PHYSIQUE APPLIQUÉE. ( Baccalauréat blanc )

Documents pareils
Electrotechnique. Fabrice Sincère ; version

ELEC2753 Electrotechnique examen du 11/06/2012

Electrotechnique: Electricité Avion,

Série 77 - Relais statiques modulaires 5A. Caractéristiques. Relais temporisés et relais de contrôle

Charges électriques - Courant électrique

1 Systèmes triphasés symétriques

Chapitre 7. Circuits Magnétiques et Inductance. 7.1 Introduction Production d un champ magnétique

Module d Electricité. 2 ème partie : Electrostatique. Fabrice Sincère (version 3.0.1)

Références pour la commande

CHAPITRE XIII : Les circuits à courant alternatif : déphasage, représentation de Fresnel, phaseurs et réactance.

0.8 U N /0.5 U N 0.8 U N /0.5 U N 0.8 U N /0.5 U N 0.2 U N /0.1 U N 0.2 U N /0.1 U N 0.2 U N /0.1 U N

La compensation de l énergie réactive

Monte charge de cuisine PRESENTATION DU MONTE CHARGE

Variation de vitesse des machines à courant alternatif. par

Les résistances de point neutre

CH IV) Courant alternatif Oscilloscope.

RELAIS STATIQUE. Tension commutée

F = B * I * L. Force en Newtons Induction magnétique en teslas Intensité dans le conducteur en ampères Longueur du conducteur en mètres

M HAMED EL GADDAB & MONGI SLIM

Convertisseurs Statiques & Machines

CIRCUIT DE CHARGE BOSCH

Électricité au service des machines. heig-vd. Chapitre 3. Alimentations électriques, courant alternatif 3-1

Les Mesures Électriques

Solutions pour la mesure. de courant et d énergie

Guide de la compensation d énergie réactive et du filtrage des harmoniques

Système ASC unitaire triphasé. PowerScale kva Maximisez votre disponibilité avec PowerScale

CH 11: PUIssance et Énergie électrique

Les puissances La notion de puissance La puissance c est l énergie pendant une seconde CHAPITRE

COMMANDER la puissance par MODULATION COMMUNIQUER

Circuits RL et RC. Chapitre Inductance

n 159 onduleurs et harmoniques (cas des charges non linéaires) photographie Jean Noël Fiorina

Multitension Monofonction. Multitension Multifonction

EXERCICE 2 : SUIVI CINETIQUE D UNE TRANSFORMATION PAR SPECTROPHOTOMETRIE (6 points)

Cours d électricité. Circuits électriques en courant constant. Mathieu Bardoux. 1 re année

CARACTERISTIQUE D UNE DIODE ET POINT DE FONCTIONNEMENT

ÉTUDE D UN SYSTÈME ET/OU D UN PROCESSUS INDUSTRIEL OU TECHNIQUE : ÉLÉMENTS DE CORRIGÉ. Partie A : alimentation HTA

Multichronomètre SA10 Présentation générale

Machine à courant continu

Varset Direct. Batteries fixes de condensateurs basse tension Coffrets et armoires. Notice d utilisation. Armoire A2

de mesure d intérieur

Interaction milieux dilués rayonnement Travaux dirigés n 2. Résonance magnétique : approche classique

Interrupteurs Différentiels 2P jusqu à 40 A

Simulation Matlab/Simulink d une machine à induction triphasée. Constitution d un référentiel

Cahier technique n 18

Cahier technique n 207

CHAPITRE IX : Les appareils de mesures électriques

Eléments constitutifs et synthèse des convertisseurs statiques. Convertisseur statique CVS. K à séquences convenables. Source d'entrée S1

MESURE DE LA PUISSANCE

BACCALAURÉAT PROFESSIONNEL EPREUVE DE TRAVAUX PRATIQUES DE SCIENCES PHYSIQUES SUJET A.1

DimNet Gradateurs Numériques Evolués Compulite. CompuDim 2000

IUT DE NÎMES DÉPARTEMENT GEII ÉLECTRONIQUE DE PUISSANCE CONVERSION AC/DC AMÉLIORATION DU FACTEUR DE PUISSANCE

1 Savoirs fondamentaux

PRODUIRE DES SIGNAUX 1 : LES ONDES ELECTROMAGNETIQUES, SUPPORT DE CHOIX POUR TRANSMETTRE DES INFORMATIONS

Relais statiques SOLITRON, 1 ou 2 pôles Avec dissipateur intégré

Cahier technique n 158

1 000 W ; W ; W ; W. La chambre que je dois équiper a pour dimensions : longueur : 6 m largeur : 4 m hauteur : 2,50 m.

Contribution à la conception par la simulation en électronique de puissance : application à l onduleur basse tension

MATIE RE DU COURS DE PHYSIQUE

Donner les limites de validité de la relation obtenue.

Exercice 1. Exercice n 1 : Déséquilibre mécanique

Protect 5.31 Sortie monophasée 10kVA 120kVA Protect 5.33 Sortie triphasée 25kVA 120kVA. Alimentations Statique Sans Interruption

NPIH800 GENERATION & RESEAUX. PROTECTION de COURANT TERRE

Automatique Linéaire 1 Travaux Dirigés 1A ISMIN

DP 500/ DP 510 Appareils de mesure du point de rosée mobiles avec enregistreur

Instruments de mesure

TD1 Signaux, énergie et puissance, signaux aléatoires

SUJET ZÉRO Epreuve d'informatique et modélisation de systèmes physiques

Champ électromagnétique?

10 leçon 2. Leçon n 2 : Contact entre deux solides. Frottement de glissement. Exemples. (PC ou 1 er CU)

TRAVAUX PRATIQUES SCIENTIFIQUES SUR SYSTÈME

A Électrotechnique SYSTÈME DIDACTIQUE DE COMMANDE INDUSTRIELLE SÉRIE 8036

Spécifications d installation Précision des mesures

SINEAX V 611 Convertisseur de mesure température, programmable

Comparaison de fonctions Développements limités. Chapitre 10

Chapitre 1 Régime transitoire dans les systèmes physiques

Caractéristiques des ondes

Version MOVITRANS 04/2004. Description / FR

G.P. DNS02 Septembre Réfraction...1 I.Préliminaires...1 II.Première partie...1 III.Deuxième partie...3. Réfraction

Systèmes de distributeurs Systèmes de distributeur selon la norme ISO , taille 2, série 581. Caractéristiques techniques

GELE5222 Chapitre 9 : Antennes microruban

UMG 20CM. UMG 20CM Appareil de surveillance des circuits de distribution avec 20 entrées et RCM. Analyse d harmoniques RCM. Gestion d alarmes.

SUIVI CINETIQUE PAR SPECTROPHOTOMETRIE (CORRECTION)

Synthèse des convertisseurs statiques DC/AC pour les systèmes photovoltaïques

Notions fondamentales sur le démarrage des moteurs

Thermostate, Type KP. Fiche technique MAKING MODERN LIVING POSSIBLE

BD 302 MINI. Etage de puissance pas à pas en mode bipolaire. Manuel 2059-A003 F

INSTALLATIONS ÉLECTRIQUES CIVILES

MODULE DES SCIENCES APPLIQUÉES

Electricité Générale

Relais d'arrêt d'urgence, protecteurs mobiles

TRAITEMENT DE DONNÉES

Le triac en commutation : Commande des relais statiques : Princ ipe électronique

LYCEE TECHNIQUE PIERRE EMILE MARTIN BOURGES ETUDE D UN TRAITEMENT DE SURFACE

1 ère partie : tous CAP sauf hôtellerie et alimentation CHIMIE ETRE CAPABLE DE. PROGRAMME - Atomes : structure, étude de quelques exemples.

TSTI 2D CH X : Exemples de lois à densité 1

1. Smart Energy Management System (SEMS)

Equipement d un forage d eau potable

08/07/2015

LES APPAREILS A DEVIATION EN COURANT CONTINU ( LES APPREILS MAGNETOELECTRIQUES)

Physique, chapitre 8 : La tension alternative

Transcription:

BACCALAUREAT TECHNOLOGIQUE PHYSIQUE APPLIQUÉE ( Baccalauréat blanc ) Série : Sciences et technologies industrielles Spécialité : Génie Électrotechnique Durée: 4 heures Coefficient : 7 L'emploi de toutes les calculatrices programmables, alphanumériques ou à écran graphique est autorisé à condition que leur fonctionnement soit autonome et qu'il ne soit pas fait usage d'imprimante (circulaire n 99-186 du 16-11-1999). Le sujet, composé de 5 pages comporte 5parties complètement indépendantes Il est rappelé aux candidats que la qualité de la rédaction, la clarté et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies. Partie 1 : Etude d un réseau triphasé Partie 2 : Etude d un transformateur monophasé Partie 3 : Etude d un moteur à courant continu Partie 4 : Etude d un moteur à courant continu série Partie 4 : Etude d un variateur de vitesse réalisé à partir d un hacheur Partie 1 : ÉTUDE D'UN RÉSEAU TRIPHASÉ Le réseau dont dispose l'usine d'embouteillage est un réseau triphasé 230 / 400 V - 50 Hz. 1 ) Que valent les tensions efficaces composée U et simple V pour ce réseau? U = 400 et V = 230 V 2 ) Citer un type d'appareil permettant la mesure de ces tensions efficaces le signal est sinusoïdale donc un RMS suffit en position AC 3 ) Quelle est la pulsation ω de ce réseau? ω = 2π.f = 314 rad/s 4 ) Écrire les équations horaires des tensions (instantanées) simples v1(t), v2(t) et v3(t) de ce réseau sachant que ces tensions v1(t), v2(t) et v3(t) forment un système triphasé équilibré direct. v1(t) = V sin ωt c est l origine des phases v2(t) = V sin (ωt - ) en retard de 120 par rapport à v1 v3(t) = V sin (ωt - ) en retard de 240 par rapport à v1 Physique Appliquée 01/04/2011 correction bac blanc 2011 Page 1 / 8

5 ) Montrer que la somme des trois tensions simples est nulle à chaque instant en utilisant une construction de Fresnel (échelle obligatoire 1cm pour 40V). V = 230 V donc les vecteurs mesurent 230/40 = 5,75 cm 6 ) Représenter les trois vecteurs associés aux tensions composées u12 = v1-v2, u23 = v2-v3 et u31 = v3-v1 7 ) Sur ce réseau, on branche trois récepteurs équilibrés triphasés inductifs différents. On connaît les caractéristiques de chacun des récepteurs : récepteur 1 : P1 = 5 kw ; k1 = 0,7 ; récepteur 2 : P2 = 2 kw ; k2 = 0,6 ; récepteur 3 : P3 = 6 kw ; k3 = 0,85. 7.1. Calculer les puissances réactive et apparente de chaque récepteur. Q1 = P1.tanφ1 = 5000x1,02= 5,1 kvar car cos -1 (0.7) = 45 et tan45 = 1,02 S1 = P1/ cos φ1 = P1/k1 = 5000/0,7 = 7,14 kva On fait de même avec les autres récepteurs et on trouve Q2 = 2,67 kvar et S2 = 3,33 kva Q3 = 3,72 kvar et S3 = 7,06 kva 7.2. En déduire, la puissance active, réactive et apparente de l installation. On présentera les résultats sous la forme d un tableau Pt = P1+P2+P3 = 13 kw, Qt = Q1 + Q2+ Q3 = 11,5 kvar et St = = 17,3 kva 7.3. Calculer l intensité efficace du courant en ligne alimentant cette installation. St = U I donc I = St/ ( U) = 17300 / ( x400 ) = 25A 7.4 Calculer le facteur de puissance de l installation. cosφ = Pt/St = 0,75 Physique Appliquée 01/04/2011 correction bac blanc 2011 Page 2 / 8

Partie 2 : ETUDE D'UN TRANSFORMATEUR MONOPHASÉ On dispose d'un transformateur monophasé dont la plaque signalétique porte les indications suivantes : SN = 44 kva ; U1N = 2,20 kv ; U2N = 220 V Un essai à vide sous tension primaire nominale a donné les résultats suivants : U10 = 2,20 kv ; I10 = 1,5 A ; U20 = 230 V ; P10 = 700 W ; Un essai en court-circuit sous tension primaire réduite à donné les résultats suivants : U1cc = 130 V ; I2cc = 200 A ; P1cc = 1,50 kw ; 1 - Donner la signification des indications portées sur la plaque signalétique du transformateur. Sn : puissance apparente nominale U1n et U2n: tension efficace nominale au primaire et secondaire 2 - Utilisation de l essai à vide 2.1 - Proposer un schéma de câblage du transformateur lors de l'essai à vide, avec tous les appareils permettant de mesurer I 10 ; U 20 et P 10. cours 2.2 - Calculer le rapport de transformation m du transformateur. m = U 20 / U 1 = 230/2200 = 0,104 2.3 - Calculer le facteur de puissance du transformateur lors de l'essai à vide. cosφ 0 = P 10 / U 10.I 10 = 700/(2200x1,5) = 0,21 En déduire la puissance réactive Q 10 absorbée par le transformateur. Q 10 = P 10 tanφ0 = 3,26kVAR Quel est le comportement à vide? P 10 << Q 10, comportement très inductif 2.4 A quoi correspond la puissance mesurée dans cet essai? Les pertes joules sont négligeables sonc on mesure les pertes fer Pf = P10 = 700 W 3 - Utilisation de l essai en court circuit 3.1 - Représenter le schéma équivalent du transformateur vu du secondaire dans le cas de l hypothèse de Kapp. Vous indiquerez le fléchage du courant I 2 et le fléchage de chaque tension représentée. cours 3.2 - Calculer les valeurs de R s et X s, éléments du modèle du transformateur vu du secondaire. Rs est lié aux pertes joules uniquement et donc à la puissance active Rs = P 1cc / I² 2cc = 1500 / (200²) = 37,5 mω Zs = U 2cc / I 2cc = m U 1cc / I 2cc = 0,104 x 130 / 200 = 67,6 mω Donc Xs = Z ² s R² s = 0,0676² 0,0375² = 56,2 mω 3.3 Justifier que l'on peut négliger les pertes fer dans cet essai. Les pertes fer sont proportionnelles à la tension primaire au carré Pf = a U 1 ², dans cette essai, on travaille sous tension réduite ( U1cc = 130 = U1n/17) donc les pertes fer sont très faible. Et on peut dire que P 1cc = P J Physique Appliquée 01/04/2011 correction bac blanc 2011 Page 3 / 8

4 Essai en charge : Le transformateur, alimenté au primaire sous sa tension nominale, débite un courant de 200 A sur une charge inductive de facteur de puissance cos ϕ2 = 0,60. 4.1 - Calculer la valeur de la tension U 2 en utilisant une construction vectorielle (Indiquer la loi des mailles utilisée et justifier tous votre démarche et vos résultats) u 20 = urs + uxs + u2 d après le modèle de Kapp. cos ϕ 2 = 0,60 donc ϕ 2 = 53 U20 = 230 V ; Urs = Rs. I2 = 0,0375x200 =7,4 V et Uxs = Xs.I2 = 0,0562x200 = 11,2 V Echelle = 1 cm pour 20 V on mesure le vecteur U2 = 10,75 cm soit 215 V 4.2 Retrouver vos résultats en utilisant la méthode approchée qui permet de calculer la chute de tension : U = R I cos( ϕ ) + X I sin( ϕ ) 2 S 2 2 S 2 2 = 0,0375x200x0.6+0,0562x200xsin53 =13,5V donc U2 = U20- U2= 216,5V 4.3 - Calculer la puissance active absorbée par la charge. P2 = U2.I2cosφ2 =216,5x200x0,6= 26 kw 4.4 En utilisant les pertes déterminer dans les essais précédents, en déduire la puissance active P1 absorbée au primaire du transformateur. P1 = P2 + Pj + Pf = 26000+700+1500 = 28,2 kw 4.5 - Calculer le rendement du transformateur. P2/P1 = 92,2% Physique Appliquée 01/04/2011 correction bac blanc 2011 Page 4 / 8

Partie 3 : ETUDE DU MOTEUR A COURANT CONTINU A EXCITATION SEPAREE Le moteur est à excitation séparée ; le courant d'excitation d'intensité Ie = 1,5 A sera constant dans toute cette partie. La réaction magnétique d'induit est parfaitement compensée. Les valeurs nominales sont : tension d'induit : U N = 110 V courant d'induit : I N = 20 A fréquence de rotation n N = 1200 tr / min La résistance de l'induit est R = 0,2 Ω et la résistance du circuit inducteur est r e = 40 Ω 1 ) quelle partie des données sur le moteur donne une indication importante que vous expliquerez? «le courant d'excitation d'intensité Ie = 1,5 A sera constant» donc le flux est constant 2 ) Un essai à vide a donné les résultats suivants tension d'induit: U 0 = 106,5 V courant d'induit: I 0 = 2,5 A fréquence de rotation n = 1200 tr / min Pour le fonctionnement à vide, déterminer: 2.1 ) La puissance absorbée par l'induit. Pinduit = U 0.I 0 = 106,5x2,5= 266W 2.2.) Les pertes par effet Joule dans l'induit. Pj 0 = RI 0 ² = 0,2x2,5² =1,25 W 2.3 ) En déduire la somme des pertes mécaniques et magnétiques (pertes dites constantes). Pa = Pu + Pj 0 + Pc or Pu = 0 car on est à vide donc Pc = Pa Pj 0 = 266-1,25 = 265 W 3 ) Pour le fonctionnement nominal 3.1 ) Déterminer les pertes par effet Joule dans l'induit. Pj = RI² = 0,2x20² = 80W 3.2.) Déterminer les pertes par effet Joule dans l inducteur. Pje = reie² = 40x1,5² = 90W 3.3 ) Préciser la valeur des pertes mécaniques et magnétiques dans ce cas. La vitesse en charge est la même que lors de l essai à vide, les perte sont constantes :Pc = 265W 3.4 )Déterminer le rendement du moteur. η= Pu/Pa induit +inducteur avec Pa = UI+ReIe² = 110x20 + 90 = 2290 W et Pu = Pa - Pc - Pj - Pje = 2290 265 80 90 = 1855 η = 81% 3.5 ) La f ém. du moteur. E = U RI = 110 0,2x20 = 106 V 3.6 ) Le moment du couple électromagnétique. Tem = Pem / Ω = EI/Ω = 106x20/ (1200*2π/60)= 16,8 N.m 3.7 ) Le moment du couple de pertes. Tp = Pc/Ω = 265/125 = 2,1 N.m 3.8 ) Le moment du couple utile. Tu = Pu/Ω = 1855/125= 14,9 N.m 4 ) Le moteur entraîne une charge dont le moment du couple résistant est constant et a pour valeur 14,8 N.m. 4.1 ) Le moment du couple de pertes étant constant, montrer que le moment du couple électromagnétique l'est aussi. Tem = Tu+Tp, or Tu est constant d après l énoncé et Tp est constant aussi donc tem est constant. 4.2.) En déduire que l'intensité du courant d'induit reste égale à 20,0 A quelle que soit la fréquence de rotation. Or Tem = kφi donc I = Tem/kΦ, tem est constant d après 4.1 et kφ aussi donc I est constant. 5 ) L opérateur fait une erreur et diminue la valeur de la tension d alimentation de l inducteur. Quelles sont les conséquences? Expliquez? Emballement de la machine car il ne faut jamais couper l inducteur Physique Appliquée 01/04/2011 correction bac blanc 2011 Page 5 / 8

Partie 4 : ETUDE DU MOTEUR A COURANT CONTINU A EXCITATION SERIE Dans chaque boggie moteur est placé un moteur à courant continu excitation série, parfaitement compensé. A la température de fonctionnement (115 C), on a mesuré : résistance de l'inducteur : r 1 = 0,030 Ω résistance de l'induit : R 2 = 0,082 Ω On supposera dans tout le problème que le flux est proportionnel au courant dans l'inducteur. (Aucune saturation magnétique.) 1.1. Fonctionnement nominal on donne : tension d'alimentation 720 V, intensité 340 A, fréquence de rotation 1150 tr/min, moment du couple utile 1800 Nm. Calculer : la puissance utile, Pu = Tu.Ω = 1800.(1150*6.28/60) = 216,7 kw Les pertes par effet joule totales (induit+inducteur) Pjt = (R 2 + r 1 )I²=(0,03+0,082)x340²= 12,9 kw la puissance absorbée, Pa = U.I = 720x340 = 245 kw les autres pertes,(pertes collectives) Pc = Pa-Pu-Pj = 15,4 kw En déduire le rendement = 88% la force électromotrice du moteur E = U Rt.I = 720 (0,03+0,082)x340= 682V le couple électromagnétique. Pem = E.I = 232 kw donc Tem = 1927 N.m Le couple de perte Tp = Tem Tu = 127 N.m 1.2. Démarrage : Le moteur est alimenté sous tension réduite, par un hacheur. L'intensité de démarrage vaut 600 A. Calculer les valeurs moyennes de : la tension d'alimentation au début du démarrage, Ud = Ed Rt Id = Rt Id = 67,2 V le moment du couple électromagnétique correspondant. Tem = 0 1.3. Fonctionnement à grande vitesse : NON NOTE (bonus) La tension d'alimentation est constante, égale à sa valeur nominale, soit 720V. Un dispositif électronique de shuntage, en parallèle sur l'inducteur, permet de dériver une partie du courant, afin de diminuer le flux. On étudie le cas où le flux est égal à la moitié du flux nominal. La fréquence de rotation est alors 2300 tr/min. Faire un schéma, avec fléchage d'intensité et de tension. Calculer : la force électromotrice, E = kφω, or le flux est divisé par 2 mais la vitesse est doublé donc le terme ΦΩ reste constant donc E = 682 V l'intensité dans l'induit, U = E + Rt.I donc I = (U E) /Rt = 339A le moment du couple électromagnétique. Tem = Pem /Ω = 961 N.m Physique Appliquée 01/04/2011 correction bac blanc 2011 Page 6 / 8

Partie 5 : ETUDE D UN VARIATEUR DE VITESSE REALISE A PARTIR D UN HACHEUR SERIE ( EXTRAIT SUJET BACCALAUREAT METROPOLE 2000 ) L'induit d un moteur à courant continu est alimenté par un hacheur série dont le schéma est représenté sur la figure suivante. Les interrupteurs électroniques utilisés sont supposés parfaits. Une bobine de lissage B, de résistance négligeable, est placée en série avec l'induit, la résistance de celui-ci est R = 6,3 Ω. Il est caractérisé par la relation E = k.n dans laquelle E est exprimée en V et n en tr/min. On donne k = 0, 11 V/tr.min -1. Commande de l'interrupteur K, T désigne la période de fonctionnement Κ 0 < t < αt : K fermé. Ua u R αt < t < T : K ouvert. D Pour relever ces E oscillogrammes on a M Mcc utilisé une sondee tension de rapport 1 / 50 et une sonde de courant de sensibilité 100 mv / A. 1 ) Déterminer la fréquence de fonctionnement f du hacheur. f = 1/T = 1000 Hz 2 ) Quel est le paramètre de commande ce dispositif? le rapport cyclique α 3 ) Quel composant électronique peut-on utiliser pour réaliser l'interrupteur K? un transistor bipolaire 4 ) Quelle est la valeur du rapport cyclique pour le régime étudié? α =3/5 = 0,6 5 ) Représenter sur votre copie le courant dans l interrupteur et dans la diode en concordance de temps i u B B YB SD YA Voie A Voie A Physique Appliquée 01/04/2011 correction bac blanc 2011 Page 7 / 8

6 ) < u > désigne la valeur moyenne de la tension aux bornes de l'ensemble moteur + bobine de lissage ; montrer que < u > = 150 V en utilisant le relevé <u c > = 0,6 x 250 x T / T = 150 V 7 ) Démontrer la valeur moyenne <u> en fonction de α et de la tension d alimentation U a aire sous la courbe <u c > = = (αua x T )/ T = α Ua T 8 ) Déterminer la valeur maximale I M et la valeur minimale, I m, de l'intensité du courant absorbé par l'induit du moteur. IM= 1,55 A et Im = 1 A 9 ) En déduire l'ondulation I = l M - I m = 0,55 A du courant et sa valeur moyenne < i > = (IM+Im)/2 = 1,275A Physique Appliquée 01/04/2011 correction bac blanc 2011 Page 8 / 8