Induction : inductance propre et inductance mutuelle

Documents pareils
M HAMED EL GADDAB & MONGI SLIM

PRODUIRE DES SIGNAUX 1 : LES ONDES ELECTROMAGNETIQUES, SUPPORT DE CHOIX POUR TRANSMETTRE DES INFORMATIONS

Circuits RL et RC. Chapitre Inductance

Charges électriques - Courant électrique

Chapitre 1 Régime transitoire dans les systèmes physiques

Chapitre 7. Circuits Magnétiques et Inductance. 7.1 Introduction Production d un champ magnétique

LES APPAREILS A DEVIATION EN COURANT CONTINU ( LES APPREILS MAGNETOELECTRIQUES)

CHAPITRE XIII : Les circuits à courant alternatif : déphasage, représentation de Fresnel, phaseurs et réactance.

Guide de correction TD 6

Union générale des étudiants de Tunisie Bureau de l institut Préparatoire Aux Etudes D'ingénieurs De Tunis. Modèle de compte-rendu de TP.

Les résistances de point neutre

Méthodes de Caractérisation des Matériaux. Cours, annales

CORRECTION TP Multimètres - Mesures de résistances - I. Mesure directe de résistors avec ohmmètre - comparaison de deux instruments de mesure

Interaction milieux dilués rayonnement Travaux dirigés n 2. Résonance magnétique : approche classique

Exercice 1. Exercice n 1 : Déséquilibre mécanique

TS 35 Numériser. Activité introductive - Exercice et démarche expérimentale en fin d activité Notions et contenus du programme de Terminale S

Chauffage par induction

LYCEE TECHNIQUE PIERRE EMILE MARTIN BOURGES ETUDE D UN TRAITEMENT DE SURFACE

MESURE DE LA PUISSANCE

Champ électromagnétique?

Précision d un résultat et calculs d incertitudes

CHAPITRE IX. Modèle de Thévenin & modèle de Norton. Les exercices EXERCICE N 1 R 1 R 2

BACCALAURÉAT PROFESSIONNEL EPREUVE DE TRAVAUX PRATIQUES DE SCIENCES PHYSIQUES SUJET A.1

CHAPITRE IX : Les appareils de mesures électriques

Electrotechnique. Fabrice Sincère ; version

Solutions pour la mesure. de courant et d énergie

ÉVALUATION FORMATIVE. On considère le circuit électrique RC représenté ci-dessous où R et C sont des constantes strictement positives.

Partie Agir : Défis du XXI ème siècle CHAP 20-ACT EXP Convertisseur Analogique Numérique (CAN)

Contribution à la conception par la simulation en électronique de puissance : application à l onduleur basse tension

Instruments de mesure

Objet : Alimentation pour ordinateur portable et autre. Alimentation Schéma 1

CARACTERISTIQUE D UNE DIODE ET POINT DE FONCTIONNEMENT

Module d Electricité. 2 ème partie : Electrostatique. Fabrice Sincère (version 3.0.1)

I GENERALITES SUR LES MESURES

MATIE RE DU COURS DE PHYSIQUE

Résonance Magnétique Nucléaire : RMN

TRAVAUX PRATIQUES SCIENTIFIQUES SUR SYSTÈME

ELEC2753 Electrotechnique examen du 11/06/2012

Electricité : caractéristiques et point de fonctionnement d un circuit

Chapitre 2 Caractéristiques des ondes

1. PRESENTATION DU PROJET

TP 7 : oscillateur de torsion

T.P. 7 : Définir et contrôler un système d allumage statique

Infos. Indicateurs analogiques encastrables pour installation à courants forts. Série M W/P/ LSP BWQ BGQ TP TG WQ /0S WQ /2S FQ /2 W BI BIW DFQ

Mesure. Multimètre écologique J2. Réf : Français p 1. Version : 0110

Electricité. Electrostatique

Mesures d antennes en TNT

Transmission de données. A) Principaux éléments intervenant dans la transmission

1.5 COMPOSANTS POUR INSTALLATIONS TELEPHONIQUES, TV/SAT ET CAT.5. Les matières premières. Section 1.5

LA MAIN A LA PATE L électricité Cycle 3 L électricité.

Etudier l influence de différents paramètres sur un phénomène physique Communiquer et argumenter en utilisant un vocabulaire scientifique adapté

BTS Groupement A. Mathématiques Session Spécialités CIRA, IRIS, Systèmes électroniques, TPIL

«LES ALTERNATEURS DE VOITURES»

Tableau d Alarme Incendie Type 3 type marche/arrêt avec ou sans flash

efelec NOTES D'INFORMATIONS TECHNIQUES LES TESTS DIELECTRIQUES LES ESSAIS DE RIGIDITE ET D'ISOLEMENT

DETECTOR BICANAL FG2 1. DIMENSIONS ET CONNEXIONS ELECTRIQUES 2. GENERALITES. 24 VDC Alimentat. 24 Vcc. Contact Boucle Contact Boucle 1 6 7

Lycée SCHWEITZER MULHOUSE PC* 2012/ 2013 TRAVAUX PRATIQUES DE PHYSIQUE LIVRET 2

AMELIORATION DE LA FIABILITE D UN MOTEUR GRÂCE AU TEST STATIQUE ET DYNAMIQUE

CELTIC-BAAS-Sa BAAT3003

sciences sup Cours et exercices corrigés IUT Licence électricité générale Analyse et synthèse des circuits 2 e édition Tahar Neffati

Filtres passe-bas. On utilise les filtres passe-bas pour réduire l amplitude des composantes de fréquences supérieures à la celle de la coupure.

CH 11: PUIssance et Énergie électrique

Travaux dirigés de magnétisme

I- Définitions des signaux.

Electrotechnique: Electricité Avion,

GENERALITES SUR LA MESURE DE TEMPERATURE

TABLE DES MATIERES CHAPITRE 1 OSCILLATEURS LINÉAIRES...3

L3-I.S.T. Electronique I303 Travaux pratiques

TRAVAUX PRATIQUES D INTRODUCTION À L ÉTUDE DES RÉACTIONS ÉLECTROCHIMIQUES

Le suivi de la qualité. Méthode MSP : généralités

Notice d installation de la Centrale VIGIK DGM1

1 Systèmes triphasés symétriques

Électricité. 1 Interaction électrique et modèle de l atome

On distingue deux grandes catégories de mémoires : mémoire centrale (appelée également mémoire interne)

Système de surveillance vidéo

Multichronomètre SA10 Présentation générale

SUIVI CINETIQUE PAR SPECTROPHOTOMETRIE (CORRECTION)

NUGELEC. NOTICE D'UTILISATION DU B.A.A.S. du type Ma - STI / MaME - STI. pages. 1 introduction 2. 2 encombrement 3 fixation

Système d automation TROVIS 6400 Régulateur compact TROVIS 6493

COMMANDER la puissance par MODULATION COMMUNIQUER

Monte charge de cuisine PRESENTATION DU MONTE CHARGE

Conférence sur les microcontroleurs.

QUELQUES ACTIVITES RELATIVES A LA PARTIE A Propagation d une onde ; onde progressive. Comment installer le format de compression divx?

Pinces multimètres Fluke Une solution pour chaque besoin

TN421 Grade 1 TN423 Grade 3

CIRCUIT DE CHARGE BOSCH

TD1 Signaux, énergie et puissance, signaux aléatoires

Elec II Le courant alternatif et la tension alternative

DI-1. Mode d'emploi. Direct Box

Manipulation N 6 : La Transposition de fréquence : Mélangeur micro-ondes

Les correcteurs accorderont une importance particulière à la rigueur des raisonnements et aux représentations graphiques demandées.

TP Détection d intrusion Sommaire

TP Modulation Démodulation BPSK

LES CARACTERISTIQUES DES SUPPORTS DE TRANSMISSION

CH IV) Courant alternatif Oscilloscope.

Qualité du logiciel: Méthodes de test

MESURE DE LA TEMPERATURE

M1107 : Initiation à la mesure du signal. T_MesSig

Cours d électricité. Circuits électriques en courant constant. Mathieu Bardoux. 1 re année

Mesures de très faibles vitesses instantanées par échographie Doppler

Transcription:

Induction : inductance propre et inductance mutuelle Le but de la séance est d introduire par une approche expérimentale la notion d induction. Des mesures d inductance propre et d inductance mutuelle seront conduites en réinvestissant notamment les méthodes expérimentales vues dans des TP d électrocinétique réalisés précédemment. Un travail préparatoire, signalé par les logos, est nécessaire : lecture de l introduction théorique, de l annexe, mise en équation... Des applications technologiques récentes permettent d effectuer la recharge d objets électroniques portables (smartphone...) ou de voitures électriques sans qu il y ait nécessité de brancher l appareil électriquement. Le simple fait de poser l appareil sur une platine, ou de garer le véhicule au-dessus du dispositif, déclenche la recharge de ses batteries. Dans un autre domaine, les boucles de détection magnétique, encastrées dans la chaussée, permettent de détecter la présence d un véhicule, afin d optimiser la gestion des feux de circulation disposé à un carrefour. Le fonctionnement de ces systèmes est basé sur le phénomène d induction. ( voir annexe en fin de document). 1. Introduction théorique. Le phénomène d induction s observe en particulier dans un circuit électrique sollicité par un champ magnétique variable. Ce champ peut être produit par le circuit électrique lui-même : on parle alors d autoinduction. Il peut aussi résulter d une interaction entre le circuit considéré et un autre dispositif (qui peut être un second circuit), produisant un champ magnétique variable. Les situations abordées dans ce TP se ramènent à la schématisation suivante : Les coefficients d auto-induction L 1 et L 2 permettent d expliciter les termes d induction propre relatifs à chacun des deux bobinages. M i 2 L interaction entre les deux bobinages introduit un terme d induction mutuelle, de coefficient M. L 1 u 1 u 2 L 2 Les phénomènes inductifs amènent des tensions u 1 et u 2 aux bornes de chaque bobine d expressions respectives : représentation en convention récepteur = + 1

= + Remarque : les phénomènes d induction se manifestent dans des situations plus variées que celles abordées dans ce TP. Les différents cas de figure seront détaillés en cours. 2. Mesures de coefficients d inductance par résonance. On dispose de deux bobines, connectables de façon à utiliser tout ou partie de leurs spires, d une générateur basse fréquence, d un oscilloscope numérique. Sont aussi fournies deux boites à décades de résistances ainsi qu une boîte à décades de capacités. Sauf avis contraire (partie 4.), les bobines seront utilisées avec des nombres de spires identiques (400 spires). 2.1 Inductances propres. Déterminer expérimentalement la valeur d inductance propre de chacune des bobines, utilisées sans noyau, en exploitant le phénomène de résonance sur un circuit RLC série. On prendra pour valeur de capacité C = 200 nf, ainsi qu une résistance R o = 20 Ω sur la boîte à décades (La résistance totale R du circuit comprend en outre la résistance du générateur R s = 50 Ω). Reprendre ces mesures dans le cas où la bobine est engagée sur le noyau métallique, sans que le circuit magnétique ne soit fermé (U ouvert). Reprendre enfin ces mesures en présence d un circuit magnétique fermé (U fermé par une pièce mobile). On prendra alors C = 50 nf. Consigner les résultats dans un tableau. 2.2 Inductance mutuelle. Principe du montage : C M i 2 u(t) L 1, R 1 u 1 u 2 L 2, R 2 R Les deux bobines sont dotées d une résistance interne de l ordre de quelques ohms. La résistance de charge branchée sur le circuit secondaire est R = 50 Ω. Le générateur impose une pulsation ω = 2πf dans les deux circuits. En écrivant les deux lois de maille en notation complexe, établir les relations en grandeurs complexes : =. +. +. + 1 2

= + + En supposant que la fréquence est telle que les résistances R 1, R 2 et R soient négligeables devant les impédances des inductances, établir alors : = ² 1 La fréquence de résonance en courant correspondante sera : 1 = 2 ². Vers quelle valeur tendrait l amplitude de l intensité à la résonance dans le cadre de cette approximation? Interpréter. Mesure de la mutuelle : En exploitant le résultat précédent, déterminer le coefficient d inductance mutuelle M entre les deux bobines dans les diverses situations. Les valeurs conseillées de capacité sont indiquées. Couplage sans noyau* Noyau avec U ouvert Noyau avec U fermé C = 200 nf C = 200 nf C = 50 nf *Dans ce cas, les deux bobines seront disposées de façon coaxiale, leurs faces étant en contact. En théorie, dans le cas d un couplage magnétique total entre les deux circuits, la mutuelle M répond à la relation : =. On définit le coefficient de couplage magnétique par : =. Compiler les résultats dans un tableau, en indiquant la valeur obtenue pour la mutuelle M ainsi que le coefficient de couplage k. Conclure quant à l intérêt du noyau, et du rôle qu il joue dans le phénomène. On précise que la valeur du champ magnétique diminue dans les zones d espace où les lignes de champ s écartent les unes des autres (voir illustrations en annexe). 3. Mesure directe du coefficient d inductance mutuelle. Principe du montage : C M i 2 = 0 La bobine secondaire (L 2, R 2 ) étant en circuit ouvert, i 2 = 0, donc la tension en sortie du secondaire répond à : u(t) L 1, R 1 R u 1 u 2 L 2, R 2 s(t) v(t) 3

= = Le générateur u(t) est réglé en signal triangulaire. Sa fréquence sera réglée de façon à ce que l impédance inductive L 1 ω soit négligeable devant la résistance R. R est par ailleurs grande devant la résistance interne R 1 de la bobine primaire. Ainsi la tension v(t) = R. (t) est pratiquement égale à la tension d alimentation u(t), et conserve alors une forme quasiment triangulaire. Dans ces conditions, la tension au secondaire s(t) aura théoriquement une forme en créneaux et répond à l expression : = v(t) v t t = avec : Δt = T/2 où T = 1/f est la période des signaux. s(t) s t Montrer que l on en déduit finalement : =. 4.. Mise en oeuvre expérimentale : En pratique, il n est pas possible de satisfaire parfaitement les conditions sur la résistance R du circuit primaire et sur la fréquence f des signaux. En effet, la condition L 1.ω << R va de pair avec une fréquence faible, mais les effets inductifs ne seront notables qu à fréquence suffisamment élevée, puisque basés sur la variation du courant dans le circuit primaire. 3.1 Mesure du coefficient d inductance mutuelle. Les valeurs de R et f doivent être optimisées, de façon à observer la forme attendue pour les signaux v(t) et s(t). Réaliser la mesure de M selon les conditions indiquées. Couplage sans noyau* Noyau avec U ouvert Noyau avec U fermé R = 700 Ω R = 1,00 kω R = 6,00 kω f = 1,00 khz f = 200 Hz f = 100 Hz *Dans ce cas, les deux bobines seront disposées de façon coaxiale, leurs faces étant en contact. 3.2 Couplage magnétique et distance entre les bobines. On souhaite examiner l incidence de la distance d existant entre les faces des deux bobines, disposées de façon coaxiale, en l absence de noyau. Relever les valeurs obtenues pour M lorsque d évolue de 0 à 20 cm. Tracer le graphe M = f(d). 4

Interpréter qualitativement. On précise que la valeur du champ magnétique diminue dans les zones d espace où les lignes de champ s écartent les unes des autres (voir illustrations en annexe). 4. Une application : le transformateur électrique. Le couplage magnétique permet la transformation de tensions électrique variables. Dans un modèle très simplifié, on montre que le transformateur idéal réalise un rapport de transformation m = v 2 (t)/v 1 (t) égal au rapport du nombre de spire du secondaire au primaire : m = N 2 /N 1. carcasse N 1 N 2 i2 v 1 v 2 primaire secondaire Tester ce fonctionnement sur quelques valeurs de nombre de spires, le secondaire étant en circuit ouvert. Reprendre ces mesures en présence d une résistance de charge R = 100 Ω sur le circuit secondaire. Conclure quant à l influence de la charge appliquée sur le circuit secondaire. Annexe : introduction aux phénomènes d inductions. La production d un champ magnétique peut être réalisée au moyen d un aimant, ou d un circuit électrique parcouru par un courant. En pratique, on emploiera fréquemment une bobine, qui par la juxtaposition de ses spires, accumulera les effets magnétiques. Envisageons maintenant un circuit électrique, plongé dans le champ magnétique produit par le dispositif précédent. Les lignes de champ magnétique traversent la surface circonscrite par le circuit, et l on définit le flux magnétique ϕ comme le produit du champ magnétique par la surface du circuit : ϕ = B.S. Cette 5

définition très sommaire doit être adaptée dans des cas où le champ magnétique n a pas la même valeur en tout point de la surface du circuit, mais elle nous suffira dans un premier temps. i(t) e(t) Lorsque le flux magnétique varie dans le temps, il apparaît une différence de potentiel par induction e(t) dans le circuit électrique, qui peut générer un courant électrique induit i(t) dans ce circuit. La loi de Faraday donne accès à la f.é.m. induite par auto-inductions selon : e t = dϕ dt où ϕ est le flux magnétique. La variation du flux magnétique ϕ peut être provoquée par la variation du champ magnétique produit, ou par le déplacement du circuit électrique dans ce champ, voire la déformation de la surface circonscrite par ce circuit. Ces phénomènes d induction peuvent concerner l interaction entre deux circuits : les variations du champ magnétique produit par l un des circuits provoquant une tension induite dans l autre. On parlera d induction mutuelle. Mais ils peuvent aussi exister par la variation du flux magnétique du champ produit par un circuit à travers lui-même, lorsqu il est alimenté par un courant variable. On parlera d auto-induction. (self-induction en anglais). L induction mutuelle entre deux circuits est caractérisée par le coefficient de mutuelle induction M. L autoinduction est déterminée par le coefficient d induction propre, ou inductance L. Ces deux quantités s expriment en Henry (H). Le champ magnétique produit par un circuit étant proportionnel au courant électrique i(t) qui le parcourt, l auto-induction va se traduire par un terme de force électromotrice induite d expression : = De même, l induction mutuelle produite par un circuit primaire (1), parcouru par un courant (t) dans un circuit secondaire (2) va amener une f.é.m. induit dans le secondaire d expression : = On peut montrer que le coefficient de mutuelle induction traduisant l influence d un circuit (1) sur un circuit (2) a exactement la même valeur de celui traduisant l influence du circuit (2) sur le circuit (1) : M 1-2 = M 2-1 = M. 6