Projet de Simulation

Documents pareils
DYNAMIQUE DE FORMATION DES ÉTOILES

Chapitre 9 : Applications des lois de Newton et Kepler à l'étude du mouvement des planètes et des satellites

POLY-PREPAS Centre de Préparation aux Concours Paramédicaux. - Section Audioprothésiste / stage i-prépa intensif -

TS Physique Satellite à la recherche de sa planète Exercice résolu

Chapitre 2 Le problème de l unicité des solutions

Les équations différentielles

La gravitation universelle

SEANCE 4 : MECANIQUE THEOREMES FONDAMENTAUX

Résolution d équations non linéaires

BACCALAURÉAT PROFESSIONNEL ÉPREUVE DE MATHEMATIQUES. EXEMPLE DE SUJET n 2

3 - Description et orbite d'un satellite d'observation

Chapitre 2 : Caractéristiques du mouvement d un solide

Système formé de deux points

Cours Informatique Master STEP

M6 MOMENT CINÉTIQUE D UN POINT MATÉRIEL

Etude de fonctions: procédure et exemple

MECANIQUE DU POINT. y e y. z e z. ] est le trièdre de référence. e z. où [O, e r. r est la distance à l'axe, θ l'angle polaire et z la côte

La révolution des satellites de Jupiter

Erratum de MÉCANIQUE, 6ème édition. Introduction Page xxi (milieu de page) G = 6, m 3 kg 1 s 2

Intégrales doubles et triples - M

Quantité de mouvement et moment cinétique

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications

DM n o 8 TS Physique 10 (satellites) + Chimie 12 (catalyse) Exercice 1 Lancement d un satellite météorologique

Equations cartésiennes d une droite

3 Approximation de solutions d équations

Chapitre 0 Introduction à la cinématique

Sur les vols en formation.

Chafa Azzedine - Faculté de Physique U.S.T.H.B 1

COTTAZ Céline DESVIGNES Emilie ANTHONIOZ-BLANC Clément VUILLERMET DIT DAVIGNON Nicolas. Quelle est la trajectoire de la Lune autour de la Terre?

Explorons la Voie Lactée pour initier les élèves à une démarche scientifique

Développements limités, équivalents et calculs de limites

Chapitre 1 Cinématique du point matériel

TP 03 B : Mesure d une vitesse par effet Doppler

IV- Equations, inéquations dans R, Systèmes d équations

EXERCICE 4 (7 points ) (Commun à tous les candidats)

BACCALAUREAT GENERAL MATHÉMATIQUES

Rappels sur les suites - Algorithme

MESURE DE LA MASSE DE LA TERRE

Travaux Pratiques. Sondage Radar de Vénus

Cours IV Mise en orbite

C f tracée ci- contre est la représentation graphique d une

Cryptographie RSA. Introduction Opérations Attaques. Cryptographie RSA NGUYEN Tuong Lan - LIU Yi 1

Oscillations libres des systèmes à deux degrés de liberté

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer

Exercices Alternatifs. Quelqu un aurait-il vu passer un polynôme?

Exercices Alternatifs. Quelqu un aurait-il vu passer un polynôme?

Projet de synthèse de l'électronique analogique : réalisation d'une balance à jauges de contrainte

F411 - Courbes Paramétrées, Polaires

Université de Caen. Relativité générale. C. LONGUEMARE Applications version mars 2014

Repérage d un point - Vitesse et

Interaction milieux dilués rayonnement Travaux dirigés n 2. Résonance magnétique : approche classique

Développements limités. Notion de développement limité

ÉVALUATION FORMATIVE. On considère le circuit électrique RC représenté ci-dessous où R et C sont des constantes strictement positives.

Cercle trigonométrique et mesures d angles

TRAVAUX DIRIGÉS DE M 6

TD 9 Problème à deux corps

I - Quelques propriétés des étoiles à neutrons

TRACER LE GRAPHE D'UNE FONCTION

Partie 5 : La consommation et l investissement

FctsAffines.nb 1. Mathématiques, 1-ère année Edition Fonctions affines

Michel Henry Nicolas Delorme

Initiation à la Mécanique des Fluides. Mr. Zoubir HAMIDI

Cours Fonctions de deux variables

Chapitre 4 : Guide de Mouvement et Masque

Chapitre 7 : Intégration sur un intervalle quelconque

RO04/TI07 - Optimisation non-linéaire

Fonctions de plusieurs variables

aux différences est appelé équation aux différences d ordre n en forme normale.

Nombre dérivé et tangente

Programmes des classes préparatoires aux Grandes Ecoles

LES REGLES DE VOL VFR

Vision industrielle et télédétection - Détection d ellipses. Guillaume Martinez 17 décembre 2007

Calcul intégral élémentaire en plusieurs variables

Commun à tous les candidats

INTRODUCTION. A- Modélisation et paramétrage : CHAPITRE I : MODÉLISATION. I. Paramétrage de la position d un solide : (S1) O O1 X

Pourquoi l apprentissage?

Analyse en Composantes Principales

COMMENT ALLER D'UNE PLANETE A, A UNE PLANETE B DANS UN SYSTEME SOLAIRE?

D'UN THÉORÈME NOUVEAU

Chapitre 1 Régime transitoire dans les systèmes physiques

Baccalauréat ES/L Amérique du Sud 21 novembre 2013

Perrothon Sandrine UV Visible. Spectrophotométrie d'absorption moléculaire Étude et dosage de la vitamine B 6

Utilisation des intégrales premières en mécanique. Exemples et applications.

8.1 Généralités sur les fonctions de plusieurs variables réelles. f : R 2 R (x, y) 1 x 2 y 2

Complément d information concernant la fiche de concordance

Angles orientés et fonctions circulaires ( En première S )

Optimisation, traitement d image et éclipse de Soleil

Nouveau Barème W.B.F. de points de victoire 4 à 48 donnes

Sujet proposé par Yves M. LEROY. Cet examen se compose d un exercice et de deux problèmes. Ces trois parties sont indépendantes.

Indications pour une progression au CM1 et au CM2

11.5 Le moment de force τ (tau) : Production d une accélération angulaire

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme

Trépier avec règle, ressort à boudin, chronomètre, 5 masses de 50 g.

Table des matières. Introduction Générale 5

Algorithmes pour la planification de mouvements en robotique non-holonome

Leçon N 4 : Statistiques à deux variables

3. Caractéristiques et fonctions d une v.a.

Coup de Projecteur sur les Réseaux de Neurones

Mécanique. Chapitre 4. Mécanique en référentiel non galiléen

Thème 17: Optimisation

Transcription:

Projet de Simulation Point de Lagrange L1 et L2 GIELARA Krystian 2014-2015 1/9

Sommaire Introduction 3 1) Calcul de la position du point de Lagrange L1 3 2) Calcul de la position du point de Lagrange L2 4 3) Simulation de trajectoire 4 a - Trajectoire de la Terre 5 b - Trajectoire d'un satellite au point L1 et L2 6 c - Instabilité de la méthode d'euler 8 Conclusion 9 Sources 9 2014-2015 2/9

Introduction Les points de Lagrange sont des points de l'espace où les forces de gravitation générées par 2 corps de masse non négligeable se compensent. Nous considérerons ici le système Terre-Soleil qui comporte 5 points de Lagrange (L1, L2, L3, L4, et L5) Nous nous intéresserons dans notre cas uniquement aux points de Lagrange L1 et L2, qui se situent sur l'axe Terre-Soleil. En plaçant un objet en un de ces points avec une vitesse nulle, celui-ci resterait en place indéfiniment, tout en accompagnant la rotation de la Terre autour du Soleil avec la même vitesse angulaire. L'intérêt d'un tel point est d'étudier par exemple les cycles solaires, en effet un satellite placé en ce point resterait toujours entre la Terre et le Soleil, tout en restant proche de la Terre. C'est le but de la mission SOHO. Mon projet a donc pour objectif de chercher la position des points de Lagrange L1 et L2, et de simuler sur un an la trajectoire d'un point en L1 et en L2. 1) Calcul de la position du point de Lagrange L1 Étant donné que tout l'aspect physique et mathématique est présent dans la description du sujet, je m'abstiendrais de le réécrire, et ne m'occuperai que de la résolution de l'équation finale donné ci-dessous. A l'équilibre le point L1 obéit à l'équation : 1/ (1 x)² + u / x² + 1 (1 + u)*x = 0 avec x = distance Soleil-Point L1 / distance Terre-Soleil Pour résoudre cette équation j'ai donc utilisé la méthode de la dichotomie qui est la plus approprié dans ce cas de figure. La méthode consiste à prendre un intervalle de départ, ici 0 < x < 1, car le point est compris entre la Terre et le Soleil, de le découper en 2 et de voir dans lequel se trouve le zéro, et ainsi de suite jusqu'à atteindre la précision voulu. En reprenant le programme de simulation intitulé dichotomy.py, et en changeant l'intervalle pour celui au dessus, j'obtiens x = 0,99 ce qui nous donne la distance Soleil-Point L1 : 1,481040e11 m. Ce résultat correspond bien à celui que j'ai pu trouvé sur internet, en effet celle-ci correspond à 1% de la distance Terre-Soleil, en considérant le x comme étant la distance Terre-Point L1. 2014-2015 3/9

2) Calcul de la position du point de Lagrange L2 De même pour calculer la position du point L2, je ne m'occuperais que de la résolution de son équation à l'équilibre, à savoir : 1 / (1 x)² u / x² + 1 (1 + u)*x = 0 avec x = distance Soleil-Point L1 / distance Terre-Soleil Pour résoudre cette équation j'ai donc utilisé la méthode de Newton-Raphson qui est la plus approprié dans ce cas de figure. Cette méthode est basé sur l approximation du taux d accroissement de f (une fonction quelconque) par sa dérivée f' ', f doit donc être dérivable sur le domaine de recherche. On se rapproche du zéro en calculant par itérations successives x(i+1) = x(i) f(xi) / f '(xi). En reprenant le programme de simulation intitulé newtonraphson.py, et en changeant l'abscisse de départ par a = 1.001, je trouvais x=1,99, or je sais que ce résultat est faux car le point L2 n'est que le symétrique du point L1 par rapport à la Terre par conséquent x doit être égal à x = 1,01. Après plusieurs vérifications de la dérivée et de la méthode, j'ai décidé d'essayer de résoudre l'équation par la méthode de dichotomie utilisé pour le point L1. L'intervalle fut ajusté pour 0,9 < x < 1,1,et le résultat obtenu fut x =1,897 j'en ai donc conclu que soit l'équation devait être fausse ou soit que j'étais totalement dépourvus d'intelligence. Après plusieurs essais infructueux mon programme affichait un problème de 'float', je l'ai donc mis en commentaire et ai décidé d'abandonner. Néanmoins je vais considérer le point L2 comme étant situé à 1,01 fois la distance Terre-soleil soit : 1,510e11 m, pour ne pas être bloqué par la suite. 3) Simulation de trajectoire Définition des données : d : distance Soleil-Terre (on suppose que l orbite terrestre est circulaire : R= cte = 149 600 000 000 m) r1 : distance Soleil-Point L1 (= 0,99*d m) r2 : distance Soleil-Point L2 (=1,01*d m) Ms : masse du Soleil (= 1,989E30 kg) Mt : masse de la Terre (= 5,972E24 kg) m : masse du satellite en kg G : constante gravitationnelle (= 6,67 10-11 Nm² / kg²) 2014-2015 4/9

V : vitesse de rotation du satellite autour du Soleil (identique à celle de la Terre) A : accélération a Trajectoire de la Terre On considère un système héliocentrique avec pour origine le Soleil Bilan des forces agissant sur la Terre : Force d'attraction du Soleil : Fs = -(G*Ms*Mt / d**2) En appliquant le principe fondamental de la dynamique sur la Terre, nous obtenons sur (er) : Mt*A = - (G*Ms*Mt / d**2) (1) A = - (G*Ms / d**2) Pour nous simplifier la vie par la suite, nous allons nous placer dans un repère cartésien, ce qui nous donne : Ax = - (G*Ms / d**2)*cos(ɵ) = (- G*Ms / d**2)*(x/d) Ay = - (G*Ms / d**2)*sin(ɵ) = (- G*Ms / d**2)*(y/d) De plus nous connaissons les conditions initiales : x[0] = d y[0] = 0 Il ne reste plus qu'à calculer la vitesse, or étant donné que nous considérons une trajectoire circulaire, nous pouvons affirmer que la vitesse est tangente en tout point au vecteur d (selon er) : A = - (G*Ms / d**2) Dont les conditions initiales sont : V²/d = -(G*Ms / d**2) V = (G*Ms / d) Vx[0] = 0 Vy[0] = (G*Ms / d) 2014-2015 5/9

Nous pouvons alors en déduire une boucle permettant d'obtenir tous les x et y sur 1 an : Ax = - (G*Ms / d**2)*x[i]/d Ay = - (G*Ms / d**2)*y[i]/d Vx[i+1] = Vx[i] + Ax*pas Vy[i+1] = Vy[i] + Ay*pas X[i+1] = X[i] + Vx[i+1]*pas Y[i+1] = Y[i] + Vy[i+1]*pas Nous devons trouver à la fin une trajectoire circulaire, comme ci-dessous. Le temps est considéré ici comme une variable muette, mais elle est présente sur l'intervalle d'intégration qui est de 1 année (convertis en seconde). Après intégration de l équation différentiel (1) grâce a la méthode d Euler nous obtenons le graphe suivant : b Trajectoire d'un satellite au point L1 et L2 Le principe est identique qu'avant. Point L1 Bilan des forces : Force d'attraction du Soleil : Fs = - (G*Ms*m) / r1² Force d'attraction de la Terre : Ft = G*Mt*m / (d-r1)² 2014-2015 6/9

PFD Conditions initiales : La boucle devient alors : m*a = - (G*Ms*m/r1² - G*Mt*m) / (d-r1)² (2) m*v² / d = - (G*Ms*m / r1² - G*Mt*m) / (d-r1)² V = [ (G*Ms / d**3)]*r1 x[0] = r1 y[0] = 0 Vx[0] = 0 Vy[0] = [ (G*Ms / d**3)]*r1 Ax = - G*(Ms / d**2 - Mt / (d-r1)**2)*x[i]/d Ay = - G*(Ms / d**2 - Mt / (d-r1)**2)*y[i]/d Vx[i+1] = Vx[i] + Ax*pas Vy[i+1] = Vy[i] + Ay*pas X[i+1] = X[i] + Vx[i+1]*pas Y[i+1] = Y[i] + Vy[i+1]*pas Point L2 Pour le point L2 c'est pareil à un signe près. Bilan des forces : PFD Force d'attraction du Soleil : Fs = - (G*Ms*m) / r2² Force d'attraction de la Terre : Ft = - (G*Mt*m )/ (d-r2)² Conditions initiales : m*a = - (G*Ms*m/r2² +G*Mt*m) / (d-r2)² (3) m*v² / d = - (G*Ms*m / r2² + G*Mt*m) / (d-r2)² V = [ (G*Ms / d**3)]*r2 x[0] = r2 2014-2015 7/9

y[0] = 0 Vx[0] = 0 Vy[0] = [ (G*Ms / d**3)]*r2 La boucle devient alors : Ax = - G*(Ms / d**2 + Mt / (d-r2)**2)*x[i]/d Ay = - G*(Ms / d**2 + Mt / (d-r2)**2)*y[i]/d Vx[i+1] = Vx[i] + Ax*pas Vy[i+1] = Vy[i] + Ay*pas X[i+1] = X[i] + Vx[i+1]*pas Y[i+1] = Y[i] + Vy[i+1]*pas Après intégration de l'équation différentiel (2) et (3) grâce à la méthode d Euler nous obtenons les graphes suivant : c Instabilité de la méthode d'euler La méthode d Euler trouve ses limites pour un pas de 10**5 secondes, à partir duquel la trajectoire de la terre diverge. 2014-2015 8/9

Conclusion Mon projet est à moitié réussis, les problèmes posés lors du calcul de la position du point L2 m'ont pris beaucoup de temps pour au final ne même pas être résolus. Quant aux orbites des points L1 et L2, elles me paraissent plus éloigné en x = xmax qu'en x = 0, mais cela est peut être seulement dû à la taille de l'image qui rend par ailleurs l'orbite terrestre, supposé circulaire, elliptique. De plus je ne me suis pas attardé sur l'instabilité des points L1 et L2, même si je sais que ces points sont instables. Par manque de temps mon projet présente encore plusieurs points à approfondir. Sources Wikipédia : http://fr.wikipedia.org/wiki/point_de_lagrange#stabilit.c3.a9 Futura science : http://www.futura-sciences.com/magazines/espace/infos/dico/d/univers-pointlagrange-4540/ Planete Astronomy : http://www.planetastronomy.com/articles/points-lagrange.htm 2014-2015 9/9