BAC BLAC Terminales ES 23 Epreuve de mathématiques CORRIGÉ Exercice VRAI FAUX points Soit la fonction définie sur l'intervalle ]0 ; + [ par ère affirmation : ( ) ( ( )) D où L affirmation est VRAIE Mars 20 2 ème affirmation : L'ensemble des solutions de l'équation est équivaut à ( ) (factorisation) Un produit de facteurs est nul si et seulement si l un des facteurs est nul. Ainsi équivaut à ou Soit c est-à-dire L affirmation est donc FAUSSE On considère la fonction définie sur l'intervalle [ ; ]. Affirmation 3 La fonction f est une fonction de densité de probabilité sur [ ; ] si f t dt Graphiquement, on lit f t. Ainsi 3 dt 3 t 3 3 3 L affirmation est donc VRAIE.
Une variable aléatoire X suit la loi uniforme sur l'intervalle [0 ; 5] Affirmation P(X > ) 5 Pour toute loi uniforme sur Ici, X p3 X 5 b d c. b a a;, pc X d 5 3 2 p 3 L affirmation est donc FAUSSE 5 0 5 Exercice 2 Tous les résultats numériques devront être donnés sous forme décimale et arrondis au dix-millième. 5 points Une usine fabrique des billes sphériques dont le diamètre est exprimé en millimètres. Une bille est dite hors norme lorsque son diamètre est inférieur à 9 mm ou supérieur à mm. On appelle en mm. la variable aléatoire qui à chaque bille choisie au hasard dans la production associe son diamètre exprimé On admet que la variable aléatoire suit la loi normale d'espérance 0 et d'écart-type 0,. ) Montrer qu'une valeur approchée à 0,000 près de la probabilité qu'une bille soit hors norme est 0,02. P. Calculons la probabilité que la bille soit dans les normes, c'est-à-dire 9 X P 9 X A l aide de la calculatrice, on trouve 0,9876 à 0,000 près. P 9 X 0,02 à 0,000 Donc la probabilité que la bille soit hors norme est de près 2) On met en place un contrôle de production tel que 98% des billes hors norme sont écartés et 99% des billes correctes sont conservées. On choisit une bille au hasard dans la production. On note l évènement : «la bille choisie est aux normes», A l évènement : «la bille choisie est acceptée à l issue du contrôle». a) Construire un arbre pondéré qui réunit les données de l énoncé. 0,99 A 0,9876 0,0 A 0,02 0,02 A 0,98 A
b) Calculer la probabilité de l évènement A. A l aide de la formule des probabilités totales, pa p p A p p A p A p p A p p A = 0,9876 0,99 0,02 0,02 0, 9880 à 0,000 près c) Quelle est la probabilité pour qu une bille acceptée soit hors norme? La probabilité pour qu une bille acceptée soit hors norme est définie par p A p A 0,02 0,02 0,0003 p A pa 0,9880 à 0,000 près. La probabilité sera de 0,0003 à 0,000 près Ce contrôle de production se révélant trop coûteux pour l entreprise, il est abandonné : dorénavant, toutes les billes produites sont donc conservées, et elles sont conditionnées par sacs de 00 billes. On considère que la probabilité qu une bille soit hors norme est de 0,02. On admettra que prendre au hasard un sac de 00 billes revient à effectuer un tirage avec remise de 00 billes dans l ensemble des billes fabriquées. On appelle Y la variable aléatoire qui à tout sac de 00 billes associe le nombre de billes hors norme de ce sac.. Justifier que la variable aléatoire suit une loi binomiale dont on précisera les paramètres. On considère ici une épreuve de Bernoulli où l événement «la bille choisie est hors norme» est considéré comme succès de probabilité 0,5. On répète 00 fois cette épreuve dans des conditions d indépendance car le tirage est assimilé avec remise. Alors la variable aléatoire Y suit la loi binomiale de paramètres n=00 et p=0,02, c est-à-dire B(00 ; 0,02). E 2. Quels sont l espérance et l écart-type de la variable aléatoire Y? Y n p 00 0,02, 2 Y n p p 00 0,02 0,9876, 226 3. Quelle est la probabilité pour qu un sac de 00 billes contienne exactement deux billes hors norme? à 0 - près. Quelle est la probabilité pour qu un sac de 00 billes contienne au plus une bille hors norme? à 0 - près
Exercice 3 ) a. Pour tout et La suite est géométrique de raison 0,9 et premier terme -2. b. c. d. ) désigne le nombre de milliers d'habitants de la ville de Bellecité l'année 202 + n alors désigne le nombre de milliers d'habitants de la ville de Bellecité l'année 202 ( c'est-à-dire = 0) 0% des habitants de la ville meurent ou déménagent dans une autre ville alors 90% des habitants restent.,2 mille personnes naissent ou emménagent à Bellecité. 2) VARIABLES a, i, n IITIALISATIO TRAITEMET SORTIE 3) a. > 5 > 5 5 ) Choisir n a prend la valeur 0 Pour i allant de à n a prend la valeur 0,9a +,2 Afficher a Ainsi ( 5) ( 5) > (car 5 ) b. L'année ou la population de Bellecité sera supérieure à,5 mille est 209 (car
Exercice ) 2) 5 3) a.. g est de la forme avec alors pour tout réel, b. et alors qui donne a=. On peut remplacer a par dans la dérivée de g : et d'après la partie 2) on a 5et 5 Alors, 5 5ou simplement ) 5 Les consommateurs sont prêts à acheter 53 objets. 2) Pour que la demande soit de 350 objet, on cherche le prix x tel que : 5 5 5 Le prix de vente unitaire de l'objet doit donc être de 57 pour que la demande soit de 350 objets. 3) a. 5 ce qui équivaut à Ainsi 5, soit ( 5) ( 5) donc Le prix d'équilibre est de 93 b. le nombre d objet commun entre loffre et la demande est alors de 386. Le chiffre d'affaire généré est