F.A.Q. Probabilités et Statistiques

Documents pareils
Qu est-ce qu une probabilité?

Probabilités sur un univers fini

Probabilités. I Petits rappels sur le vocabulaire des ensembles 2 I.1 Définitions... 2 I.2 Propriétés... 2

Couples de variables aléatoires discrètes

TSTI 2D CH X : Exemples de lois à densité 1

Probabilité. Table des matières. 1 Loi de probabilité Conditions préalables Définitions Loi équirépartie...

Probabilités. C. Charignon. I Cours 3

Calcul élémentaire des probabilités

Statistiques Décisionnelles L3 Sciences Economiques & Gestion Faculté d économie, gestion & AES Université Montesquieu - Bordeaux

Probabilités et Statistiques. Feuille 2 : variables aléatoires discrètes

Exercices sur le chapitre «Probabilités»

TESTS D'HYPOTHESES Etude d'un exemple

PROBABILITES ET STATISTIQUE I&II

Travaux dirigés d introduction aux Probabilités

Fluctuation d une fréquence selon les échantillons - Probabilités

Université Paris 8 Introduction aux probabilités Licence Informatique Exercices Ph. Guillot. 1 Ensemble fondamental loi de probabilité

Moments des variables aléatoires réelles

Probabilités. Rappel : trois exemples. Exemple 2 : On dispose d un dé truqué. On sait que : p(1) = p(2) =1/6 ; p(3) = 1/3 p(4) = p(5) =1/12

Variables Aléatoires. Chapitre 2

Statistique : Résumé de cours et méthodes

Probabilités conditionnelles Loi binomiale

Probabilités Loi binomiale Exercices corrigés

GEA II Introduction aux probabilités Poly. de révision. Lionel Darondeau

I. Cas de l équiprobabilité

Statistiques Descriptives à une dimension

4. Exercices et corrigés

Probabilités sur un univers fini

Arbre de probabilité(afrique) Univers - Evénement

Baccalauréat ES/L Amérique du Sud 21 novembre 2013

Eteindre. les. lumières MATH EN JEAN Mme BACHOC. Elèves de seconde, première et terminale scientifiques :

TESTS D HYPOTHÈSE FONDÉS SUR LE χ².

Annexe commune aux séries ES, L et S : boîtes et quantiles

Principe d un test statistique

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures)

Baccalauréat ES Antilles Guyane 12 septembre 2014 Corrigé

Cours (7) de statistiques à distance, élaboré par Zarrouk Fayçal, ISSEP Ksar-Said, LES STATISTIQUES INFERENTIELLES

Probabilités (méthodes et objectifs)

Programmes des classes préparatoires aux Grandes Ecoles

Exercices supplémentaires sur l introduction générale à la notion de probabilité

Théorie et Codage de l Information (IF01) exercices Paul Honeine Université de technologie de Troyes France

Probabilités III Introduction à l évaluation d options

UFR de Sciences Economiques Année TESTS PARAMÉTRIQUES

POKER ET PROBABILITÉ

4 Distributions particulières de probabilités

Logique binaire. Aujourd'hui, l'algèbre de Boole trouve de nombreuses applications en informatique et dans la conception des circuits électroniques.

Simulation de variables aléatoires

Modèles à Événements Discrets. Réseaux de Petri Stochastiques

INF 162 Probabilités pour l informatique

Suites numériques 3. 1 Convergence et limite d une suite

P1 : Corrigés des exercices

Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques.

III- Raisonnement par récurrence

Feuille d exercices 2 : Espaces probabilisés

Que faire lorsqu on considère plusieurs variables en même temps?

La classification automatique de données quantitatives

TARIFICATION EN ASSURANCE COMPLEMENTAIRE SANTE: il était une fois, un statisticien, un actuaire, un économiste de la santé

TP1 Méthodes de Monte Carlo et techniques de réduction de variance, application au pricing d options

Modélisation aléatoire en fiabilité des logiciels

Probabilités conditionnelles Exercices corrigés

3. Conditionnement P (B)

Coefficients binomiaux

BTS Groupement A. Mathématiques Session Spécialités CIRA, IRIS, Systèmes électroniques, TPIL

Distribution Uniforme Probabilité de Laplace Dénombrements Les Paris. Chapitre 2 Le calcul des probabilités

ACTUARIAT 1, ACT 2121, AUTOMNE 2013 #12

Calculs de probabilités conditionelles

Projet de Traitement du Signal Segmentation d images SAR

EXPLOITATIONS PEDAGOGIQUES DU TABLEUR EN STG

Actuariat I ACT2121. septième séance. Arthur Charpentier. Automne charpentier.arthur@uqam.ca. http ://freakonometrics.blog.free.

Introduction à la théorie des files d'attente. Claude Chaudet

Comment se servir de cet ouvrage? Chaque chapitre présente une étape de la méthodologie

Limites finies en un point

Exemple On lance une pièce de monnaie trois fois de suite. Calculer la probabilité d obtenir exactement deux fois pile.

Probabilités. Une urne contient 3 billes vertes et 5 billes rouges toutes indiscernables au toucher.

ACTUARIAT 1, ACT 2121, AUTOMNE 2013 #6

Economie de l incertain et de l information Partie 1 : Décision en incertain probabilisé Chapitre 1 : Introduction à l incertitude et théorie de

Feuille 6 : Tests. Peut-on dire que l usine a respecté ses engagements? Faire un test d hypothèses pour y répondre.

Intégration et probabilités TD1 Espaces mesurés Corrigé

Chapitre 3 : INFERENCE

Cours de Tests paramétriques

Calculs de probabilités

La simulation probabiliste avec Excel

LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING»

Intérêt du découpage en sous-bandes pour l analyse spectrale

ENS de Lyon TD septembre 2012 Introduction aux probabilités. A partie finie de N

Examen optimisation Centrale Marseille (2008) et SupGalilee (2008)

Analyse stochastique de la CRM à ordre partiel dans le cadre des essais cliniques de phase I

Peut-on imiter le hasard?

La problématique des tests. Cours V. 7 mars Comment quantifier la performance d un test? Hypothèses simples et composites

Chapitre 2 Le problème de l unicité des solutions

FORMULAIRE DE STATISTIQUES

Objets Combinatoires élementaires

Coup de Projecteur sur les Réseaux de Neurones

Les probabilités. Guide pédagogique Le présent guide sert de complément à la série d émissions intitulée Les probabilités produite par TFO.

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre :

Ressources pour le lycée général et technologique

Chapitre 3 : Principe des tests statistiques d hypothèse. José LABARERE

ACTUARIAT 1, ACT 2121, AUTOMNE 2013 #16

Texte Agrégation limitée par diffusion interne

Exposing a test of homogeneity of chronological series of annual rainfall in a climatic area. with using, if possible, the regional vector Hiez.

Probabilités. I - Expérience aléatoire. II - Evénements

Transcription:

F.A.Q. Probabilités et Statistiques Le présent document est un support pédagogique visant à développer l intuition du probabiliste et statisticien en herbe. Il est en aucun cas un cours à proprement parler. Pour ne pas alourdir les réponses, nous avons fait le choix de ne pas donner les démonstration des résultats énoncés. Question 1. Change-t-on le problème si on met un ordre sur les variables aléatoires? Par exemple, sur deux dés, distinguer le dé 1 du dé 2? Oui et Non! On ajoute une hypothèse (qui change le problème) qu il faut enlever à la fin du raisonnement (pour rétablir le problème initial). Cela peut rendre les calculs plus simples, ou plus compliqués... Ex : Si on s intéresse à compter le nombre de combinaisons de deux dés tels que les deux chiffres soient consécutifs, on peut tous les compter (dans un tableau par exemple). Cela fait 10. Ou on peut choisir de donner un ordre aux dés. Dans ce cas, on compte les combinaisons 1-2, 2-3, 3-4, 4-5, 5-6. Il faut ensuite enlever cette hypothèse d ordre. Ici, on remarque qu à chaque configuration on peut associer une configuration soeur en intervertissant les deux chiffres. On a donc bien 2 5 = 10 combinaisons. Question 2. Pourquoi lorsque l on regarde un Ω = {1, 2, 3, 4} par exemple, n a-t-on pas toujours P (1) = P (2) = P (3) = P (4) = 1 4? Lorsque l on ne précise rien, il se peut que les évènements élémentaires ne soient pas tous équiprobables. Ex : Imaginons que le dé à quatre faces que l on regarde soit pipé (truqué). Ou bien que l on ai effacé le chiffre quatre pour le remplacer par un deux. Nous aurions créé (dans la vraie vie!!!) un objet qui répond à la loi de probabilité P (1) = P (3) = 1 4, P (2) = 1 2 et P (4) = 0. Question 3. Pourquoi compte-t-on le nombre de possibilités d un événement au lieu de calculer des produits de probabilités? Dans beaucoup de cas, (dés, tirages de boules,...) toutes les configurations élémentaires sont équiprobables. C est-à-dire : ω, ω Ω, P (ω) = P (ω ) = p Ce qui donne : 1 ω Ω P (ω) = 1 #Ω p = 1 et donc p = #Ω Donc lorsque l on identifie chaque élément ω correspondant à un événement (et surtout que l on sait les compter), on a P (A) = P (ω) = p = #A #Ω ω A ω A Attention, ce n est bien sûr pas le cas si tous les ω ne sont pas équiprobables!!! Question 4. Si a Ω = {1, 2, 3, 4} b Ω = {(1, 1), (1, 5)} c Ω = {chaise, table} {3, 6} A quoi ressemblent les ω? A quoi ressemble un événement? a 1 est un élément tout comme 2 par exemple. {2, 4} est un événement, {1} aussi. b (1, 1) et (1, 5) sont deux éléments. c (chaise, 6) est un élément ; (chaise, 3) aussi. {chaise, table} {6} est un événement de Ω. A chaque fois, ω appartient à Ω et un événement A est inclus dans Ω. Question 5. Quand ajoute-t-on deux probabilités? Dans un seul cas : lorsque l on regarde l union de deux événements disjoints (on dit aussi incompatibles). C est-à-dire A B =. Alors P (A B) = P (A ou B) = P (A) + P (B) Ex : P ( au plus un pair ) = P ( aucun pair ou un pair ) = P ( aucun pair un pair ). Mais comme on ne peut avoir simultanément aucun pair et un pair (les événements sont disjoints), nous avons bien : P ( aucun pair ou un pair ) = P ( aucun pair ) + P ( un pair ) Dans le cas général, on peut écrire P (A B) = P (A) + P (B) P (A B) Attention, ne pas confondre incompatibles et indépendants!

Question 6. Quand multiplie-t-on deux probabilités? On se pose la question : Est-ce que la réalisation de A a une quelconque influence sur la réalisation de B? Si la réponse est non alors les deux événements sont indépendants! Si deux événements sont indépendants : nous avons P (A B) = P (A)P (B) Ex : Prenons deux dés. L un à quatre faces comportant les chiffres 1,1,2,3. Le second à six faces comportant les chiffres 1,1,1,2,2,3. On choisit au hasard l un des deux dés puis on le lance. On a alors : P ( avoir un 1 et choisir le dé à 6 faces ) = P ( avoir un 1 choisir le dé à 6 faces ) = P ( avoir un 1 )P ( choisir le dé à 6 faces ) En effet, on se fiche de savoir si on prend le dé à six faces ou à quatre faces pour connaitre la chance d avoir un 1. Elle de 1 2 sur chaque dé!! Question 7. Qu est-ce qu une probabilité conditionnelle? Elle est définie ainsi : P ( B) = P ( B) P (B). Qu elle opération a-t-on fait? On a modifié la probabilité P d origine en une autre probabilité. C est donc une probabilité!! Toutes les formules sur les probabilités s appliquent. Cela donne la probabilité d un événement en sachant B de façon sûre. Pratique lorsque l on veut scinder le problème. Ex : On jete deux dés. Si on appelle X 1 le premier dé, X 2 le second et Y = max(x 1, X 2 ) le maximum des deux dés. Alors : P (Y = 3 et X 1 = 3) = P (Y = 3 X 1 = 3)P (X 1 = 3) = P (X 2 = 1,2 ou 3)P (X 1 = 3) = 1 2 1 6 = 1 12 On a transformé P (Y = 3 X 1 = 3) en P (X 2 = 1,2 ou 3) car sachant X 1 = 3 la seule manière d avoir Y = 3 est que le deuxième dé soit plus petit. Question 8. Quand reconnaître une loi binomiale? Uniquement dans le cas suivant : La population totale est fixée (n individus). On s intéresse à la variable aléatoire X égale au nombre d individus portant une certaine propriété (on note p la probabilité pour qu un individu porte cette propriété). Cette variable aléatoire est alors modélisée par une loi Binomiale B(n,p). Ex : Le nombre de garçon dans une population donnée. Le nombre d ampoules défectueuses dans un échantillon donné. Le nombre de dé valant 6 sur un nombre de lancés donné. Question 9. Quand reconnaître une loi de Poisson? La loi de Poisson est une loi de probabilité discrète qui décrit le comportement du nombre d évènements se produisant dans un laps de temps fixé, si ces évènements se produisent avec une fréquence moyenne connue et indépendamment du temps écoulé depuis l évènement précédent. La loi de Poisson est également pertinente pour décrire le nombre d évènements dans d autres types d intervalles, spatiaux plutôt que temporels, comme des segments, surfaces ou volumes. Ex : Le nombre d appels arrivant à un standard téléphonique pendant une période donnée. Le nombre de personnes à la file d attente d un magasin arrivant en une durée donnée. Le nombre de poissons (!) pêchés dans un filet de pêche donné. Question 10. Quand reconnaître une loi géométrique? Elle modélise la situation : Tant que je perds (avec proba 1 p), je joue et dès que je gagne (avec proba p), je m arrête. La variable aléatoire X qui suit une loi géométrique est alors le nombre de fois que j ai joué (en comptant la fois où j ai gagné). Ex : Le nombre de lancés de canne à pêche avant d attraper un poisson. Le nombre de lancés de dé avant d avoir un 6. A la pétanque, le nombre de boules à lancer avant de prendre. (vraiment?)

Question 11. Quand reconnaître une loi multinomiale? C est une généralisation de la loi binomiale. Là ou précédemment, on s intéressait a un problème binaire (être ou ne pas être!), ici on regarde une collection d individus qui peuvent prendre plus de 2 valeurs mais toujours en nombre fini. Chaque individu peut prendre i valeurs (de proba p i ). On regarde une population fixée (n individus). Alors la variable aléatoire (X 1,..., X i ) suit une loi multinomiale où X i est le nombre d individus dans l état i. Question 12. Quand reconnaître une loi hypergéométrique? Le cadre ressemble fortement à la loi binomiale! Mais il ne faut pas les confondre. On tire aléatoirement un nombre fixe n de boules dans une population déterminée (donc non-aléatoire) comportant des boules gagnantes (au nombre de G) et des boules perdantes (au nombre de P). Alors X, le nombre de boules gagnantes obtenu, suit une loi hypergéométrique. Ici les individus ne sont pas aléatoires, mais un sous-ensemble d individus est choisi aléatoirement dans l ensemble (loi hypergéométrique) ce qui diffère de considérer des individus aléatoires qui forment une collection fixe (loi binomiale). Question 13. Quelle est la différence entre X et X(ω)? Une variable aléatoire est une fonction : X : Ω R. On connait déjà la différence entre f et f(x). f est un objet mathématique formel et peut avoir des propriétés comme être croissante, être continue, etc... f(x) est (par exemple) un réel, un réel positif, la valeur d une intégrale, etc... Il en va de même pour X et X(ω). X peut être de loi uniforme, à support borné, symétrique, etc... X(ω) n est quant à lui qu un réel. C est la méconnaissance de la dépendance en ω de X(ω) qui fait que l on écrit très souvent X pour X(ω) mais c est bien un abus (totalement admis) de notation. Ex : X(ω) = sin(ω) est une variable aléatoire de loi uniforme sur [ 1, 1] (qui a peu d intérêt). Les cas intéressants sont justement ceux où l on ne connait pas la dépendance en ω. On devrait normalement écrire P ( 1 X(ω) 2, 7) au lieu de P ( 1 X 2, 7) Question 14. Comment faire un plan de réponse à un exercice de statistiques? On peut le construire en 4 parties : 1. Identifier le cadre -Soit X 1,..., X n des variables indépendantes et de même loi. -Identifier les paramètres connus et les paramètres inconnus. (Certaines fois, la forme de la loi elle-même est inconnue.) 2. Traduire l énoncé en quantité(s) dépendant(es) des X i -Souvent X = n i=1 X i (mais pas seulement). -Il y a souvent autant de quantités que de paramètres inconnus! 3. Se ramener à une loi connue (C est la partie délicate) -On utilise les outils probabilistes : LGN, Inégalité de Markov, B-T, TCL (A connaître absolument), Approximation de loi par une autre. -C est l étape où l on fait des calculs. 4. Conclure -Penser à répondre à la question posée. -Commenter le résultat autant que possible. Question 15. Qu est ce qu un test? A quoi servent-ils? Un test T est une fonction de la famille X 1,..., X n qui renvoie 0 ou 1. Dans certains problèmes de statistique, il est plus important d écarter une hypothèse sur le(s) paramètre(s) inconnu(s) que de chercher à avoir une bonne estimation de ce(s) paramètre(s). C est pour cela que l on formule des (deux) hypothèses sur la loi des X i. Le test T vise à faire la différence entre ces deux possibilités.

Question 16. Qu est-ce qu une hypothèse de test statistique? Il y a deux grandes familles d hypothèses : 1. C est un ensemble où vit un (ou plusieurs) paramètre(s) de la loi des X 1,..., X n. Attention, en aucuns cas ce ne sont des évènements! (Elles n ont donc aucune probabilité.) La plupart du temps on note Θ l ensemble de toutes les valeurs possibles du paramètre et θ le paramètre inconnu. Dans ce formalisme, H 0 et H 1 sont des sous-ensembles de Θ. Ex : Si les X i sont des Bernoulli de paramètre p inconnu alors {p : p 1 2 } et { 1 4 } { 3 4 } sont deux hypothèses. En fait, tout sous-ensemble de Θ = [0, 1] convient. 2. C est une loi particulière. Ex : On peut tester une loi exponentielle contre une loi normale, une loi uniforme contre une loi non-uniforme, etc... Le test du χ 2 est le test phare dans ce cas. Question 17. Quelle est la différence entre H 0 et H 1? On ne raisonne que dans le cas 1. précédent mais ceci s étend évidemment au cas 2. On se focalise sur H 0 c est-à-dire que l on va construire le test T tel que P θ (T = 1) est suffisamment petit (en général 5%) pour tout θ H 0. Attention : T = 1 = H 0 est fausse (avec forte probabilité) T = 0 = On ne peut rien dire On espère ensuite que l erreur sur H 1 : sup θ H1 P θ (T = 0) soit petite. L erreur sur H 0 : sup θ H0 P θ (T = 1) est appelée erreur de première espèce et l erreur sur H 1 : sup θ H1 P θ (T = 0) est appelée erreur de seconde espèce. (Y réfléchir! Ce sont les deux seules sources d erreur possible.) Question 18. Qu est-ce qu une statistique de test? C est le cœur de la machine! Un test regarde la valeur d une statistique de test S et répond 0 ou 1 en fonction de celle-ci. Construire un test revient à trouver une zone de rejet de S. Ex : On cherche, par exemple, à déterminer si les X i sont d espérance 0 (hypothèse H 0 ) ou d espérance 4 (hypothèse H 1 ). La statistique de test serait S = X. Si elle est grande, on aura tendance à répondre 1 et si elle est petite on aura tendance à répondre 0. Ici, notre test aura donc la forme T = 1 X>t. Ex : On voudrait savoir si les X i sont de variance forte (hypothèse H 0 ) ou de variance faible (hypothèse H 1 ). La statistique de test serait S = ˆσ 2 = 1 n 1 (Xi X) 2. Le test aura la forme T = 1ˆσ 2 <t. Question 19. Comment faire un plan de réponse à un exercice de test? On reprend le même plan qu auparavant en changeant le point 3. 1. Identifier le cadre -Identifier les paramètres connus et les paramètres inconnus. (Certaines fois, la forme de la loi ellemême est inconnue.) -On formule des hypothèses sur les paramètres (ou loi) inconnus. 2. Traduire l énoncé en quantité(s) dépendant(es) des X i -On construit les estimateurs naturels des paramètres qui apparaissent dans les hypothèses. -On recherche une quantité (la fameuse statistique de test S) qui a deux comportements différents que l on soit sous H 0 ou sous H 1. (C est ici qu il faut réfléchir!) 3. On construit le test -On regarde comment se comporte S sous H 0. (Le X par exemple) -Le test aura très souvent la forme T = 1 S>t (ou T = 1 S<t ou T = 1 S >t, etc...). -A nous de trouver t tel que l erreur sous H 0, qui est sup θ H0 P θ (T = 1), ne dépasse pas la valeur seuil de l énoncé (le α). 4. Conclure Question 20. Qu est-ce qu un test du χ 2?

Ce test permet de vérifier que la collection de variables X 1,..., X n suit une loi donnée. Attention! Ce test ne fonctionne que lorsque la loi donnée est une loi discrète de nombre d états fini. On note 1,..., k les différents états. La loi testée est donc de la forme : µ j = P (X = j). Les hypothèses H 0 et H 1 auront toujours la même forme. H 0 = Les X i suivent la loi µ H 1 = Les X i ne suivent pas la loi µ La démarche à suivre ensuite doit être apprise par coeur.