Chapitre I : Le transformateur

Documents pareils
Chapitre 7. Circuits Magnétiques et Inductance. 7.1 Introduction Production d un champ magnétique

M HAMED EL GADDAB & MONGI SLIM

ELEC2753 Electrotechnique examen du 11/06/2012

Electrotechnique. Fabrice Sincère ; version

Cours d électricité. Circuits électriques en courant constant. Mathieu Bardoux. 1 re année

CARACTERISTIQUE D UNE DIODE ET POINT DE FONCTIONNEMENT

Précision d un résultat et calculs d incertitudes

Module d Electricité. 2 ème partie : Electrostatique. Fabrice Sincère (version 3.0.1)

CH 11: PUIssance et Énergie électrique

Solutions pour la mesure. de courant et d énergie

Cours 9. Régimes du transistor MOS

Chapitre 1 Régime transitoire dans les systèmes physiques

Interaction milieux dilués rayonnement Travaux dirigés n 2. Résonance magnétique : approche classique

Les résistances de point neutre

Circuits RL et RC. Chapitre Inductance

Physique, chapitre 8 : La tension alternative

Les Conditions aux limites

MATIE RE DU COURS DE PHYSIQUE

Charges électriques - Courant électrique

CHAPITRE IX. Modèle de Thévenin & modèle de Norton. Les exercices EXERCICE N 1 R 1 R 2

Le transistor bipolaire

Monte charge de cuisine PRESENTATION DU MONTE CHARGE

1 Systèmes triphasés symétriques

CH IV) Courant alternatif Oscilloscope.

Union générale des étudiants de Tunisie Bureau de l institut Préparatoire Aux Etudes D'ingénieurs De Tunis. Modèle de compte-rendu de TP.

4.14 Influence de la température sur les résistances

Chauffage par induction

Cours d électricité. Introduction. Mathieu Bardoux. 1 re année. IUT Saint-Omer / Dunkerque Département Génie Thermique et Énergie

Plan du chapitre «Milieux diélectriques»

Exercice 1. Exercice n 1 : Déséquilibre mécanique

Champ électromagnétique?

Série 77 - Relais statiques modulaires 5A. Caractéristiques. Relais temporisés et relais de contrôle

L ÉLECTROCUTION Intensité Durée Perception des effets 0,5 à 1 ma. Seuil de perception suivant l'état de la peau 8 ma

Convertisseurs statiques d'énergie électrique

Résonance Magnétique Nucléaire : RMN

F = B * I * L. Force en Newtons Induction magnétique en teslas Intensité dans le conducteur en ampères Longueur du conducteur en mètres

08/07/2015

Chapitre 11 Bilans thermiques

Multichronomètre SA10 Présentation générale

LES APPAREILS A DEVIATION EN COURANT CONTINU ( LES APPREILS MAGNETOELECTRIQUES)

TSTI 2D CH X : Exemples de lois à densité 1

Eléments constitutifs et synthèse des convertisseurs statiques. Convertisseur statique CVS. K à séquences convenables. Source d'entrée S1

Chapitre 7 : CHARGES, COURANT, TENSION S 3 F

Contribution à la conception par la simulation en électronique de puissance : application à l onduleur basse tension

MOTO ELECTRIQUE. CPGE / Sciences Industrielles pour l Ingénieur TD06_08 Moto électrique DIAGRAMME DES INTER-ACTEURS UTILISATEUR ENVIRONNEMENT HUMAIN

Méthodes de Caractérisation des Matériaux. Cours, annales

Caractéristiques des ondes

Les indices à surplus constant

Fonctions de plusieurs variables

Introduction à l électronique de puissance Synthèse des convertisseurs statiques. Lycée Richelieu TSI 1 Année scolaire Sébastien GERGADIER

Oscillations libres des systèmes à deux degrés de liberté

I - Quelques propriétés des étoiles à neutrons

Notice d Utilisation du logiciel Finite Element Method Magnetics version 3.4 auteur: David Meeker

Les correcteurs accorderont une importance particulière à la rigueur des raisonnements et aux représentations graphiques demandées.

électricité Pourquoi le courant, dans nos maison, est-il alternatif?

CORRECTION TP Multimètres - Mesures de résistances - I. Mesure directe de résistors avec ohmmètre - comparaison de deux instruments de mesure

!!! atome = électriquement neutre. Science et technologie de l'environnement CHAPITRE 5 ÉLECTRICITÉ ET MAGNÉTISME

Les transistors à effet de champ.

Simulation Matlab/Simulink d une machine à induction triphasée. Constitution d un référentiel

Les puissances La notion de puissance La puissance c est l énergie pendant une seconde CHAPITRE

1 Définition. 2 Systèmes matériels et solides. 3 Les actions mécaniques. Le système matériel : Il peut être un ensemble.un sous-ensemble..

n 159 onduleurs et harmoniques (cas des charges non linéaires) photographie Jean Noël Fiorina

TS 35 Numériser. Activité introductive - Exercice et démarche expérimentale en fin d activité Notions et contenus du programme de Terminale S

Électricité au service des machines. heig-vd. Chapitre 3. Alimentations électriques, courant alternatif 3-1

Electrotechnique: Electricité Avion,

Décharge électrostatique

NOTATIONS PRÉLIMINAIRES

Multitension Monofonction. Multitension Multifonction

1 Savoirs fondamentaux

CHAPITRE XIII : Les circuits à courant alternatif : déphasage, représentation de Fresnel, phaseurs et réactance.

1 ère partie : tous CAP sauf hôtellerie et alimentation CHIMIE ETRE CAPABLE DE. PROGRAMME - Atomes : structure, étude de quelques exemples.

Gestion et entretien des Installations Electriques BT

Examen optimisation Centrale Marseille (2008) et SupGalilee (2008)

PRODUIRE DES SIGNAUX 1 : LES ONDES ELECTROMAGNETIQUES, SUPPORT DE CHOIX POUR TRANSMETTRE DES INFORMATIONS

CHAPITRE IX : Les appareils de mesures électriques

5. Les conducteurs électriques

Relais statiques SOLITRON, 1 ou 2 pôles Avec dissipateur intégré

Chapitre 1 Cinématique du point matériel

1 000 W ; W ; W ; W. La chambre que je dois équiper a pour dimensions : longueur : 6 m largeur : 4 m hauteur : 2,50 m.

TP 7 : oscillateur de torsion

Fonctions de deux variables. Mai 2011

Electricité Générale

Mathématiques et petites voitures

Introduction : Les modes de fonctionnement du transistor bipolaire. Dans tous les cas, le transistor bipolaire est commandé par le courant I B.

Le triac en commutation : Commande des relais statiques : Princ ipe électronique

AMELIORATION DE LA FIABILITE D UN MOTEUR GRÂCE AU TEST STATIQUE ET DYNAMIQUE

MESURE DE LA TEMPERATURE

CHAPITRE VIII : Les circuits avec résistances ohmiques

Contrôle non destructif Magnétoscopie

efelec NOTES D'INFORMATIONS TECHNIQUES LES TESTS DIELECTRIQUES LES ESSAIS DE RIGIDITE ET D'ISOLEMENT

Mario Geiger octobre 08 ÉVAPORATION SOUS VIDE

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

0.8 U N /0.5 U N 0.8 U N /0.5 U N 0.8 U N /0.5 U N 0.2 U N /0.1 U N 0.2 U N /0.1 U N 0.2 U N /0.1 U N

Sujet proposé par Yves M. LEROY. Cet examen se compose d un exercice et de deux problèmes. Ces trois parties sont indépendantes.

ANALYSE SPECTRALE. monochromateur

Les Mesures Électriques

RELAIS STATIQUE. Tension commutée

MESURE ET PRECISION. Il est clair que si le voltmètre mesure bien la tension U aux bornes de R, l ampèremètre, lui, mesure. R mes. mes. .

MESURE DE LA PUISSANCE

SUJET ZÉRO Epreuve d'informatique et modélisation de systèmes physiques

Transcription:

Spéciale PSI - Cours "Conversion de puissance" 1 Conversion électromagnétique statique Objectifs : Chapitre I : Le transformateur déterminer les principales caractéristiques d un transformateur et comprendre son principe de fonctionnement ; présenter un modèle simple : le transformateur parfait. 1. Introduction Les chapitres précédents abordaient le problème de traitement du signal sans aucune référence aux puissances mises en jeu alors que les techniques à utiliser ne sont pas les mêmes si ces puissances sont de l ordre du milliwatt ou du kilowatt. De plus, les procédés de production, de transport et d utilisation de l énergie électrique font appel à de nombreuses conversions de puissance. Production : dans les centrales, l énergie thermique est convertie en énergie mécanique (mise en mouvement des turbines) puis en énergie électrique grâce à un alternateur qui réalise une conversion électromécanique. (cas particulier des centrales hydroélectriques). Transport : pour diminuer les pertes par e*et Joule dans les lignes électriques on transporte l énergie électrique sous haute tension. Pour limiter les risques, l utilisateur reçoit cette énergie sous une tension bien plus faible. Ces di*érentes conversions statiques de la puissance sont obtenus grâce à des transformateurs. Utilisation : selon les modes d utilisation, il pourra être nécessaire d e*ectuer une conversion électronique de puissance. Au cours de ces conversions la puissance reçue en entrée P e est égale à la somme de la puissance P s cédée en sortie et de la puissance P P perdue (sous forme de chaleur, rayonnement, vibrations mécaniques). On dé0nit alors le rendement du convertisseur comme le rapport de la puissance utile délivrée à la charge à la puissance absorbée à la source : P e = P s + P P et = Ps P e Exercice n 01 : Nécessité des hautes tensions Quels diamètres de 0l choisir pour fournir à une usine, distant de 50 km, une puissance de 10 MW avec moins de 10% de pertes sous une tension de 220 V ou de 200.10 3 V? La résistivité du cuivre est =2, 0.10 8.m. Exercice n 02 : Limite d utilisation d un montage potentiométrique dans la conversion de puissance E =24V,R=80, on pose r 1 + r 2 = R et R =1k. 1) On réalise le montage ci-dessus. Déterminer la fem E et la résistance interne r i du dipôle AA.Exprimeret r i en fonction de r 1 et r 2. 2) En déduire la puissance P 2 dissipée dans la résistance de charge R en fonction de E,, R et R. 3) Calculer la puissance P 1 fournie par la source de tension E en fonction de E,, R et R. 4) En déduire le rendement en puissance du circuit en fonction de, R et R. Application numérique : calculer pour =3/4. Que pensez-vous de la valeur obtenue?

Conversion de puissance. Chapitre I : Le transformateur 2 2. Rappels Les phénomènes expérimentaux liés aux milieux magnétiques sont très bien interprétés à l échelle macroscopique par l hypothèse que tout élément de volume d un matériau aimanté possède un moment dipolaire magnétique. Le phénomène d aimantation est alors entièrement caractérisé par la densité volumique de moment dipolaire, champ vectoriel que nous désignerons par M ; M est appelé vecteur aimantation ou simplement aimantation du milieu. Unité: M s exprime en Ampère par mètre (symbole Am 1 ) dans le système d unités internationale. Par dé0nition on appelle vecteur H ou vecteur excitation magnétique le vecteur donné en tout point par la relation H = B µ o M Le vecteur H a la même dimension que le vecteur M, il s exprime donc en Ampère par mètre (symbole Am 1 )ensi. Le théorème d Ampère s écrira alors dans un milieu magnétique H.d D = j.ds + C S S t.d S soit dans l ARQS H.d l = Ilibre, enlacé C Loi de Faraday généralisée : Pour une maille fermée, mobile dans un champ magnétique variable B, la f.e.m. d induction est donnée par la loi de Faraday : e = d où d représente la dérivée totale du Aux (t), tenant compte du déplacement du circuit et de la variation de B. (e est la somme de e L = C v e B.d et de e N = A C t.d ). Si le circuit à une inductance propre L et est parcouru par un courant d intensité i alors = L.i et e = L di Si deux circuits sont en inductance mutuelle et en supposant qu il n y a pas d autre source de champ magnétique, lesaux totaux à travers chacune des deux bobines s écrivent : 1 = 11 + 21 = L 1 i 1 + Mi 2 D où les f.e.m. induites : 2 = 22 + 12 = L 2 i 2 + Mi 1 e 1 = d 1 di = L 1 1 M di 2 e 2 = d2 di = L 2 2 M di1 R 1 L 1 M i1 L 2 R 2 i 2 A B C D R 1 i 1 i 2 R 2 A B C D e 1 e 2 On en déduit les di*érences de potentiel aux bornes de chacun des deux circuits : di 1 u AB = v 1 = R 1 i 1 e 1 = R 1 i 1 + L 1 + M di 2 di 2 u CD = v 2 = R 2 i 2 e 2 = R 2 i 2 + L 2 + M di 1 Les équations électriques de chacune des deux branches sont couplées par inductance mutuelle. En régime sinusoïdal permanent à la pulsation! ces équations deviennent : v 1 = R 1 i 1 + j!l 1 i 1 + j!mi 2 v 2 = R 2 i 2 + j!l 2 i 2 + j!mi 1

Conversion de puissance. Chapitre I : Le transformateur 3 3. Le transformateur 3.1. Description du dispositif Un transformateur est constitué d un circuit magnétique fermé sur lequel sont bobinés deux enroulements électriquement indépendants (galvaniquement isolé) : le primaire (relié à la source) et le secondaire (relié à la charge) (dans le cas particulier de l autotransformateur, il n y a qu un seul bobinage : le secondaire est une partie du primaire). Le circuit magnétique est constitué d un matériau ferromagnétique (cf. travaux pratiques), en général de minces tôles de fer au silicium d épaisseur comprise environ entre 0, 05 mm et 0, 5mm isolées les unes des autres par du vernis ou par une oxydation super0cielle, et fortement comprimées par un système de serrage. Chacun des circuits électriques est constitué de 0l de cuivre ou d aluminium émaillé ou enrubanné de coton, papier ou toile pour l isolation électrique. Ces circuits sont noyés dans de la résine ou imprégnés de vernis et comprimés pour résister aux e*orts électromagnétiques. Dans les transformateurs de forte puissance, le circuit électrique est isolé du circuit ferromagnétique et de l enveloppe extérieure par un diélectrique (de l huile ou du pyralène, avant son interdiction). Ce Auide permet aussi d évacuer vers l extérieur la chaleur dissipée dans le transformateur. Importance du circuit ferromagnétique : Grâce aux propriétés ferromagnétiques du matériau qui le constitue, le circuit magnétique canalise les lignes de champ magnétique : le champ magnétique peut être considéré comme quasiment nul en dehors du matériau, appelé ici noyau. Le couplage entre les enroulements est alors pratiquement total, car quasiment toutes les lignes de champ magnétique traversent les deux enroulements. De plus, le circuit ferromagnétique rend l intensité dans le circuit primaire très faible en l absence de courant dans le secondaire. L utilisation de tôles feuilletées dans le sens du champ magnétique permet de diminuer les pertes par courants de Foucault. 3.2. Convention d orientation On oriente de façon arbitraire le circuit magnétique. L orientation des enroulements primaire et secondaire est telle que leur normale (obtenue avec les règles habituelles) est dans le sens choisi pour l orientation du circuit magnétique. On repère alors par deux points une paire de bornes homologues du transformateur : cette paire est composée de la borne du primaire et de celle du secondaire par où rentre un courant positif avec la convention d orientation précédente. 3.3. Hypothèses simpli,catrices L étude d un transformateur réel est complexe mais nous pourrons adopter des hypothèses simpli0catrices : sur le matériau constituant le noyau : le noyau est torrique les champs magnétiques mis en jeu sont faibles devant le champ de saturation et le cycle d hystérésis est suesamment étroit pour être assimilé à un segment de droite. On peut alors faire l approximation d un milieu linéaire, homogène et isotrope (milieu L.H.I.) pour lequel B = µ 0 µ r H

Conversion de puissance. Chapitre I : Le transformateur 4 l hypothèse précédente peut être complétée : dans le cas des matériaux ferromagnétiques, la perméabilité relative µ r est souvent grande devant 1 et on ferra parfois l approximation µ r +. sur le champ magnétique dans le noyau : les lignes de champ magnétique sont assimilées à des cercles de même axe de révolution que le tore, qui se comporte donc comme un tube de champ. Il n y a pas de fuites (c est à dire pas de lignes de champ qui se referment en dehors du noyau). II en résulte que le 0ux du champ B à travers toute section est constant et que le couplage entre les deux enroulements est total. on considère la section du tore de diamètre très inférieur au rayon moyen R, de telle sorte qu on puisse supposer les champs uniformes sur toute une section. sur les enroulements : Ils sont parfaitement conducteurs et ne présentent pas de pertes par e*et Joule. Exercice n 03 : Etude d une bobine à noyau torique Une bobine est constituée de n 1 spires pratiquement jointives de rayon a, enroulées en une seule couche sur un tore de rayon moyen r 0. L enroulement est réalisé avec un 0l de cuivre de diamètre d a. La bobine est parcourue par un courant I. 1) Quelle est la forme des lignes de champ magnétique? 2) Exprimer le champ magnétique B enunpointp situé à l intérieur du tore et repéré par les coordonnées r et $. 3) Calculer l inductance propre L de la bobine. On considérera pour cela que r 0 a et les calculs seront développés au second ordre. 4) Calculer la valeur maximale que doit avoir le rapport a/r 0 pour que l on puisse considérer que L L 1 = µ 0 n2 1 a2 2r 0,avecune précision supérieure à 1%? µ 0 est la perméabilité du vide. Application numérique: d =0, 4mm,a=6mm,r 0 =30mm. 4.Mise en équation du transformateur parfait 4.1. Notations Soit un transformateur pour lequel toutes les hypothèses simpli0catrices précédentes sont applicables (sauf µ r +) :

Conversion de puissance. Chapitre I : Le transformateur 5 le noyau est torrique et constitué d un milieu linéaire, homogène et isotrope : B = µ 0 µ r H les lignes de champ magnétique sont assimilées à des cercles de même axe de révolution que le tore (le Aux du champ B à travers toute section est constant et le couplage entre les deux enroulements est total) et les champs sont uniformes sur toute une section. les enroulements sont parfaitement conducteurs et ne présentent pas de pertes par e*et Joule. Soit n 1 (respectivement n 2 ) le nombre de spires du primaire (respectivement du secondaire) et i 1,i 2,v 1 et v 2 les courants et les tensions indiqués sur la 0gure 1 ci-dessus. 4.2. Expression des tensions 4.2.1. Première méthode les lignes de champ étant des cercles, le théorème d Ampère appliqué au cercle orienté C de rayon R donne : H.d l = Ilibre, enlacé C l excitation magnétique H est donc : le milieu est linéaire, homogène et isotrope H = 1 2&R (n 1i 1 + n 2 i 2 ) u B = µ 0 µ r H = µ 0µ r 2&R (n 1i 1 + n 2 i 2 ) u le Aux de B à travers toute section du tore s écrit : = B.dS = BS = µ 0µ r 2&R (n 1i 1 + n 2 i 2 ) S Ce Aux, souvent appelé 0ux commun (c est la grandeur qui assure le couplage entre le primaire et le secondaire) est le Aux pour une spire. C est une grandeur continue ( est lié à l énergie emmagasinée dans le noyau). Dans chaque enroulement va apparaître un phénomène d induction lorsque le Aux va varier. On modélise alors le transformateur par le quadripôle de la 0gure 2 du paragraphe 4.1.. Il y a n 1 spires au primaire, le Aux à travers ce conducteur est donc 1 = n 1 et la loi de Faraday donne (résistance des bobinages négligeables) : v 1 = e 1 = d 1 d = n 1 = n d µ0 µ r S 1 2&R (n 1i 1 + n 2 i 2 ) v 1 = µ 0µ r S di 1 2&R n2 1 + µ 0µ r S 2&R n di 2 1n 2 de même au secondaire on obtient : 4.2.2. Deuxième méthode = n 2 d v 2 = e 2 = d 2 = µ 0µ r S 2&R n di 1 1n 2 + µ 0µ r S 2&R n2 2 di 2 v 1 = e 1 = µ 0 µ r S 2R n2 1 di1 + µ 0 µ r S 2R n di 1n 2 2 v 2 = e 2 = µ 0 µ r S 2R n di 1n 1 2 + µ 0 µ r S 2R n2 2 di 2 On pouvait retrouver directement ces résultats grâce aux rappels du paragraphe 2 : nous pouvons donner le schéma électrique équivalent du transformateur (avec les hypothèses précédentes) :

Conversion de puissance. Chapitre I : Le transformateur 6 di v 1 = e 1 = L 1 1 + M di2 di v 2 = e 2 = L 2 2 + M di1 n avec L 1 = µ 0 µ 2 1 S r 2R et L n 2 = µ 0 µ 2 2 S r 2R et M = L 1 L 2 = inductance mutuelle avec couplage total 4.3. Rapport de transformation en tension D après le paragraphe 4.2. v 1 = n 1 d et v 2 = n 2 d et donc v 2 v 1 = n2 n 1 = m = rapport de transformation en tension 4.4. Transformateur parfait : rapport de transformation en courant Dans le modèle du transformateur parfait nous supposons de plus que la perméabilité relative µ r du matériau magnétique tend vers l in,ni. L expression du Aux donne = µ 0µ r 2&R (n 1i 1 + n 2 i 2 ) S n 1 i 1 + n 2 i 2 =2&R 0 et donc µ 0 µ r S i 2 i 1 n1 n 2 = 1 m si µ r Le symbole d un transformateur parfait, est donné ci-dessous : Remarques : 1) Dans un transformateur parfait, la puissance instantanée absorbée au primaire p 1 = u 1.i 1 est égale à la puissance instantanée cédée au secondaire p 2 = u 2.i 2. Cette propriété restant vraie pour les valeurs moyennes, le rendement d un transformateur parfait est donc égal à 1. Le transformateur est utilisable comme convertisseur de puissance, même pour de fortes puissances. 2) Dans un transformateur parfait n 1 i 1 + n 2 i 2 0, l excitation magnétique H est donc nulle. 4.5. Fonctionnement en régime sinusoïdal Dans le cas où les tensions et courants primaires et secondaires varient sinusoïdalement dans le temps, les équations générales de fonctionnement du transformateur s écrivent en notation complexe : di v 1 = L 1 1 + M di2 di et v 2 = L 2 2 + M di1 V 1 = jl 1!I 1 + jm!i 2 et V 2 = jl 2!I 2 + jm!i 1 Il en est de même pour les relations de transformation des courants et tensions V 2 = mv 1 et I 1 mi 2 Exercice n 04 : Caractéristiques d un transformateur Le rapport de transformation d un transformateur parfait est de 0, 22. L enroulement secondaire comporte 100 spires. 1) Quel est le nombre de spires au primaire?

Conversion de puissance. Chapitre I : Le transformateur 7 2) Le primaire est alimenté sous 1000 V, 50 Hz, le secondaire est relié à un moteur de puissance 1000 W et de cos ) =0, 8. a) Quelle est la tension au secondaire? b) Quels sont les courants dans les circuits primaire et secondaire? Exercice n 05 : Fonction de transfert Un transformateur a le schéma équivalent donné ci-dessus. Au primaire est connectée une source sinusoïdale de fem complexe e et de résistance interne ;lesecondaireestfermésurunerésistancedecharger ch. 1) v étant la tension aux bornes de R ch, déterminer, en notation opérationnelle, la fonction de transfert V (p) /E (p). 2) A quel modèle mathématique correspond-elle selon que l on suppose ou non le couplage total? 4.6. Transfert d impédance par un transformateur parfait Vu du primaire, l ensemble transformateur charge est équivalent à un dipôle dont les caractéristiques dépendent de la charge et du rapport de transformation. Remplacer l ensemble {transformateur + charge} par le dipôle équivalent est appelé transfert des caractéristiques de la charge au primaire. La caractéristique courant-tension de la charge donne la relation entre u 2 et i 2. Les équations couplant le primaire et le secondaire permettent de déterminer la relation entre u 1 et i 1. Plaçons-nous dans le cas d un régime sinusoïdal forcé de pulsation! et d une charge représentée par un dipôle linéaire d impédance Z c (p). Les équations U 2 (p) =Zc(p).I 2 (p), U 2 (p) =mu 1 (p) et I 1 (p) =mi 2 (p) imposent la relation : U 1 (p) = Z c(p).i 1 (p) m 2 L impédance vue au niveau du primaire du transformateur est Zc(p) m impédance de la charge Z 2 c (p) (branchée au secondaire) divisée par le carré du rapport m de transformation. L impédance vue au primaire du transformateur parfait a la même phase que l impédance de la charge. En particulier, une résistance est vue comme une résistance, un condensateur comme un condensateur et une bobine comme une bobine. 4.7. Transfert de la source Inversement, vu du secondaire, l ensemble transformateur-source est équivalent à un dipôle dont les caractéristiques dépendent de la source et du rapport de transformation. Remplacer l ensemble {transformateur + source} par le dipôle équivalent est appelé transfert des caractéristiques de la source au secondaire. Plaçons-nous du point de vue de la charge et cherchons le dipôle équivalent au transformateur alimenté par un générateur. La relation entre la tension u 1 aux bornes du générateur et son courant de sortie i 1 0xe la relation entre u 2 et i 2. Dans le cas d un régime sinusoïdal forcé de pulsation!, modélisons la source par un générateur de Thévenin de f.e.m. E(p) et d impédance Z s (p) en notation opérationnelle. Des relations U 1 (p) =E(p) Z s (p).i 1 (p) dé0nissant le générateur et l ensemble des relations U 2 (p) =m.u 1 (p) et I 2 (p) = I1(p) m caractéristiques du transformateur, nous déduisons : U 2 (p) =m.e(p)+m 2 Z s (p)i 2 (p)

Conversion de puissance. Chapitre I : Le transformateur 8 La source vue à travers le transformateur parfait est équivalente à un générateur de Thévenin de f.e.m. m.e(p) et d impédance m 2 Z s (p): La source transférée au secondaire a pour f.e.m. m.e(p), et pour impédance m 2 Z s (p): la f.e.m. E(p) de la source (branchée au primaire) est multipliée par le rapport m de transformation ; l impédance Z s (p) de cette source est multipliée par le carré du rapport m de transformation. Exercice n 06 : Adaptation à l aide d un transformateur Un générateur sinusoïdal a une force électromotrice complexe e et une résistance interne R e ; il est chargé par une résistance R ch. 1) Déterminer la puissance moyenne que dissipe le générateur dans R ch. 2) Déterminer le rapport m du transformateur parfait à interposer entre la source et la charge pour que la puissance que cette dernière absorbe soit maximale. Que vaut alors cette puissance? Exercice n 07 : Transfert d impédance et de puissance Soit un transformateur considéré comme parfait de rapport de transformation m =0, 22. Son primaire est relié à une source de tension de 10 3 V, 50 Hz. Son secondaire est relié à un moteur de puissance 5kW considéré comme un dipôle inductif de cos ) =0, 9. 1) Calculer l impédance du moteur. 2) Calculer cette impédance ramenée au primaire du transformateur. 3) La ligne d alimentation primaire du transformateur présente en fait une résistance de 1. 3.a) Quelle est la puissance fournie au moteur? Quelle est celle fournie par la source de 10 3 V? 3.b) Comparer ces résultats à ceux obtenus avec la même ligne alimentée en 220 V et reliée au même moteur. 5. Exemples d utilisation 5.1. Problème de la composante continue Si le courant primaire est continu et qu il n y a pas de source de signal (tension ou courant) connectée au secondaire, alors di 1 / =0donc v 1 = v 2 =0; le primaire se comporte, vis à vis du continu, comme un court-circuit. Il ne faut donc pas connecter directement le primaire du transformateur à une source de tension continue, ou plus généralement à tout générateur possédant une valeur moyenne de tension non nulle, sous peine de détériorer la source ou l enroulement si aucune limitation de courant n a été prévue. 5.2. Transformateur d isolement Lorsque l on cherche à interconnecter deux circuits, il arrive que leurs masses soient distinctes et que le raccordement soit problématique. L insertion d un transformateur d isolement (de rapport parfois égal à 1) permet alors de s a*ranchir de la dieculté : on utilise les propriétés d isolation galvanique du transformateur.

Conversion de puissance. Chapitre I : Le transformateur 9 5.2.1. Sécurité secteur : transformateur d isolement abaisseur Tous les points du montage sont galvaniquement isolés de la phase et du neutre du secteur. 5.2.2. Mesure Lorsque l on cherche à visualiser, sur un oscilloscope, la caractéristique i(v) d un dipôle en mesurant simultanément la tension à ses bornes et le courant le traversant par l intermédiaire de la tension aux bornes d une résistance placée en série, on peut être confronté à un problème de masse. Il est possible de surmonter la dieculté en utilisant un transformateur d isolement. 5.3. Conclusion Selon les cas un transformateur permet d : augmenter ou abaisser l amplitude d une tension (transformateur de tension) isoler deux circuits (transformateur d isolement) adapter l impédance (cf. 4.5. et 4.6.) Caractéristiques nominales d un transformateur : Un transformateur doit être adapté à la source et à la charge auxquelles il est relié. Pour cette raison, les constructeurs précisent les caractéristiques suivantes : la fréquence d utilisation, la tension d alimentation primaire, la tension de sortie à vide la puissance apparente (ou l intensité nominale). La puissance apparente est le produit de l intensité nominale (qui correspond aux conditions d utilisation optimale du transformateur) par la tension de sortie à vide elle est exprimée en VA etnonenwatts. Le constructeur indique parfois la tension secondaire en charge pour le courant nominal avec un facteur de puissance qui est précisé. Elle di*ère, en général, de moins de 5% de la tension à vide. Par exemple, un transformateur 220 V 24 V 100 V A doit être relié à une source de tension eecace 220 V 50 Hz et fournit une intensité de 100 24 =4, 2A sous 24 V dans les conditions nominales. 6. Transformateur réel (modèle linéaire) On se propose d examiner successivement les causes d écart entre le fonctionnement réel d un transformateur et le modèle du transformateur parfait.

Conversion de puissance. Chapitre I : Le transformateur 10 6.1. Perméabilité du matériau 6.1.1. Courant magnétisant Dans le transformateur parfait µ r ; supposons que le matériau L.H.I. a une perméabilité relative µ r,nie. D après le théorème d Ampère : H.d l = Ilibre, enlacé = n 1 i 1 + n 2 i 2 ligne de champ On dé0nit alors le courant magnétisant i m par : Cette dé0nition donne i m = i 1 + n 2 n 1 i 2 = courant magnétisant n 1 i m = n 1 i 1 + n 2 i 2 = n 1 i 1 + n 2 i 2 = n 1 ligne dechamp Le courant magnétisant i m est l intensité parcourant le primaire, avec le secondaire en circuit ouvert (i 2 =0), créant la même excitation magnétique qu au point de fonctionnement dé,ni par les intensités i 1 et i 2. Dans le cas d un noyau torique ligne H.d l =2&RH = H avec = périmètre du tore : de champ i m = H = B = 1 n 1 n 1 µ 0 µ r n 1 µ 0 µ r S Remarque :Siµ r est 0nie l exitation magnétique n est plus nulle. 6.1.2. Modélisation Montrons qu un transformateur dont le seul défaut est l existence d un courant magnétisant peut être modélisé par le circuit ci-dessous : H.d l par dé0nition de i m : i m = i 1 + n 2 n 1 i 2 v 1 = L? di m = L? d i 1 + n2 n 1 i 2 di 1 = L? + n 2 di 2 L? n 1 di 1 le quadripôle complet (i.e. les deux circuits couplés) véri0e v 1 = L 1 + M di 2 di 1 par identi0cation : L 1 + M di 2 = L di 1? + n 2 di 2 L? n 1 L? = L 1 Remarque : le couplage étant total M = L 1 L 2 et la deuxième égalité L? = n1 n 2 M = n1 n L1 2 L 2 est compatible car n L 1 = µ 0 µ 2 1 S r 2R et L n 2 = µ 0 µ 2 2 S r 2R (bobinage sur noyau torique) donc L? = n 1 n L1 2 L 2 = n 1 n n 2 L 1 L 2 2 1 = L 1. 6.2. Inductances de fuite Dans le modèle du transformateur parfait le couplage était total. Si il y a des fuites magnétiques (certaines lignes de champ traversent un enroulement sans traverser l autre) alors il apparaît pour chacun des enroulements un Aux qui n est pas commun, dont on peut tenir compte en ajoutant au modèle du transformateur parfait des inductances l 1 et l 2, dites inductances de fuite : n 2 1

Conversion de puissance. Chapitre I : Le transformateur 11 Exercice n 08 : Inductances de fuite d un système de circuits couplés linéaires Soit un système de deux circuits couplés. Le Aux à travers le primaire s écrit 1 = L 1 i 1 + Mi 2 et à travers le secondaire 2 = L 2 i 2 + Mi 1 avec M 2 M <L 1 L 2.Soitk = 2 L 1L 2 le coeecient de couplage des circuits. 1) Montrer que le système peut être modélisé par le circuit ci-dessous pour lequel L f 1 =(1k)L 1,L f 2 =(1k)L 2,L= kl 1 et m = M kl 1 = kl2 M. 2) Véri0er que ces résultats sont compatibles avec le paragraphe 6.1.2.. 6.3. Résistances de bobinage Dans le modèle du transformateur parfait le bobinage du transformateur avait une résistance nulle. En réalité le 0l utilisé a une résistivité non nulle et donc une résistance r = S avec = longueur du 0l ets = section du 0l Le primaire et le secondaire présente donc une résistance qui par e*et de peau peut dépendre de la fréquence (la conduction ne se fait pas uniformément dans la section du 0l). 6.4. Transformateur réel Nous pouvons maintenant modéliser un transformateur dont : le noyau a une permitivité relative 0nie, le couplage entre primaire et secondaire n est que partiel, les enroulements sont résistifs : On pourra si nécessaire ramener les impédances au primaire ou au secondaire.

Conversion de puissance. Chapitre I : Le transformateur 12 Les pertes par e*et Joule dans les conducteurs sont appelées pertes cuivre par opposition aux pertes fer (pertes par courants de Foucault + pertes par hystérésis), autre cause de dissipation de puissance dans un transformateur (cf. TP sur le transformateur). Pour tenir compte des pertes fer on peut ajouter une résistance supplémentaire R f en parallèle sur L : Mais ce dernier modèle est encore imparfait car les pertes fer ne correspondent pas à des e*ets linéaires ; On introduit alors un dipôle non linéaire :

Conversion de puissance. Chapitre I : Le transformateur 13 Exercice n 09 : Transformateur en charge Lors d un essai à vide sous une tension sinusoïdale primaire de 225 V, la tension mesurée au secondaire est de 27 V. Le nombre de spires du circuit secondaire est de 50. 1) On suppose le transformateur parfait : a) Calculer le nombre de spires au primaire. b) Lors d un essai en charge avec une charge résistive sous la même tension primaire, l intensité au secondaire est de 20 A. Calculer l intensité au primaire lors de cet essai en charge. 2) En charge, la tension mesurée au secondaire est de 25 V. Pour interpréter cette chute de tension, on tient compte de la résistance des bobinages. Quelle est la résistance équivalente du transformateur ramenée au primaire? ramenée au secondaire? Quelle est la puissance dissipée par e*et Joule dans le transformateur? Exercice n 10 : Rendement d un transformateur non idéal Un transformateur, pour lequel on néglige les pertes par courant de Foucault et hystérésis, a un schéma équivalent de la forme donnée ci-dessus. Dans ce schéma, les inductances de fuite et les résistances rendant compte des pertes Joule dans les enroulements ont été ramenées au secondaire. La perméabilité relative du noyau magnétique est supposée très élevée. Au primaire est connectée une source de tension sinusoïdale de force électromotrice complexe e, de pulsation! et d impédance interne nulle. Le secondaire est chargé par une résistance pure R ch. 1) Déterminer la tension complexe aux bornes de R ch ; comment varie son amplitude avec la pulsation? 2) Déterminer le rendement du transformateur (rapport de la puissance moyenne absorbée par R ch à la puissance moyenne absorbée au primaire). 3) Déterminer la capacité du condensateur qui, inséré en série entre le secondaire et la résistance de charge, permet de recueillir une tension d amplitude maximale aux bornes de celle-ci. Conclure. Exercice n 11 : Surintensité à la mise sous tension d un transformateur Le noyau ferromagnétique d un transformateur torique a un cycle d hystérésis de la forme représentée ci-dessus. Le noyau a une section de révolution S, unrayonmoyenr ; le primaire comporte n 1 spires et le secondaire est laissé en circuit ouvert. Les Aux de fuite sont négligés, de même que les pertes Joule des enroulements. On suppose qu aux instants t<0, la tension au primaire est nulle, et que l induction rémanente dans le noyau est B r. Aux instants t 0, le primaire est soumis à une tension de la forme U 1 sin (!t). 1) Déterminer l équation di*érentielle à laquelle obéit le Aux ) dans le noyau. L intégrer en tenant compte de la continuité au temps t =0(propriété que l on justi0era). 2) Que peut-on dire du champ magnétique H si U 1 > BsatBr 2 n 1 S!? Qu observe t-on alors sur le courant traversant le primaire? Conclure.