Travaux dirigés Electronique

Documents pareils
Donner les limites de validité de la relation obtenue.

INTRODUCTION A L ELECTRONIQUE NUMERIQUE ECHANTILLONNAGE ET QUANTIFICATION I. ARCHITECTURE DE L ELECRONIQUE NUMERIQUE

M1107 : Initiation à la mesure du signal. T_MesSig

TP Modulation Démodulation BPSK

Systèmes de transmission

Charges électriques - Courant électrique

Manipulation N 6 : La Transposition de fréquence : Mélangeur micro-ondes

TD1 Signaux, énergie et puissance, signaux aléatoires

Equipement. électronique

1 Systèmes triphasés symétriques

Automatique Linéaire 1 Travaux Dirigés 1A ISMIN

L3-I.S.T. Electronique I303 Travaux pratiques

SYSTEMES LINEAIRES DU PREMIER ORDRE

CHAPITRE V. Théorie de l échantillonnage et de la quantification

Chapitre 1 Régime transitoire dans les systèmes physiques

Intérêt du découpage en sous-bandes pour l analyse spectrale

Circuits RL et RC. Chapitre Inductance

CARACTERISTIQUE D UNE DIODE ET POINT DE FONCTIONNEMENT

Champ électromagnétique?

Mini_guide_Isis.pdf le 23/09/2001 Page 1/14

EP A1 (19) (11) EP A1 (12) DEMANDE DE BREVET EUROPEEN. (43) Date de publication: Bulletin 2011/26

SYSTEME DE PALPAGE A TRANSMISSION RADIO ETUDE DU RECEPTEUR (MI16) DOSSIER DE PRESENTATION. Contenu du dossier :

Recherche De Coalescences Binaires Étalonnage Du Détecteur

Exercice 1. Exercice n 1 : Déséquilibre mécanique

LABO PROJET : IMPLEMENTATION D UN MODEM ADSL SOUS MATLAB

Filtres passe-bas. On utilise les filtres passe-bas pour réduire l amplitude des composantes de fréquences supérieures à la celle de la coupure.

M HAMED EL GADDAB & MONGI SLIM

PRODUIRE DES SIGNAUX 1 : LES ONDES ELECTROMAGNETIQUES, SUPPORT DE CHOIX POUR TRANSMETTRE DES INFORMATIONS

1 Démarrer L écran Isis La boite à outils Mode principal Mode gadget Mode graphique...

ELEC2753 Electrotechnique examen du 11/06/2012

BACCALAURÉAT PROFESSIONNEL EPREUVE DE TRAVAUX PRATIQUES DE SCIENCES PHYSIQUES SUJET A.1

TP 7 : oscillateur de torsion

Mini_guide_Isis_v6.doc le 10/02/2005 Page 1/15

Mesures d antennes en TNT

Précision d un résultat et calculs d incertitudes

I- Définitions des signaux.

Etudier l influence de différents paramètres sur un phénomène physique Communiquer et argumenter en utilisant un vocabulaire scientifique adapté

Instruments de mesure

LES CARACTERISTIQUES DES SUPPORTS DE TRANSMISSION

SUJET ZÉRO Epreuve d'informatique et modélisation de systèmes physiques

Approche expérimentale du rayonnement électromagnétique émis par un téléphone portable

Didier Pietquin. Timbre et fréquence : fondamentale et harmoniques

CHAPITRE XIII : Les circuits à courant alternatif : déphasage, représentation de Fresnel, phaseurs et réactance.

Chapitre 2 Les ondes progressives périodiques

MESURE DE LA PUISSANCE

Union générale des étudiants de Tunisie Bureau de l institut Préparatoire Aux Etudes D'ingénieurs De Tunis. Modèle de compte-rendu de TP.

LYCEE TECHNIQUE PIERRE EMILE MARTIN BOURGES ETUDE D UN TRAITEMENT DE SURFACE

Chapitre 02. La lumière des étoiles. Exercices :

Chapitre I La fonction transmission

EXERCICE 2 : SUIVI CINETIQUE D UNE TRANSFORMATION PAR SPECTROPHOTOMETRIE (6 points)

Oscillations libres des systèmes à deux degrés de liberté

Le transistor bipolaire. Page N 6 Tranlin

TD 11. Les trois montages fondamentaux E.C, B.C, C.C ; comparaisons et propriétés. Association d étages. *** :exercice traité en classe.

BTS Groupement A. Mathématiques Session Spécialités CIRA, IRIS, Systèmes électroniques, TPIL

EMETTEUR ULB. Architectures & circuits. Ecole ULB GDRO ESISAR - Valence 23-27/10/2006. David MARCHALAND STMicroelectronics 26/10/2006

TABLE DES MATIÈRES 1. DÉMARRER ISIS 2 2. SAISIE D UN SCHÉMA 3 & ' " ( ) '*+ ", ##) # " -. /0 " 1 2 " 3. SIMULATION 7 " - 4.

La structure du mobile GSM

Transmission de données. A) Principaux éléments intervenant dans la transmission

ÉVALUATION FORMATIVE. On considère le circuit électrique RC représenté ci-dessous où R et C sont des constantes strictement positives.

Communication parlée L2F01 TD 7 Phonétique acoustique (1) Jiayin GAO <jiayin.gao@univ-paris3.fr> 20 mars 2014

Chapitre 7. Circuits Magnétiques et Inductance. 7.1 Introduction Production d un champ magnétique

Contribution à la conception par la simulation en électronique de puissance : application à l onduleur basse tension

Module d Electricité. 2 ème partie : Electrostatique. Fabrice Sincère (version 3.0.1)

Le transistor bipolaire

Guide de correction TD 6

MESURES D UN ENVIRONNEMENT RADIOELECTRIQUE AVEC UN RECEPTEUR CONVENTIONNEL ETALONNE

ECTS INFORMATIQUE ET RESEAUX POUR L INDUSTRIE ET LES SERVICES TECHNIQUES

Fonctions de la couche physique

Cours d électricité. Circuits électriques en courant constant. Mathieu Bardoux. 1 re année

Acquisition et conditionnement de l information Les capteurs

Expérience 3 Formats de signalisation binaire

Signaux numériques : Multiplexage temporel : TDM

Cours de Systèmes Asservis

Licence Professionnelle de Génie Industriel Université Paris VI-Jussieu ; CFA Mecavenir Année Cours de Génie Electrique G.

Caractéristiques des ondes

La conversion de données : Convertisseur Analogique Numérique (CAN) Convertisseur Numérique Analogique (CNA)

PRECISION - REJET DE PERTURBATIONS T.D. G.E.I.I.

La modulation d amplitude

- Instrumentation numérique -

1. PRESENTATION DU PROJET

Multichronomètre SA10 Présentation générale

Cours d Électronique du Tronc Commun S3. Le filtrage optimisé du signal numérique en bande de base. Notion de BRUIT en télécommunication.

Transmission d informations sur le réseau électrique

Exemple d acquisition automatique de mesures sur une maquette de contrôle actif de vibrations

CHAPITRE IX. Modèle de Thévenin & modèle de Norton. Les exercices EXERCICE N 1 R 1 R 2

TRAVAUX PRATIQUES SCIENTIFIQUES SUR SYSTÈME

Notions d asservissements et de Régulations

IUT DE NÎMES DÉPARTEMENT GEII ÉLECTRONIQUE DE PUISSANCE CONVERSION AC/DC AMÉLIORATION DU FACTEUR DE PUISSANCE

Etude des convertisseurs statiques continu-continu à résonance, modélisation dynamique

CHAPITRE IV Oscillations libres des systèmes à plusieurs degrés de liberté

Université Mohammed Khidher Biskra A.U.: 2014/2015

Equations différentielles linéaires à coefficients constants

Observer TP Ondes CELERITE DES ONDES SONORES

Cours 9. Régimes du transistor MOS

CHAPITRE IX : Les appareils de mesures électriques

Les parcours S4 traditionnels : Robotique, Radio Communication Numérique, Traitement de l information. Informatique Industrielle

Méthodes de Caractérisation des Matériaux. Cours, annales

Elec II Le courant alternatif et la tension alternative

Transcription:

Travaux dirigés Electronique 2018/2019 TD E1 : Stabilité des systèmes linéaires TD E2 : Systèmes avec rétroaction exemple de l ALI TD E3 : Oscillateurs auto-entretenus TD E4 : Modulation et démodulation du signal Lycée de l Essouriau, PSI, 2018/2019

2

Chapitre 1: Stabilité des systèmes linéaires TD E1 : Stabilité des systèmes linéaires Exercice 1 : Tracé de réponses spectrales et temporelles à la sortie d un filtre En vous aidant du document-support de l activité sur le filtrage linéaire sur la décomposition en série de Fourier des signaux les plus courants, représenter qualitativement l allure des réponses spectrale et temporelle des signaux de sortie dans les situations suivantes : 1. un filtre passe-bas de fréquence de coupure égale à 2 khz soumis à une tension triangulaire de fréquence égale à 1 khz 2. un filtre passe-haut de fréquence de coupure égale à 3 khz soumis à une tension triangulaire de fréquence égale à 1 khz 3. un filtre passe-bande sélectif de fréquence caractéristique égale à 2 khz soumis à une tension triangulaire de fréquence égale à 1 khz Exercice 2 : Filtre de Wien On considère le filtre dont le schéma électrique est donné ci-dessous : 1. Fonction de transfert du filtre de Wien. (a) En étudiant le comportement asymptotique du filtre à haute et basse fréquence et sans établir la fonction de transfert, déterminer la nature du filtre. (b) Montrer que la fonction de transfert harmonique de ce filtre s écrit : 1 H(jω) = 3 + j( ω ω o ω o ω ) avec ω o = 1 RC. (c) Transposer la fonction de transfert dans le domaine temporel (relation différentielle, sans intégrales). (d) Ce système linéaire est-il stable? Justifier. 2. On étudie le régime transitoire de ce filtre lorsqu on applique une marche de tension en entrée (voir schéma ci-dessous). (a) Montrer que v s (0 + ) = 0 et que i(0 + ) = E R. En déduire une condition initiale sur dv s dt (0+ ). (b) Pour t>0, montrer que v s s écrit sous la forme : v s (t) = Ce αω ot sinh(βω o t) où C, α et β sont des constantes positives à préciser. (c) Tracer l allure du graphe de v s en fonction du temps. 3

Chapitre 1: Stabilité des systèmes linéaires Exercice 3 : Filtre de récepteur radio (extrait de Mines PSI 2013) 4

Chapitre 1: Stabilité des systèmes linéaires Exercice 4 : Filtre de Hartley 1. Déterminer la fonction du filtre de Hartley représenté ci-contre sans calcul, à l aide d une étude asymptotique. 2. Etablir sa fonction de transfert et la mettre sous la forme : On précisera les expressions de K, ω 0 et Q. K H(ω) = ( 1 + jq ω ω 0 ω 0 ω ) Exercice 5 : Electronique de réception (extrait de e3a PSI 2007) 5

Chapitre 1: Stabilité des systèmes linéaires 6

Chapitre 2: Systèmes avec rétroaction - exemple de l amplificateur linéaire intégré (ALI) TD-E2 : Systèmes avec rétroaction - exemple de l ALI Révisions de cours : Donner les ordres de grandeur du gain différentiel statique et du temps de réponse d un ALI Citer les hypothèses du modèle de l ALI Représenter les relations entre les tensions d entrée et de sortie par un schéma fonctionnel (schéma bloc) Analyser la stabilité du régime linéaire d un ALI au sein d un montage comportant une rétroaction sur la borne inverseuse ou non inverseuse Identifier un indice probable de stabilité du régime linéaire, ou d un probable comportement en saturation, suivant la présence ou l absence d une rétroaction. Etablir la conservation du produit gain-bande passante du montage non inverseur Décrire le cas limite d un ALI idéal de gain infini ALI idéal de gain infini en régime linéaire : établir la relation entrée-sortie des montages non inverseur, suiveur, inverseur, intégrateur. Exprimer les impédances d entrée de ces montages. Expliquer l intérêt d une forte impédance d entrée pour une association en cascade ALI idéal de gain infini en régime saturé : établir la relation entrée-sortie d un comparateur simple. Pour une entrée sinusoïdale, faire le lien entre la non linéarité du système et l apparition d harmoniques en sortie. Etablir le cycle d un comparateur à hystérésis. Décrire le phénomène d hystérésis en relation avec la notion de fonction mémoire. 7

Chapitre 2: Systèmes avec rétroaction - exemple de l amplificateur linéaire intégré (ALI) Exercice 1 : Utilisation d un mauvais voltmètre Dans le montage de la figure ci-dessous, dans lequel R 2 = 80kΩ, R 1 = 20kΩ et E = 9V, on souhaite mesurer la tension U AB entre les points A et B. 1. L interrupteur est ouvert. Etablir l expression de U AB. 2. On effectue la mesure en utilisant un voltmètre, que l on positionne entre les points A et B, en fermantn l interrupteur K. Le constructeur spécifie que la résistance interne du voltmètre vaut 10kΩ.V 1. Indiquer la mesure affichée par le voltmètre sur le calibre 2V. Expliquer le résultat obtenu. 3. Proposer une amélioration du montage pour pallier ce problème. Exercice 2 : Représentation par un schéma fonctionnel On étudie le montage dont le schéma électronique est donné ci-dessous. L AO n est pas considéré comme un AO idéal. 1. Formuler une hypothèse sur le régime de fonctionnement de l AO. 2. Représenter le fonctionnement de ce système bouclé par un schéma fonctionnel faisant apparaître les fonctions suivantes : un passe-bas du premier ordre, un opérateur proportionnel, un soustracteur. 3. On considère l AO comme idéal. Donner alors la fonction de transfert harmonique de ce filtre. 4. A haute fréquence, quelle fonction réalise ce filtre? 8

Chapitre 2: Systèmes avec rétroaction - exemple de l amplificateur linéaire intégré (ALI) Exercice 3 : Amplificateur opérationnel réel et idéal On ne fait pas figurer l alimentation ±15V dans la représentation de l amplificateur opérationnel, constituée simplement d un rectangle dont sont issues les deux bornes d entrée et la borne de sortie. On convient de noter : i +,i et i s les courants parvenant aux entrées non-inverseuse et inverseuse et le courant en sortie de l AO. V +, V et V s les tensions respectives entre l entrée non-inverseuse, l entrée inverseuse, la sortie et la masse. On note E la différence de potentiel imposée entre les deux bornes d entrée : E = V + V est appelée tension différentielle d entrée. La caractéristique de transfert statique (ω = 0) a l allure donnée dans la figure ci-dessous : où E 1. Tracer la caractéristique de l A.O. idéal 2. Remplir le tableau ci-dessus avec uniquement les valeurs suivantes : 0,, qq, ±V sat. Exercice 4 : Résistance négative à base d AO Le montage ci-dessous peut être considéré comme un dipôle entre A et B, traversé par un courant i et alimenté par une tension u à ses bornes. En établissant la relation entre i et u, justifier l appellation dipôle à résistance négative. On supposera l AO idéal et fonctionnant en régime linéaire. 9

Chapitre 2: Systèmes avec rétroaction - exemple de l amplificateur linéaire intégré (ALI) Exercice 5 : Simulation d inductance On considère le montage donné par la figure ci-dessous. L amplificateur linéaire intégré (ALI) est supposé idéal et de gain infini. 1. Justifier que l ALI fonctionne en régime linéaire. 2. Déterminer l impédance d entrée Z = u e i e du montage et montrer qu elle est équivalente à celle d une inductance pure L en parralèle avec une résistance R. Exercice 6 : Filtrage d un signal créneau 1. En appliquant la loi des nœuds en M, établir la fonction de transfert du montage ci-dessous. Préciser les éléments caractéristiques (pulsation propre ω o, facteur d amortissement ξ, gain statique H o ). 2. Expliquer comment il est possible d ajuster les valeurs de ω o et ξ indépendamment l un de l autre. 3. On alimente le montage avec un signal d entrée en créneaux, de période T e = 2, 5.10 5 s (voir figure ci-dessus). Choisir la valeur R de la résistance pour que la sortie soit un signal constant, dans le cas où C 1 = 22nF et C 2 = 330nF. Préciser alors la valeur du signal de sortie. 10

Chapitre 2: Systèmes avec rétroaction - exemple de l amplificateur linéaire intégré (ALI) Exercice 7 : Comparateur monostable Un montage comparateur à hystérésis est dit bistable dans la mesure où la tension de sortie présente deux états stables pour la position u e = 0 : U sat et U sat. On s intéresse ici à un montage dit monostable, la tension de sortie ne présentant qu un seul état de repos stable. On considère l AO comme idéal, une alimentation de tension continue E est intégrée au montage, schématisé ci-dessous : 1. Formuler une hypothèse sur le régime de fonctionnement de l AO. 2. Etablir et tracer le cycle du comparateur (u s en fonction de u e ). On fera appraître deux tensions caractéristiques, toutes deux prises négatives pour la représentation graphique. 3. Un tel comparateur est dit monostable s il n y a pas de point d intersection entre le cycle et l axe u e = 0. En déduire la condition sur E pour que le comparateur soit monostable. Exercice 8 : Cycle d un comparateur à hystérésis non inverseur Figure 1: Comparateur à hystérésis non inverseur 1. Justifier que l on étudie ce montage en régime saturé. 2. Déterminer le cycle à hystérésis de ce montage. 11

Chapitre 2: Systèmes avec rétroaction - exemple de l amplificateur linéaire intégré (ALI) Exercice 9 : Filtre à plusieurs ALI Le circuit de la figure ci-dessous commporte trois ALI parfaits de gain infini fonctionnant en régime linéaire. On alimente le circuit en E par une tension sinusoïdale u e (t) de pulsation ω. 1. Chercher sans calculs la nature du filtre proposé, de tension de sortie u s (t). 2. Montrer que la fonction de transfert H = u s u e se met sous la forme H = ω 1 = 1 R 2 C et ω 2 = R 2 R 4 R 5 C. 3. Déterminer la pulsation de résonnance. H o ) 1+j( ωω1 avec H ω 2 o = R 2 R 1, ω 12

Chapitre E3: Oscillateurs auto-entretenus TD-E3 : Oscillateurs auto-entretenus Révisions de cours : Décrire le fonctionnement d un oscillateur quasi-sinusoïdal avec un filtre passe-bande et un amplificateur Exprimer les conditions théoriques en gain et fréquence d auto-oscillation sinusoïdale d un système linéaire bouclé Analyser sur l équation différentielle l inégalité que doit vérifier le gain de l amplificateur afin d assurer le démarrage des oscillations Interpréter le rôle des non linéarités dans la stabilisation de l amplitude des oscillations Décrire le fonctionnement d un oscillateur optique (le laser) en termes de système bouclé autooscillant. Relier les fréquences des modes possibles à la taille de la cavité. Décrire les différentes séquences de fonctionnement d un oscillateur de relaxation associant un intégrateur et un comparateur à hystérésis. Exprimer les conditions de basculement et déterminer la période d oscillations. 13

Chapitre E3: Oscillateurs auto-entretenus Exercice 1 : Démarrage des oscillations dans un oscillateur quasi-sinusoïdal à résistance négative On considère le montage ci-contre qui est un oscillateur quasi-sinusoïdal à résistance négative, où l ALI est idéal et supposé fonctionner initialement en régime linéaire. On mesure la tension u aux bornes de l ALI. L inductance de la bobine ets notée L et on note r sa résistance interne, le condensateur est supposé parfait (pas de résistance interne). 1. Montrer que u = R n i. 2. Déterminer la condition sur R n pour qu il y ait démarrage des oscillations. 3. Déterminer la fréquence théorique des oscillations sinusoïdales qui s auto-entretetiennent dans l oscillateur. A quelle condition sur R N cette fréquence est-elle obtenue? 4. Après démarrage des oscillations, expliquer pourquoi l amplitude des oscillations reste de valeur finie. Déterminer l amplitude maximale des oscillations u(t) et expliquer pourquoi les oscillations sont quasisinusoïdales. Exercice 2 : Oscillateur à réseau déphaseur On considère l oscillateur à réseau déphaseur ci-dessous. Les deux ALI sont supposés idéaux et de gain infini. La fonction de transfert K (jω) du réseau déphaseur en boucle ouverte : K (jω) = 1 1 5(RCω) 2 + jrcω(6 (RCω) 2 ) (1) 1. (question facultative) Montrer que la fonction de transfert s écrit sous la forme de l équation (1). 2. Donner le rôle de chaque élément de l oscillateur. Justifier l utilisation d un montage suiveur. 3. Déterminer la fréquence d oscillation ainsi que la condition sur les valeurs des résistances R 1 et R 2 pour que les oscillations s auto-entretiennent. 4. Quel déphasage introduit le réseau déphaseur pour une oscillation à la pulsation ω o? Expliquer comment les oscillations sinusoïdales s auto-entretiennent. On pourra l illustrer sur un graphique. 14

Chapitre E3: Oscillateurs auto-entretenus Exercice 3 : Oscillateur de Clapp La structure d un oscillateur de Clapp est donné sur la figure ci-dessous. On donne la fonction de transfert du filtre : H(jω) = u B = 1 u A 2 1 1 + jωr ( C 1 2 C LCω 2 1 1. En étudiant son comportement à haute et basse fréquence, préciser le rôle du filtre dans ce montage. 2. Indiquer la fonction que réalise l autre partie de l oscillateur. Donner sa fonction de transfert u A u B 3. Quelles sont les tensions d entrée et de sortie du bloc amplificateur? Même question avec le filtre? 4. Déterminer la condition sur le gain de l amplificateur et la fréquence pour que les oscillations soient auto-entretenues. 5. Calculer la valeur de la capacité C 1 qu il faut choisir pour réaliser une oscillation à la fréquence f = 100kHz. On prendra C = 10nF et L = 10mH. Réponse : C 1 0, 52nF. ) Exercice 4 : Multivibrateur astable L oscillateur représenté ci-dessous est utilisé comme générateur de signaux rectangulaires. Il est constitué d un filtre passe-bas intégrateur à haute fréquence et d un comparateur à hystérésis de type inverseur, dont le cycle est donné ci-dessous. Figure 1: Multivibrateur astable Figure 2: Cycle à hystérésis d un comparateur inverseur On suppose qu à t=0, la tension u 1 passe de la valeur U sat à U sat. On cherche à déterminer le temps t 1 au bout duquel u 1 rebasculera à la valeur U sat puis le temps T au bout duquel l oscillation a effectué une période complète. 1. Justifier que la tension u 2 est une fonction continue du temps. 2. A quelle condition sur u 2 le basculement en t 1 aura t-il lieu? 3. Détermine t 1 et représenter grapiquement u 2 (t) pour t [0; t 1 ]. On représentera également u 1 (t) sur le même graphique. 4. Déterminer la période T des oscillations en fonction des paramètres du problème. 15

Chapitre E3: Oscillateurs auto-entretenus Exercice 5 : Générateur d impulsions 1. On suppose que la tension e(t) est constante. Montrer le montage possède, en régime établi (indépendant du temps), un seul état stable, et donner la valeur de s(t) correspondante. 2. Déterminer, en régime variable, l équation différentielle liant u(t) à e(t). On posera τ m = 3RC. 3. On suppose qu à l instant t = 0, e(0 ) = E et que le régime établi est atteint. A l instant t = 0, l entrée bascule et e(t) prend la valeur e(0 + ) = +E. Déterminer la valeur de la discontinuité (u(0 + ) u(0 )) de la tension u(t) à l instant t = 0. 4. Déterminer l évolution de u(t) à partir de cet instant. 5. La tension d entrée e(t) est un signal rectangulaire symétrique prenant les valeurs +E et E de période T. Tracer soigneusement sur le même graphe, pour T = 10τ m et pendant une période de e(t), les tensions e(t), u(t) et s(t). 6. Donner la largeur T 2 des impulsions de sortie correspondantes en fonction de τ m. 16

Chapitre E4: Modulation et démodulation du signal TD-E4 : Modulation et démodulation du signal Révisions de cours : Définir un signal modulé en amplitude, en fréquence, en phase. Citer les ordres de grandeurs des fréquences porteuses utilisées pour les signaux radio AM, FM, la téléphonie mobile. Expliquer l intérêt et la nécessité de la modulation pour les transmissions hertziennes (au moins trois arguments). Interpréter le signal modulé (en amplitude) comme le produit d une porteuse par une modulante. Décrire le spectre d un signal modulé en amplitude. A partir de l analyse fréquentielle, justifier la nécessité d utiliser une opération non linéaire. Expliquer le principe de la détection synchrone. 17

Chapitre E4: Modulation et démodulation du signal Exercice 1 : caractéristiques d un signal modulé en amplitude et puissance transportée Avec un analyseur de on mesure le spectre d un signal modulé en amplitude s(t) inconnu. 1. Déterminer la fréquence de la porteuse et celle du signal de modulation. 2. En reprenant la définition du cours, déterminer le facteur de modulation. Exercice 2 : Caractéristiques d un signal modulé en amplitude et puissance transportée On rappelle : la puissance instantanée algébriquement reçue par un dipôle p(t) = u(t)i(t), la puissance 1 T moyenne dans le temps reçue par un dipôle : P = p(t) t = lim 0 p(t)dt. T T La figure 1 représente une simulation d un signal modulé en amplitude avec porteuse. 1. Indiquer directement sur la figure, et dans les cases prévues à cet effet, les courbes correspondant aux ondes porteuse et modulante. 2. Déterminer graphiquement la fréquence de l onde porteuse fp et la fréquence de l onde modulante fm. 3. France-inter émet sur les grandes ondes (radio AM) à la fréquence 162kHz. Soit un signal de tension modulé en amplitude créé avec une onde porteuse de fréquence f p = 162kHz et un signal de modulation sinusoïdal de fréquence f m = 3kHz. (a) Quelles sont les fréquences contenues dans le signal modulé? Sachant que la loi autorise une largeur de bande maximale de 9kHz, que peut-on en conclure sur la qualité de retransmission musicale en radio AM? (b) Sachant que la puissance totale de l émetteur de France-Inter est P T = 2000kW et que le taux de modulation est m = 75%, calculer les puissances fournies à une antenne (assimilée à une résistance pure R), respectivement par les bandes latérales P B et par la porteuse P P. Commenter les valeurs obtenues. 18

Chapitre E4: Modulation et démodulation du signal Exercice 3 : Débruitage d un signal par détection synchrone On considère un signal u(t) = U cos(2πf o t) dont l amplitude U est porteuse d une information que l on souhaite mesurer. A u(t) s est rajouté un signal parasite p(t) = P cos(2πf p t), empêchant la mesure de U. Connaissant la fréquence f o, on propose d utiliser une détection synchrone (ou démodulation synchrone) afin de récupérer l information U, comme illustré sur le schéma ci-dessous. Pour cela on utilise un signal de référence parfaitement connu de même fréquence f o que le signal intéressant mais de phase Φ a priori différente. La détection synchrone est un système de détection couramment employé en traitement du signal, permettant notamment de mesurer l amplitude d un signal noyé dans du bruit. 1. Déterminer le spectre du signal en sortie du multiplieur, le représenter graphiquement (on choisira f p < f o ). 2. Choisir la fréquence de coupure du filtre passe-bas afin de ne récupérer en sortie que le terme de fréquence nulle. 3. Quelle valeur de Φ doit-on choisir afin d effectuer la mesure de U? Exercice 4 : Transmission d un signal par modulation d amplitude On se propose de transmettre, àl aide d un signal sinusoïdal porteur a p,m cos(ω p t), représentant une tension électrique de fréquence f p = 1MHz, un signal de modulation périodique s i (t), de fréquence f o = 1kHz et de motif : a i,m cos(π t T o ) pour T o 2 t T o 2 avect o = 1 f o On rappelle qu un signal périodique s(t) de période T peut se décomposer en série de Fourier et se mettre sous la forme suivante : s i (t) = + nt j2π c n e T avec c n = 1 T o + T 2 T 2 s(t)e j2πf nt, f n = n T 1. Montrer que la tension s i (t) peut s écrire sous la forme : s i (t) = A o [1 + 2 3 cos(2πf ot) 2 ] 15 cos(4πf ot) +... avec A o = 2a i,m π 2. Représenter le spectre de s i (t) jusqu à l ordre 2 inclus. 3. En déduire le spectre du signal s(t) modulé en amplitude : s(t) = [a p,m + s i (t)] cos(2πf p t) 4. On supprime la bande latérale inférieure du signal à transmettre ; en outre, on ne garde que la composante stationnaire et le premier harmonique de s i (t). Le signal résultant d écrit alors : s 1 (t) = A 1 (t) cos(ω p t + Φ 1 (t)) Déterminer A 1 (t) et Φ 1 (t), sachant que a p,m = 10V et A o = 1V. Réponses : A 1 (t) = [9, 1 + 2 cos(ω o t)] 1/2 et tan (Φ 1 (t)) = sin(ω ot) 9+cos(ω o (t)) 19

Chapitre E4: Modulation et démodulation du signal Exercice 5 : Démodulation par détection d enveloppe (d après CCP PSI 2005) 20