Démarche de statistique inférentielle. par opposition à l estimation qui est une opération de quantification
|
|
|
- Paul Charles
- il y a 9 ans
- Total affichages :
Transcription
1 Test d hypothèses Démarche de statistique inférentielle Opération de validation par opposition à l estimation qui est une opération de quantification Principe Formuler une hypothèse sur la population, le phénomène, la distribution. Examiner si l on peut admettre (avec un certain degré de confiance) que l échantillon provient d une population, d un phénomène, d une distribution vérifiant l hypothèse formulée. Test statistique = règle de décision AQC, test d hypothèse, 4/3/2001GR 1
2 Hypothèses nulle et alternative H 0 : hypothèse nulle (à tester) H 1 : hypothèse alternative Exemple Tester si le salaire moyen est de fr. 100,- ou s il est supérieur. H 0 : µ = µ 0 = 100 contre H 1 : µ = µ 1 > 100 Hypothèse simple ou composite Hypothèse simple : correspond à une valeur spécifique, une situation déterminée. Exemple : H 1 : µ = µ 1 = 120 Hypothèse composite : correspond à un ensemble de valeurs, de situations. Exemple : H 1 : µ = µ 1 > 100 L hypothèse nulle est en général simple. L hypothèse alternative est souvent composite. AQC, test d hypothèse, 4/3/2001GR 2
3 Caractérisation de la règle de décision Règle de décision définie en fonction d une statistique pertinente Statistique Q 0 = f(x 1,..., X n ; H 0 ) fonction de l échantillon dont la distribution dépend de H 0 (mais d aucun paramètre inconnu sous H 0 ) est connue sous H 0 Principe Rejet de H 0 si la valeur observée q 0 de Q 0 est une valeur peu probable de Q 0 sous H 0. AQC, test d hypothèse, 4/3/2001GR 3
4 Région critique R R = ensemble des valeurs peu probables de Q 0 sous H 0 Règle de décision q 0 R Rejet de H 0 q 0 / R Non } {{ rejet} acceptation de H 0 Définir un test statistique c est choisir une statistique pertinente Q 0 déterminer la région critique pour Q 0 AQC, test d hypothèse, 4/3/2001GR 4
5 Forme de la région critique R Dépend de l hypothèse alternative H 1 On distingue R test unilatéral à droite [ r test unilatéral à gauche ] r test bilatéral ] [ r1 r 2 Seuil(s) critique(s) Le seuil critique r (les seuils r 1 et r 2 ) est (sont) choisi(s) de façon à limiter le risque d erreur. AQC, test d hypothèse, 4/3/2001GR 5
6 Risques de première et de seconde espèce Etat de la nature Risques Décision H 0 H 1 H 0 0 α H 1 β 0 Risque de première espèce α = p(q 0 R H 0 ) Risque de seconde espèce β = p(q 0 / R H 1 ) ne peut pas toujours être calculé AQC, test d hypothèse, 4/3/2001GR 6
7 f(q 0 H 0 ) f(q 0 H 1 ) β α µ 0 µ 1 r région de rejet Risques α de première et β de seconde espèces f(q 0 H 0 ) f(q 0 H 1 ) β α µ 0 µ 1 α trop petit β grand r région de rejet AQC, test d hypothèse, 4/3/2001GR 7
8 f(q 0 H 0 ) f(q 0 H 1 ) β α µ 0 µ 1 r région de rejet Risques α de première et β de seconde espèces f(q 0 H 0 ) f(q 0 H 1 ) β α µ 0 µ 1 région de rejet H 1 peu différent de H 0 β grand r AQC, test d hypothèse, 4/3/2001GR 8
9 Risque total d erreur α p(h 0 ) } {{ } inconnu + β p(h 1 ) } {{ } inconnu Risque total inconnu Pratiquement on détermine le seuil critique r pour un α choisi arbitrairement petit (en général 5 % ou 10 %). Ne pas oublier que β dépend du même seuil critique.!!! α trop petit β très grand!!! AQC, test d hypothèse, 4/3/2001GR 9
10 Procédure de test statistique 1. Choisir une statistique pertinente Q 0 2. Fixer un risque α 3. Déterminer la région critique R Forme selon H 1 Seuil(s) selon α 4. Observer q 0 et décider : rejet si q 0 R Variante (logiciels) 1. Choisir une statistique pertinente Q 0 2. Fixer un risque α 3. Déterminer la forme de R (selon H 1 ) 4. Observer q 0 et calculer la p-valeur ou degré de signification probabilité p que Q 0 prennent des valeurs plus extrêmes que q 0 5. Décider : rejet si p < α AQC, test d hypothèse, 4/3/2001GR 10
11 Exemple Données : n = 9, x = 112, s 2 = 338 Exemple 1 : Test de la moyenne Hypothèses : H 0 : µ = µ 0 = 100 contre H 1 : µ = µ 1 > 100 Exemple 1A : avec variance inconnue Exemple 1B : en supposant σ 2 = 441 Exemple 2 : Test de la variance Hypothèses : H 0 : σ 2 = σ 2 0 = 441 contre H 1 : σ 2 = σ 2 1 < 441 AQC, test d hypothèse, 4/3/2001GR 11
12 1A : Test de moyenne avec variance inconnue 1. σ 2 inconnu on choisit la statistique T 0 = X µ 0 ˆσ X = X µ 0 S/ n 1 St n 1 sous H 0 2. α = Forme de la région critique R = {t 0 t 0 > r} test unilatéral à droite Seuil critique r (dans la table) [ r r = t (n 1) 1 α = Valeur observée de la statistique : ˆσ X = (338/8) = 6.5 t 0 = = / R On ne peut pas rejeter H 0 AQC, test d hypothèse, 4/3/2001GR 12
13 1B : Test de moyenne en supposant σ 2 = σ 2 connu on choisit la statistique Z 0 = X µ 0 σ X = X µ 0 σ/ n N(0, 1) sous H 0 2. α = Forme de la région critique R = {z 0 z 0 > r} test unilatéral à droite Seuil critique r (dans la table) [ r r = z 1 α = Valeur observée de la statistique : σ X = (441/9) = 7 z 0 = = R On rejette H 0 AQC, test d hypothèse, 4/3/2001GR 13
14 2 : Test de la variance 1. µ inconnu on choisit la statistique 2. α = 0.1 Q 0 = ns2 σ 2 0 χ 2 (n 1) sous H 0 3. Forme de la région critique R = {q 0 q 0 < r} test unilatéral à gauche ] r Seuil critique r (dans la table) r = q (n 1) α = Valeur observée de la statistique : q 0 = ns2 σ 2 0 = = 6.89 / R On ne peut pas rejeter H 0 AQC, test d hypothèse, 4/3/2001GR 14
15 Variante avec degré de signification 1. Statistique : Q 0 = ns2 σ α = 10 % χ 2 n 1 3. Forme de R : R = {q 0 q 0 < r} 4. q 0 = ns 2 /σ 2 0 = 6.89 et p(q 0 < 6.89) = degré de signification = > α = 0.1 On ne peut pas rejeter H chi-2(8) AQC, test d hypothèse, 4/3/2001GR 15
16 Puissance d un test et courbe d efficacité Pour évaluer l efficacité d un test, le comparer à un test réalisé avec une autre statistique : puissance courbe d efficacité Puissance (H 1 hypothèse simple) η = p(q 0 R H 1 ) = 1 β Courbe d efficacité (H 1 composite) H 1 = {h 1 h 1 hypothèse simple vérifiant H 1 } courbe d efficacité : η(h 1 ) pour h 1 H 1 AQC, test d hypothèse, 4/3/2001GR 16
17 Exemple de puissance : test de la moyenne Cas où σ 2 est connu (= 441) H 1 : µ 1 = 120 Z 0 = X µ 0 σ X N(0, 1) sous H 1 par contre Z 1 = X µ 1 σ X = X µ 0 σ X + µ 0 σ X µ 1 σ X = Z 0 µ 1 µ 0 σ X N(0, 1) sous H 1 On a donc η = p(z 0 > H 1 ) = p ( Z 1 > Z 1 N(0, 1) ) = p(z 1 > ) = 0.89 } {{ } 1.21 AQC, test d hypothèse, 4/3/2001GR 17
18 Exemple de puissance : test de la variance Soit H 1 : σ 2 1 = 300 Q 0 = ns2 σ 2 0 χ 2 n 1 sous H 1 par contre Q 1 = ns2 σ 2 1 = σ2 0 σ 2 1 ns 2 σ 2 0 = σ2 0 σ 2 1 Q 0 χ 2 n 1 sous H 1 On a donc η = p(q 0 < 3.49 H 1 ) = p(q 1 > } {{ } 5.13 Q 1 χ 2 n 1 ) Seuil 5.13 pas dans la table interpolation linéaire AQC, test d hypothèse, 4/3/2001GR 18
19 Probabilité par interpolation linéaire De la table du χ 2, il vient p(q < q) 25%? 50% q pour 8 d.l < 5.13 < 7.34 d où l approximation : η app = = ( ) AQC, test d hypothèse, 4/3/2001GR 19
20 Interprétation Puissance élevée signifie cas peu probables sous H 0 fort probables sous H 1. cas fort probables sous H 0 peu probables sous H 1 test discriminant. Puissance faible signifie cas peu probables sous H 0 guère plus probables sous H 1. cas fort probables sous H 0 aussi probables sous H 1 test peu discriminant. AQC, test d hypothèse, 4/3/2001GR 20
21 Construction de la courbe d efficacité Exemple du test de la variance H 0 σ 2 = σ 2 0 = 441 H 1 σ 2 = σ 2 1 < 441 Données : n = 9 x = 112 s 2 = 338 α = 10% q 0 = χ 2 (8,0.10) = Déterminer un choix de points ( σ 2 1, η(σ2 1 ) ) AQC, test d hypothèse, 4/3/2001GR 21
22 A. En fixant un choix de valeurs de σ 2 1 Courbe d'efficacité A σ 1 2 σ 0 2 /σ 1 2 q1* η η app Courbe d'efficacité A η σ 1 2 AQC, test d hypothèse, 4/3/2001GR 22
23 B. En fixant un choix de valeurs de η Courbe d'efficacité B (on fixe les valeurs η) σ 1 2 σ /σ 1 q1* η Courbe d'efficacité B η σ 1 2 AQC, test d hypothèse, 4/3/2001GR 23
24 Courbe d'efficacité du test de la moyenne x_bar = 112 µ 0 = 100 s 2 = 338 µ 1 > 100 n = 9 σ 2 = α = 0.95 σ xbar = 7 z 0 = (x_bar- µ 0 )/σ xbar = degré de signification (p-value) = z 1-α = Courbe d'efficacité µ 1 z 1 α (µ 1 µ 0 )/σ xbar β η η Courbe d'efficacité µ 1 AQC, test d hypothèse, 4/3/2001GR 24
25 Remarque : r versus r X Le seuil calculé pour la statistique Z 0 ou T 0 peut s exprimer en terme de seuil pour X. r = z 1 α r X = z 1 α σ X + µ 0 = = r = t (n 1) 1 α r X = t(n 1) 1 α ˆσ X + µ 0 = = De même, pour le test de la variance, seuil pour S 2 r = q (n 1) α r S 2 = 1 n q(n 1) α σ 2 0 = = AQC, test d hypothèse, 4/3/2001GR 25
26 Test d une corrélation Corrélation théorique (population) ρ = σ xy σ x σ y Corrélation empirique (estimateur) r = S xy S x S y S x et S y écarts types de l échantillon et S xy = 1 n (Xi X)(Y i Ȳ ). Hypothèses : H 0 : ρ = ρ 0 contre H 1 : ρ = ρ 1 > ρ 0 (ρ 1 < ρ 0 ) AQC, test d hypothèse, 4/3/2001GR 26
27 a) Cas général ρ 0 0 Statistique : Transformation de Fisher Z F = 1 2 log( 1 + r) 1 r ( 1 Z F N 2 log( 1 + ρ ) ) 0 1, 1 ρ 0 n 3 sous H 0 N(µ Z0, σ 2 Z 0 ) Forme centrée réduite de Z F Z 0 = Z F µ Z0 σ Z0 = n 3 ( 1 2 log( 1 + r) 1 1 r 2 log( 1 + ρ ) ) 0 1 ρ 0 N(0, 1) sous H 0 AQC, test d hypothèse, 4/3/2001GR 27
28 Test corrélation : exemple Données utilisées pour intervalle pour ρ n = 10, r = 0.91 z F = 1.53 Corrélation significativement supérieure à 0.8? Risque α = 0.05 = 5 % z 0.95 = H 0 : ρ = ρ 0 = 0.8 contre H 1 : ρ = ρ 1 > 0.8 Soit alors : z 0 = ( log( 1.8) ) (10 3) 0.2 = ( ) 7 = = 1.14 Comme z 0 = 1.14 < z 0.95 = on ne peut pas rejeter H 0 r = 0.91 n est pas significativement supérieur à 0.8. AQC, test d hypothèse, 4/3/2001GR 28
29 Puissance du test précédent Puissance pour H 1 : ρ 1 = Transformer le seuil z 1 α en un seuil z F pour Z F 2. Calculer η = p(z F > z F H 1) 1. Transformation : z 1 α z F z 1 α z F = z 1 α σ Z0 + µ Z z F = } {{ } 1/ +1.1 = Calcul de la puissance µ Z1 = 1 2 log( 1 + ρ ) 1 1 = 1 ρ 1 2 log( 1.9) = σ Z1 = 1/7 = 0.38 η = p(z F > zf = 1.72 H 1) = p ( (Z 1 > Z 1 N(0, 1) ) 0.38 = p(z 1 > 0.66) = = AQC, test d hypothèse, 4/3/2001GR 29
30 Seuil en termes de corrélation Il peut être utile d exprimer le seuil z 1 α en termes de corrélation. 1. Transformer le seuil z 1 α en un seuil z F pour Z F 2. Transformer z F en seuil r pour la corrélation r 1. Comme précédemment z F = Transformation z F r Utiliser la transformation inverse de Fisher r = exp(2 z F ) 1 exp(2 z F ) + 1 = exp(2 1.72) 1 exp(2 1.72) + 1 = = = AQC, test d hypothèse, 4/3/2001GR 30
31 b) Cas où ρ 0 = 0 Sous H 0 : ρ = 0, on a T 0 = r n 2 1 r 2 St n 2 Le test peut donc être fait avec cette statistique de Student. Exemple : mêmes données, n = 10, r = 0.91 H 0 : ρ = 0 contre H 1 : ρ > 0 t 0 = 0.91 t (8) 0.95 = = = 6.21 Comme t 0 > t (8) 0.95 on rejette H 0. AQC, test d hypothèse, 4/3/2001GR 31
32 Même exemple avec transformée de Fisher z F = 1.53 z 0 = (1.53 0) 7 = 4.05 z 0.95 = Comme z 0 > z 0.95 on rejette H 0. AQC, test d hypothèse, 4/3/2001GR 32
33 Seuils pour corrélation r Avec Student : t = r n 2 1 r 2 r = +t n 2+t 2 t n 2+t 2 r = t n 2+t 2 = Avec Fisher : z F = = 0.62 r = e(2 0.62) 1 e (2 0.62) +1 = 0.55 AQC, test d hypothèse, 4/3/2001GR 33
34 Courbe d efficacité : illustrations η η 1 1 α α θ 0 θ 1 Test unilatéral à droite Test unilatéral à gauche θ 0 θ 1 η 1 α θ 0 θ 1 Test bilatéral AQC, test d hypothèse, 4/3/2001GR 34
35 Comparaison de courbes d efficacité η 1 B A α θ 0 θ 1 AQC, test d hypothèse, 4/3/2001GR 35
Chapitre 3 : Principe des tests statistiques d hypothèse. José LABARERE
UE4 : Biostatistiques Chapitre 3 : Principe des tests statistiques d hypothèse José LABARERE Année universitaire 2010/2011 Université Joseph Fourier de Grenoble - Tous droits réservés. Plan I. Introduction
FORMULAIRE DE STATISTIQUES
FORMULAIRE DE STATISTIQUES I. STATISTIQUES DESCRIPTIVES Moyenne arithmétique Remarque: population: m xμ; échantillon: Mx 1 Somme des carrés des écarts "# FR MOYENNE(série) MOYENNE(série) NL GEMIDDELDE(série)
Biostatistiques Biologie- Vétérinaire FUNDP Eric Depiereux, Benoît DeHertogh, Grégoire Vincke
www.fundp.ac.be/biostats Module 140 140 ANOVA A UN CRITERE DE CLASSIFICATION FIXE...2 140.1 UTILITE...2 140.2 COMPARAISON DE VARIANCES...2 140.2.1 Calcul de la variance...2 140.2.2 Distributions de référence...3
Cours (7) de statistiques à distance, élaboré par Zarrouk Fayçal, ISSEP Ksar-Said, 2011-2012 LES STATISTIQUES INFERENTIELLES
LES STATISTIQUES INFERENTIELLES (test de Student) L inférence statistique est la partie des statistiques qui, contrairement à la statistique descriptive, ne se contente pas de décrire des observations,
La problématique des tests. Cours V. 7 mars 2008. Comment quantifier la performance d un test? Hypothèses simples et composites
La problématique des tests Cours V 7 mars 8 Test d hypothèses [Section 6.1] Soit un modèle statistique P θ ; θ Θ} et des hypothèses H : θ Θ H 1 : θ Θ 1 = Θ \ Θ Un test (pur) est une statistique à valeur
choisir H 1 quand H 0 est vraie - fausse alarme
étection et Estimation GEL-64943 Hiver 5 Tests Neyman-Pearson Règles de Bayes: coûts connus min π R ( ) + ( π ) R ( ) { } Règles Minimax: coûts connus min max R ( ), R ( ) Règles Neyman Pearson: coûts
Cours 9 : Plans à plusieurs facteurs
Cours 9 : Plans à plusieurs facteurs Table des matières Section 1. Diviser pour regner, rassembler pour saisir... 3 Section 2. Définitions et notations... 3 2.1. Définitions... 3 2.2. Notations... 4 Section
Introduction à la statistique non paramétrique
Introduction à la statistique non paramétrique Catherine MATIAS CNRS, Laboratoire Statistique & Génome, Évry http://stat.genopole.cnrs.fr/ cmatias Atelier SFDS 27/28 septembre 2012 Partie 2 : Tests non
Chapitre 7. Statistique des échantillons gaussiens. 7.1 Projection de vecteurs gaussiens
Chapitre 7 Statistique des échantillons gaussiens Le théorème central limite met en évidence le rôle majeur tenu par la loi gaussienne en modélisation stochastique. De ce fait, les modèles statistiques
Relation entre deux variables : estimation de la corrélation linéaire
CHAPITRE 3 Relation entre deux variables : estimation de la corrélation linéaire Parmi les analyses statistiques descriptives, l une d entre elles est particulièrement utilisée pour mettre en évidence
Tests paramétriques de comparaison de 2 moyennes Exercices commentés José LABARERE
Chapitre 5 UE4 : Biostatistiques Tests paramétriques de comparaison de 2 moyennes Exercices commentés José LABARERE Année universitaire 2010/2011 Université Joseph Fourier de Grenoble - Tous droits réservés.
TABLE DES MATIERES. C Exercices complémentaires 42
TABLE DES MATIERES Chapitre I : Echantillonnage A - Rappels de cours 1. Lois de probabilités de base rencontrées en statistique 1 1.1 Définitions et caractérisations 1 1.2 Les propriétés de convergence
Tests de comparaison de moyennes. Dr Sahar BAYAT MASTER 1 année 2009-2010 UE «Introduction à la biostatistique»
Tests de comparaison de moyennes Dr Sahar BAYAT MASTER 1 année 2009-2010 UE «Introduction à la biostatistique» Test de Z ou de l écart réduit Le test de Z : comparer des paramètres en testant leurs différences
Econométrie et applications
Econométrie et applications Ecole des Ponts ParisTech Département Sciences Economiques Gestion Finance Nicolas Jacquemet ([email protected]) Université Paris 1 & Ecole d Economie de Paris
Principe d un test statistique
Biostatistiques Principe d un test statistique Professeur Jean-Luc BOSSON PCEM2 - Année universitaire 2012/2013 Faculté de Médecine de Grenoble (UJF) - Tous droits réservés. Objectifs pédagogiques Comprendre
t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre :
Terminale STSS 2 012 2 013 Pourcentages Synthèse 1) Définition : Calculer t % d'un nombre, c'est multiplier ce nombre par t 100. 2) Exemples de calcul : a) Calcul d un pourcentage : Un article coûtant
Introduction aux Statistiques et à l utilisation du logiciel R
Introduction aux Statistiques et à l utilisation du logiciel R Christophe Lalanne Christophe Pallier 1 Introduction 2 Comparaisons de deux moyennes 2.1 Objet de l étude On a mesuré le temps de sommeil
Simulation de variables aléatoires
Chapter 1 Simulation de variables aléatoires Références: [F] Fishman, A first course in Monte Carlo, chap 3. [B] Bouleau, Probabilités de l ingénieur, chap 4. [R] Rubinstein, Simulation and Monte Carlo
UFR de Sciences Economiques Année 2008-2009 TESTS PARAMÉTRIQUES
Université Paris 13 Cours de Statistiques et Econométrie I UFR de Sciences Economiques Année 2008-2009 Licence de Sciences Economiques L3 Premier semestre TESTS PARAMÉTRIQUES Remarque: les exercices 2,
Chapitre 6 Test de comparaison de pourcentages χ². José LABARERE
UE4 : Biostatistiques Chapitre 6 Test de comparaison de pourcentages χ² José LABARERE Année universitaire 2010/2011 Université Joseph Fourier de Grenoble - Tous droits réservés. Plan I. Nature des variables
LEÇON N 7 : Schéma de Bernoulli et loi binomiale. Exemples.
LEÇON N 7 : Schéma de Bernoulli et loi binomiale. Exemples. Pré-requis : Probabilités : définition, calculs et probabilités conditionnelles ; Notion de variables aléatoires, et propriétés associées : espérance,
Chap 4. La fonction exponentielle Terminale S. Lemme : Si est une fonction dérivable sur R telle que : = et 0! = 1 alors ne s annule pas sur R.
Lemme : Si est une fonction dérivable sur R telle que : = et 0! = 1 alors ne s annule pas sur R. Démonstration : Soit la fonction %:& %&!= &!, elle est dérivable sur R et & R, %. &!= &! = &! = %&! [email protected]
PROJET MODELE DE TAUX
MASTER 272 INGENIERIE ECONOMIQUE ET FINANCIERE PROJET MODELE DE TAUX Pricing du taux d intérêt des caplets avec le modèle de taux G2++ Professeur : Christophe LUNVEN 29 Fevrier 2012 Taylan KUNAL - Dinh
Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48
Méthodes de Polytech Paris-UPMC - p. 1/48 Polynôme d interpolation de Preuve et polynôme de Calcul de l erreur d interpolation Étude de la formule d erreur Autres méthodes - p. 2/48 Polynôme d interpolation
Biostatistiques : Petits effectifs
Biostatistiques : Petits effectifs Master Recherche Biologie et Santé P. Devos DRCI CHRU de Lille EA2694 [email protected] Plan Données Générales : Définition des statistiques Principe de l
Le risque Idiosyncrasique
Le risque Idiosyncrasique -Pierre CADESTIN -Magali DRIGHES -Raphael MINATO -Mathieu SELLES 1 Introduction Risque idiosyncrasique : risque non pris en compte dans le risque de marché (indépendant des phénomènes
ILT. Interfacultair Instituut voor Levende Talen. T@@lvaardig. Actes de communication. Serge Verlinde Evelyn Goris. Katholieke Universiteit Leuven
IL If I L S V Ey G Khk U L 13/02/02 pé? xp qé xp pz à pz p héhq pé p à q z p à p héhq fé à p à q pz xp q 'p (è) f, '-à- p. x. ' é ff. N xp à py qq' q z b ( f) P xp pô pp L p - pé pz ': z qq', q -? Bj,
Bases : Probabilités, Estimation et Tests.
Université René Descartes LMD Sciences de la Vie et de la Santé UFR Biomédicale, M1 de Santé Publique 45 rue des Saints-Père, 75 006 Paris Spécialité Biostatistique M1 COURS de BIOSTATISTIQUE I Bases :
Gestion des Clés Publiques (PKI)
Chapitre 3 Gestion des Clés Publiques (PKI) L infrastructure de gestion de clés publiques (PKI : Public Key Infrastructure) représente l ensemble des moyens matériels et logiciels assurant la gestion des
Apllication au calcul financier
Apllication au calcul financier Hervé Hocquard Université de Bordeaux, France 1 er novembre 2011 Intérêts Généralités L intérêt est la rémunération du placement d argent. Il dépend : du taux d intérêts
Estimation et tests statistiques, TD 5. Solutions
ISTIL, Tronc commun de première année Introduction aux méthodes probabilistes et statistiques, 2008 2009 Estimation et tests statistiques, TD 5. Solutions Exercice 1 Dans un centre avicole, des études
Lecture critique d article. Bio statistiques. Dr MARC CUGGIA MCU-PH Laboratoire d informatique médicale EA-3888
Lecture critique d article Rappels Bio statistiques Dr MARC CUGGIA MCU-PH Laboratoire d informatique médicale EA-3888 Plan du cours Rappels fondamentaux Statistiques descriptives Notions de tests statistiques
distribution quelconque Signe 1 échantillon non Wilcoxon gaussienne distribution symétrique Student gaussienne position
Arbre de NESI distribution quelconque Signe 1 échantillon distribution symétrique non gaussienne Wilcoxon gaussienne Student position appariés 1 échantillon sur la différence avec référence=0 2 échantillons
Examen de Logiciels Statistiques
G. Hunault Angers, mai 2011 Licence MEF Examen de Logiciels Statistiques On s intéresse ici au dossier EAEF01 qui contient un extrait des données du recensement américain. On trouvera ces données et leur
CAPTEURS - CHAINES DE MESURES
CAPTEURS - CHAINES DE MESURES Pierre BONNET Pierre Bonnet Master GSI - Capteurs Chaînes de Mesures 1 Plan du Cours Propriétés générales des capteurs Notion de mesure Notion de capteur: principes, classes,
Analyse de la variance Comparaison de plusieurs moyennes
Analyse de la variance Comparaison de plusieurs moyennes Biostatistique Pr. Nicolas MEYER Laboratoire de Biostatistique et Informatique Médicale Fac. de Médecine de Strasbourg Mars 2011 Plan 1 Introduction
TD1 Signaux, énergie et puissance, signaux aléatoires
TD1 Signaux, énergie et puissance, signaux aléatoires I ) Ecrire l'expression analytique des signaux représentés sur les figures suivantes à l'aide de signaux particuliers. Dans le cas du signal y(t) trouver
Quantification Scalaire et Prédictive
Quantification Scalaire et Prédictive Marco Cagnazzo Département Traitement du Signal et des Images TELECOM ParisTech 7 Décembre 2012 M. Cagnazzo Quantification Scalaire et Prédictive 1/64 Plan Introduction
Lire ; Compter ; Tester... avec R
Lire ; Compter ; Tester... avec R Préparation des données / Analyse univariée / Analyse bivariée Christophe Genolini 2 Table des matières 1 Rappels théoriques 5 1.1 Vocabulaire....................................
QUALITÉ DE L APPRENTISSAGE DE L INTUBATION ORO-TRACHÉALE EN LABORATOIRE DE SIMULATION, SON INTÉRÊT POUR LES PATIENTS.
QUALITÉ DE L APPRENTISSAGE DE L INTUBATION ORO-TRACHÉALE EN LABORATOIRE DE SIMULATION, SON INTÉRÊT POUR LES PATIENTS. Mémoire de D.E.S.C. de Médecine d Urgence Olivier Vuillot Matériel et Méthode : Design
LES ORDRES PERMANENTS
Si vous avez des paiements identiques tous les mois (montant et destinataire), il est possible de créer des ordres permanents pour vous simplifier la vie. Pour ceci: Cliquez sur le bouton «ordre de paiement»
Des solutions éducatives dans l air du temps! www.casio-education.be
Calculatrices & solutions scolaires CATALOGUE 2011/2012 Des solutions éducatives dans l air du temps! www.casio-education.be L aventure CASIO Les grandes dates Décembre 1954 Achèvement du premier prototype
Estimation: intervalle de fluctuation et de confiance. Mars 2012. IREM: groupe Proba-Stat. Fluctuation. Confiance. dans les programmes comparaison
Estimation: intervalle de fluctuation et de confiance Mars 2012 IREM: groupe Proba-Stat Estimation Term.1 Intervalle de fluctuation connu : probabilité p, taille de l échantillon n but : estimer une fréquence
La fonction exponentielle
DERNIÈRE IMPRESSION LE 2 novembre 204 à :07 La fonction exponentielle Table des matières La fonction exponentielle 2. Définition et théorèmes.......................... 2.2 Approche graphique de la fonction
Structures algébriques
Structures algébriques 1. Lois de composition s Soit E un ensemble. Une loi de composition interne sur E est une application de E E dans E. Soient E et F deux ensembles. Une loi de composition externe
Fonction inverse Fonctions homographiques
Fonction inverse Fonctions homographiques Année scolaire 203/204 Table des matières Fonction inverse 2. Définition Parité............................................ 2.2 Variations Courbe représentative...................................
I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES
I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES Théorème - Définition Soit un cercle (O,R) et un point. Une droite passant par coupe le cercle en deux points A et
La structure de la base de données et l utilisation de PAST. Musée Royal de l Afrique Centrale (MRAC Tervuren)
La structure de la base de données et l utilisation de PAST La structure de la base de données données originales SPÉCIMENS Code des spécimens: Identification des spécimens individuels. Dépend du but de
Chapitre 7 : Intégration sur un intervalle quelconque
Universités Paris 6 et Paris 7 M1 MEEF Analyse (UE 3) 2013-2014 Chapitre 7 : Intégration sur un intervalle quelconque 1 Fonctions intégrables Définition 1 Soit I R un intervalle et soit f : I R + une fonction
Probabilités et Statistiques. Feuille 2 : variables aléatoires discrètes
IUT HSE Probabilités et Statistiques Feuille : variables aléatoires discrètes 1 Exercices Dénombrements Exercice 1. On souhaite ranger sur une étagère 4 livres de mathématiques (distincts), 6 livres de
FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4)
FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) Bernard Le Stum Université de Rennes 1 Version du 13 mars 2009 Table des matières 1 Fonctions partielles, courbes de niveau 1 2 Limites et continuité
Vision industrielle et télédétection - Détection d ellipses. Guillaume Martinez 17 décembre 2007
Vision industrielle et télédétection - Détection d ellipses Guillaume Martinez 17 décembre 2007 1 Table des matières 1 Le projet 3 1.1 Objectif................................ 3 1.2 Les choix techniques.........................
Théorie de l estimation et de la décision statistique
Théorie de l estimation et de la décision statistique Paul Honeine en collaboration avec Régis Lengellé Université de technologie de Troyes 2013-2014 Quelques références Decision and estimation theory
Méthodes de Simulation
Méthodes de Simulation JEAN-YVES TOURNERET Institut de recherche en informatique de Toulouse (IRIT) ENSEEIHT, Toulouse, France Peyresq06 p. 1/41 Remerciements Christian Robert : pour ses excellents transparents
1 Comment faire un document Open Office /writer de façon intelligente?
1 Comment faire un document Open Office /writer de façon intelligente? 1.1 Comment fonctionne un traitement de texte?: les balises. Un fichier de traitement de texte (WRITER ou WORD) comporte en plus du
Statistiques. Rappels de cours et travaux dirigés. Master 1 Biologie et technologie du végétal. Année 2010-2011
Master 1 Biologie et technologie du végétal Année 010-011 Statistiques Rappels de cours et travaux dirigés (Seul ce document sera autorisé en examen) auteur : Jean-Marc Labatte [email protected]
COMPARAISON DE LOGICIELS TESTANT L INDEPENDANCE DE VARIABLES BINAIRES
J. sci. pharm. biol., Vol.9, n - 00, pp. 9-0 EDUCI 00 9 VALLEE POLNEAU S.* DIAINE C. COMPARAISON DE LOGICIELS TESTANT L INDEPENDANCE DE VARIABLES BINAIRES Notre étude visait à comparer les résultats obtenus
Comparaison de populations
Ricco Rakotomalala Comparaison de populations Tests paramétriques Version 1.2 Université Lumière Lyon 2 Page: 1 job: Comp_Pop_Tests_Parametriques macro: svmono.cls date/time: 11-Jun-2013/6:32 Page: 2 job:
Commun à tous les candidats
EXERCICE 3 (9 points ) Commun à tous les candidats On s intéresse à des courbes servant de modèle à la distribution de la masse salariale d une entreprise. Les fonctions f associées définies sur l intervalle
Cryptographie RSA. Introduction Opérations Attaques. Cryptographie RSA NGUYEN Tuong Lan - LIU Yi 1
Cryptographie RSA Introduction Opérations Attaques Cryptographie RSA NGUYEN Tuong Lan - LIU Yi 1 Introduction Historique: Rivest Shamir Adleman ou RSA est un algorithme asymétrique de cryptographie à clé
L Econométrie des Données de Panel
Ecole Doctorale Edocif Séminaire Méthodologique L Econométrie des Données de Panel Modèles Linéaires Simples Christophe HURLIN L Econométrie des Données de Panel 2 Figure.: Présentation Le but de ce séminaire
LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING»
LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING» Gilbert Saporta Professeur de Statistique Appliquée Conservatoire National des Arts et Métiers Dans leur quasi totalité, les banques et organismes financiers
VILLE DE VILLEURBANNE CONSEIL MUNICIPAL 5 JUILLET 2010. -ooo-
VILLE DE VILLEURBANNE CONSEIL MUNICIPAL 5 JUILLET 2010 -ooo- La s é a n c e e s t o u v e r t e s o u s l a p r é s i d e n c e d e M o n s i e u r J e a n - P a u l BR E T, M a i r e d e V i l l e u r
Introduction au pricing d option en finance
Introduction au pricing d option en finance Olivier Pironneau Cours d informatique Scientifique 1 Modélisation du prix d un actif financier Les actions, obligations et autres produits financiers cotés
Introduction à la théorie des files d'attente. Claude Chaudet [email protected]
Introduction à la théorie des files d'attente Claude Chaudet [email protected] La théorie des files d'attente... Principe: modélisation mathématique de l accès à une ressource partagée Exemples réseaux
Strasbourg. De la statistique. aux probabilités. en lycée. De la statistique. aux probabilités. en lycée. Octobre 2006
Institut de recherche sur l'enseignement des mathématiques IREM De la statistique De la statistique aux probabilités aux probabilités en lycée en lycée Octobre 6 UFR de mathématique et d'informatique 7
FORMATION CONTINUE SUR L UTILISATION D EXCEL DANS L ENSEIGNEMENT Expérience de l E.N.S de Tétouan (Maroc)
87 FORMATION CONTINUE SUR L UTILISATION D EXCEL DANS L ENSEIGNEMENT Expérience de l E.N.S de Tétouan (Maroc) Dans le cadre de la réforme pédagogique et de l intérêt que porte le Ministère de l Éducation
Loi d une variable discrète
MATHEMATIQUES TD N : VARIABLES DISCRETES - Corrigé. P[X = k] 0 k point de discontinuité de F et P[X = k] = F(k + ) F(k ) Ainsi, P[X = ] =, P[X = 0] =, P[X = ] = R&T Saint-Malo - nde année - 0/0 Loi d une
données en connaissance et en actions?
1 Partie 2 : Présentation de la plateforme SPSS Modeler : Comment transformer vos données en connaissance et en actions? SPSS Modeler : l atelier de data mining Large gamme de techniques d analyse (algorithmes)
De nombreux composés comportant le squelette aryléthanolamine (Ar-CHOH-CH2-NHR) interfèrent avec le
[E1-2007S] pp75 (40 points) Chimie Thérapeutique - Pharmacologie De nombreux composés comportant le squelette aryléthanolamine (Ar-CHOH-CH2-NHR) interfèrent avec le système adrénergique. Leur profil d
1 Définition de la non stationnarité
Chapitre 2: La non stationnarité -Testsdedétection Quelques notes de cours (non exhaustives) 1 Définition de la non stationnarité La plupart des séries économiques sont non stationnaires, c est-à-direqueleprocessusquiles
ESSEC. Cours «Management bancaire» Séance 3 Le risque de crédit Le scoring
ESSEC Cours «Management bancaire» Séance 3 Le risque de crédit Le scoring Les méthodes d évaluation du risque de crédit pour les PME et les ménages Caractéristiques Comme les montants des crédits et des
Processus aléatoires avec application en finance
Genève, le 16 juin 2007. Processus aléatoires avec application en finance La durée de l examen est de deux heures. N oubliez pas d indiquer votre nom et prénom sur chaque feuille. Toute documentation et
Cours d introduction à la théorie de la détection
Olivier J.J. MICHEL Département EEA, UNSA v1.mars 06 [email protected] Laboratoire LUAN UMR6525-CNRS Cours d introduction à la théorie de la détection L ensemble du document s appuie très largement
De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que
Introduction. On suppose connus les ensembles N (des entiers naturels), Z des entiers relatifs et Q (des nombres rationnels). On s est rendu compte, depuis l antiquité, que l on ne peut pas tout mesurer
Optimisation de la compression fractale D images basée sur les réseaux de neurones
Optimisation de la compression fractale D images basée sur les réseaux de neurones D r BOUKELIF Aoued Communication Networks,Architectures and Mutimedia laboratory University of S.B.A [email protected]
Exercices M1 SES 2014-2015 Ana Fermin (http:// fermin.perso.math.cnrs.fr/ ) 14 Avril 2015
Exercices M1 SES 214-215 Ana Fermin (http:// fermin.perso.math.cnrs.fr/ ) 14 Avril 215 Les exemples numériques présentés dans ce document d exercices ont été traités sur le logiciel R, téléchargeable par
Document non contractuel. fiches pratiques
Document non contractuel fiches pratiques Avril 0 SUIVEZ ET GÉREZ VOTRE ÉPARGNE SALARIALE Le saviez-vous? Mot de passe perdu? Si vous avez renseigné votre adresse e-mail ou votre numéro de téléphone portable
(51) Int Cl.: H04L 29/06 (2006.01) G06F 21/55 (2013.01)
(19) TEPZZ 8 8 4_A_T (11) EP 2 838 241 A1 (12) DEMANDE DE BREVET EUROPEEN (43) Date de publication: 18.02.1 Bulletin 1/08 (1) Int Cl.: H04L 29/06 (06.01) G06F 21/ (13.01) (21) Numéro de dépôt: 141781.4
VI. Tests non paramétriques sur un échantillon
VI. Tests non paramétriques sur un échantillon Le modèle n est pas un modèle paramétrique «TESTS du CHI-DEUX» : VI.1. Test d ajustement à une loi donnée VI.. Test d indépendance de deux facteurs 96 Différentes
Intégration et probabilités TD1 Espaces mesurés Corrigé
Intégration et probabilités TD1 Espaces mesurés Corrigé 2012-2013 1 Petites questions 1 Est-ce que l ensemble des ouverts de R est une tribu? Réponse : Non, car le complémentaire de ], 0[ n est pas ouvert.
Chapitre 3. Les distributions à deux variables
Chapitre 3. Les distributions à deux variables Jean-François Coeurjolly http://www-ljk.imag.fr/membres/jean-francois.coeurjolly/ Laboratoire Jean Kuntzmann (LJK), Grenoble University 1 Distributions conditionnelles
Introduction à l approche bootstrap
Introduction à l approche bootstrap Irène Buvat U494 INSERM buvat@imedjussieufr 25 septembre 2000 Introduction à l approche bootstrap - Irène Buvat - 21/9/00-1 Plan du cours Qu est-ce que le bootstrap?
Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer
Pour commencer Exercice 1 - Ensembles de définition - Première année - 1. Le logarithme est défini si x + y > 0. On trouve donc le demi-plan supérieur délimité par la droite d équation x + y = 0.. 1 xy
Correction du bac blanc CFE Mercatique
Correction du bac blanc CFE Mercatique Exercice 1 (4,5 points) Le tableau suivant donne l évolution du nombre de bénéficiaires de minima sociaux en milliers : Année 2002 2003 2004 2005 2006 2007 2008 2009
Chapitre 2. Eléments pour comprendre un énoncé
Chapitre 2 Eléments pour comprendre un énoncé Ce chapitre est consacré à la compréhension d un énoncé. Pour démontrer un énoncé donné, il faut se reporter au chapitre suivant. Les tables de vérité données
PRISE MAIN DE GOOGLE MAP ET GOOGLE EARTH DANS LE CADRE DE LA PREPARATION ET L EXPLOITATION D UNE JOURNEE DE TERRAIN
Stage CeFEG-TICE EL 2009 PRISE MAIN DE GOOGLE MAP ET GOOGLE EARTH DANS LE CADRE DE LA PREPARATION ET L EXPLOITATION D UNE JOURNEE DE TERRAIN PRESENTATION Objectif technique : Produire un fichier exportable
Analyse de variance à deux facteurs (plan inter-sujets à deux facteurs) TP9
Analyse de variance à deux facteurs (plan inter-sujets à deux facteurs) TP9 L analyse de variance à un facteur permet de vérifier, moyennant certaines hypothèses, si un facteur (un critère de classification,
Le calcul du barème d impôt à Genève
Le calcul du barème d impôt à Genève Plan : 1. Historique Passage d un système en escalier à une formule mathématique 2. Principe de l imposition Progressivité, impôt marginal / moyen ; barème couple/marié
Introduction à la Statistique Inférentielle
UNIVERSITE MOHAMMED V-AGDAL SCIENCES FACULTE DES DEPARTEMENT DE MATHEMATIQUES SMI semestre 4 : Probabilités - Statistique Introduction à la Statistique Inférentielle Prinemps 2013 0 INTRODUCTION La statistique
Logiciel XLSTAT version 7.0. 40 rue Damrémont 75018 PARIS
Logiciel XLSTAT version 7.0 Contact : Addinsoft 40 rue Damrémont 75018 PARIS 2005-2006 Plan Présentation générale du logiciel Statistiques descriptives Histogramme Discrétisation Tableau de contingence
1. L'été le plus chaud que la France ait connu ces cinquante dernières années.
1. L'été le plus chaud que la France ait connu ces cinquante dernières années. La figure ci-dessous présente la moyenne sur la France des températures minimales et maximales de l'été (période du 1 er juin
8.1 Généralités sur les fonctions de plusieurs variables réelles. f : R 2 R (x, y) 1 x 2 y 2
Chapitre 8 Fonctions de plusieurs variables 8.1 Généralités sur les fonctions de plusieurs variables réelles Définition. Une fonction réelle de n variables réelles est une application d une partie de R
Travaux dirigés d introduction aux Probabilités
Travaux dirigés d introduction aux Probabilités - Dénombrement - - Probabilités Élémentaires - - Variables Aléatoires Discrètes - - Variables Aléatoires Continues - 1 - Dénombrement - Exercice 1 Combien
= constante et cette constante est a.
Le problème Lorsqu on sait que f(x 1 ) = y 1 et que f(x 2 ) = y 2, comment trouver l expression de f(x 1 )? On sait qu une fonction affine a une expression de la forme f(x) = ax + b, le problème est donc
PLAN. interface pour la constitution automatique d un dossier cadastral dont les données ont été acquises par GPS
2nd FIG Regional Conference Technical Session TS23-Technology Technology and Cadastre Marrakech, Morocco, December 2-5, 2003 1/26 PLAN 2/26 Développement d une d interface pour la constitution automatique
Gestion de Portefeuille. Mesures de Performance Ajustées du Risque
Gestion de Portefeuille Mesures de Performance Ajustées du Risque Le Ratio de Sharpe La mesure de performance (ajustée du risque) la plus utilisée Rappel: Propriétés du ratio de Sharpe Mesure de la stratégie:
RO04/TI07 - Optimisation non-linéaire
RO04/TI07 - Optimisation non-linéaire Stéphane Mottelet Université de Technologie de Compiègne Printemps 2003 I Motivations et notions fondamentales 4 I1 Motivations 5 I2 Formes quadratiques 13 I3 Rappels
EVALUATION DE LA QUALITE DES SONDAGES EN LIGNE : CAS D UN SONDAGE D OPINION AU BURKINA FASO
EVALUATION DE LA QUALITE DES SONDAGES EN LIGNE : CAS D UN SONDAGE D OPINION AU BURKINA FASO Auteur Baguinébié Bazongo 1 Ingénieur Statisticien Economiste Chef de l Unité de recherche à l Institut national
Cours3. Applications continues et homéomorphismes. 1 Rappel sur les images réciproques
Université de Provence Topologie 2 Cours3. Applications continues et homéomorphismes 1 Rappel sur les images réciproques Soit une application f d un ensemble X vers un ensemble Y et soit une partie P de
