MathEnPoche4 : nombres relatifs

Documents pareils
3 ème 2 DÉVELOPPEMENT FACTORISATIONS ET IDENTITÉS REMARQUABLES 1/5 1 - Développements

Priorités de calcul :

CORRIGE LES NOMBRES DECIMAUX RELATIFS. «Réfléchir avant d agir!»

Fonctions homographiques

Factorisation Factoriser en utilisant un facteur commun Fiche méthode

2. RAPPEL DES TECHNIQUES DE CALCUL DANS R

Continuité en un point

Glossaire des nombres

Représentation des Nombres

Complément d information concernant la fiche de concordance

La question est : dans 450 combien de fois 23. L opération est donc la division. Le diviseur. Le quotient

Petit lexique de calcul à l usage des élèves de sixième et de cinquième par M. PARCABE, professeur au collège Alain FOURNIER de BORDEAUX, mars 2007

Définition 0,752 = 0,7 + 0,05 + 0,002 SYSTÈMES DE NUMÉRATION POSITIONNELS =

Présentation du cours de mathématiques de D.A.E.U. B, remise à niveau

SOCLE COMMUN - La Compétence 3 Les principaux éléments de mathématiques et la culture scientifique et technologique

Définition : On obtient les nombres entiers en ajoutant ou retranchant des unités à zéro.

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.

Etude de fonctions: procédure et exemple

DOCM Solutions officielles = n 2 10.

AC AB. A B C x 1. x + 1. d où. Avec un calcul vu au lycée, on démontre que cette solution admet deux solutions dont une seule nous intéresse : x =

Raisonnement par récurrence Suites numériques

I. Ensemble de définition d'une fonction

Exercices - Polynômes : corrigé. Opérations sur les polynômes

Probabilités sur un univers fini

Les nombres entiers. Durée suggérée: 3 semaines

EXERCICE 4 (7 points ) (Commun à tous les candidats)

TOUT CE QU IL FAUT SAVOIR POUR LE BREVET

Représentation d un entier en base b

I/ Se connecter sur le réseau Scribe :

INITIATION AU LANGAGE C SUR PIC DE MICROSHIP

Pour l épreuve d algèbre, les calculatrices sont interdites.

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

Fonction inverse Fonctions homographiques

Fonctions de deux variables. Mai 2011

L emprunt indivis - généralités

Structures algébriques

Chapitre 6. Fonction réelle d une variable réelle

Exercice 6 Associer chaque expression de gauche à sa forme réduite (à droite) :

1 Année LMD-STSM Algorithmique et Programmation. Série de TD 2

Conversion d un entier. Méthode par soustraction

Probabilités sur un univers fini

Technique opératoire de la division (1)

Développements limités, équivalents et calculs de limites

Synthèse «Le Plus Grand Produit»

Cours Informatique 1. Monsieur SADOUNI Salheddine

Licence Sciences et Technologies Examen janvier 2010

Corrigé des TD 1 à 5

Angles orientés et trigonométrie

Problème 1 : applications du plan affine

TP, première séquence d exercices.

Informatique Générale

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer

avec des nombres entiers

Activités numériques [13 Points]

315 et 495 sont dans la table de 5. 5 est un diviseur commun. Leur PGCD n est pas 1. Il ne sont pas premiers entre eux

Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en Énoncé.

Chapitre 1 : Évolution COURS

Puissances d un nombre relatif

Eté LIVRET de RÉVISIONS en MATHÉMATIQUES

Cours d arithmétique Première partie

Manuel d utilisation 26 juin Tâche à effectuer : écrire un algorithme 2

Fiche PanaMaths Calculs avec les fonctions sous Xcas

Esterel The french touch star touch esterel advance

Comparaison de fonctions Développements limités. Chapitre 10

B = A = B = A = B = A = B = A = Recopier sur la copie chaque expression numérique et la réponse exacte. Réponse A Réponse B Réponse C Solution

La construction du nombre en petite section

Sommaire de la séquence 8

Introduction à l algorithmique et à la programmation (Info 2)

Exo7. Probabilité conditionnelle. Exercices : Martine Quinio

Continuité et dérivabilité d une fonction

Chapitre 10 Arithmétique réelle

Le théorème de Thalès et sa réciproque

CHAPITRE V SYSTEMES DIFFERENTIELS LINEAIRES A COEFFICIENTS CONSTANTS DU PREMIER ORDRE. EQUATIONS DIFFERENTIELLES.

V- Manipulations de nombres en binaire

Procédure de sauvegarde pour AB Magique

Document d aide au suivi scolaire

EXPLOITATIONS PEDAGOGIQUES DU TABLEUR EN STG

Chapitre 11. Séries de Fourier. Nous supposons connues les formules donnant les coefficients de Fourier d une fonction 2 - périodique :

Développement décimal d un réel

I. Cas de l équiprobabilité

NOM : Prénom : Date de naissance : Ecole : CM2 Palier 2

Trois personnes mangent dans un restaurant. Le serveur

III- Raisonnement par récurrence

La maison Ecole d ' Amortissement d un emprunt Classe de terminale ES. Ce qui est demandé. Les étapes du travail

Utilité et nécessité de disposer d une bonne politique de mot de passe.

a) b)

Taux d évolution moyen.

Nombres, mesures et incertitudes en sciences physiques et chimiques. Groupe des Sciences physiques et chimiques de l IGEN

Exercice 1 Trouver l équation du plan tangent pour chaque surface ci-dessous, au point (x 0,y 0,z 0 ) donné :

S entraîner au calcul mental

TESTS D'HYPOTHESES Etude d'un exemple

Le chiffre est le signe, le nombre est la valeur.

Attestation de maîtrise des connaissances et compétences au cours moyen deuxième année

Séquence 3. Expressions algébriques Équations et inéquations. Sommaire

Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://

Arithmétique binaire. Chapitre. 5.1 Notions Bit Mot

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme

Les indices à surplus constant

Cours Fonctions de deux variables

Découverte du tableur CellSheet

Transcription:

Série 1 : Prendre un bon départ MathEnPoche4 : nombres relatifs Exercice 1 : Additions et soustractions (assistées) 10 q On donne à l élève des Additions/soustractions (tables de 1 à 9), et il doit : 1).Indiquer le cas correspondant 2) Donner le signe du résultat 3) Donner la valeur du résultat Exemple : pour chaque calcul l élève doit sélectionner si «les deux nombres sont de même signe» ou «si les deux nombres sont de signe contraire et compléter suivant les cas : a) ( 3) + ( 5) Signe de ( 3) + ( 5) : Distance à zéro de ( 3) + ( 5) : Donc ( 3) + ( 5) = b) (+2) + (+4) Signe de (+2) + (+4) : Distance à zéro de (+2) + (+4) : Donc (+2) + (+4) = a) (+2) + ( 5) Signe de (+2) + ( 5) : Distance à zéro de (+2) + ( 5) : Donc (+2) + ( 5) = b) (+7) + ( 1) Signe de (+7) + ( 1) : Distance à zéro de (+7) + ( 1) : Donc (+7) + ( 1) = Mettre au moins deux questions avec deux nombres opposés Exercice 2 : Additions et soustractions 10q Calculs élémentaires avec des nombres encore (fourchette à définir) mais cette fois l énoncé est sous la forme «-6 + 9 =» et on attend de l élève un résultat simplifié. La réponse «+3» n est pas comptée fausse mais alerte qui bloque l élève tant qu il a pas simplifié. Dans cet exercice tous les nombres sont des entiers entre 1 et 49, ou bien des décimaux entre 0,1 et 9,9, ce serait pas mal. Exercice 3 : Calculs à trous 5q Calculs à trous du genre «- 7 = -2» ou «-7 = -2». Les nombres seront choisis entre -19 et +19. (2 champs pour les réponses, l un pour le signe l autre pour le nombre. Bien entendu, il arrivera que certaines cases doivent rester vides, mais un «+» ne devra pas être interprété comme une erreur (idem exo2). 5q Calculs à trous où il ne reste que les signes à compléter (2 signes à trouver, 1 signe donné) genre «7-2 9 =» ou «7 2 = -9» ou 2 «9 = -7». Les nombres aléatoires peuvent être cette fois très grands (c est peut-être même une bonne chose) puisqu il n y a aucun calcul à faire. Exercice 4 : Calculs à trous (bis) 10q Même exercice, mais cette fois il y a les 3 signes à déterminer et donc à chaque fois de réponses possibles (en effet «3 5 = 2» peut devenir «-3 + 5 = 2» mais aussi 3 5 = - 2») Exercice 5 : Successions d additions et de soustractions

10q pour les 5 premières on demande et on évalue l étape intermédiaire qui correspond au regroupement positif/négatif pour les 5 dernières on laisse la place pour le calcul intermédiaire mais c pas évalué. Exercice 6 : Calculs synthèse Idem niveau5 s4e6 et rajouter 5q où on demande juste le résultat, le calcul intermédiaire est à faire au brouillon.

Série 2 : Multiplication Exercice 1 - Découverte 2q On donne une multiplication de deux positifs «6 4», histoire de faire réviser les tables. A la fin de chaque question, il faudrait qu une «conclusion» apparaisse, attirant l attention sur le fait que le produit de deux positifs est un positif. 2q Découverte de la multiplication d un positif par un négatif : L énoncé donne un calcul comme par exemple «3 (-4) =», dans un premier temps l élève écrit «-4 4 4» puis enfin «-12». Là aussi, une conclusion en fin d exercice «le produit d un négatif par un positif est négatif». 2q 1 ère étape : On donne a l élève une série de calculs comme par exemple : -4 5 = -4 4 = -4 3 = -4 2 = -4 1 = -4 0 = 2 ème étape : On laisse les résultats affichés -4 5 = -20-4 4 = -16-4 3 = -12-4 2 = -8-4 1 = -4-4 0 = 0 en rajoutant les lignes -4 (-1) = -4 (-2) = L élève complètera par «suite logique». 2q on laisse les 3 règles affichés et on demande de trouver les signes de 3 produits. 1q on demande de compléter «le produit de deux nombres de même signe est et le produit de deux nombres de signes contraires est» 1q où on demande les signes de 3 produits mais les règles sont plus affichées Exercice 2 : Produits et nombres négatifs Démonstration produit faisant intervenir négatifs basée sur la distributivité : Pour rappel, la formule : ka + kb = k(a + b) apparaîtra en permanence à l écran dans cette partie. q 1 4 3 + 4 (-3) = ( + )

q 2 4 3 + 4 (-3) = 4 ( 3 + (-3) ) = q 3 4 3 + 4 (-3) = 4 ( 3 + (-3) ) = 4 0 = q 4 4 3 + 4 (-3) = 4 ( 3 + (-3) ) = 4 0 = 0 Donc le nombre 4 3 et le nombre 4 (-3) sont. q 5 4 3 + 4 (-3) = 4 ( 3 + (-3) ) = 4 0 = 0 Donc le nombre 4 3 et le nombre 4 (-3) sont opposés. On sait que 4 3 = donc 4 (-3) = Et on remarque que le produit des deux nombres de signes contraires est un nombre q 6 4 (-3) + (-4) (-3) = ( + ) q 7 4 (-3) + (-4) (-3) = -3 ( 4 + (-4) ) = q 8 4 (-3) + (-4) (-3) = -3 ( 4 + (-4) ) = -3 0 = q 9 4 (-3) + (-4) (-3) = -3 ( 4 + (-4) ) = -3 0 = 0 Donc le nombre 4 (-3) et le nombre (-4) (-3) sont. q 10 4 (-3) + (-4) (-3) = -3 ( 4 + (-4) ) = -3 0 = 0 Donc le nombre 4 (-3) et le nombre (-4) (-3) sont opposés. On sait que 4 (-3) = donc (-4) (-3) = Et on remarque que le produit des deux nombres négatifs est un nombre Exercice 3 : Multiplications (assistées) 10q idem que pour somme 1. Indiquer le cas correspondant dans la règle des signes 2. Donner la valeur du résultat Exemple : pour chaque calcul l élève doit sélectionner si «les deux nombres sont de même signe» ou «si les deux nombres sont de signe contraire» et compléter suivant les cas : a) ( 3) ( 5) Signe de ( 3) ( 5) : Distance à zéro de ( 3) ( 5) : Donc ( 3) ( 5) = b) (+2) (+4) Signe de (+2) (+4) : Distance à zéro de (+2) (+4) : Donc (+2) (+4) = a) (+2) ( 5) Signe de (+2) ( 5) : Distance à zéro de (+2) ( 5) : Donc (+2) ( 5) = b) (+7) ( 1) Signe de (+7) ( 1) : Distance à zéro de (+7) ( 1) : Donc (+7) ( 1) = Mettre au moins deux questions avec deux nombres opposés Exercice 4 : Multiplications 10q Multiplications de 2 facteurs, choisis entre -10 et 10 (au moins 1 ou 2 cas par série où l un des facteurs est nul) mais avec une AIDE INTELLIGENTE : par exemple si au calcul «7 (-5) =» l élève répond «2» ou «-2», l aide rappellera qu il s agit d une multiplication et pas d une addition/soustraction. Si l élève répond «+35» (il pense que «le nombre le plus fort donne le signe»), l aide rappellera qu il faut appliquer la règle des signes. D ailleurs, un tableau récapitulant la règle des signes sera accessible à l élève tout au long de l exercice (un peu comme c est le cas avec la calculatrice ou les combinaisons de touches pour les signes ( [ ) ] sur quelques exercices de MEP6 et MEP5).

Exercice 5 : Multiplications (bis) 10q Multiplications avec des nombres un peu plus compliqués, mais qui permettent de s en sortir sans utiliser la calculatrice. C est l occasion de réinvestir les multiplications par 10, 100, 1000, 0,001 vues en 6 ème. Un petit rappel à ce sujet dans l aide serait utile. Faire deux exemples de carrés dans cet exercice, mais on les calculera en 2 étapes : (-4) 2 = = Exercice 6 : Signe d un produit de plusieurs facteurs 10q On donne des multiplications complexes genre «(-3) 7 (-9) 5 (-3) (-12)», et il s agit juste pour l élève de dire si le résultat est positif ou négatif, en appliquant la règle des signes généralisée (nombre de facteurs négatifs). On prendra soin de rencontre 1 ou 2 fois un facteur nul dans des calculs. Dans ce/ces cas, les deux réponses (positif et négatif) seront acceptées, mais on rappellera à l élève que 0 est à la fois positif et négatif. Sur les dernières questions le produit sera énoncé de manière abstraite «le produit 23 facteurs dont 13 des facteurs sont négatifs» Exercice 7 : Produit de plusieurs facteurs 5q même genre de calculs que dans l exo précédent, mais avec des nombres sympas qui permettent de s en sortir avec des astuces de calcul mental genre «(-2) 5 100 (-10) (- 1) 7» où l on regroupe des «2» et les «5». Cette fois, on attend de la part de l élève le bon résultat avec le bon signe. Exercice 8 : Multiplications à trous 10q Multiplications à trous, il s agira juste pour l élève de compléter une égalité du type «(-3) = 6» ou «5 = -10». 1 seul champ de saisie par réponse. Pour les cinq premières question on lui demande juste le signe du facteur manquant, pour les cinq dernières il doit indiquer la valeur du facteur manquant On pourra éventuellement, sur le dernières questions, marquer le nombre manquant par une lettre plutôt que de laisser une case vide

Série 3 : Division Exercice 1 : Signe d un quotient Découverte de la règle pour la division: Q1 donne le signe du nombre manquant dans 3 = 3 = 7 Q2 on laisse affiché : On rappelle que pour tous nombres a et b (b non nul) le quotient de a par b est le nombre qui multiplié par b vaut a, autrement dit a b est le nombre manquant dans : b = b = a. Le nombre manquant dans 3 = 3 = 7 est 7 3 et c est un nombre positif, on remarque donc que le quotient d un nombre positif par un nombre strictement positif est un nombre. Q3-4 idem -/+ Q5-6 idem +/- Q7-8 idem -/- A la validation des question 2, 4, 6 et 8 on fait remarquer que le signe du quotient de deux nombres est le même que le signe de leur produit Q9 on demande le signe de 4 quotients en ligne et q10 le signe de 4 quotients en notation fractionnaire. Exercice 2 : Divisions (assistées) Idem multiplications assistées Exercice 3 : Divisions Des divisions en vrac, qui n utilisent que les tables de 1 à 9, l élève donne le résultat : «-35 (-7) =» ; «63 (-9) =» ; «-16 2 =» Exercice 4 : Divisions (bis) 10q Idem exo précédent mais calcul un peu moins évident notamment placer des 0,1 ; 00,1 Exercice 5 : Ecriture fractionnaire «-6 2 =» ; «- 6 2 =» ; «- 6-2 =» ; «- -6 2 =» Exercice 6 : Dénominateur positif 10 où on demande d écrire des écritures fractionnaires avec dénominateur positif Exercice 7 : Signes de produits ou de quotients 10q où on donne des expression plus complexes mêlant quotients et produits et où on demande que le signe du résultat en q10 du genre. -6 2-6 -11-5 (-1) 2 (-7) (- -7 3 ) Exercice 8 : Quotients à trous 10q Divisions à trous, en ligne ou sous forme fractionnaire mettant en jeu des questions de signe mais avec calcul mental simple.

Série 4 : Calculs Exercice 1 : Sommes et produits 10q On donne à l élève un calcul élémentaire, il doit répondre à trois questions 1. Dire de quelle opération il s agit. 2. Donner le signe du résultat. 3. Donner la distance à zéro du résultat le but est de détecter les confusions entre sommes et produits tant au niveau des signes que des valeurs Un effort tout particulier devra être fait sur l interprétation des résultats de l élève au niveau du message d alerte en cas de mauvaise réponse : s est-il trompé d opération, de règle? (voir types dans exo suivant) Exercice 2 : Sommes et produits (bis) 10q Idem exo précédent mais on demande d effectuer le calcul. Opérations simples (nombres entre 1 et 9) -4 + 5 = Les erreurs «attendues» de l élève sont : 9 ou -9 Attention, les deux nombres sont de signes différents, on n ajoute pas les distances à zéro! -1 Attention au signe, il ne s agit pas d un produit, tu dois examiner le signe de (- 4)+(+5)! 20 ou 20 Attention, il ne s agit pas d une multiplication! -4 * 5 = Les erreurs «attendues» de l élève sont : 9 ou -9 ou 1 ou -1 Attention, il ne s agit pas d une somme ou d une différence! +20 Attention au signe, tu dois déterminer le signe du produit (-4)*(+5)! -4 5 = Les erreurs «attendues» de l élève sont : +9 Attention au signe, il ne s agit pas d un produit, tu dois examiner le signe de (-4)+(- 5)! +1 ou -1 Attention, les deux nombres sont de même signe, on ne soustrait pas les distances à zéro! 20 ou 20 Attention, il ne s agit pas d une multiplication! Exercice 3 : Sommes et produits (chronométré) Même exercice, mais avec un chronomètre. Exercice 4 : les opérations prioritaires 5q : Rappels sur les priorités opératoires, avec des signes cliquables (en 2, 3 ou 4 étapes). L ordi se chargeant des calculs (idem exo cinquième ) Exercice 5 : Calculs et priorités (assistés) 5q Calculs enchaînés avec 2 opérations, et éventuellement des parenthèses, qui se font donc en 2 étapes.

Exemple : A = 3 6 * (7 12) «Sélectionne l opération prioritaire» A = 3 6 * (7 12) A = 3 6 * «Effectue le calcul prioritaire indiqué en couleur» Ecran 3 : A = 3 6 * (7 12) A = 3 6 * (-5) «Sélectionne l opération prioritaire» Ecran 4 : A = 3 6 * (7 12) A = 3 6 * (-5) A = 3 «Effectue le calcul prioritaire indiqué en couleur» Ecran 5 : A = 3 6 * (7 12) A = 3 6 * (-5) A = 3 (+5) A = «Achève le calcul» Exercice 6 : Calculs et priorités (niveau1) 5q calculs type exo précédent, pas trop durs, où l élève doit noter les étapes intermédiaires et elles sont évaluées. Exercice 7 : Calculs et priorités (niveau2) 10q calculs plus complexes, de synthèse : on évalue le résultat (pour le saisir l élève à une zone de saisie dans laquelle il peut écrire comme au brouillon, s il veut saisir une fraction il faut qu il se la créée au préalable ) de l élève et il doit saisir le calcul intermédiaire comme dans le brouillon mais il est pas évalué : il est envoyé via le réseau au prof pour correction. Pour exemples : H = ( 2 + 8 1) ( 3 + 1) I = 1 7 ( 3) + 5 ( 2) J = 2 [(7 11) ( 6) 9] K = 5 3 [1 ( 6)] L = 1 13 1 2 T = 4 16 2 10 7 E = 3 2 2 ( 1) 2 ( 2) ( 2) F = 10 8 [( 5) 2 + (6 11) ( 8 + 4 3)]

Série 5 : Pour aller plus loin Exercice 1 : Substitutions de valeurs 10q Substitution d une ou plusieurs valeurs dans des expressions littérales. 5q dans expression du type a + b c ou 2a 3b ou 2(a-2b) c 5q dans expression du type ax 2 + bx + c Pour exemples en dernières questions ou pourra trouver : On donne a = 8 ; b = 2 ; c = 5 et d = 3. Calculer la valeur des nombres N = a b + c d ou M = ab cd ou enfin P = 3ac bd. On donne A = 2x 2 5x 1 et B = x 2 5x + 2. Calculer la valeur de A pour x = 0 ou celle de B pour x = 1. Calculer la valeur de A pour x = 1 ou celle de B pour x = 3 (plus dur) Exercice 2 : Enigmes 5q du genre : La somme de 2 004 termes tous égaux à 1 est égale à et la somme de 2 005 termes tous égaux à 1 est égale à mais le produit de 2004 facteurs tous égaux à 1 est égal à alors que le produit de 2005 facteurs tous égaux à 1 est égal à Le produit d un nombre relatif par 1 est de ce nombre relatif et le carré d un nombre relatif est toujours. A et B sont deux nombres relatifs non nuls sachant que leur produit est négatif et que A est supérieur à B, donne le signe de A et de B A et B sont deux nombres relatifs non nuls sachant que leur produit est positif et que leur somme est négative, donne le signe de A et de B. x est un nombre relatif non nul, donne le signe du nombre x x x Exercice 3 : Dominos Faire un ptit exo dominos Exercice 4 : Carrés magiques Il existe des carrés magiques de sommes de relatifs et même certains multiplicativement magiques, rechercher dans les bouquins ou sur internet pour voir à les générer de façon aléatoire