Calculer avec des nombres entiers Effectuez les calculs suivants.. + 9 + 9. Calculez. 9 9 Calculez le quotient et le rest. : : : : 0 :. : : 9 : : 9 0 : 0. 9 9 0 9. Calculez. 9 0 9. : : 0 : 9 : :. : : 0 : 99 : 9 : 0 Pearson France Tout ce que vous avez appris et oublié en MATHS!
Calculer avec des nombres entiers Addition, soustraction et multiplication La suite,,,,,,,, 9, 0,,... est la suite des nombres entiers positifs, celle avec laquelle chaque enfant apprend à compter. On apprend à additionner, soustraire et multiplier ces nombres sans calculatrice à l école primair Voici des exemples. 9 + 9 9 0 Division avec reste Une division sans calculatrice s effectue selon le schéma présenté ci-contre pour :, ce qui signifie divisé par. Le quotient 9 se trouve sous le diviseur et le reste en bas du schém On voit que = 9 + ou, de façon équivalente, = 9 +. En écrivant le membre de droite plus brièvement 9, on obtient = 9. 9 9 quotient reste 0 Pearson France Tout ce que vous avez appris et oublié en MATHS!
I Nombres Décomposez les nombres suivants en facteurs premiers..9 0 9 9.0 0 9. 9 0 0. 000 00 00 00 00. 9. votre date de naissance votre code postal votre code pin Déterminez tous les facteurs des nombres suivants. Faites-le soigneusement, étape par étape, pour ne pas en oublier. Un conseil : décomposez d abord ces nombres en facteurs premiers.. 0 0. 00 00 9 0 Pearson France Tout ce que vous avez appris et oublié en MATHS!
Calculer avec des nombres entiers Diviseurs et nombres premiers Il arrive parfois qu une division s arrête, autrement dit, que le reste soit nul. Par exemple, : =, ce qui revient à =. Les nombres et s appellent diviseurs de et l expression = s appelle décomposition en facteurs de. Ici, les termes «diviseurs» et «facteurs» sont synonymes. Un de ces deux facteurs peut à son tour être décomposé, à savoir =. La décomposition de ne peut pas être poursuivie car, et sont tous les trois des nombres premiers. Cela signifie que ces nombres ne peuvent pas être décomposés en facteurs plus petits. Finalement la décomposition en facteurs premiers de est : =. Comme = est aussi une décomposition de, les nombres et sont aussi des diviseurs de. Tout nombre entier admet et lui-même comme diviseur. Les diviseurs intéressants, les vrais diviseurs, sont en fait les diviseurs supérieurs à et inférieurs au nombre lui-mêm Les nombres premiers sont les nombres supérieurs à et qui n ont pas de vrais diviseurs. Voici le début de la suite des nombres premiers :,,,,,,, 9,, 9,,,,,,, 9,,,,, 9,... Tout nombre entier supérieur à peut être décomposé en facteurs premiers. Ci-contre, vous trouvez des exemples de cette décomposition en facteurs premiers : on cherche systématiquement des facteurs premiers, à commencer par les plus petits. 0 90 9 00 00 Chaque fois qu on en trouve un, on effectue la division et on reprend la recherche sur le quotient. La procédure se termine lorsqu on obtient. Les facteurs premiers se trouvent dans la colonne de droit De ces trois diagrammes, on peut déduire les décompositions en facteurs premiers que voici : 0 = = = = 00 =. Il est pratique de regrouper les facteurs premiers qui apparaissent plusieurs fois sous forme de puissances : = et =. Voici quelques exemples supplémentaires (utilisez des diagrammes comme ci-dessus) : 0 = = = = = =. 0 Pearson France Tout ce que vous avez appris et oublié en MATHS! 9
I Nombres Déterminez le plus grand commun diviseur (PGCD).. et 0 et et et et. et et 90 et 9 et et.9 0 et et et 90 et 0 0 et.0 et et et 900 90 et 0 0 et 0 Déterminez le plus petit commun multiple (PPCM).. et 0 et et et 0 et. et 9 et 0 et 0 9 et 0 et. 0 et et 0 et 90 et et Déterminez le PGCD et le PPCM.. 9, et 0, 0 et 0, et, et, et. 0 et 0 et et 0 et 9 0 et., et 9, 0 et 9, et 0, et 9, et 0 0 Pearson France Tout ce que vous avez appris et oublié en MATHS!
Calculer avec des nombres entiers PGCD et PPCM Deux nombres peuvent avoir des facteurs en commun. Le plus grand commun diviseur (PGCD) est, comme son nom l indique, leur plus grand facteur commun. Le PGCD se déduit directement des décompositions en facteurs premiers des deux nombres. Nous avons effectué, à la page 9, les décompositions en facteurs premiers des nombres : De là, nous obtenons 0 = = 00 =. PGCD(0, ) = PGCD(, ) = = PGCD(0, 00) = PGCD(, ) = PGCD(, 00) = PGCD(, ) = = 9. Le plus petit commun multiple (PPCM) de deux nombres est le plus petit nombre qui est à la fois multiple de l un et de l autre nombr En d autres mots, c est le plus petit nombre qui est divisible par chacun des deux nombres. Le PPCM aussi s obtient aisément à partir de la décomposition en facteurs premiers. Ainsi, PPCM(0, ) = PPCM(, ) = = 0. Il est utile d observer que le produit du PGCD et du PPCM de deux nombres est égal au produit des deux nombres. Ainsi, PGCD(0, ) PPCM(0, ) = 0 = 000 = 0. Le PGCD et le PPCM de plus de deux nombres s obtiennent tout aussi facilement à partir de leurs décompositions en facteurs premiers. Par exemple, PGCD(0,, 00) =, PPCM(0,, 00) = = 00. Une bonne idée Il existe une méthode pour déterminer le PGCD et le PPCM de deux nombres qui ne requiert pas leurs décompositions en facteurs premiers et qui souvent s avère plus rapid L idée de base est que le PGCD de deux nombres est aussi forcément un diviseur de leur différenc Voyez-vous pourquoi il en est ainsi? Le PGCD(, ) doit aussi être un facteur de = 0. Or 0 n a que deux facteurs premiers, et. Il est clair que n est pas un facteur des deux nombres, par conséquent seul l est ; d où PGCD(, ) =. Qui est futé peut ainsi s épargner beaucoup de pein 0 Pearson France Tout ce que vous avez appris et oublié en MATHS!
Calculer avec des fractions. Simplifiez. 0 9 9. Réduisez au même dénominateur. et 9 0 et et 9 et 0 et. Simplifiez. 0 0. Réduisez au même dénominateur., et, et, et 9 0, et, et. Réduisez au même dénominateur. et et 9 et et et. Réduisez au même dénominateur., et, 0 et, et 0, et, 9 et Déterminez laquelle des deux fractions est la plus grande après les avoir réduites au même dénominateur.. et 9 et 9 et 0 et 9 0 et. et et 9 et et 90 9 et 0 0 0 Pearson France Tout ce que vous avez appris et oublié en MATHS!
Calculer avec des fractions Nombres rationnels La suite...,,,, 0,,,,... est la suite de tous les nombres entiers. La droite graduée ci-dessous en donne une représentation géométriqu 0 Les nombres rationnels, c est-à-dire les nombres qui peuvent être écrits sous la forme d une fraction, sont aussi associés à une graduation sur la droit Vous trouverez ci-dessous la représentation de quelques nombres rationnels. 0 9 Une fraction se compose de deux nombres entiers, le numérateur et le dénominateur, séparés par une barre horizontale ou obliqu Par exemple, est le numérateur et est le dénominateur de la fraction. Le dénominateur d une fraction ne peut jamais être nul. S il est vrai qu un nombre est rationnel dès qu il peut s écrire sous la forme d une fraction, cette écriture n est cependant pas univoque : chaque fois qu on multiplie le numérateur et le dénominateur d une fraction par un même nombre entier (non nul) ou qu on les divise par un facteur commun, la valeur de la fraction ne change pas. Ainsi, = = = 0. Des fractions comme et sont plus souvent écrites, respectivement. Les nombres entiers peuvent aussi être écrits sous forme de fraction, par exemple =, = et 0 = 0. Les nombres entiers appartiennent donc à l ensemble des nombres rationnels. Diviser les numérateur et dénominateur par un même facteur (supérieur à ) s appelle simplifier. La fraction se simplifie en en divisant numérateur et dénominateur par. Une fraction est irréductible lorsque le plus grand diviseur commun (PGCD) du numérateur et du dénominateur est. La fraction est irréductible tandis que ne l est pas. Toute fraction peut être rendue irréductible en divisant son numérateur et son dénominateur par leur PGCD. Il est toujours possible de faire en sorte que deux fractions aient le même dénominateur. Par exemple : et n ont pas le même dénominateur. Mais en leur imposant = comme dénominateur, elles s écrivent respectivement = et =. Cependant, en leur choisissant comme dénominateur commun le plus petit commun multiple des dénominateurs de départ PPCM(, ) = 0, on obtient une expression plus simple, à savoir 0. 0 et 0 Pearson France Tout ce que vous avez appris et oublié en MATHS!
I Nombres Calculez..9 + + 9 9 +.0 + + 9 +. + 9 + + 0. + + 0 + 0 + 0. + + + + 9 +. + + + + + 9 + 0 +. + + 9 0 + +. 9 + + 0 0 0 + 0 +. 0 + + + 0 + 0 Pearson France Tout ce que vous avez appris et oublié en MATHS!
Calculer avec des fractions Additionner et soustraire des fractions Additionner deux fractions qui ont le même dénominateur est simple : il suffit d additionner les numérateurs. Il en est de même pour soustraire deux fractions de même dénominateur. Par exemple : + = et = =. Au cas où les dénominateurs sont différents, il faut d abord réduire les fractions au même dénominateur. Le plus économique est de choisir comme dénominateur commun le PPCM des dénominateurs. Voici quelques exemples : + + = + 0 = 0 + 0 = = = 9 0 = 9. Il en va de même lorsqu il s agit d additionner ou de soustraire plus de deux fractions. Il faut d abord les réduire au même dénominateur en prenant comme dénominateur commun le PPCM des différents dénominateurs. Par exemple : + 0 = 0 0 + 9 0 0 = 0 =. Vous voyez ici qu il est encore parfois possible de simplifier le résultat. Fractions et nombres rationnels Une fraction est une manière d écrire un nombre rationnel. En multipliant par un même facteur le numérateur et le dénominateur d une fraction, on change la fraction, mais pas le nombre rationnel qu elle représent On pourrait encore dire que la valeur de la fraction ne change pas lorsque le numérateur et le dénominateur sont multipliés par un même facteur. Les fractions, 0 et 0 ont toutes la même valeur, et sur la droite graduée elles occupent la même place, à mi-chemin entre et. On manque d ailleurs souvent de précision : on dit «fraction» alors qu on devrait dire plus précisément «valeur de la fraction». Il en est de même quand on écrit = ou quand on dit que est égal à. 0 Pearson France Tout ce que vous avez appris et oublié en MATHS!
I Nombres Calculez.. 9 9 0 0.9 9 9 0.0 0 9 0 99 9 9. 9 9 9 9. : : : : 0 9 :. : 9 0 : 0 : : 9 : 9. 9 0 9. + + 9 + 0 9 +. + + + 0 Pearson France Tout ce que vous avez appris et oublié en MATHS!
Calculer avec des fractions Multiplication et division des fractions Le produit de deux fractions est la fraction qui a pour numérateur le produit des numérateurs et comme dénominateur le produit des dénominateurs. Voici deux exemples : = = 0 9 et = ( ) = 0. Pour diviser une fraction par une autre, on multiplie la première par l inverse de la second La fraction inverse s obtient en échangeant le numérateur et le dénominateur. Par exemple : : = = et : = =. La division d une fraction par une autre est parfois notée autrement, à savoir par une barre horizontal Exemple : au lieu de :. C est une fraction dont le numérateur et le dénominateur sont eux-mêmes des fractions. Autres notations pour les fractions On emploie parfois une barre oblique de séparation entre le numérateur et le dénominateur au lieu d une barre horizontale : / au lieu de. Ce sont souvent des raisons typographiques qui imposent la barre obliqu Parfois, les deux notations sont utilisées simultanément, aussi pour des raisons typographiques. Par exemple / / ou /. Il arrive que, dans certaines situations, il y ait avantage à employer une notation mixte, c est-à-dire que la partie entière soit écrite à part comme dans au lieu de. Cette dernière notation n est vraiment pas pratique pour la multiplication ou la division des fractions. Aussi, nous ne l emploierons jamais dans cet ouvrag 0 Pearson France Tout ce que vous avez appris et oublié en MATHS!
Puissances et racines Écrivez les expressions suivantes sous la forme d un nombre entier ou d une fraction irréductibl.. 0 9 9 0. ( ) ( ) ( ) ( ).0 ( ) ( )0 ( ) ( ). ( ) ( ) ( ) ( ) ( ). ( ) ( ) ( ). ( ) ( ) ( 9 ) ( ). ( ) ( )0 ( ) ( ).. ( ) 0 0 ( ) ( ).9 ( ) ( ) ( ) ( ). ( 9 ) ( ) ( ) ( ) 0 Pearson France Tout ce que vous avez appris et oublié en MATHS!
Puissances et racines Puissances entières Quel que soit a, nombre positif non nul, et quel que soit l entier positif k, on a a k = a 0 = a k = a k. k fois { }} { a a a Ainsi, a n est défini pour tout n entier. Le nombre a s appelle la base et n l exposant. Exemples : = = 0 ( ) 0 = ( ) = = 0 = 0 = 000. Voici les règles de calcul des exposants : a n a m = a n+m a n : a m = a n m (a n ) m = a n m (a b) n = a n b n ( a b ) n = an b n La base 0 est à considérer séparément. Nous avons choisi ci-dessus a différent de 0 pour éviter, dans le cas d un exposant entier négatif, d avoir affaire à une fraction dont le dénominateur est nul. Par définition, une puissance entière positive de 0, 0 n, vaut 0. Mais le cas où n = 0 conduit à 0 0 considéré comme une indétermination.. Pour simplifier l écriture de certaines formules de mathématiques, il peut être nécessaire de donner un sens à a 0, même lorsque a est nul, et on lui attribue la valeur. 0 Pearson France Tout ce que vous avez appris et oublié en MATHS! 9
I Nombres Écrivez les expressions suivantes sous la forme a b où a est un nombre entier et b une racine qui ne peut plus être simplifié... 9 9 0... 99 0 0 9 9 0 00.9.0. 0 9 0 0 0. 0. 0 0 0 0 0 0 0 Pearson France Tout ce que vous avez appris et oublié en MATHS!
Puissances et racines Racines carrées de nombres entiers La racine carrée d un nombre a 0 est le nombre w tel que w 0 et w = On le note : w = Par exemple : = car =. Si on remarque que ( ) =, on pourrait aussi vouloir appeler «racine carrée de». Mais d après la définition, l écriture a comprend exclusivement le nombre non négatif dont le carré est égal à a, donc = +. Le nombre 0 n est pas un entier car = < 0 et = > 0, d où < 0 <. Serait-il possible d écrire 0 comme une fraction? La réponse est non : la racine carrée d un nombre entier positif qui n est pas le carré d un nombre entier est toujours un nombre irrationnel, ce qui signifie qu il n est pas possible de l écrire sous la forme d une fraction. Il est cependant possible de simplifier 0, car 0 = et de là 0 = =. Cette dernière expression s écrit plus brièvement. La racine carrée a d un nombre entier positif a ne peut plus être simplifiée lorsqu aucun facteur de a n est le carré d un entier supérieur à. Ainsi, les racines carrées =, = et 9 = ne peuvent plus être simplifiées, alors que peut encore l être, car = 9 = =. Toute racine carrée d un nombre entier positif peut être écrite soit comme un nombre entier, soit comme le produit d un nombre entier par une racine carrée qui ne peut plus être simplifié Cette écriture s obtient en faisant sortir du radical tous les carrés. Par exemple : 00 = 0 = 0. Pourquoi 0 est irrationnel Pour montrer que 0 est irrationnel, on se sert d une démonstration par l absurde : supposons que 0 soit rationnel. Dans ce cas, ce nombre pourrait être écrit sous la forme d une fraction p/q où p et q sont des entiers positifs dont le PGCD vaudrait. De 0 = p/q il suit 0 q = p ou q = p. Comme le membre de gauche est divisible par, le membre de droite doit l être aussi. Parmi les facteurs premiers de p, il faut que y figure au moins une fois, et parmi les facteurs premiers de p, il faut que y figure au moins deux fois. Or PGCD(p, q) =. Il n y a donc pas parmi les facteurs premiers de q. La décomposition en facteurs premiers de 0 q présente exactement un seul, alors que celle de p en comporte, selon notre raisonnement, au moins deux. Voilà qui est en contradiction avec 0 q = p. Notre supposition 0 est rationnel nous a donc conduit à une contradiction. Conclusion : le nombre 0 est irrationnel. La même démonstration s applique à la racine carrée de n importe quel nombre entier positif qui n est pas un carré. 0 Pearson France Tout ce que vous avez appris et oublié en MATHS!
I Nombres Écrivez les expressions suivantes sous la forme a b, où a est un nombre entier ou une fraction non réductible et b une racine carrée qui ne peut plus être simplifié. ( ). ( ). ( ) ( ) ( ) ( ) ( ( ) ) ( ) ( )...9 0 9 0 0 0 Pearson France Tout ce que vous avez appris et oublié en MATHS!
Puissances et racines Racines carrées des quotients La racine carrée d une fraction dont les numérateur et dénominateur sont positifs est égale au quotient des racines carrées respectivement du numérateur et du dénominateur. Ainsi, 9 = = ( ) 9. On vérifie que = 9. La racine carrée d une fraction positive peut toujours être écrite sous la forme d une fraction non réductible ou comme le produit d une fraction non réductible et d une racine carrée qui ne peut plus être simplifié Voici deux exemples : = = et = =. Pour arriver à cette écriture, il faut d abord multiplier numérateur et dénominateur de la fraction par un facteur qui fait du dénominateur le carré d un nombre entier. Parfois, la racine carrée du numérateur peut encore être simplifiée en un produit d un nombre entier par une racine qui ne peut plus être simplifié La racine carrée de la fraction initiale est désormais sous la forme recherché De cette manière, on peut toujours éliminer la racine carrée d un dénominateur. Par exemple : = = =. 0 Pearson France Tout ce que vous avez appris et oublié en MATHS!
I Nombres Écrivez toutes les expressions suivantes sous forme simplifié.0.. 0 0 0 9...... 9 00 000 9 9.9.0. 9 00 0 Pearson France Tout ce que vous avez appris et oublié en MATHS!
Puissances et racines Racines d indice plus élevé Les racines de la section précédente étaient des racines carrées ou «racines d indice deux», mais on définit de la même manière des racines d indice plus élevé. Ainsi, la racine d indice trois, dite aussi racine cubique, d un nombre a est le nombre w tel que w = On le note : Exemples : = car = et = car ( ) =. Notons que, contrairement à la racine carrée, on peut calculer la racine cubique des nombres négatifs ; cette racine est unique : il n y a qu un nombre qui, élevé à la puissance trois, est égal à, c est ; et il n y a qu un nombre qui, élevé à la puissance trois, est égal à, c est. Plus généralement, la racine n ième de a, notée n a, est le nombre w tel que w n = Lorsque n est pair, a doit être positif. Mais comme w n = ( w) n, il y a deux racines possibles. Par convention cependant, on retient toujours la racine non négative w telle que w n = Il y a beaucoup de ressemblances entre les racines n ièmes et les racines carrées. La racine n ième d un nombre entier est un nombre irrationnel sauf si a est la n ième puissance d un nombre entier. La racine n ième d un nombre entier positif a ne peut plus être simplifiée si aucun des facteurs de a n est une puissance n ième à part. La racine n ième d une fraction peut s écrire comme une fraction ou comme le produit d une fraction et d une racine n ième qui ne peut plus être simplifié Voici quelques exemples de racines cubiques : peut être simplifiée, car = =, mais pas les racines, et 0. Pour arriver à la forme simplifiée d une racine cubique de fraction, il faut multiplier les numérateur et dénominateur de la fraction par un facteur tel que le dénominateur soit un cub Par exemple : = = = 0. 0 Pearson France Tout ce que vous avez appris et oublié en MATHS!
I Nombres. Écrivez avec une racin. Écrivez avec une racin. Écrivez avec un exposant. 9. Écrivez avec un exposant.. Écrivez une puissance de.. Écrivez une puissance de. Mettez les expressions suivantes sous forme simplifié. 9.9 9 9 9.0 : 9 : : 9 : : 0 Pearson France Tout ce que vous avez appris et oublié en MATHS!
Puissances et racines Exposants fractionnaires Dans cette section, nous faisons l hypothèse que la base est positiv Par définition, a m n n = a m où m n est une fraction (n > ). En particulier, si m =, a n = n a, d où a = a, a = a, a = a, et De même, si m =, a = a = a =, a = a = a a =, a et Voici d autres exemples : = =, = et = =. Le dernier exemple peut aussi être traité à partir de = = +. Règles de calcul avec des exposants : = + = = = a r a s = a r+s a r : a s = a r s (a r ) s = a r s (a b) r = a r b r ( a ) r = ar b Ces règles de calcul sont valables pour tous les nombres rationnels r et s et tous les nombres positifs a et b r 0 Pearson France Tout ce que vous avez appris et oublié en MATHS!