Métropole mai 2015 Exercice 1 10 points Partie A - Événements indépendants, probabilités conditionnelles Partie B - Loi binomiale 1.

Documents pareils
TSTI 2D CH X : Exemples de lois à densité 1

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures)

Baccalauréat ES/L Amérique du Sud 21 novembre 2013

Baccalauréat ES Antilles Guyane 12 septembre 2014 Corrigé

Développements limités. Notion de développement limité

Probabilités conditionnelles Loi binomiale

BACCALAURÉAT GÉNÉRAL SESSION 2012 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE

Les devoirs en Première STMG

Commun à tous les candidats

Loi binomiale Lois normales

EXERCICE 4 (7 points ) (Commun à tous les candidats)

Baccalauréat ES Pondichéry 7 avril 2014 Corrigé

Terminale STMG Lycée Jean Vilar 2014/2015. Terminale STMG. O. Lader

Correction du baccalauréat ES/L Métropole 20 juin 2014

Nombre dérivé et tangente

Probabilité. Table des matières. 1 Loi de probabilité Conditions préalables Définitions Loi équirépartie...

Baccalauréat ES Amérique du Nord 4 juin 2008

Ressources pour le lycée général et technologique

Développements limités, équivalents et calculs de limites

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé

Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé

Baccalauréat ES/L Métropole La Réunion 13 septembre 2013 Corrigé

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme

O, i, ) ln x. (ln x)2

mathématiques mathématiques mathématiques mathématiques

Chapitre 6. Fonction réelle d une variable réelle

Correction du baccalauréat STMG Polynésie 17 juin 2014

DÉRIVÉES. I Nombre dérivé - Tangente. Exercice 01 (voir réponses et correction) ( voir animation )

BACCALAUREAT GENERAL MATHÉMATIQUES

Logistique, Transports

Correction du Baccalauréat S Amérique du Nord mai 2007

Chapitre 2 Le problème de l unicité des solutions

Exercices types Algorithmique et simulation numérique Oral Mathématiques et algorithmique Banque PT

Exercices Alternatifs. Une fonction continue mais dérivable nulle part

Probabilités (méthodes et objectifs)

Terminale SMS - STL

Complément d information concernant la fiche de concordance

Nouveau Barème W.B.F. de points de victoire 4 à 48 donnes

Représentation d une distribution

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4)

Continuité et dérivabilité d une fonction

Résolution d équations non linéaires

Correction du bac blanc CFE Mercatique

Coefficients binomiaux

Dérivation : cours. Dérivation dans R

Probabilités conditionnelles Exercices corrigés

Estimation et tests statistiques, TD 5. Solutions

Simulation de variables aléatoires

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre :

TRANSPORT ET LOGISTIQUE :

Feuille 6 : Tests. Peut-on dire que l usine a respecté ses engagements? Faire un test d hypothèses pour y répondre.

MATHEMATIQUES TES Corrigés des devoirs

Travaux dirigés d introduction aux Probabilités

Exercices sur le chapitre «Probabilités»

Réseau SCEREN. Ce document a été numérisé par le CRDP de Bordeaux pour la. Base Nationale des Sujets d Examens de l enseignement professionnel.

Exercices Alternatifs. Une fonction continue mais dérivable nulle part

La fonction exponentielle

SINE QUA NON. Découverte et Prise en main du logiciel Utilisation de bases

BTS Groupement A. Mathématiques Session Spécialités CIRA, IRIS, Systèmes électroniques, TPIL

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours.

Baccalauréat ES L intégrale d avril à novembre 2013

mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques SÉRIE ES ANNALES DES SUJETS DE MATHÉMATIQUES SESSION 2013

Cours Fonctions de deux variables

Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire

I. Cas de l équiprobabilité

Fonctions homographiques

Cours d Analyse. Fonctions de plusieurs variables

Baccalauréat technique de la musique et de la danse Métropole septembre 2008

Calculs de probabilités avec la loi normale

C f tracée ci- contre est la représentation graphique d une

Dérivation CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES

Etude de fonctions: procédure et exemple

LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING»

Chap 4. La fonction exponentielle Terminale S. Lemme : Si est une fonction dérivable sur R telle que : = et 0! = 1 alors ne s annule pas sur R.

Dérivation : Résumé de cours et méthodes

Leçon N 4 : Statistiques à deux variables

Probabilités conditionnelles Loi binomiale

Baccalauréat L spécialité, Métropole et Réunion, 19 juin 2009 Corrigé.

Soit la fonction affine qui, pour représentant le nombre de mois écoulés, renvoie la somme économisée.

Université Paris 8 Introduction aux probabilités Licence Informatique Exercices Ph. Guillot. 1 Ensemble fondamental loi de probabilité

Exprimer ce coefficient de proportionnalité sous forme de pourcentage : 3,5 %

Collecter des informations statistiques

Comparaison de fonctions Développements limités. Chapitre 10

TESTS D'HYPOTHESES Etude d'un exemple

Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques.

Probabilités et Statistiques. Feuille 2 : variables aléatoires discrètes

CALCUL DES PROBABILITES

EXPLOITATIONS PEDAGOGIQUES DU TABLEUR EN STG

LES GENERATEURS DE NOMBRES ALEATOIRES

a et b étant deux nombres relatifs donnés, une fonction affine est une fonction qui a un nombre x associe le nombre ax + b

Arbre de probabilité(afrique) Univers - Evénement

PROBABILITÉS CONDITIONNELLES

Moments des variables aléatoires réelles

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures)

Chapitre 3 : INFERENCE

LEÇON N 7 : Schéma de Bernoulli et loi binomiale. Exemples.

Annexe commune aux séries ES, L et S : boîtes et quantiles

Corrigé du baccalauréat S Pondichéry 12 avril 2007

Texte Agrégation limitée par diffusion interne

Licence MASS (Re-)Mise à niveau en Probabilités. Feuilles de 1 à 7

Transcription:

Métropole mai 2015 Exercice 1 10 points Les trois parties de cet exercice sont indépendantes Le centre d approvisionnement d une chaîne de magasin spécialisée dans le jardinage et l animalerie vient de recevoir une importante livraison de sable noir et blanc pour la décoration des fonds d aquarium, de la part d un nouveau fournisseur. Ce sable d une granulométrie importante est déjà conditionné en sacs d environ 3 litres. A l issue d une série de tests, deux types de défauts sont apparus, notés respectivement c et j. Le défaut c consiste en la présence d agrégats calcaires. Le défaut j consiste en la présence de «grains»de sable jaune. On dit qu un sac est défectueux s il présente au moins un des deux défauts c ou j. Partie A - Événements indépendants, probabilités conditionnelles On prélève un sac au hasard dans cette livraison. On note C, l évènement «le sac présente le défaut c» et l évènement «le sac présente le défaut j».on suppose que ces deux évènements sont indépendants. Les tests préalables ont permis d établir que 2% des sacs présentent le défaut c et que 3 % des sacs présentent le défaut j. 1. Donner la valeur des probabilités P(C) et P( ). 2. On note E l évènement : «le sac présente les deux défauts c et j». ustifier que P(E) = 0,0006. 3. On note D l évènement : «le sac est défectueux». ustifier que P(D) = 0,0494. Dans tout ce qui suit, les probabilités demandées sont à arrondir à 10 3. Partie B - Loi binomiale On prélève au hasard 40 sacs pour vérification, le stock étant assez important pour assimiler ce prélèvement à un tirage avec remise. On rappelle que la probabilité qu un sac soit défectueux est 0,0494. On considère la variable aléatoire X qui à tout prélèvement de 40 sacs associe le nombre de sacs défectueux. 1. ustifier que la variable aléatoire X suit une loi binomiale dont on donnera les paramètres. 2. Calculer la probabilité pour que dans un tel prélèvement, il y ait exactement deux sacs défectueux. 3. Calculer la probabilité pour que dans un tel prélèvement, il y ait au moins trois sacs défectueux. Partie C - Loi normale On s intéresse dorénavant au volume d un sac. La variable aléatoire qui à chaque sac associe sa contenance en litre est notée V. On admet, au vu des résultats de tests effectués, que V suit la loi normale d espérance 3,15 et d écart-type 0,1. 1. a. Donner la valeur d un nombre réel a tel que p(3,15 a V 3,15 + a) = 0,95 à 10 2 près b. Interpréter ce résultat à l aide d une phrase. 2. Un sac dont le volume est inférieur à 2,9 litres est rejeté. a. Calculer, à l aide de la calculatrice, la probabilité qu un sac soit rejeté. b. Sans calcul supplémentaire et en expliquant votre démarche, donner la probabilité qu un sac ait un volume supérieur à 3,4 litres. Exercice 2 10 points L INSEE fournit les valeurs du taux d équipement en micro-ordinateur des ménages français pour la période 2004 à 2011, présentées dans le tableau suivant : Années 2004 2005 2006 2007 2008 2009 2010 2011 Rang de l année : x i 1 2 3 4 5 6 7 8 Taux d équipement : y i 44,7 49,6 54,3 58,7 62,8 66,7 69,7 73,2 Le taux est estimé en fin d année. Par exemple, 44,7 % des ménages français étaient équipés en micro-ordinateur fin 2004. À partir de ces données, on souhaite effectuer des prévisions sur le taux d équipement en micro-ordinateur des ménages français. Partie A - Ajustement affine Un nuage de points représentant la série statistique (x i ; y i ) est donné en annexe 1. 1. a. Un ajustement affine vous semble-t-il indiqué sur la période 2004 à 2011? ustifier. b. Calculer le coefficient de corrélation linéaire, arrondi au millième, de cette série. Le coefficient calculé confirme-t-il la réponse à la question précédente? ustifier. 2. Déterminer, à l aide de la calculatrice, une équation de la droite de régression de y en x par la méthode des moindres carrés (les coefficients seront arrondis au centième). Tracer cette droite sur l annexe à rendre avec la copie. 3. Quel taux d équipement (arrondi au dixième) a-t-on avec cet ajustement pour 2012? 4. D après cet ajustement, déterminer par le calcul, à partir de quelle année le taux d équipement dépassera les 85 %. 5. D après cet ajustement, déterminer à partir de quelle année le taux d équipement atteindra-t-il les 100 %. Cela vous semble-t-il réaliste? Partie B - Ajustement proposé par un tableur On décide d utiliser la fonction «courbe de tendance» du tableur. Parmi les courbes proposées, on choisit celle représentant la fonction f définie sur [ 1 ; + [ par : f (x) = 0,154 x 2 + 5,45 x + 39,36 f (x) donne alors une estimation du taux d équipement pour l année de rang x. (le rang x est mesuré à partir de l année 2003 : 2004 est l année de rang 1). 1. Étude de la fonction f : a. On admet que la fonction f est dérivable sur [ 1 ; + [ et on note f sa fonction dérivée. Calculer f (x) b. Étudier le signe de f (x) sur [ 1 ; + [

c. En déduire le tableau de variation de cette fonction, en précisant la valeur du maximum et la limite de la fonction f en +. Préciser le coefficient directeur de la tangente à la courbe représentative de f au point d abscisse 1. d. Tracer la courbe représentative de f dans le repère de l annexe à rendre avec la copie. 2. À l aide du graphique, déterminer sur quelle période le taux d équipement dépassera les 85 %. On laissera apparents les traits de construction permettant de répondre à cette question. 3. a. Montrer que l équation f (x) = 0 possède une unique solution sur l intervalle [ 1 ; + [. b. Les prévisions à long terme effectués à l aide de cet ajustement vous semblent-elles réalistes? Partie C - Avec une fonction logistique On sait par expérience que, pour l étude des taux d équipement, une fonction logistique est souvent appropriée. Pour l équipement en micro-ordinateur des ménages français, on décide d utiliser la fonction g définie sur [ 1 ; + [ par : 100 g( x) 0,17 x 1 1,47 e. g (x) donne alors une estimation du taux d équipement pour l année de rang x. (le rang x est mesuré à partie de l année 2003 : 2004 est l année de rang 1). 1. a. Sachant que la limite de e 0,17 x en + est 0, déterminer la limite de g en +. b. Interpréter graphiquement ce résultat. c. Que peut-on déduire de ce résultat pour le taux d équipement en micro-ordinateurs des ménages français? 2. Avec ce dernier modèle, déterminer le taux d équipement que l on peut espérer atteindre en 2016. Annexe à rendre avec la copie Exercice 2 Partie A et B

CORRECTION Exercice 1 10 points Partie A - Événements indépendants, probabilités conditionnelles 1. 2% des sacs présentent le défaut c donc P(C) = 0,02 3 % des sacs présentent le défaut j donc P( ) = 0,03 Les deux questions suivantes peuvent se traiter soit avec arbre de choix soit sans arbre de choix Sans arbre de choix : 2. L évènement E : «le sac présente les deux défauts c et j» est l événement C. Les évènements C et sont indépendants, donc P(E) = P(C) P() = 0,02 0,03 donc P(E) = 0,0006. 3. L évènement D : «le sac est défectueux» est l événement C donc P(D) = P(C) + P() P(C ) P(D) = 0,02 + 0,03 0,0006 = 0,0494. Avec arbre de choix : 0,02 C 0,03 0,97 le sac a deux défauts et est défectueux le sac a un défaut et est défectueux 0,98 C 0,03 0,97 le sac a un défaut et est défectueux le sac n a pas de défaut et n est pas défectueux 2. L évènement E : «le sac présente les deux défauts c et j» a pour probabilité 0,02 0,03 donc P(E) = 0,0006. 3. L évènement D : «le sac est défectueux» a pour probabilité 0,02 0,03 + 0,02 097 + 0,98 0,03 = 0,0494. ou encore la probabilité que le sac ne soit pas défectueux est 0,98 0,97 = 0,9506 donc la probabilité que le sac soit défectueux est égale à 1 0,9506 = 0,0494. Partie B - Loi binomiale 1. On a une succession de 40 expériences aléatoires identiques et indépendantes. Chacune d elles a deux issues : réussite : le sac est défectueux (p = 0,0494) échec : le sac n est pas défectueux (q = 1 p = 0,9506) donc la variable aléatoire X suit une loi binomiale de paramètres (40 ; 0,0494) 2. P(X = 2) = 0,27397 3. P(X 3) = 1 P(X 2) = 1 0,6834 = 0,3166 Partie C - Loi normale 1. a. p(3,15 a V 3,15 + a) = 0,95 à 10 2 près donc 3,15 + a = 3,314 donc a 0,16 b. 95 % des sacs ont un volume compris entre 3,15 0,16 soit 2,99 et 3,15 + 0,16 soit 3,31 litres. 2. a. P(V 2,9) = 0,006 b. La fonction densité de la loi normale d espérance 3,15 et d écart-type 0,1 est symétrique par rapport à la droite d équation x = 3,15 donc P(V 3,15 0,25) = P(V 3,15 + 0,25) soit P(V 2,9) = P(V 3,4) = 0,006

Exercice 2 10 points Partie A - Ajustement affine 1. a. Les points sont à peu près alignés, un ajustement affine semble indiqué sur la période 2004 à 2011. b. r = 0,997, r est très voisin de 1 donc un ajustement affine est indiqué sur la période 2004 à 2011. 2. Une équation de la droite de régression de y en x est y = 4,06 x + 41,68 Pour tracer cette droite, il faut déterminer deux points de cette droite : pour x = 0, y = 41,68 donc A(0 ; 41,68) appartient à la droite pour x = 8, y = 4,06 8 + 41,68 = 74,16 donc B(8 ; 74,16) appartient à la droite On place A et B sur le graphique et on trace la droite (AB) qui est la droite de régression de y en x de cette série. 3. En 2012, x = 9, donc y = 4,06 9 + 41,68 78,3, le taux d équipement obtenu avec cet ajustement pour 2012 est de 78,3 % 4. D après cet ajustement, déterminer par le calcul, à partir de quelle année le taux d équipement dépassera les 85 %. 5. 4,06 x + 41,68 100 4,06 x 100 41,68 4,06 x 48,32 x 48,32 soit x 11,9 donc à partir de 2015, le taux 4,06 d équipement dépassera les 100 %, ce qui n est pas très réaliste, un taux est inférieur ou égal à 100 %. Années 2004 2005 2006 2007 2008 2009 2010 2011 Rang de l année : x i 1 2 3 4 5 6 7 8 Taux d équipement : y i 44,7 49,6 54,3 58,7 62,8 66,7 69,7 73,2 Partie B - Ajustement proposé par un tableur 1. a. f (x) = 0,154 2 x + 5,45 donc f (x) = 0,308 x + 5,45 b. 0,308 x + 5,45 = 0 5,45 x donc la dérivée s annule pour une valeur x 0 voisine de 17,69 0,308 c. f (x) = lim f 5,45 87,58, f (1) = 0,154 + 5,45 + 39,36 = 44,656 0,308 2 5,45 39,36 x 0,154 2 x x 1 1 5,45 39,36 0 et lim 0 donc lim x 2 0,154 x 2 = 0,154 donc lim f (x) = x x 5,45 x 1 + 0,308 f (x) + 0 f 44,656 f 5,45 0,308 Le coefficient directeur de la tangente à la courbe représentative de f au point d abscisse 1 est f (1) = 0,508 1 2 + 5,45 f (1) = 4,942 d. 2. Entre les années de rang 14 et 21, soit entre 2017 et 2024, le taux d équipement dépassera les 85 %.

3. a. La fonction f est définie dérivable, strictement décroissante sur [x 0 ; + [, f (x 0) > 0 et lim f (x) = donc l équation f (x) = 0 possède une unique solution α sur l intervalle [ x 0 ; + [. La fonction f est croissante sur [1 ; x 0 ] et f (1) > 0 donc pour tout x de [1 ; x 0 ], f (x) > 0 donc l équation f (x) = 0 n admet pas de solution sur l intervalle [ 1 ; x 0 ]. L équation f (x) = 0 possède une unique solution α sur l intervalle [ 1 ; + [. b. Le taux d équipement est nombre positif, or sur [α ; + [ f (x) 0 donc les prévisions à long terme effectués à l aide de cet ajustement ne sont pas réalistes. Partie C - Avec une fonction logistique 1. a. lim e 0,17 x = 0, donc lim 1 + 1,47 e 0,17 x = 1 donc lim g(x) = 100 b. La fonction g admet la droite d équation y = 100 pour asymptote. c. A long terme, le taux d équipement tend vers 100 %. 2. 2016 2003 = 13 donc 2016 est l année de rang 13, g(13) 100 soit 86,1 %. 0,17 13 1 1,47 e