pour l holographie acoustique de champ proche II: Mise en œuvre expérimentale. Antoine Peillot 1, Gilles Chardon 2, François
Chapitre 2 Le problème de l unicité des solutions
Université Joseph Fourier UE MAT 127 Mthémtiques nnée 2009-2010 Chpitre 2 Le prolème de l unicité des solutions 1 Le prolème et quelques réponses : 1.1 Un exemple Montrer que l éqution différentielle :
Chapitre 11. Séries de Fourier. Nous supposons connues les formules donnant les coefficients de Fourier d une fonction 2 - périodique :
Chapitre Chapitre. Séries de Fourier Nous supposons connues les formules donnant les coefficients de Fourier d une fonction - périodique : c c a0 f x dx c an f xcosnxdx c c bn f xsinn x dx c L objet de
Cours de Systèmes Asservis
Cours de Systèmes Asservis J.Baillou, J.P.Chemla, B. Gasnier, M.Lethiecq Polytech Tours 2 Chapitre 1 Introduction 1.1 Définition de l automatique Automatique : Qui fonctionne tout seul ou sans intervention
Simulation de variables aléatoires
Chapter 1 Simulation de variables aléatoires Références: [F] Fishman, A first course in Monte Carlo, chap 3. [B] Bouleau, Probabilités de l ingénieur, chap 4. [R] Rubinstein, Simulation and Monte Carlo
I. Ensemble de définition d'une fonction
Chapitre 2 Généralités sur les fonctions Fonctions de références et fonctions associées Ce que dit le programme : Étude de fonctions Fonctions de référence x x et x x Connaître les variations de ces deux
IV - Programme détaillé par matière (1 fiche détaillée par matière)
IV - Programme détaillé par matière (1 fiche détaillée par matière) Matière : Asservissement numérique Introduction aux systèmes échantillonnés (signal échantillonné, échantillonnage idéal, transformation
Systèmes asservis non linéaires
Christian JUTTEN Systèmes asservis non linéaires Université Joseph Fourier - Polytech Grenoble Cours de troisième année du département 3i Options Automatique Août 2006 1 Table des matières 1 Introduction
Une fréquence peut-elle être instantanée?
Fréquence? Variable? Instantané vs. local? Conclure? Une fréquence peut-elle être instantanée? Patrick Flandrin CNRS & École Normale Supérieure de Lyon, France Produire le temps, IRCAM, Paris, juin 2012
Travaux dirigés d introduction aux Probabilités
Travaux dirigés d introduction aux Probabilités - Dénombrement - - Probabilités Élémentaires - - Variables Aléatoires Discrètes - - Variables Aléatoires Continues - 1 - Dénombrement - Exercice 1 Combien
Exercices - Polynômes : corrigé. Opérations sur les polynômes
Opérations sur les polynômes Exercice 1 - Carré - L1/Math Sup - Si P = Q est le carré d un polynôme, alors Q est nécessairement de degré, et son coefficient dominant est égal à 1. On peut donc écrire Q(X)
SYSTEME DE PALPAGE A TRANSMISSION RADIO ETUDE DU RECEPTEUR (MI16) DOSSIER DE PRESENTATION. Contenu du dossier :
SYSTEME DE PALPAGE A TRANSMISSION RADIO ETUDE DU RECEPTEUR (MI16) DOSSIER DE PRESENTATION Contenu du dossier : 1. PRESENTATION DU SYSTEME DE PALPAGE A TRANSMISSION RADIO....1 1.1. DESCRIPTION DU FABRICANT....1
Fonctions homographiques
Seconde-Fonctions homographiques-cours Mai 0 Fonctions homographiques Introduction Voir le TP Géogébra. La fonction inverse. Définition Considérons la fonction f définie par f() =. Alors :. f est définie
Statistiques Descriptives à une dimension
I. Introduction et Définitions 1. Introduction La statistique est une science qui a pour objectif de recueillir et de traiter les informations, souvent en très grand nombre. Elle regroupe l ensemble des
Equations différentielles linéaires à coefficients constants
Equations différentielles linéaires à coefficients constants Cas des équations d ordre 1 et 2 Cours de : Martine Arrou-Vignod Médiatisation : Johan Millaud Département RT de l IUT de Vélizy Mai 2007 I
UNIVERSITE DE TECHNOLOGIE DE COMPIEGNE. Le Traitement du Signal aléatoire
UNIVERSITE DE TECHNOLOGIE DE COMPIEGNE Le Traitement du Signal aléatoire SY06 partie II - Printemps 2009 P.Simard 12 mai 2009 2 Table des matières 1 Besoins de modèles aléatoires pour les signaux 5 2 Principaux
3 Approximation de solutions d équations
3 Approximation de solutions d équations Une équation scalaire a la forme générale f(x) =0où f est une fonction de IR dans IR. Un système de n équations à n inconnues peut aussi se mettre sous une telle
Exercices Alternatifs. Une fonction continue mais dérivable nulle part
Eercices Alternatifs Une fonction continue mais dérivable nulle part c 22 Frédéric Le Rou (copleft LDL : Licence pour Documents Libres). Sources et figures: applications-continues-non-derivables/. Version
Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé
Baccalauréat S ntilles-guyane 11 septembre 14 Corrigé EXERCICE 1 6 points Commun à tous les candidats Une entreprise de jouets en peluche souhaite commercialiser un nouveau produit et à cette fin, effectue
Exercices Alternatifs. Une fonction continue mais dérivable nulle part
Eercices Alternatifs Une fonction continue mais dérivable nulle part c 22 Frédéric Le Rou (copyleft LDL : Licence pour Documents Libres). Sources et figures: applications-continues-non-derivables/. Version
Exo7. Calculs de déterminants. Fiche corrigée par Arnaud Bodin. Exercice 1 Calculer les déterminants des matrices suivantes : Exercice 2.
Eo7 Calculs de déterminants Fiche corrigée par Arnaud Bodin Eercice Calculer les déterminants des matrices suivantes : Correction Vidéo ( ) 0 6 7 3 4 5 8 4 5 6 0 3 4 5 5 6 7 0 3 5 4 3 0 3 0 0 3 0 0 0 3
Chapitre 2 Les ondes progressives périodiques
DERNIÈRE IMPRESSION LE er août 203 à 7:04 Chapitre 2 Les ondes progressives périodiques Table des matières Onde périodique 2 2 Les ondes sinusoïdales 3 3 Les ondes acoustiques 4 3. Les sons audibles.............................
Texte Agrégation limitée par diffusion interne
Page n 1. Texte Agrégation limitée par diffusion interne 1 Le phénomène observé Un fût de déchets radioactifs est enterré secrètement dans le Cantal. Au bout de quelques années, il devient poreux et laisse
Le modèle de Black et Scholes
Le modèle de Black et Scholes Alexandre Popier février 21 1 Introduction : exemple très simple de modèle financier On considère un marché avec une seule action cotée, sur une période donnée T. Dans un
Chapitre III. Analyse de données
Chapitre III Analyse de données Damir Buskulic, LAPP/Université de Savoie Ecole de Physique Théorique de Jijel, Septembre 2009 Généralités Outils de base Outils et notions d analyse du signal Rapport signal
CAPTEURS - CHAINES DE MESURES
CAPTEURS - CHAINES DE MESURES Pierre BONNET Pierre Bonnet Master GSI - Capteurs Chaînes de Mesures 1 Plan du Cours Propriétés générales des capteurs Notion de mesure Notion de capteur: principes, classes,
Chapitre 6. Fonction réelle d une variable réelle
Chapitre 6 Fonction réelle d une variable réelle 6. Généralités et plan d étude Une application de I dans R est une correspondance entre les éléments de I et ceu de R telle que tout élément de I admette
Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer
Pour commencer Exercice 1 - Ensembles de définition - Première année - 1. Le logarithme est défini si x + y > 0. On trouve donc le demi-plan supérieur délimité par la droite d équation x + y = 0.. 1 xy
Module d ouverture SON ET MUSIQUE. Philippe GUILLAUME 0.5 0.5
Module d ouverture Deuxième Année SON ET MUSIQUE Philippe GUILLAUME.5.5 2 Table des matières Introduction 7 Les sons 9. Propagation des sons................................ 9.. Un peu de modélisation physique.......................2
Automatique Linéaire 1 Travaux Dirigés 1A ISMIN
Automatique Linéaire 1 Travaux Dirigés Travaux dirigés, Automatique linéaire 1 J.M. Dutertre 2014 TD 1 Introduction, modélisation, outils. Exercice 1.1 : Calcul de la réponse d un 2 nd ordre à une rampe
