Chapitre III : Probabilités discrètes

Documents pareils
Probabilités. I Petits rappels sur le vocabulaire des ensembles 2 I.1 Définitions... 2 I.2 Propriétés... 2

Lois de probabilité. Anita Burgun

Probabilité. Table des matières. 1 Loi de probabilité Conditions préalables Définitions Loi équirépartie...

TSTI 2D CH X : Exemples de lois à densité 1

Probabilités conditionnelles Exercices corrigés

Calculs de probabilités conditionelles

Probabilités conditionnelles Loi binomiale

Exercices sur le chapitre «Probabilités»

GEA II Introduction aux probabilités Poly. de révision. Lionel Darondeau

Probabilités Loi binomiale Exercices corrigés

Probabilités sur un univers fini

Probabilités. Rappel : trois exemples. Exemple 2 : On dispose d un dé truqué. On sait que : p(1) = p(2) =1/6 ; p(3) = 1/3 p(4) = p(5) =1/12

Fluctuation d une fréquence selon les échantillons - Probabilités

I. Cas de l équiprobabilité

Baccalauréat ES Antilles Guyane 12 septembre 2014 Corrigé

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures)

Probabilités. C. Charignon. I Cours 3

Probabilités et Statistiques. Feuille 2 : variables aléatoires discrètes

Probabilités sur un univers fini

Loi binomiale Lois normales

P1 : Corrigés des exercices

Probabilités conditionnelles Loi binomiale

LEÇON N 7 : Schéma de Bernoulli et loi binomiale. Exemples.

PROBABILITÉS CONDITIONNELLES

CALCUL DES PROBABILITES

Distribution Uniforme Probabilité de Laplace Dénombrements Les Paris. Chapitre 2 Le calcul des probabilités

Probabilités (méthodes et objectifs)

Université Paris 8 Introduction aux probabilités Licence Informatique Exercices Ph. Guillot. 1 Ensemble fondamental loi de probabilité

Qu est-ce qu une probabilité?

Couples de variables aléatoires discrètes

Probabilités. Une urne contient 3 billes vertes et 5 billes rouges toutes indiscernables au toucher.

Les probabilités. Chapitre 18. Tester ses connaissances

Estimation: intervalle de fluctuation et de confiance. Mars IREM: groupe Proba-Stat. Fluctuation. Confiance. dans les programmes comparaison

Les devoirs en Première STMG

Licence MASS (Re-)Mise à niveau en Probabilités. Feuilles de 1 à 7

DENOMBREMENT-COMBINATOIRE-PROBABILITES GENERALES

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre :

Exo7. Probabilité conditionnelle. Exercices : Martine Quinio

Représentation d une distribution

Travaux dirigés d introduction aux Probabilités

Calcul élémentaire des probabilités

Indépendance Probabilité conditionnelle. Chapitre 3 Événements indépendants et Probabilités conditionnelles

Correction du baccalauréat ES/L Métropole 20 juin 2014

Exemple On lance une pièce de monnaie trois fois de suite. Calculer la probabilité d obtenir exactement deux fois pile.

Les probabilités. Guide pédagogique Le présent guide sert de complément à la série d émissions intitulée Les probabilités produite par TFO.

Probabilités conditionnelles

Calculs de probabilités

Estimation et tests statistiques, TD 5. Solutions

Probabilités. I - Expérience aléatoire. II - Evénements

Coefficients binomiaux

Seconde et première Exercices de révision sur les probabilités Corrigé

BACCALAURÉAT GÉNÉRAL SESSION 2012 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE

Correction du Baccalauréat S Amérique du Nord mai 2007

Baccalauréat ES/L Amérique du Sud 21 novembre 2013

LES GENERATEURS DE NOMBRES ALEATOIRES

Exercices supplémentaires sur l introduction générale à la notion de probabilité

Capacité d un canal Second Théorème de Shannon. Théorie de l information 1/34

NOTIONS DE PROBABILITÉS

Andrey Nikolaevich Kolmogorov

TESTS D'HYPOTHESES Etude d'un exemple

Programmes des classes préparatoires aux Grandes Ecoles

Exercices types Algorithmique et simulation numérique Oral Mathématiques et algorithmique Banque PT

EI - EXERCICES DE PROBABILITES CORRIGES

FORMULAIRE DE STATISTIQUES

Arbre de probabilité(afrique) Univers - Evénement

Théorie et Codage de l Information (IF01) exercices Paul Honeine Université de technologie de Troyes France

Objets Combinatoires élementaires

Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé

Feuille 6 : Tests. Peut-on dire que l usine a respecté ses engagements? Faire un test d hypothèses pour y répondre.

Exercices de dénombrement

Calculs de probabilités avec la loi normale

Commun à tous les candidats

Introduction au Calcul des Probabilités

Corrigé du baccalauréat S Pondichéry 12 avril 2007

Simulation de variables aléatoires

Soit la fonction affine qui, pour représentant le nombre de mois écoulés, renvoie la somme économisée.

Baccalauréat ES/L Métropole La Réunion 13 septembre 2013 Corrigé

La maison Ecole d ' Amortissement d un emprunt Classe de terminale ES. Ce qui est demandé. Les étapes du travail

SOCLE COMMUN - La Compétence 3 Les principaux éléments de mathématiques et la culture scientifique et technologique

Chapitre 2. Eléments pour comprendre un énoncé

Moments des variables aléatoires réelles

1. Déterminer l ensemble U ( univers des possibles) et l ensemble E ( événement) pour les situations suivantes.

Master IMEA 1 Calcul Stochastique et Finance Feuille de T.D. n o 1

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé

Chapitre 3 : INFERENCE

POKER ET PROBABILITÉ

Baccalauréat ES Pondichéry 7 avril 2014 Corrigé

ENS de Lyon TD septembre 2012 Introduction aux probabilités. A partie finie de N

Résolution d équations non linéaires

Cours de Probabilités et de Statistique

Algorithmes de Transmission et de Recherche de l Information dans les Réseaux de Communication. Philippe Robert INRIA Paris-Rocquencourt

4 Distributions particulières de probabilités

UFR de Sciences Economiques Année TESTS PARAMÉTRIQUES

Raisonnement probabiliste

PROBABILITES ET STATISTIQUE I&II

Chaînes de Markov au lycée

Manuel d utilisation 26 juin Tâche à effectuer : écrire un algorithme 2

TS 35 Numériser. Activité introductive - Exercice et démarche expérimentale en fin d activité Notions et contenus du programme de Terminale S

BACCALAUREAT GENERAL MATHÉMATIQUES

Que faire lorsqu on considère plusieurs variables en même temps?

Transcription:

Chapitre III : Probabilités discrètes Extrait du programme : I. Rappels a. Définitions Prop 1 : Une probabilité est toujours comprise entre 0 et 1. Prop 2 Si A est l événement certain, p(a) = 1. Si A est l événement impossible, p(a) = 0. Prop 3 : On dit qu il y a équiprobabilité, quand tous les événements élémentaires ont la même chance de se produire. Dans ce cas : s il y a n résultats possibles, la probabilité d un événement élémentaire est donc de n. La probabilité d un événement A est : p(a)= card A nb de cas favorables = card nb de cas possibles b. Probabilité d une intersection et d une réunion d événements Pour l intersection : Si A et B sont incompatibles, alors A B = et p(a B) = 0. Si A et B ne sont pas incompatibles, il faut déterminer les résultats favorables à A B puis calculer p(a B) directement. Il n y a pas de formule! Pour la réunion : - Si A et B sont incompatibles, alors p(a B) = p(a) + p(b). - Si A et B ne sont pas incompatibles, alors : p(a B) = p(a) + p(b) p(a B).

c. Variable aléatoire On considère une expérience aléatoire et l univers fini des réalisations possibles lié à cette expérience. Une variable aléatoire X sur est une fonction définie sur l univers et prenant n valeurs réelles x l, x 2,...,x n. La loi de probabilité de X est l ensemble des couples (x i ; p(x = x i )) pour i entier variant de 1 à n. Remarques : - On note souvent p i = p(x = x i ) - La somme des réels p i est toujours égale à 1. - Les événements élémentaires sont naturellement deux à deux disjoints. d. Espérance, variance et écart-type d une variable aléatoire Définition : Soit X une variable aléatoire réelle prenant les valeurs x 1, x 2,..., x n avec les probabilités respectives p 1, p 2,..., p n. - On appelle espérance mathématique de X, le réel E(X) défini par : i n E(X) = x 1 p 1 + x 2 p 2 +... + x n p n x i p i i - On appelle variance de X, notée V(X), le réel défini par : V(X) = ( x E X ) 2 p 1 +... + ( x n E X ) 2 p n = i n ( ) i xi E X 2 p i = i - On appelle écart-type de X le réel (X) défini par (X) = V X. n p i x i ² [E X ]² Remarques : - L espérance d une variable aléatoire correspond à la notion de moyenne pondérée en statistiques, la fréquence d apparition étant remplacée par la probabilité. - Un jeu est dit «équitable» lorsque E(X) = 0. e. Loi (ou épreuve ou schéma) de Bernoulli Définition : On appelle loi (ou épreuve) de Bernoulli, une loi de probabilité définie sur un univers formé de deux issues possibles, nommées «succès» (1) et «échec» (0). La loi est alors de la forme : x i 0 1 p i 1 p p avec p ] 0 ; 1[ Exemples : Lancer d une pièce de monnaie. Obtenir ou non le 6 lors du jeter d un dé. Propriété : L espérance de la loi de Bernoulli vaut p et sa variance p(1 p). f. Loi binomiale Définition Lorsqu on répète n fois une épreuve de Bernoulli et que le résultat d une épreuve ne dépend pas des résultats obtenus aux épreuves précédentes, ces épreuves sont indépendantes. On s intéresse à la variable aléatoire X prenant pour valeur le nombre k de succès obtenus durant les n épreuves. La loi de probabilité de X suit la loi binomiale de paramètres n et p, où n est le nombre d épreuves et p la probabilité de succès. On note B(n, p) cette loi.

Exemples : Jeter six fois de suite la même pièce de monnaie ; choisir cinq fois de suite un jeton dans un sac contenant des jetons verts et des jetons bleus, en remettant à chaque fois le jeton tiré ; lancer un dé cubique parfaitement équilibré, quatre fois de suite. Expression de la loi binomiale Soit X la variable aléatoire qui indique le nombre k de succès au cours des n épreuves. Alors on a : p = p(x = k) = ( n ) k k pk (1 p) n k Espérance, variance et écart-type de la loi binomiale Théorème( admis) : L espérance mathématique d une loi binomiale de paramètres n et p est : E(X)= n p. La variance d une loi binomiale de paramètres n et p est V(X)= n p( 1 p). L écart-type (X) vaut : (X) = n p p Exercice de rappel : Dans une production de fruits, il y a 30% de fruits abîmés. On prélève un échantillon aléatoire de 80 fruits ( la population est suffisamment grande pour considérer qu il s agit de tirages avec remise). Quelle est la probabilité d avoir exactement 10 fruits abîmés? Quelle est la probabilité qu il y ait au moins 8 fruits abîmés? II. Probabilité conditionnelle Définition : Soient A et B deux événements avec P A. On appelle probabilité conditionnelle de B sachant A le nombre noté P A B défini par : P A B P A B P A Remarque : Cela peut aussi s écrire P(A) P A (B)= P(A B) On en déduit que P(A) P A (B) = P(B) P B (A), les deux membres étant égaux à P(A B) Point-Méthode 12 : Calculer la probabilité d une intersection Tous les élèves de Terminale d un lycée ont passé un test de certification en anglais. (1) 80% ont réussi le test (2) Parmi ceux qui ont réussi le test, 95% n ont jamais redoublé (3) Parmi ceux qui ont échoué au test, 2% n ont jamais redoublé. Il faut définir les événements utilisés : On considère les événements T : «l élève a réussi le test» et D : «l élève a déjà redoublé». On traduit les données de l énoncé sous forme de probabilités : Alors (1) se traduit par : P(T)=80% ; (2) par P T ( D ) = 95% et (3) par P T( D)=2%. La probabilité de T D «L élève a réussi le test et n a jamais redoublé» est : P(T D P(T) P T ( D) = 0,8 0,95=0,76

Point méthode13 : Construire un arbre pour représenter une expérience et calculer des probabilités : Représenter l expérience décrite ci-dessus par un arbre pondéré et retrouver le résultat précédent Règle 1 : Sur les branches du 1 er niveau, on inscrit les probabilités des événements correspondants Règle 2 : Sur les branches du 2 ème niveau, on inscrit des probabilités conditionnelles Règle 3 : La somme des probabilités inscrites sur les branches issues d un même nœud est égale à 1. Règle 4 : Le produit des probabilités des événements rencontrés le long du chemin est égal à la probabilité de l intersection de ces événements. Ainsi pour le chemin rouge, on trouve : P(T D = 0,8 0,95 = 0,76 Point-méthode 14 : Probabilités conditionnelles à l aide d un tableau. La répartition des voitures garées dans un parking est donnée dans le tableau ci-contre. On choisir au hasard un véhicule stationné dans ce parking. Sachant qu il est de marque française, quelle est la probabilité que ce soit un diesel? Diesel Essence Total Marque française 0,43 0,12 0,55 Marque étrangère 0,34 0,11 0,45 Total 0,77 0,23 1 Considérons les événements : F : «le véhicule est de marque française» D «le véhicule est un diesel». On veut P F (D). On sait que P F (D) = P ( D F ) P ( F ). D après le tableau, P 0,43 (D)= soit environ 78%. F 0,55 La probabilité de choisir un diesel sachant qu il est de marque française est 0,78 (à 0,01 près) III. Probabilités totales Théorème des probabilités totales : Soit Ω un univers muni d une loi de probabilité P, et soit A 1, A 2,, A n une partition de Ω. Alors, pour tout évènement B de Ω : P(B) = P A1 (B) P(A 1 ) + P A2 (B) P(A 2 ) + + P An (B) P(A n ) Démonstration : B = (B A 1 ) (B A 2 ) ( B A n ) réunion d évènements deux à deux disjoints, donc, P(B) = P(B A 1 ) +P (B A 2 ) + +P( B A n ) =P A1 (B) P(A 1 ) + P A2 (B) P(A 2 ) + + P An (B) P(A n ) Remarque : on peut aussi exprimer ce théorème à partir d un arbre de probabilité : On appelle feuille d un arbre l extrémité du dernier niveau de branche. CQFD

Propriété : Formule des probabilités totales La probabilité d un événement associé à plusieurs feuilles d un arbre est la somme des probabilités de ces feuilles. Point-méthode 15 : Construire et utiliser un arbre pondéré et la formule des probabilités totales Trois candidats A, B et C se présentent à une élection. Ils obtiennent respectivement la moitié, les trois dixièmes et le cinquième des suffrages. D autre part, on sait que 50% des électeurs de A, 30 % des électeurs de B et 40% des électeurs de C sont des hommes. On interroge au hasard une personne s étant prononcé pour l un des trois candidats. 1. Décrire l expérience aléatoire à l aide d un arbre pondéré. 2. En déduire la probabilité d interroger un homme ayant voté pour le candidat C. 3. On interroge au hasard une personne s étant prononcé pour l un des trois candidats. Déterminer la probabilité que ce soit une femme. 1. On note respectivement A, B et C les événements «avoir voté pour le candidat A, B ou C», F et H les événements «être une femme» et «être une homme». L énoncé permet d écrire : P(A)=0,5 ; P(B) = 0,3 et P(C) = 0,2 ; P A (H)=0,5 ; P B (H)=0,3 et P C (H)=0,4 On peut donc construire un arbre pour représenter cette situation. 2. On cherche P(C H). P(C H)=P(C) P C (H) = 0,2 0,4 = 0,08 La probabilité qu un homme ait voté pour le candidat C est de 0,08. 3. Une femme peut avoir voté pour le candidat A, B ou C. Il s agit d un événement lisible sur 3 feuilles de l arbre. D après la formule des probabilités totales, on a donc : P(F)=P(A F)+P(B F)+P(C F)= 0,5 0,5 + 0,3 0,7 +0,2 0,6 = 0,58 La probabilité que la personne interrogée soit une femme est de 0,58. Remarque : cas particulier : lorsque A est un événement tel que P(A) 0 et P(A) 1, alors A et A forment une partition de, et donc pour tout événement B : P ( B ) = P A (B) P(A) + P A (B) P( A ) IV. Indépendance Définition : Dire que deux événements A et B sont indépendants signifie que P(A B)=P(A) P(B). Exemples : - On lance un dé équilibré à 6 faces. Les événements A «le résultat est pair» et B : «Le résultat est 2» ne sont pas indépendants : En effet, P ( A ) = 3 6 = 1 2 P ( B ) = 1 6 et P ( A B ) = 1 6 1 2 1 6 - On jette une pièce et un dé, tous deux équilibrés. On obtient alors des résultats sous la forme : (2 ;Pile). Il y a 6 2=12 événements élémentaires et équiprobables. Soient les événement D : «On obtient un 2» et P : «On obtient pile».

P ( D ) = 1 6 et P ( P ) = 1 2, P ( D P ) = 1 12, or P(D) P(P)=1 6 1 2 = 1 12 D et P sont donc deux événements indépendants. Remarques : Attention : - Dans ce genre de question, l intuition est parfois prise en défaut, et l indépendance, si elle a lieu, doit être mathématiquement prouvée. - Ne pas confonde événement indépendants et événement incompatibles. Deux événements A et B sont incompatibles si et seulement si A B= Théorème : Si P(A) 0, A et B sont indépendants si et seulement si P A ( B ) = P ( B ) Démonstration : Si P(A) 0, P A B P A B P A = P ( A ) P ( B ) P ( A ) = P(B) CFQD Théorème : Si A et B sont indépendants, alors A et B sont indépendants. Démonstration : (BAC) L événement A est la réunion de deux événement incompatibles A B et A B, Donc P(A) = P(A B) + P(A B) P(A B) = P(A) P(A B) Or A et B étant indépendants, P(A B) = P(A) P(B) Donc P(A B) = P(A) P(A) P(B) = P(A)(1 P(B)) = P(A) P( B ) Ainsi A et B sont indépendants. CQFD Point-Méthode 16 : Utiliser l indépendance de deux événements Adrien fait successivement une partie de tennis de table et une partie de badminton. La probabilité qu il gagne au tennis de table est 0,7, et quel que soit le résultat du match précédent, la probabilité qu il gagne au badminton est 0,4. Quelle est la probabilité qu il gagne au moins une partie? On considère les événements T : «Adrien gagne une partie de tennis de table» et B : «Adrien gagne une partie de badminton». L énonce indique que P(T)=0,7 et P(B)=0,4, mais aussi que les événements T et B sont indépendants («quel que soit le résultat du match précédent»). Donc P(T B)=P(T) P(B)=0,7 0,4=0,28 Or gagner au moins un match se traduit par : gagner un match de tennis ou un match de badminton ou les deux : c est T B P(T B)=P(T)+P(B)-P(T B) = 0,7 + 0,4 0,28 = 0,82 Donc, la probabilité qu Adrien gagne au moins une partie est de 82%.