FONCTION EXPONENTIELLE ( ) 2 = 0.



Documents pareils
Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme

Chapitre 6. Fonction réelle d une variable réelle

O, i, ) ln x. (ln x)2

La fonction exponentielle

Raisonnement par récurrence Suites numériques

DÉRIVÉES. I Nombre dérivé - Tangente. Exercice 01 (voir réponses et correction) ( voir animation )

Commun à tous les candidats

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures)

Limites finies en un point

Fonction inverse Fonctions homographiques

FctsAffines.nb 1. Mathématiques, 1-ère année Edition Fonctions affines

Développement décimal d un réel

Fonctions homographiques

Chap 4. La fonction exponentielle Terminale S. Lemme : Si est une fonction dérivable sur R telle que : = et 0! = 1 alors ne s annule pas sur R.

Continuité et dérivabilité d une fonction

Exercice 3 (5 points) A(x) = 1-e -0039' e- 0,039x A '() -'-,..--,-,--,------:-- X = (l_e-0,039x)2

EXERCICE 4 (7 points ) (Commun à tous les candidats)

Correction du Baccalauréat S Amérique du Nord mai 2007

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre :

BACCALAUREAT GENERAL MATHÉMATIQUES

I. Ensemble de définition d'une fonction

Rappels sur les suites - Algorithme

Exo7. Limites de fonctions. 1 Théorie. 2 Calculs

Complément d information concernant la fiche de concordance

Image d un intervalle par une fonction continue

Développements limités, équivalents et calculs de limites

F1C1/ Analyse. El Hadji Malick DIA

Suites numériques 3. 1 Convergence et limite d une suite

Nombre dérivé et tangente

Seconde Généralités sur les fonctions Exercices. Notion de fonction.

Chapitre 2 Le problème de l unicité des solutions

Dérivation : cours. Dérivation dans R

Carl-Louis-Ferdinand von Lindemann ( )

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé

Table des matières. I Mise à niveau 11. Préface

Loi binomiale Lois normales

Exercices - Polynômes : corrigé. Opérations sur les polynômes

Comparaison de fonctions Développements limités. Chapitre 10

Sites web éducatifs et ressources en mathématiques

M2 IAD UE MODE Notes de cours (3)

Taux d évolution moyen.

Exercices Alternatifs. Quelqu un aurait-il vu passer un polynôme?

Exercices Alternatifs. Quelqu un aurait-il vu passer un polynôme?

6. Les différents types de démonstrations

Mais comment on fait pour...

Les équations différentielles

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

Dérivation CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES

Problème : Calcul d'échéanciers de prêt bancaire (15 pt)

Introduction à l étude des Corps Finis

Logique. Plan du chapitre

Développements limités. Notion de développement limité

Correction du baccalauréat S Liban juin 2007

Planche n o 22. Fonctions de plusieurs variables. Corrigé

Baccalauréat L spécialité, Métropole et Réunion, 19 juin 2009 Corrigé.

Continuité d une fonction de plusieurs variables

OPTIMISATION À UNE VARIABLE

Cours d arithmétique Première partie

Etude de fonctions: procédure et exemple

Chapitre 1 Régime transitoire dans les systèmes physiques

BACCALAURÉAT GÉNÉRAL SESSION 2012 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE

SINE QUA NON. Découverte et Prise en main du logiciel Utilisation de bases

Continuité en un point

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer

Problème 1 : applications du plan affine

Algèbre binaire et Circuits logiques ( )

Fibonacci et les paquerettes

Terminale SMS - STL

Bien lire l énoncé 2 fois avant de continuer - Méthodes et/ou Explications Réponses. Antécédents d un nombre par une fonction

Chapitre 7 : Intégration sur un intervalle quelconque

Exprimer ce coefficient de proportionnalité sous forme de pourcentage : 3,5 %

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications

Equations cartésiennes d une droite

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que

Baccalauréat ES/L Métropole La Réunion 13 septembre 2013 Corrigé

COURS EULER: PROGRAMME DE LA PREMIÈRE ANNÉE

Leçon 01 Exercices d'entraînement

Calcul fonctionnel holomorphe dans les algèbres de Banach

Nombres premiers. Comment reconnaître un nombre premier? Mais...

Les indices à surplus constant

1 Définition et premières propriétés des congruences

Corrigé du baccalauréat S Asie 21 juin 2010

Capes Première épreuve

Intégration et probabilités TD1 Espaces mesurés Corrigé

2. RAPPEL DES TECHNIQUES DE CALCUL DANS R

Le chiffre est le signe, le nombre est la valeur.

Représentation des Nombres

Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples

TRACER LE GRAPHE D'UNE FONCTION

Pour l épreuve d algèbre, les calculatrices sont interdites.

DOCM Solutions officielles = n 2 10.

Correction du baccalauréat ES/L Métropole 20 juin 2014

Chapitre 1 : Évolution COURS

Baccalauréat ES/L Amérique du Sud 21 novembre 2013

Dérivation : Résumé de cours et méthodes

Angles orientés et trigonométrie

Exercices Alternatifs. Une fonction continue mais dérivable nulle part

Exercices Alternatifs. Une fonction continue mais dérivable nulle part

Chapitre 3. Les distributions à deux variables

Correction de l examen de la première session

Transcription:

FONCTION EXPONENTIELLE I. Définition Théorème : Il eiste une unique fonction f dérivable sur R telle que f ' = f et f (0) =. Démonstration de l'unicité (eigible BAC) : L'eistence est admise - Démontrons que f ne s'annule pas sur R. Soit la fonction h définie sur R par h() = f () f ( ). Pour tout réel, on a : h'() = f '() f ( ) + f () f '( ) ( ) = f '() f ( ) f () f '( ) = f () f ( ) f () f ( ) = 0 La fonction h est donc constante. Comme h(0) = f (0) f (0) =, on a pour tout réel : f () f ( ) =. La fonction f ne peut donc pas s'annuler. - Supposons qu'il eiste une fonction g telle que g ' = g et g(0) =. Comme f ne s'annule pas, on pose k() = g() f (). g '() f () g() f '() g() f () g() f () k '() = = ( f ()) 2 f () k est donc une fonction constante. Or k(0) = g(0) f (0) = = donc pour tout : k() =. Et donc f () = g(). L'unicité de f est donc vérifiée. ( ) 2 = 0. Définition : On appelle fonction eponentielle l'unique fonction dérivable sur R telle que f ' = f et f (0) =. On note cette fonction ep. Conséquence : ep(0) = Avec la calculatrice, il est possible d'observer l'allure de la courbe représentative de la fonction eponentielle :

2 Remarque : On prouvera dans le paragraphe II. que la fonction eponentielle est croissante. Mais sa croissance est très rapide, ainsi ep(2) dépasse le milliard. II. Etude de la fonction eponentielle ) Dérivabilité Propriété : La fonction eponentielle est continue et dérivable sur R et ( ep )' = ep Démonstration : Conséquence immédiate de sa définition 2) Variations Propriété : La fonction eponentielle est strictement croissante sur R. Démonstration : On a démontré dans le paragraphe I. que la fonction eponentielle ne s'annule jamais. Or, par définition, ep(0) = donc pour tout, ep > 0. Comme ( ep )' = ep > 0, la fonction eponentielle est strictement croissante. 3) Limites en l'infini Propriété : lim ep = 0 et lim ep = + - Propriété démontrée au paragraphe III. - 4) Courbe représentative On dresse le tableau de variations de la fonction eponentielle : + ep ( )' + ep 0 +

3 III. Propriété de la fonction eponentielle ) Relation fonctionnelle Théorème : Pour tous réels et y, on a : ep( + y) = ep ep y Remarque : Cette formule permet de transformer une somme en produit et réciproquement. Démonstration : Comme ep 0, on pose f () = ep( + y) ep ep( + y)ep ep( + y)ep Pour tout, on a f '() = ep avec y un nombre réel. ( ) 2 = 0. Donc la fonction f est constante. ep( y) ep( + y) Comme f (0) = = ep y, on en déduit que = ep y. ep(0) ep Corollaires : Pour tous réels et y, on a : a) ep( ) = ep b) ep( y) = ep ep y c) ep( n) = ( ep ) n avec n!

4 Démonstration : a) ep ep ( ) = ep ( ) = ep(0) = b) ep y ( ) = ep( + ( y) ) ( ) = ep ep y = ep ep y = ep ep y c) La démonstration s'effectue par récurrence. L'initialisation est triviale. La démonstration de l'hérédité passe par la décomposition : ep ( n + ) ( ) = ep( n)ep = ep ( ) = ep n + 2) Le nombre e ( ) n ep = ( ep ) n+. Définition : L'image de par la fonction eponentielle est notée e. On a ainsi ep = e Remarque : Avec la calculatrice, on peut obtenir une valeur approchée de e. Notation nouvelle : ( ) = e ep = ep( ) = ep() On note pour tout réel, ep = e Comme π, le nombre e est un nombre irrationnel, c'est à dire qu'il s'écrit avec un nombre infini de décimales sans suite logique. Ses premières décimales sont : e 2,78288284 5904523536 028747352 6624977572 4709369995 9574966967 6277240766 3035354759 45738278 525664274 Le nombre e est également un nombre transcendant. On dit qu un nombre est transcendant s il n est solution d aucune équation à coefficients entiers. Le nombre 2 par eemple, est irrationnel mais n est pas transcendant puisqu il est solution de l équation 2 = 2. Un tel nombre est dit «algébrique». Le premier à s intéresser de façon sérieuse au nombre e est le mathématicien suisse Leonhard Euler (707 ; 783), ci-dessus. C est à lui que nous devons le nom de ce nombre. Non pas

5 qu il s agisse de l initiale de son nom mais peut être car e est la première lettre du mot eponentiel. Dans «Introductio in Analysin infinitorum» publié en 748, Euler eplique que : e = +! + 2! + 3! +... Rappelons que par eemple 5! se lit "factoriel 5" et est égal à 2 3 4 5. Par cette formule, il obtient une estimation de e avec 8 décimales eactes. Nous devons aussi à Euler la démonstration de l irrationalité de e. Avec cette nouvelle notation, on peut ainsi résumer l'ensemble des propriétés de la fonction eponentielle : Propriétés : Pour tous réels et y, on a : a) e 0 = et e = e b) e > 0 et (e )' = e c) e + y = e e y, e y = e e, y e = e, d) lim e = 0 et lim e = + ( ) n e = e n, avec n!. Remarque : On retrouve les propriétés des puissances. Démonstration de d) (eigible BAC) : - Soit la fonction g définie par g() = e. Pour positif, g '() = e e 0 = 0 car la fonction eponentielle est croissante. Donc la fonction g est croissante sur 0;+. On dresse ainsi le tableau de variations : 0 + g '() 0 + g() Comme g(0) =, on a pour tout, g(). Et donc g() = e 0, soit e. D'après le théorème de comparaison des limites, on en déduit que lim e = + car lim = +. - lim e = lim e X = lim X + X + e = 0. X

6 Méthode : Simplifier les écritures Simplifier l'écriture des nombres suivants : A = e7 e 4 e 5 B = e 5 ( ) 6 ( e 3 C = ( e ) + e ) 4 3 2 e 2 e 6 A = e7 e 4 = e7 4 e 5 = e3 e 5 = e 3 ( 5) = e 8 e 5 B = ( e ) 5 6 e 3 = e 5 ( 6) e 3 = e 30 e 3 = e 30 3 = e 33 C = ( e ) + 3 2 = e4 ( ) + 3 2 e e 2 6 = e 4 + 6 e e 4 = e 6 + ( e ) 4 e 2 e 6 Propriétés : Pour tous réels a et b, on a : a) e a = e b a = b b) e a < e b a < b Méthode : Résoudre une équation ou une inéquation a) Résoudre dans R l'équation e 2 3 e 2 = 0. b) Résoudre dans R l'inéquation e 4. a) e 2 3 e 2 = 0 e 2 3 = e 2 2 3 = 2 2 + 2 3 = 0 = 3 ou = Les solutions sont -3 et. b) e 4 e 4 e 0 4 0 4

7 L'ensemble des solutions est l'intervalle 4 ;+. IV. Limites et croissances comparées Propriétés (croissances comparées) : a) lim b) lim e e = + et pour tout entier n, lim = + n e = 0 et pour tout entier n, lim n e = 0 Démonstration : a) - On pose f () = e 2 2. On a : f '() = e et f ''() = e. Pour tout strictement positif, f ''() = e 0. On dresse alors le tableau de variations : 0 + f ''() + f '() Signe de f '() + f () On en déduit que pour tout strictement positif f () > 0 et donc e > 2 2. Et donc e > 2. e Comme lim = +, on en déduit par comparaison de limites que lim 2 = +. - Dans le cas général, il faut montrer que : e n = n e n n n et appliquer le résultat précédent. b) - lim e = lim ( Xe ) X = lim X + X + X e X = lim X + e X X = 0.

8 - Dans le cas général, il faut montrer que : lim < lim n e < lim et appliquer le résultat précédent. X + e X X + e X X n X n Remarque : Dans le cas de limites infinies, la fonction eponentielle impose sa limite devant les fonctions puissances. Sa croissance est plus rapide. Eemple : Comparaison de la fonction eponentielle et de la fonction! 4 différentes fenêtres graphiques. dans On constate que pour suffisamment grand, la fonction eponentielle dépasse la fonction! 4. Propriété : e lim = 0 Démonstration : Il s'agit de la définition du nombre dérivé de la fonction eponentielle en 0. Méthode : Calculer des limites Calculer les limites suivantes : a) lim ( + e ) 3 b) lim e c) lim e + e 2 a) lim e 3 = 0 donc lim ( + e ) 3 = +

9 b) lim = donc lim e = e = e c) Le dénominateur comprend une forme indéterminée de type " ". Levons l'indétermination : e + + e = e 2 e e 2 e e Comme lim = lim + Donc lim e 2 e + = e 2 e e = +, on a lim 2 = = et donc lim e = lim e + e =. 2 2 e = 0 V. Fonctions de la forme e u Propriété : Soit u une fonction dérivable sur un intervalle I. La fonction! e u est dérivable sur I. Sa dérivée est la fonction! u'()e u( ). - Admis - Eemple : Soit f () = e 4+3 alors f '() = 4e 4+3 Propriété : Soit u une fonction dérivable sur un intervalle I. Les fonctions! u() et! e u( ) ont le même sens de variation. Démonstration : On a (e u )' = u'e u Comme e u > 0, u' et (e u )' sont de même signe. Eemple : La fonction! est décroissante sur ;0 et sur 0;+ donc la fonction! e est également décroissante sur ;0 et sur 0;+.

0 Méthode : Etudier une fonction Soit f la fonction définie sur R par f () = e 2. a) Etudier les limites de f à l'infini. b) Calculer la dérivée de la fonction f. c) Dresser le tableau de variation de la fonction f. d) Tracer la courbe représentative de la fonction f. a) lim = et lim e 2 = + donc lim e 2 = lim e 2 = lim 2 e b) f '() = e 2 + 2 = lim 2 2 = 0 2 e e 2 = 2 e 2 c) Comme e 2 > 0, f '() est du signe de 2. f est donc croissante sur l'intervalle ;2 et décroissante sur l'intervalle 2;+. On dresse le tableau de variations : 2 + f '() + 0 - d) f () 2 e 0 Hors du cadre de la classe, aucune reproduction, même partielle, autres que celles prévues à l'article L 22-5 du code de la propriété intellectuelle, ne peut être faite de ce site sans l'autorisation epresse de l'auteur. www.maths- et- tiques.fr/inde.php/mentions- legales