Les coordonnées géographiques



Documents pareils
GÉODÉSIE, COORDONNÉES ET GPS

CHAPITRE 2 POSITIONNEMENT

Géoréférencement et RGF93

Convers3 Documentation version Par Eric DAVID : vtopo@free.fr

II. Les données géospatiales dans les Systèmes d'information Géographique (SIG)

CLUB DE MARCHE Ballade et Randonnée

RÉFÉRENTIELS GÉODÉSIQUES

Savoir lire une carte, se situer et s orienter en randonnée

INTRODUCTION AU GPS. Claude Maury. Ah! si j avais eu un GPS. Egypte Désert blanc Introduction au GPS - Claude Maury

Territoire3D. Descriptif de contenu. Institut Géographique National. Date du Document : Mars 2011

CONSTRUCTION DES PROJECTIONS TYPES DE PROJECTION. Projection => distorsions. Orientations des projections

PAUL CORREIA 6 e édition

Cours IV Mise en orbite

Latitude N Longitude E Altitude 376 m RÉSUMÉ MENSUEL DU TEMPS DE JANVIER 2014

Fonctions de deux variables. Mai 2011

Le Système d Information Routier

Trait de côte Histolitt v1.0 Descriptif technique Version du document 1.0 *** Sommaire

COMPTE-RENDU «MATHS EN JEANS» LYCEE OZENNE Groupe 1 : Comment faire une carte juste de la Terre?

ORUXMAPSDESKTOP v.1.4 EN PREMIER, TU DOIS AVOIR LA MACHINE VIRTUELLE JAVA DANS TON PC, PUISQUE ORUXMAPSDESKTOP EST UNE APPLICATION JAVA.

Fonctions de plusieurs variables

1. Vocabulaire : Introduction au tableau élémentaire

BD PARCELLAIRE. Version 1.2. Descriptif de contenu Format DXF. Révisé le : Avril Date du Document : Avril 2011

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures)

Prospective: Champ de gravité, méthodes spatiales

Chapitre 2 : Caractéristiques du mouvement d un solide

Chapitre 0 Introduction à la cinématique

REPRESENTER LA TERRE Cartographie et navigation

Cahier méthodologique sur la mise en œuvre d un SIG

CHAPITRE 6 : LE RENFORCEMENT DU MODELE PAR SON EFFICACITE PREDICTIVE

Cours de Mécanique du point matériel

Cours Fonctions de deux variables

FORD C-MAX + FORD GRAND C-MAX CMAX_Main_Cover_2013_V3.indd /08/ :12

TD: Cadran solaire. 1 Position du problème

Calcul intégral élémentaire en plusieurs variables

Gestionnaire de champs PRO

Repérage d un point - Vitesse et

AMTEC RESOURCES MANAGEMENT LTD. CREATION D UNE BANQUE DE DONNEES DONNEES GEOSPATIALES NATIONALE

BD ADRESSE. Version 2.1. Descriptif de contenu. Institut Géographique National. Date du Document : Octobre 2011

Lecture graphique. Table des matières

LE PRODUIT SCALAIRE ( En première S )

Chapitre 1 Cinématique du point matériel

eproject Manuel utilisateur Version 0.0

Mobilité du trait de côte et cartographie historique

Intégrales doubles et triples - M

8 - Import-Export de données

Étude de la carte de Vézelise. Initiation à la lecture du relief sur une carte topographique

PRATIQUE DU COMPAS ou

Les correcteurs accorderont une importance particulière à la rigueur des raisonnements et aux représentations graphiques demandées.

Séquence 2. Repérage dans le plan Équations de droites. Sommaire

DYNAMIQUE DE FORMATION DES ÉTOILES

Interaction milieux dilués rayonnement Travaux dirigés n 2. Résonance magnétique : approche classique

La Mesure du Temps. et Temps Solaire Moyen H m.

JOURNAL OFFICIEL. de la République Démocratique du Congo CABINET DU PRESIDENT DE LA REPUBLIQUE. Journal Officiel - Numéro Spécial - 09 mai 2009

DÉRIVÉES. I Nombre dérivé - Tangente. Exercice 01 (voir réponses et correction) ( voir animation )

PERSONNE DEPENDANTE Fugue - Risque d agression

Mesure d angles et trigonométrie

Prédiction de couverture de champ radioélectrique pour les réseaux radiomobiles : L apport du Système d Information Géographique ArcInfo 8

Le Guide Pratique des Processus Métiers

Séquence 4. Comment expliquer la localisation des séismes et des volcans à la surface du globe?

Angles orientés et fonctions circulaires ( En première S )

Etablissement de cartes de vent sur le pourtour méditerranéen par simulation numérique

PARTIE NUMERIQUE (18 points)

DIGITALISATION DES CARTES ANCIENNES. Colette Favre, Evelyne Granier, Régine Cosserat-Mangeot, Jean Bachacou & Jean-Luc Dupouey

TS Physique Satellite à la recherche de sa planète Exercice résolu

pour quoi faire? Introduction au Séminaire «Véhicules traceurs» Toulouse le 10/12/ /01/2011 François PEYRET LCPC/MACS/GEOLOC

Document d Appui n 3.3. : Repérage ou positionnement par Global Positionning System G.P.S (extrait et adapté de CAMELEO 2001)

La nouvelle planification de l échantillonnage

Mais où est donc passée la relativité générale? Version 3.0

Dr YAO Kouassi Patrick

Le Parc naturel régional des SIG. Restructuration d un SIG et diffusion des données dans le cadre de la directive Inspire

GEOLOCALISATION ET NAVIGATION A L AIDE DES SIGNAUX GNSS

Traceur GPS Antivol. Le traceur est conforme aux normes européennes 95/56 E27

Deux disques dans un carré

Mesurer les altitudes avec une carte

L éclairage naturel première partie : Principes de base

Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables

Chapitre 2 Les ondes progressives périodiques

Le Global Positionning System

F411 - Courbes Paramétrées, Polaires

Services internationaux en géodésie spatiale

Intégration ESRI - SAP Geo-Enablement de l ERP SAP Exemple : GEO.e. Christophe Lapierre Enrique Yaptenco Professional Services - ESRI Suisse

La (les) mesure(s) GPS

PRISE MAIN DE GOOGLE MAP ET GOOGLE EARTH DANS LE CADRE DE LA PREPARATION ET L EXPLOITATION D UNE JOURNEE DE TERRAIN

AUTRES ASPECTS DU GPS. Partie I : tolérance de Battement Partie II : tolérancement par frontières

Erratum de MÉCANIQUE, 6ème édition. Introduction Page xxi (milieu de page) G = 6, m 3 kg 1 s 2

TD1 PROPAGATION DANS UN MILIEU PRESENTANT UN GRADIENT D'INDICE

Chapitre 9 : Applications des lois de Newton et Kepler à l'étude du mouvement des planètes et des satellites

Baccalauréat ES/L Amérique du Sud 21 novembre 2013

TSTI 2D CH X : Exemples de lois à densité 1

Durée de L épreuve : 2 heures. Barème : Exercice n 4 : 1 ) 1 point 2 ) 2 points 3 ) 1 point

1 INTERET ET ELEMENTS D INTERPRETATION DE L INDICATEUR

Chapitre 02. La lumière des étoiles. Exercices :

POLY-PREPAS Centre de Préparation aux Concours Paramédicaux. - Section Audioprothésiste / stage i-prépa intensif -

Statistiques Descriptives à une dimension

LA MESURE DE PRESSION PRINCIPE DE BASE

INTRODUCTION. A- Modélisation et paramétrage : CHAPITRE I : MODÉLISATION. I. Paramétrage de la position d un solide : (S1) O O1 X

Michel Henry Nicolas Delorme

Manuel d utilisation DeveryLoc

1. Introduction 2. Localiser un séisme 3. Déterminer la force d un séisme 4. Caractériser le mécanisme de rupture d un séisme

a et b étant deux nombres relatifs donnés, une fonction affine est une fonction qui a un nombre x associe le nombre ax + b

Transcription:

1 Les coordonnées géographiques

1) Les coordonnées géographiques 2) Systèmes géodésiques et systèmes de référence 3) De l ellipsoïde au plan: les projections cartographiques 2

3 Les coordonnées géographiques Besoin de pouvoir localiser les entités géographiques de façon univoque à la surface de la Terre.

4 Les coordonnées géographiques Rappels de géodésie La géodésie est la science de la forme et de la dimension de la Terre et de son champ de pesanteur. Pour représenter et localiser une entité géographique, il faut connaître la forme de la Terre et les moyens de se repérer à sa surface. Définition de systèmes de référence

Le référentiel géodésique est un repère affine (O;i;j;k) tel que: Coordonnées cartésiennes O est proche du centre des masses de la Terre (i;j;k) est orthogonale et les 3 vecteurs ont la même norme proche de 1 (O;k) est proche et parallèle à l axe de rotation de la Terre (O;i;k) est confondu avec le plan méridien de Greenwich X i Z k O j M Y J est tel que (i;j;k) soit directe 5

Coordonnées cartésiennes La notion de référentiel géodésique est théorique. On appelle sa réalisation numérique: Système géodésique pour une réalisation à échelle locale ou nationale Système de référence pour une réalisation globale par techniques spatiales On appelle la réalisation pratique d un référentiel géodésique «réseau géodésique»: il s agit d un ensemble de points matérialisées. 6 Borne NTF Récepteur GPS permanent RBF

Coordonnées géographiques et méridien origine A chaque système on associe un ellipsoïde de révolution aplati: c est la forme mathématique qui modélise le mieux la Terre. Le centre est confondu avec l origine O du système géodésique Le petit axe est confondu avec l axe (O;k) 7 Le demi grand axe mesure environ 6370 km et le demi petit axe environ 6350 km (aplatissement de 1/300)

Coordonnées géographiques et méridien origine Les coordonnées géographiques (,,h) Méridien origine Centre de la Terre (0, 0 ) Pôle Nord P h Po hauteur au dessus de l ellipsoïde Équateur Latitude 8 Pôle Sud Longitude

Coordonnées géographiques et méridien origine Le choix de l ellipsoïde n est pas unique. Les écarts entre les demi grands axes peuvent atteindre quelques centaines de mètres. Plusieurs centaines d ellipsoïdes sont utilisés dans le monde. Tous les systèmes spatiaux ont adopté l ellipsoïde international IAG GRS 80 comme référence. De même beaucoup de pays ont adopté des méridiens origines différents pour leur système géodésique. Tous les systèmes spatiaux ont adopté le méridien origine de Greenwich comme référence. 9 Si on connaît les paramètres de l ellipsoïde, on peut passer des coordonnées cartésiennes aux coordonnées géographiques par des formules exactes.

10 Les coordonnées géographiques Les altitudes Le géoïde: C est une surface équipotentielle de pesanteur terrestre proche du niveau moyen des mers, et qui se prolonge sous les continents. On considère que la terre est constituée du géoïde surmonté du relief.

11 Les coordonnées géographiques Les altitudes L ellipsoïde: Le géoïde n'a pas de représentation géométrique simple, à cause de l'irrégularité de répartition des masses constituant la terre. Toutefois, l'expérience montre qu'il se rapproche d'un ellipsoïde de révolution.

Les altitudes La terre a une forme irrégulière (Géoïde) qui est approximée par des ellipsoïdes sur lesquels sont portées des coordonnées géographiques. Géoïde P T 12 Ellipsoïde global Ellipsoïde local

Les altitudes Un réseau de nivellement fourni des altitudes de points matérialisés qui doivent vérifier ces critères: Si altitude (a) > altitude(b), alors l eau coule de a vers b L altitude d un point est unique et ne dépend pas de la façon dont on la mesure Les altitudes sont exprimées en mètres Localement une mesure de dénivelée doit être égale à une différence d altitude. Il faut donc tenir compte du champ de pesanteur terrestre. 13 Physiquement une altitude peut être assimilée à une «hauteur» au-dessus du géoïde.

Les altitudes Les systèmes spatiaux (GPS) donnent des hauteurs au-dessus de l ellipsoïde. Il faut donc convertir les hauteurs en altitudes: besoin de déterminer des surfaces de référence altimétrique (géoïde). RAF98 (Référence d Altitude Française) Surface terrestre EGM96 (Earth Gravity Model) P Géoïde h H 14 Ellipsoïde N Mer

15 Les coordonnées géographiques Réalisation d un système géodésique Par techniques terrestres: (bidimensionnels) Obtention des coordonnées du point fondamental (mesure d angles et de temps sur les étoiles). Pour ce point, on décide que la hauteur au-dessus de l ellipsoïde est égale à l altitude. Mesures d angles et de distances entre points proches puis calcul de leurs coordonnées (géométrie) Ajout d un réseau d altitudes: odétermination d un point fondamental (marégraphie) omesures de dénivelés géométriques et de gravimétrie

Exemples: Réalisation d un système géodésique 16 La Nouvelle Triangulation Française (NTF) Point fondamental: Croix du Panthéon Paris Unité angulaire: grade Unité de longueur: mètre Méridien origine: Paris Ellipsoïde: Clarke 1880 IGN Systeme altimétrique: IGN 1969 European Datum 1950 (ED 1950) Point fondamental: Postdam Unité angulaire: degré, minute, seconde Méridien origine: Greenwich Ellipsoïde: International 1924 (Hayford 1909)

17 Les coordonnées géographiques Réalisation d un système de référence Par techniques spatiales: (tridimensionnels) VLBI GPS DORIS PRARE Galileo, etc. On associe un modèle de géoïde ou une surface de référence d altitude pour calculer les altitudes.

18 Réseau géodésique Français 1993(RGF 1993): densification nationale de l ETRS 1989 Système de référence: ETRS89 Ellipsoïde de référence: GRS80 Méridien origine: Greenwich Unité angulaires: degré, minute, seconde Les coordonnées géographiques Réalisation d un système de référence Exemples: Les systèmes de référence terrestres World Geodetic System 1984 (WGS84): système associé au GPS Ellipsoïde: WGS84 Développement du champ de pesanteur: EGM96 IERS Terrestrial Reference System (ITRS) European Terrestrial Reference System 1989 (ETRS 1989): densification européenne de l ITRS

19 Les coordonnées géographiques De l ellipsoïde au plan: les projections cartographiques Les coordonnées cartésiennes ou géographiques ne sont utilisables que sur l ellipsoïde, c est-à-dire en 3D. Pour faire des cartes, on est limités à la 2D. Besoin de projeter les coordonnées sur un plan

De l ellipsoïde au plan: les projections cartographiques On choisit une surface développable On la positionne par rapport à l ellipsoïde On définit une projection ellipsoïde => surface et on développe la surface chaque point de la sphère a une image sur le plan de projection parallèles et méridiens ont des formes variées 20

Classification des projections: typologie selon les déformations Les coordonnées planes (E, N) permettent des mesures directes sur la carte, mais Toute projection induit des distorsions le long de la ligne tangente : distorsion nulle plus on s en éloigne: plus la distorsion augmente Une projection peut conserver les angles : projection conforme les surfaces : projection équivalente Ni l un ni l autre: projection aphylactique 21 mais JAMAIS LES DEUX à la fois

22 Les coordonnées géographiques Classification des projections: typologie selon le canevas

23 Les coordonnées géographiques Classification des projections: typologie selon l aspect Aspect direct: utilisation du canevas des parallèles et des méridiens Aspect transverse: utilisation d un canevas transverse, obtenu à partir de 2 points diamétralement opposés sur l équateur et pris comme pseudo-pôles. Aspect oblique: utilisation d un canevas oblique, obtenu à partir de 2 points diamétralement opposés quelconques pris comme pseudo-pôles.

24 Les coordonnées géographiques Classification des projections: typologie selon l aspect

Ex: Projection conique conforme directe de Lambert Projection conique, conforme Parallèle origine, tangent au cône ou parallèle automécoïque: distorsion nulle Le cône développé 25 Plus on s éloigne du parallèle origine, plus les longueurs sont allongées

Pour minimiser les distorsions : Lambert France Plusieurs cônes, i.e. plusieurs projections : France découpée en 3 zones du Nord au Sud, + 1 zone «Corse» Cônes sécants et non tangents : => Pour chaque projection, 2 parallèles où les distances sont vraies. Distances raccourcies entre ces 2 parallèles, allongées en dehors. 26 PROJECTION POLYCONIQUE SÉCANTE

27 Les coordonnées géographiques Lambert France PN PN PS Représentation de Lambert tangente PS Représentation de Lambert sécante

Parallèles origines pour les 3 cônes sécants : Lambert France Zone 1 (Nord) : 55 grades Zone 2 (Centre) : 52 grades Zone 3 (Sud) : 49 grades et pour la Corse (Zone 4) : 46,85 grades Méridien origine = Méridien de Paris (longitude = 0 grade) Parallèle sécant Parallèle moyen ou d origine Limite de zones 53,5 gr 49 gr 50,5 gr 28 48 gr

Lambert France LAMBERT I parallèle 53,50 gr LAMBERT II parallèle 50,50 gr LAMBERT III 29 LAMBERT IV

On va positionner un quadrillage sur la carte => tout point sera repérable par des coordonnées (x,y) Pour cela, il faut : Lambert France un point origine (connu en latitude, longitude) des coordonnées (x0, y0) sur le quadrillage pour ce point origine une direction origine pour le quadrillage Parallèles et méridiens Quadrillage 30

Lambert France 31 Orientation du quadrillage: l axe des y est parallèle au méridien de Paris (de longitude = 0 grades), y croissant vers le Nord l axe des x est perpendiculaire, x croissant vers l Est Abscisses (x) : À l origine = le long du méridien de Paris : Pour les zones I, II et III : x = 600 km Pour la zone IV : x = 0 km => Pas de x négatif

Ordonnées (y) : Lambert France Pour chaque zone, l origine des y est la droite tangente au parallèle central de la zone. On fixe Y0=200 km: pas de valeurs négatives dans la zone. Zone parallèle central y à l origine tous les y LAMBERT I = 55 grades y = 1200 km sont dans les «1000» LAMBERT II = 52 grades y = 2200 km sont dans les «2000» LAMBERT III = 49 grades y = 3200 km sont dans les «3000» LAMBERT IV = 46,85 grades y = 4200 km sont dans les «4000» Lambert i carto 32 Au sein de chaque zone les valeurs de y vont croissant vers le Nord

méridien de Paris : x = 600 km (zones I, II, III) Lambert France LAMBERT I tangente au parallèle 55 gr y = 1200 km LAMBERT II tangente au parallèle 52 gr y = 2200 km tangente au parallèle 49 gr LAMBERT III y = 3200 km 33 tangente au parallèle 46,85 gr y = 4200 km x = 0 km (zone IV) LAMBERT IV

LAMBERT II LAMBERT I LAMBERT III Les coordonnées géographiques Projections différentes Lambert France pas de raccordement entre zones! 34 LAMBERT IV

C est la projection Lambert II cartographique, dont on étend le quadrillage à toute la France. x = 600 km Lambert II étendu À Dunkerque, y = 2700 km Le Lambert II étendu permet de référencer des points sur toute la France (Corse comprise) dans le même système, et sans avoir de coordonnées négatives. Inconvénient: on a plus de déformations. LAMBERT II tangente au parallèle 52 gr y = 2200 km 35 À Perpignan, y = 1700 km

36 Les coordonnées géographiques Orientation du quadrillage par rapport aux bords de la carte Ce sont les parallèles et méridiens qui sont limites de cartes

Lambert 93 Les représentations Lambert I, II, III, IV et II étendu correspondent au système géodésique NTF. Pour disposer d une projection correspondant au système de référence RGF 93, on définit la projection suivante, dite Lambert 93: conique conforme sécante de Lambert avec 37 Référentiel Géodésique RGF 93 Ellipsoïde associé IAG GRS80 X0 (False Easting) 700 000 m Y0 (False Northing) 6 600 000 m Latitude origine 46 30 N Longitude origine 3 Est Greenwich Parallèles automécoïques 44 N et 49 N

38 Les coordonnées géographiques Ex: projection conique de Lambert

Ex: projection UTM Représentation conforme Projection Cylindrique, Transverse, tangent le long d un méridien + Facteur d échelle P Greenwich 39 P

P y P Ex: projection UTM OUEST 6 3 0 3 6 9 12 30 31 32 EST x P P 40 Equateur Axe Ox Méridien central Axe Oy Terre divisée en 60 fuseaux de 6 d amplitude

les fuseaux France Ex: projection UTM 41 fuseau 30 (6 Ouest, 0 Greenwich) fuseau 31 (0 Greenwich, 6 Est) fuseau 32 (6 Est, 12 Est)

Ex: projection UTM Ellipsoïde international (Hayford 1909) ou IAG GRS 1980 suivant qu on emploie la projection UTM avec le système de référence ED 50 ou WGS 84 systèmes de coordonnées associés : ED50 UTM ou WGS84 UTM ces systèmes de coordonnées sont couramment utilisés par les GPS ATTENTION utiliser le même système sur la carte et sur le GPS... Altération des longueurs inférieure à 1/1000 dans un fuseau Constante ajoutée à x: Xo = 500 000 m Dans l hémisphère sud, y devient (10 000 000 -y) 42

43?

44 Références Cours de géodésie de Didier Bouteloup Site IGN France, Espace éducation, fiches de géodésie: http://education.ign.fr/43/dossiers/mesurer-la-terre.htm Patrick Bouron, Lecture de cartes: http://www.unit.eu/nuxeo/site/esupversions/216914e0-7a35-4c6a-9c7a-8810f54ebd8d