BTS Informatique et Réseaux pour l'industrie et les Services Techniques.

Documents pareils
Automatique Linéaire 1 Travaux Dirigés 1A ISMIN

Filtres passe-bas. On utilise les filtres passe-bas pour réduire l amplitude des composantes de fréquences supérieures à la celle de la coupure.

SYSTEMES LINEAIRES DU PREMIER ORDRE

Notions d asservissements et de Régulations

Systèmes de transmission

INTRODUCTION A L ELECTRONIQUE NUMERIQUE ECHANTILLONNAGE ET QUANTIFICATION I. ARCHITECTURE DE L ELECRONIQUE NUMERIQUE

ELEC2753 Electrotechnique examen du 11/06/2012

Série 77 - Relais statiques modulaires 5A. Caractéristiques. Relais temporisés et relais de contrôle

Donner les limites de validité de la relation obtenue.

TS 35 Numériser. Activité introductive - Exercice et démarche expérimentale en fin d activité Notions et contenus du programme de Terminale S

Transmission de données. A) Principaux éléments intervenant dans la transmission

UE 503 L3 MIAGE. Initiation Réseau et Programmation Web La couche physique. A. Belaïd

Caractéristiques des ondes

Amplificateur à deux étages : gains, résistances "vues", droites de charges, distorsion harmonique

Analyse des Systèmes Asservis

Modules d automatismes simples

CHAPITRE V. Théorie de l échantillonnage et de la quantification

-1- SOUNDMAN. Fabrication et distribution. SOUNDMAN e.k. Bornimer Str Berlin (Allemagne) Tél & Fax (+49)

Multichronomètre SA10 Présentation générale

Automatique (AU3): Précision. Département GEII, IUT de Brest contact:

M1107 : Initiation à la mesure du signal. T_MesSig

Le transistor bipolaire. Page N 6 Tranlin

PRECISION - REJET DE PERTURBATIONS T.D. G.E.I.I.

La conversion de données : Convertisseur Analogique Numérique (CAN) Convertisseur Numérique Analogique (CNA)

Relais statiques SOLITRON MIDI, Commutation analogique, Multi Fonctions RJ1P

Indicateur universel de procédé format 96 x 48 mm ( 1 /8 DIN)

Automatique Linéaire 1 1A ISMIN

TP Modulation Démodulation BPSK

Chapitre 1 Régime transitoire dans les systèmes physiques

G.P. DNS02 Septembre Réfraction...1 I.Préliminaires...1 II.Première partie...1 III.Deuxième partie...3. Réfraction

SYSTÈMES ASSERVIS CORRECTION

CHAPITRE IX : Les appareils de mesures électriques

TD1 Signaux, énergie et puissance, signaux aléatoires

Exercice 1. Exercice n 1 : Déséquilibre mécanique

Relais d'arrêt d'urgence, protecteurs mobiles

T500 DUAlTACH. JAQUET T500 DualTach Instrument de mesure et de surveillance équipé de 2 entrées fréquence TACHYMETRE 2 CANAUX

CHAPITRE XIII : Les circuits à courant alternatif : déphasage, représentation de Fresnel, phaseurs et réactance.

Version MOVITRANS 04/2004. Description / FR

Régler les paramètres de mesure en choisissant un intervalle de mesure 10µs et 200 mesures.

EMETTEUR ULB. Architectures & circuits. Ecole ULB GDRO ESISAR - Valence 23-27/10/2006. David MARCHALAND STMicroelectronics 26/10/2006

Caractéristiques techniques

Equipement. électronique

Continuité et dérivabilité d une fonction

Chaine de transmission

Liste des Paramètres 2FC4...-1ST 2FC4...-1PB 2FC4...-1PN 2FC4...-1SC 2FC4...-1CB

Varset Direct. Batteries fixes de condensateurs basse tension Coffrets et armoires. Notice d utilisation. Armoire A2

Multitension Monofonction. Multitension Multifonction

Système ASC unitaire triphasé. PowerScale kva Maximisez votre disponibilité avec PowerScale

MESURES D UN ENVIRONNEMENT RADIOELECTRIQUE AVEC UN RECEPTEUR CONVENTIONNEL ETALONNE

Moteur DC: Comment faire varier sa vitesse?

CLIP. (Calling Line Identification Presentation) Appareil autonome affichant le numéro appelant

I GENERALITES SUR LES MESURES

Pinces multimètres Fluke Une solution pour chaque besoin

1. PRESENTATION DU PROJET

Convertisseurs statiques d'énergie électrique

ELECTRONIQUE ANALOGIQUE

Système d automation TROVIS 6400 Régulateur compact TROVIS 6493

Instruments de mesure

Étude des Corrélations entre Paramètres Statiques et Dynamiques des Convertisseurs Analogique-Numérique en vue d optimiser leur Flot de Test

SIGNAUX NUMERIQUES ET MODULATIONS NUMERIQUES

Automatique des systèmes linéaires continus

Relais d'arrêt d'urgence, protecteurs mobiles

BD 302 MINI. Etage de puissance pas à pas en mode bipolaire. Manuel 2059-A003 F

FctsAffines.nb 1. Mathématiques, 1-ère année Edition Fonctions affines

Protect 5.31 Sortie monophasée 10kVA 120kVA Protect 5.33 Sortie triphasée 25kVA 120kVA. Alimentations Statique Sans Interruption

Chapitre 2 : communications numériques.

Etudier l influence de différents paramètres sur un phénomène physique Communiquer et argumenter en utilisant un vocabulaire scientifique adapté

TABLE DES MATIÈRES 1. DÉMARRER ISIS 2 2. SAISIE D UN SCHÉMA 3 & ' " ( ) '*+ ", ##) # " -. /0 " 1 2 " 3. SIMULATION 7 " - 4.

Chapitre 22 : (Cours) Numérisation, transmission, et stockage de l information

CHAPITRE VIII : Les circuits avec résistances ohmiques

CABLECAM de HYMATOM. Figure 1 : Schéma du système câblecam et détail du moufle vu de dessus.

ÉVALUATION FORMATIVE. On considère le circuit électrique RC représenté ci-dessous où R et C sont des constantes strictement positives.

I. Polynômes de Tchebychev

PRODUIRE DES SIGNAUX 1 : LES ONDES ELECTROMAGNETIQUES, SUPPORT DE CHOIX POUR TRANSMETTRE DES INFORMATIONS

0 20mV; 0 40mV; 0 80mV; 0 160mV; 0 320mV; 0 640mV; 0 1,28V; 0 2,56V 0 5V; 0 10V

1. Présentation général de l architecture XDSL :

Etude des convertisseurs statiques continu-continu à résonance, modélisation dynamique

0.8 U N /0.5 U N 0.8 U N /0.5 U N 0.8 U N /0.5 U N 0.2 U N /0.1 U N 0.2 U N /0.1 U N 0.2 U N /0.1 U N

Module d Electricité. 2 ème partie : Electrostatique. Fabrice Sincère (version 3.0.1)

FAG Detector III la solution pour la surveillance et l équilibrage. Information Technique Produit

Partie Agir : Défis du XXI ème siècle CHAP 20-ACT EXP Convertisseur Analogique Numérique (CAN)

Expérience 3 Formats de signalisation binaire

CH IV) Courant alternatif Oscilloscope.

Relais statiques SOLITRON, 1 ou 2 pôles Avec dissipateur intégré

NO-BREAK KS. Système UPS dynamique PRÉSENTATION

10 leçon 2. Leçon n 2 : Contact entre deux solides. Frottement de glissement. Exemples. (PC ou 1 er CU)

Cours de Systèmes Asservis

Information. BASES LITTERAIRES Etre capable de répondre à une question du type «la valeur trouvée respecte t-elle le cahier des charges?

Extrait des Exploitations Pédagogiques

Développements limités. Notion de développement limité

Perrothon Sandrine UV Visible. Spectrophotométrie d'absorption moléculaire Étude et dosage de la vitamine B 6

DETECTOR BICANAL FG2 1. DIMENSIONS ET CONNEXIONS ELECTRIQUES 2. GENERALITES. 24 VDC Alimentat. 24 Vcc. Contact Boucle Contact Boucle 1 6 7

Module : systèmes asservis linéaires

VIBXPERT Collecteur et Analyseur de données FFT

Système M-Bus NIEVEAU TERRAIN NIVEAU AUTOMATION NIVEAU GESTION. Domaines d'application

Introduction. I Étude rapide du réseau - Apprentissage. II Application à la reconnaissance des notes.

MODULES ÉLECTRIQUES. - systèmes électriques DC - onduleurs - convertisseurs - interrupteurs statiques. Notre alimentation Votre confiance

Exemple d acquisition automatique de mesures sur une maquette de contrôle actif de vibrations

Transcription:

BTS Informatique et Réseaux pour l'industrie et les Services Techniques. Exercice: carte d'acquisition d'un signal. 1. Caractéristiques de la carte. 1. La fréquence maximale des conversions est f H = 1 = 1 T 6=100 khz H 10 10 Session 2004. 2. La fréquence maximale d'échantillonnage de la carte est alors f E = f H =25 khz 4 3. La fréquence maximale théorique des signaux analogiques sinusoïdaux pouvant être traités par la carte est donnée par le théorème de Shannon qui stipule qu'il faut au moins deux échantillons par période du signal, c'est à dire que la fréquence d'échantillonnage doit être au moins deux fois supérieure à la fréquence du signal à échantillonner: f max = f E =12,5 khz 2 Il faut cependant prendre en compte le filtre anti-repliement, et donc la fréquence maximale que l'on peut traiter est f max =1 khz 4. C'est le filtre anti-repliement qui permet de supprimer les composantes de haute fréquence qui peuvent «parasiter» la conversion. 5. La résolution r du convertisseur est ici l'écart minimal entre deux valeurs distinctes que peut mesurer le convertisseur. C'est aussi le «quantum» de conversion, donc nous avons la valeur maximale sur le nombre d'états (moins 1 à cause du zéro): r= 10,24 10 mv 2 10 1 2. Étude de l'acquisition: 1. Nous avons un coefficient d'amplification de 1 pour les voies A et B, un coefficient de 4 pour la voie C et un coefficient de 2 pour la voie D. Ces coefficients permettent d'obtenir la plus grande valeur possible compatible avec l'entrée du convertisseur: Voir le document-réponse n 1. 2. Pour compléter la dernière ligne du document, il faut prendre en compte l'amplification qui permet d'accroître la résolution de l'ensemble. Entrée voie A B C D Plage de tension en entrée 0-9 V 0-10 V 0-2 V 0-3 V Pleine échelle du CAN: 0-10 V Amplification programmée 1 1 4 2 Résolution obtenue pour la voie de la carte d'acquisition (en mv) Résolution du CAN seul: r = 10 mv 10 10 2,5 5 Corrigé du BTS IRIS 2004 N. Lardenois www.lardenois.com Page 1.

Problème: robot de manutention. A. Moteur à courant continu. 1. Moteur en régime permanent. C 1. Le moment du couple utile est U = P U = U 2 n = 115 2 1000 1,1 N.m 60 60 2. La puissance absorbée par le moteur est P A =U I =27,0 5,10=138 W 3. Le rendement du moteur est donc = P U = 115 P A 138 83,5 % 2. Moteur en régime transitoire. 1. Cette transmittance modélise un système du 1 ordre (la puissance de p au dénominateur est 1). Ce système peut être modélisé avec deux paramètres: la transmittance statique et la constante 120 de temps, et nous avons la forme normalisée M p = M 0 1 p = 1 0,05 p Par identification, nous trouvons: Transmittance statique: M 0 = 120 V 1 min 1 Constante de temps: =0,05 s 2. La multiplication par p correspond à une dérivation par rapport au temps, donc nous avons: 1 p N p =M 0 U p soit N p p N p =M 0 U p L'équation différentielle est alors n t m dn dt = M u t 0 La constante de temps du moteur est donc = m =0,05 s P U B. Asservissement de position. 1. Transmittance en boucle fermée. La transmittance isomorphe en boucle fermée est le rapport de la sortie sur la consigne, donc ici nous avons H BF p = X p X c p Nous avons ici X p =T p E p et E p = X c p X p d'où X p =T p X c p T p X p soit 1 T p X p =T p X c p et donc X p = T p 1 T p X c p Nous avons finalement H BF p = T p 1 T p Corrigé du BTS IRIS 2004 N. Lardenois www.lardenois.com Page 2.

2. Étude en boucle ouverte. 1. 5 La transmittance complexe en boucle ouverte est T j = j 1 j 0,05 2. Voir le document -réponse n 2 en fin de sujet pour la construction. Nous avons N 5 rad s 1 La phase est (lecture graphique): N 104 La marge de phase est M =76 Le système en boucle fermée est suffisamment stable car la marge de phase est supérieure à 45, valeur généralement considérée comme suffisante. 3. Étude avec un correcteur analogique: 4. La nouvelle transmittance ne boucle ouverte est T ' p = A T p La nouvelle expression de la transmittance isochrone est alors T ' j = A T j Le nouveau gain en boucle ouverte est alors: G ' =20 log A T j =20 log A 20 log T j donc G ' =G 20 log A Application numérique: G ' =G 12 db Pour le déphasage, nous avons ' = Arg T ' j =Arg A Arg T j donc ' = car Arg A=0 (A est un réel positif). Le nouveau diagramme de Bode du gain se trouve sur le document-réponse n 2 en fin de corrigé. La nouvelle marge de phase est alors (lecture graphique): M ' 50 L'amplification a fait baisser la marge de phase du système. Nous restons encore dans les conditions décrites précédemment, mais le degré de stabilité a baissé. Le fait d'augmenter l'amplification permet cependant d'augmenter la rapidité du système. 3. Étude en boucle fermée. 1. Les deux caractéristiques permettant d'affirmer que le système est d'ordre 2 ou plus sont: La tangente à l'origine est nulle, Il y a dépassement de la valeur finale (ce qui n'est pas toujours le cas pour les ordres 2 ou plus, mais c'est le cas ici). 2. Étude à partir du graphique: L'asservissement est précis car la sortie est égale à 1, c'est-à-dire qu'elle est égale à l'entrée (échelon unitaire) au bout d'un temps très long. La transmittance statique K est le rapport de la sortie sur l'entrée au bout d'un temps très long, donc nous avons K =1 Corrigé du BTS IRIS 2004 N. Lardenois www.lardenois.com Page 3.

Pour le démontrer, nous pouvons utiliser le théorème de la valeur finale: L'entrée est un échelon unitaire, donc X c p = 1 p. K X p =H p X c p = La sortie est donc égale à p 1 2 m p p2 2 0 0 Au bout d'un temps très long, nous avons x =lim x c t =lim p X p =K t 0 p 0 Par lecture graphique, nous avons x =1 donc K =1 Le temps de réponse à 5 % est le temps mis par le système pour rester dans une «fourchette» de 5 % autour de la valeur finale, donc ici entre 0,95 et 1,05. Nous trouvons donc t r =0,26 s (Voir document-réponse en fin de sujet). La valeur finale atteinte est X max 1,165 dm Le dépassement relatif est donc D= X x max = 1,165 1,0 =16,5 % x 1,0 Par lecture graphique sur la figure 2, nous trouvons m 0,5 4. Étude d'un correcteur analogique. 1. Nous avons une rétroaction sur l'amplificateur opérationnel (liaison par un élément linéaire entre la sortie et l'entrée inverseuse notée «-»), donc dans sa plage de non saturation, il peut fonctionner en régime linéaire. 2. Comme l'amplificateur est idéal, nous n'avons pas de courant dans l'entrée «-» et nous pouvons utiliser la relation du diviseur de tension: V - = R 1 u R 1 R 2 2 Comme l'amplificateur opérationnel est en régime linéaire, nous avons la même tension aux deux entrées, donc V - =V + =u 1. Nous avons donc u 1 = R 1 u R 1 R 2 soit encore u 2 2 = 1 R 2 R 1 u 1 Nous avons une correction proportionnelle. Ce type de correction augmente la précision et la rapidité, mais fait baisser la marge de phase. C'est bien ce que nous avons vu dans la partie B-2. 5. Étude d'un correcteur numérique. 1. Nous avons le tableau des valeurs suivant: n 0 1 2 3 4 s n 2 1,8 1,64 1,51 1,41 Corrigé du BTS IRIS 2004 N. Lardenois www.lardenois.com Page 4.

2. Nous avons, en transformant l'algorithme, S z =0,8 z 1 S z 2 E z 1,8 z 1 E z Donc 1 0,8 z 1 S z = 2 1,8 z 1 E z Nous avons donc C z = S z E z = 2 1,8 z 1 1 0,8 z 1 3. Ce correcteur est un système récursif car l'échantillon de sortie fait appel aux échantillons de sortie antérieurs ( s n 1 ) 4. Ce système est un système numérique stable car il converge. 5. Un système numérique peut facilement être modifié par reprogrammation, sans modifier les composants. C. Alimentation de secours. 1. Tension de sortie de l'onduleur. 1. L'onduleur réalise une conversion continu-alternatif. 2. La composante continue est nulle (le signal est alternatif). La valeur moyenne est en effet nulle car la somme des aires des parties supérieure et inférieure est nulle. 3. Nous avons deux raies: Le fondamental à la fréquence f 0 = 1 T =50 Hz d'amplitude V 1 =52,9 V L'harmonique 5 à la fréquence 5 f 0 =250 Hz d'amplitude V 5 =10,6 V Le spectre est donc: v (t) 10 0 50 250 f (Hz) 4. La valeur efficace du fondamental est V 1eff = V 1 2 =52,9 2 37,4 V Corrigé du BTS IRIS 2004 N. Lardenois www.lardenois.com Page 5.

5. L'aire de v 2 t sur une période est 2 t 0 E 2 Le carré de la valeur efficace est alors V 2 eff = 2 t E 2 0 T La valeur efficace de la tension v(t) est donc V eff = 2 t 0 T E Application numérique: V eff = 2 3 48 39,2 V Nous avons la valeur efficace du fondamental qui est plus faible que la valeur efficace vraie, mais l'écart n'est pas très grand. 6. La valeur efficace vraie est définie par V eff = 1 T T v 2 t dt t=0 Nous pouvons lire: a) En position DC la valeur moyenne, donc ici V 0 =0 V b) En position AC la valeur efficace de la partie alternative, donc ici V eff =39,2 V c) En position AC+DC la valeur efficace vraie, donc ici V eff =39,2 V 2. Mise en forme de la tension de sortie de l'alimentation de secours. 1. Nous avons, par application de la relation au niveau d'un transformateur idéal, v s t =m v t Nous avons donc v s t = V s1 cos 2 T t V s5 cos 10 T t avec V s1 =m V 1 et V s5 =m V 5 La valeur efficace du fondamental est alors V S1eff =m V 1eff =6,15 39,2 240 V 2. Nous devons éliminer l'harmonique 5 (à 250 Hz), et il n'y a pas de composante continue, donc il nous suffit d'utiliser un filtre passe-bas. Son gabarit est dessiné cicontre, et nous devons avoir une fréquence de coupure telle que: 50 Hz f c 250 Hz 3. Le spectre en amplitude de la sortie est alors représenté cicontre: L'amplitude est: U secours =m V 1 325 V 325 V G (db) v (t) f c 0 50 250 f (Hz) 50 0 50 250 f (Hz) Corrigé du BTS IRIS 2004 N. Lardenois www.lardenois.com Page 6.

G' (ω) ω N M ϕ M' ϕ Corrigé du BTS IRIS 2004 N. Lardenois www.lardenois.com Page 7.

1,165 16,5 0,5 Corrigé du BTS IRIS 2004 N. Lardenois www.lardenois.com Page 8.