CIRCUIT DE DEMARRAGE DOCUMENT RESSOURCE



Documents pareils
F = B * I * L. Force en Newtons Induction magnétique en teslas Intensité dans le conducteur en ampères Longueur du conducteur en mètres

Les véhicules La chaîne cinématique

CIRCUIT DE CHARGE BOSCH

association adilca LE COUPLE MOTEUR

Electrotechnique. Fabrice Sincère ; version

Electrotechnique: Electricité Avion,

mm 1695 mm. 990 mm Porte-à-faux avant. Modèle de cabine / équipage Small, simple / 3. Codage

T.P. 7 : Définir et contrôler un système d allumage statique

DOCUMENT RESSOURCE SONDES PRESENTATION

HISTORIQUE DU MOTEUR DIESEL

DÉPANNAGE SUR PLACE D UN MOTEUR À COURANT CONTINU

Pompes à huile et à eau Pierburg. Maintenant également disponibles sur le marché de la rechange

véhicule hybride (première

Dimensionnement d une roue autonome pour une implantation sur un fauteuil roulant

PRINCIPE, REGULATION et RECHERCHE de PANNES

Gestion moteur véhicules légers

LA PUISSANCE DES MOTEURS. Avez-vous déjà feuilleté le catalogue d un grand constructeur automobile?

III Capteurs et actuateurs

Autos électriques ou hybrides

CIRCUITS DE PUISSANCE PNEUMATIQUES

Actions de réduction de bruit sur un moteur poids lourd

BERU Eyquem SAS 101, Avenue François Arago F Nanterre Cédex / France Téléphone: Fax:

Groupe électrogène commercial Quiet Diesel TM Série 13.5 QD Modèle HDKBP Fonctions et avantages

MOTORISATION DIRECTDRIVE POUR NOS TELESCOPES. Par C.CAVADORE ALCOR-SYSTEM WETAL Nov

INSTALLATIONS INDUSTRIELLES

Monte charge de cuisine PRESENTATION DU MONTE CHARGE

PRINCIPE DE FONCTIONNEMENT DU MOTEUR 4 TEMPS

Brochure ALD ELECTRIC PART OF ALD NEWMOBILITY

ELEC2753 Electrotechnique examen du 11/06/2012

Le triac en commutation : Commande des relais statiques : Princ ipe électronique

1- Maintenance préventive systématique :

SUIVEUR SOLAIRE : Informations complémentaires

ETUDE DU SYSTÈME 1 MISE EN SITUATION:

Réduction de la pollution d un moteur diesel

Cahier technique n 207

La systématique de la statistique TCS 2009 des pannes de voitures

Ce document a été numérisé par le CRDP de Montpellier pour la Base Nationale des Sujets d Examens de l enseignement professionnel

Manuel d'utilisation de la maquette

(Exemple ici de calcul pour une Ducati 748 biposto, et également pour un S2R1000, équipé d un disque acier en fond de cloche, et ressorts d origine)

Système de propulsion électrique Voltec : il permet d associer sobriété et sportivité

GLOSSAIRE A L USAGE DU FORMATEUR DE CONDUITE TOUT-TERRAIN

MOTEURS A DEUX TEMPS Comment fonctionnent-ils?

NO-BREAK KS. Système UPS dynamique PRÉSENTATION

Eléments mobiles du moteur Moteur 1/9

Test : principe fondamental de la dynamique et aspect énergétique

Origine du courant électrique Constitution d un atome

Le turbo met les gaz. Les turbines en équation

Détendez-vous et découvrez l'association de la puissance et de l'économie

Colloque APDQ Véhicule enlisé ou accidenté. Pas de présence policière. Pas d information transmise sur le type de véhicule en cause

CHECK-LIST F150 M F-GAQC. Aéroclub Saint Dizier - Robinson VISITE EXTERIEURE VISITE PRE-VOL EXTERIEURE. Dans le hangar

TEST D'AUTOÉVALUATION MÉCANIQUE DE CAMION

Moteurs pas à pas Michel ABIGNOLI Clément GOELDEL Principe des moteurs pas à pas Structures et modèles de description Alimentation Commande

Le multiplexage. Sommaire

Canter Eco Hybrid Mitsubishi Fuso

Autre année modèle F130A F115B. Moteur. Dimensions. Caractéristiques supplémentaires YAMAHA F130 F 150

LES APPAREILS A DEVIATION EN COURANT CONTINU ( LES APPREILS MAGNETOELECTRIQUES)

MOTO ELECTRIQUE. CPGE / Sciences Industrielles pour l Ingénieur TD06_08 Moto électrique DIAGRAMME DES INTER-ACTEURS UTILISATEUR ENVIRONNEMENT HUMAIN

Chapitre 7. Circuits Magnétiques et Inductance. 7.1 Introduction Production d un champ magnétique

DOSSIER TECHNIQUE INJECTION ELECTRONIQUE GPL MULTIPOINT

Petit guide pratique de dépannage du système d alerte centralisée (modèles de 1980 à 1988)

TABLEAU DE DIAGNOSTIC DES PANNES 0

Les puissances La notion de puissance La puissance c est l énergie pendant une seconde CHAPITRE

CHALLENGE FORMULA CLASSIC

La Nissan Leaf 2.0 est élue Grand Prix Auto Environnement

Démarreur-testeur par ordinateur via le port USB d un PC pour moteurs asynchrones triphasés

Série 77 - Relais statiques modulaires 5A. Caractéristiques. Relais temporisés et relais de contrôle

CABLECAM de HYMATOM. Figure 1 : Schéma du système câblecam et détail du moufle vu de dessus.

Centrale de surveillance ALS 04

AUTOPORTE III Notice de pose

L'injection Diesel haute pression à rampe commune

EP A2 (19) (11) EP A2 (12) DEMANDE DE BREVET EUROPEEN. (43) Date de publication: Bulletin 2009/22

LES LOIS PHYSIQUES APPLIQUÉES AUX DEUX-ROUES : 1. LA FORCE DE GUIDAGE

Alternateur à grande capacité avec un régulateur à plusieurs étages

Cours d électricité. Circuits électriques en courant constant. Mathieu Bardoux. 1 re année

T.I.P.E. Optimisation d un. moteur

2 La technologie DTC ou le contrôle direct de couple Guide technique No. 1

Gestion et entretien des Installations Electriques BT

AMELIORATION DE LA FIABILITE D UN MOTEUR GRÂCE AU TEST STATIQUE ET DYNAMIQUE

MBR225. Le module a été conçu et réalisé conformément aux normes en vigueur portant sur la sûreté et la fiabilité des installations industrielles.

Akka Technologies au service de la voiture électrique - Cartech.fr

Solutions pour la mesure. de courant et d énergie

Multichronomètre SA10 Présentation générale

Assureur Solid Försäkring AB, Swiss Branch, une compagnie d assurances spécialisée en assurances de garantie, autorisée en Suisse

Un partenaire Un partenaire solide

CH IV) Courant alternatif Oscilloscope.

Pompe solaire Lorentz immergée Unité de pompage à centrifuge

(51) Int Cl.: B23P 19/00 ( ) B23P 19/04 ( ) F01L 1/053 ( )

Toutes les unités de moyeu de rechange ne se valent pas. L ignorer peut vous coûter cher en temps, argent et clients perdus.

En avant! FJR1300A

BREVET DE TECHNICIEN SUPÉRIEUR AGRICOLE SUJET

La technique ave v c l c a n a ature

Electron ELECTRICITE. Pour les détails: Design, Production & Trading. Catalogue Synthétique Rev 01/2007 Page 17

Les résistances de point neutre

ETABILSSEMENT DE FORMATION PRIVE AGREER PAR L ETAT SPECIALSE EN MAINTENANCE AUTOMOBILE

ANALYSE FONCTIONNELLE INTERNE DEVOIR LIBRE

Manuel d utilisation Alarme Auto na-2018 Attention :

Mathématiques et petites voitures

Électricité et électronique

PRIX AUTO ENVIRONNEMENT MAAF 2014

Transcription:

CIRCUIT DE DEMARRAGE DOCUMENT RESSOURCE 1. LES DEMARREURS Pour le démarrage, le moteur à combustion interne doit être entraîné par un système annexe, car aucune source d énergie interne ne lui permet de se lancer seul. Le système d entraînement doit donc faire tourner le moteur pour permettre l admission des gaz, la compression, à un régime d environ 400 tr/min ce qui garantit des pressions et températures de fin de compression correctes pour un bon démarrage. Les démarreurs de moteurs à combustion interne sont majoritairement des moteurs électriques tant que la taille du moteur n impose pas des puissances de démarrage trop importantes. Les démarreurs ont tous le même principe de fonctionnement, mais diffèrent quelque peu dans leur construction. Effectivement les progrès réalisés dans le traitement des matériaux permettent de simplifier la construction de nombreux produits aujourd hui. Les démarreurs n échappent pas à la règle et on peut voir depuis quelques années des démarreurs d une dizaine de centimètres de diamètre montés sur des moteurs six cylindres de trois litres de cylindrée, et ce pour des longueurs souvent inférieures à celles rencontrées jusque là. Pour cela les démarreurs comportent des moteurs beaucoup plus rapides dont la vitesse de sortie est réduite par un train épicycloïdal. Il est possible de trouver des moteurs à aimant permanent ce qui réduit l encombrement, simplifie la conception, allège l ensemble, simplifie la maintenance et améliore la fiabilité. Ordres de grandeurs pour le démarreur d un moteur de 800 à 1600 cm 3 : Intensité nominale sous 10 V : Puissance sous 10 V : Pic d intensité au lancement : Masse du démarreur : 90 A 900 W 500 A 2.9 Kg Les démarreurs sont constitués de trois sous ensembles détaillés dans les pages suivantes, il s agit du moteur, du solénoïde et du lanceur. ANNECY ELECTRONIQUE S.A.S. Parc Altaïs - 1, rue Callisto 74650 CHAVANOD FRANCE

2 Schéma cinématique d un démarreur : Démarreur au repos phase de démarrage 1 : batterie. 4 : fourchette du lanceur. 2 : moteur du démarreur 5 : pignon de démarreur. 3 : contacteur de puissance du solénoïde. 6 : volant moteur. F : commande du solénoïde. Composition d un démarreur Démarreur en vue éclatée : 1 : nez de démarreur. 5 : induit. 2 : flasque arrière. 6 : lanceur à roue libre. 3 : carcasse du stator. 7 : fourchette. 4 : inducteur (aimant ou bobinage). 8 : noyau de solénoïde.

CHARGE, DEMARRAGE, PRE-POSTCHAUFFA3GE 633 1.1. Types de moteurs rencontrés Symboles Moteur à excitation shunt (parallèle). Moteur à excitation série. Moteur à aimants permanents. Principe de base du moteur électrique : Sur ce schéma le rotor du moteur électrique est représenté par un fil alimenté par ses bornes, le stator est matérialisé par l aimant dont on distingue les pôles nord et sud. Autour de ce fil sous tension se crée un champ magnétique. Celui-ci est opposé au champ du stator par construction (orientation des charbons par rapport au stator) d où l apparition d un couple entre la boucle induite et le stator.

4 Le moteur à aimant permanent C est le plus simple des moteurs électriques. Effectivement celui-ci n a que son rotor d alimenté, le stator étant constitué d aimants permanents. Il ne diffère dans sa conception que par son stator. STATOR : ROTOR : +12V Pôle NORD Pôle SUD Pôle SUD Pôle NORD Pôle SUD Les avantages de ce type de démarreurs sont un encombrement réduit, une réduction de poids de l ordre de 40% par rapport à un démarreur classique, et une puissance de démarrage souvent supérieure. Le moteur à excitation shunt ou parallèle Celui-ci se distingue par son stator qui comporte des enroulements d excitation dans le stator, et ceux-ci sont câblés en parallèle avec l induit. Le montage en parallèle de l inducteur permet d augmenter l intensité, donc la puissance du démarreur, ce type de démarreur sera utilisé pour des moteurs qui nécessitent une grande puissance au démarrage. Le moteur à excitation série Il comporte des enroulements inducteurs qui sont montés en série avec les enroulements d induit. Celuici délivre un couple élevé des les basses vitesses qui diminue rapidement lorsque le régime augmente, ce qui réunit de bonnes caractéristiques pour un moteur de démarreur.

5 1.2. Le solénoïde ou contacteur électromagnétique Le solénoïde est un relais. Il a une première fonction qui est de commander le circuit de puissance du démarreur grâce à un courant de commande faible. C est aussi un électro-aimant qui a pour fonction d engager le pignon de démarreur sur la roue dentée du volant moteur. Il comporte deux enroulements qui fonctionnent ensemble uniquement en phase d appel. Seul celui de maintien sera actif pendant le démarrage. Cette solution a pour but de laisser un maximum des capacités de la batterie au moteur du démarreur (tous les systèmes électriques, à l exception de l injection et de l allumage, sont aussi coupés). Constitution du solénoïde : 1 : noyau plongeur 2 : enroulement d appel 3 : enroulement d appel et de maintien 4 : noyau magnétique 5 : ressorts de contact 6 : contacts 7 : connexions de puissance 8 : pont de contact 9 : axe 10 : ressorts de rappel Soit la modélisation suivante du solénoïde : Position repos : Fonctionnement du solénoïde : E1 : enroulement d appel E2 : enroulement de maintien

6 Une action sur la commande de démarrage alimente les deux enroulements. E1 trouve sa masse par le moteur, et E2 est directement à la masse. Le noyau de solénoïde se trouve attiré vers la gauche, le moteur est alimenté. Remarque : E1 et E2 ne sont pas enroulés dans le même sens mais leur alimentation est opposée, ils exercent bien deux forces dans le même sens et fonctionnent tous deux en appel. De plus, E1 possède un nombre de spires supérieur à E2, sous la même intensité il exercera une force supérieure à E2. Position démarrage : Dans cette position l enroulement E1 n est plus actif car il est connecté sur le + batterie et le (+) démarrage, seul E2 est actif, c est l enroulement de maintien. Effort de E2 Le moteur démarre, le conducteur relâche la position démarrage, le démarreur s arrête. Force de E1 Force de E2 Mouvement du solénoïde Position en cours de relâchement : Pendant un très court instant les deux enroulements montés en série, trouvent une alimentation par la borne gauche de E1 et une masse sur la borne droite de E2. Ces deux enroulements opposés travaillent alors en sens contraire. L enroulement E1 étant plus long que l enroulement E2, celui-ci attire le noyau du solénoïde vers la droite, à l aide des ressorts de rappel, assurant ainsi le retour du lanceur et la mise hors tension du moteur.

CHARGE, DEMARRAGE, PRE-POSTCHAUFFAGE 10 Graphes des tensions du démarreur sur la maquette MT-4002 : Remarques importantes : La mise sous tension des différentes bobines n est pas instantanée, notamment pour la bobine d appel qui est en série avec le moteur lorsque le relais n est pas collé. Ces relevés proviennent de la maquette MT-4002, où le démarreur tourne sans charge. Les chutes de tensions rencontrées sur le véhicule ne sont donc pas visibles, et les temps de commutation sont très réduits. 1.3. Protection du démarreur Le démarreur est pourvu d une roue libre entre l arbre de sortie et le pignon d entraînement en vue de ne pas détériorer le rotor après le démarrage du moteur. Effectivement, le régime de démarrage moteur est de l ordre de 400 tr/min, ceci correspond approximativement aux trois quarts du régime du démarreur. Lors de la montée en régime du moteur, le désengrènement du démarreur n est pas instantané, et on pourrait voir se centrifuger le rotor si aucun dispositif ne le débrayait automatiquement. Pour faire face à ce problème, le pignon est monté sur l axe du rotor par l intermédiaire d une roue libre dont le rôle est d empêcher le moteur d entraîner le démarreur. Les roues libres les plus répandues sont les roues libres à rouleaux dont voici une coupe : 1 2 3 4 1 : galet 2 : bague de roue libre 5 3 : corps extérieur 4 : ressort 6 5 : queue de pignon 6 : rampe de travail 7 : pignon 7

8 1.4. Le réducteur de vitesse Les réducteurs de vitesse montés dans les démarreurs sont des trains épicycloïdaux. Ceux-ci ont l avantage de ne pas engendrer de forces axiales, et de sortir le mouvement sur le même axe que l entrée. Le mouvement donné par le moteur arrive sur le pignon central, et l axe de sortie est entraîné par le porte satellite, la roue planétaire est fixe par rapport au bâti. Réducteur de vitesse par train épicycloïdal : 1 : arbre de sortie. 2 : planétaire. 3 : satellites. 4 : pignon solaire. 5 : induit. 6 : collecteur. 1.5. Problèmes rencontrés avec les démarreurs Les charbons usés (véhicules à fort kilométrage, ayant surtout parcouru de petits trajets) Avant cette panne, il est possible d observer un manque de puissance du démarreur. Les charbons ont pour fonction de transmettre le courant au démarreur. Lorsqu ils sont usés ils ne sont plus en contact franc avec le collecteur et le courant de démarrage crée une tension aux bornes de chaque charbon (tension soustraite de la tension rotor) ce qui provoque le manque de puissance. Quand le démarreur ne se lance plus, il est possible d entendre claquer le solénoïde qui fonctionne avec son enroulement de maintien et partiellement avec l autre, l enroulement d appel qui prend sa masse sur le rotor se trouvant isolé en partie. Coupure de l enroulement de maintien (panne réalisable sur les MT-4002 en ouvrant le circuit en T, peu courant sur véhicule) Sous le ( + ) de la commande de démarrage et la masse qu il trouve sur le moteur c est l enroulement d appel qui fait coller le solénoïde. Seulement lorsque celui-ci prend sa position «commuté» l enroulement d appel se trouve entre deux ( + ) ; son travail devient nul. Le solénoïde prend alors sa position repos, et repart dans l autre sens sitôt que le contact s ouvre. Il navigue jusqu à ce que le conducteur cesse son action de démarrage.

9 Tensions des enroulements du démarreur avec une panne sur le maintien Coupure de l enroulement d appel Cette panne se caractérisera par une consommation de courant de l ordre d une dizaine d ampères (consommation de l enroulement de maintien) et par un démarreur qui ne se lance pas (l enroulement d appel ne peut pas vaincre les efforts des ressorts du solénoïde en vue de fermer le circuit de puissance). Problèmes de moteur Ils se caractérisent par des manques de puissance du moteur qui ne se lance pas. Il sera alors possible d en savoir plus en mesurant l intensité consommée : Intensité trop forte : circuit à la masse. Intensité trop faible : circuit coupé ou partiellement coupé. Attention cependant aux essais à vide : Un démarreur qui tourne à vide n est pas forcément un démarreur qui peut délivrer une puissance mécanique. En mesure de tension, un potentiel n est pas forcément une alimentation.

10 Intensité consommée par le démarreur Ci-dessous les évolutions de la tension aux bornes du démarreur et de l intensité qu il consomme : Les pics d intensité ainsi que les baisses de tension correspondent à des phases particulièrement résistives pour le démarreur. Il est possible d observer le lancement du moteur (premier pic) et les compressions de chaque cylindre (I moyen =120A). Pour relever cette allure sur un moteur essence il a été nécessaire de l empêcher de démarrer (coupure d allumage). Le démarrage d un moteur diesel est illustré par les courbes suivantes : L intensité positive indique un débit de courant par la batterie (intensité consommée par le démarreur) et devient négative lorsque l alternateur charge. Il est aisé sur ce graphe de visualiser l intensité nécessaire à la préchauffe (celle-ci décroît petit à petit), et le courant de charge après démarrage (portion négative). L intensité moyenne absorbée, sans compter le pic atteint pour ce moteur, est d une valeur d environ 230 A.

11 Evolution : Le démarreur renforcé (système stop and go) Le système le plus répandu est le démarreur renforcé proposé par Bosch. 1 - Fourchette : renforcée 2 - Induit relais : revêtement vernis antifriction 3 - Ressorts relais : prévus pour un nombre de cycles plus important 4 - Moteur électrique : augmentation de puissance 5 - Aimants : flux plus important / résistance à la démagnétisation (couple élevé) 6 - Réducteur épicycloïdal : rapport plus direct 7 - Train épicycloïdal : roulement à aiguilles 8 - Train épicycloïdal : couronne frittée avec amortissement 9 - Pignon : nombre de dents supérieur 10 - Palier d'entraînement : roulement à aiguilles Le lancement est assuré par un démarreur conventionnel logé à l endroit habituel. Plusieurs modifications lui permettent un plus grand nombre de démarrages : 260'000 au lieu de 30'000 pour un démarreur courant (cahier des charges BMW). L équipementier Bosch, le fournisseur du démarreur sur ces BMW, nous informe aussi que le bruit de fonctionnement a été réduit. Les dents de la couronne sur le volant moteur sont aussi renforcées. Démarrage classique (Bosch) Démarrage optimisé (prototype Bosch)

BMW annonce un temps de démarrage de 500 millisecondes, contre 400 ms pour un alterno-démarreur. Mais attention, ces valeurs ne sont pas normalisées et chaque constructeur a sa propre méthode de mesure. Nous avions déjà essayé un équipement prototype similaire lors d une visite chez Bosch en 2005. Les courbes comparatives de mesure de montée en régime lors du démarrage confirmaient ces valeurs. Afin d optimiser ce délai, la position d arrêt du vilebrequin est enregistrée, de même que le cylindre qui passera le premier par la phase de combustion. En outre, la rampe d injection est mise en pression maximale avant l arrêt du moteur. Si l arrêt dure longtemps, la pression peut chuter jusqu à être insuffisante pour un démarrage immédiat. Il sera alors plus long, équivalent à un démarrage classique. Capteur de vilebrequin à effet Hall Un capteur à effet Hall détermine précisément la position du vilebrequin et détecte toute inversion du sens de rotation. Le vilebrequin est muni d'un anneau multipolaire donnant une précision supérieure à l'habituelle roue dentée. Certains moteurs sont dotés d'une autre technologie de captage de position, par effet GMR (magnétorésistance géante) comme le système proposé par la société Electricfil Automotive. Notons que la détermination précise de la position du vilebrequin est nécessaire pour tous les moteurs à essence et la plupart des Diesel. Poue ces derniers en effet, étant donné que la pression de gazole descend très vite dans la rampe commune, ce type de moteur nécessite un temps de rotation plus long qu'un cycle, ce qui favorise le repérage de la position des pistons par rapport au temps d'injection. Les Diesel dotés d'injecteurs piézoélectriques peuvent cependant assurer leur fonction avec une pression inférieure, cette mesure est donc primordiale. Par ailleurs, une fonction évite que l'alternateur génère du courant avant d'avoir atteint un régime de 2250 tr/min environ (600 tr/min moteur environ) afin de soulager le démarreur (fonction "Start-Load-Response" chez BMW). Ensuite, le courant de l'alternateur augmente à raison d'environ 10 ampères par seconde jusqu'à la valeur maximale délivrable. Le démarreur renforcé Bosch équipe certaines versions des Audi A3, BMW de la Série 1 à la M3 (Auto Start Stop ou en interne MSA - Motor-Start-Stopp-Automatik), Fiat 500 et Punto (Start & Stop), Ford Focus, Kia Cee d et Venga (ISG - Idle Stop & Go), Land Rover Freelander, Mercedes Classe C, E et S 63 AMG (Start/stop), Mini, Mitsubishi Colt, Porsche Panamera, Volkswagen Polo, Golf et Passat, Volvo C30, S40 et V50 DRIVe (liste non exhaustive et en évolution permanente). Ce dispositif est également disponible sur les véhicules utilitaires légers. Doc auto innovation