PRECISION - REJET DE PERTURBATIONS T.D. G.E.I.I.. Donner les erreurs en position, en vitesse et en accélération d un système de transfert F BO = N(p) D(p) (transfert en boucle ouverte) bouclé par retour unitaire, lorsque F BO contient : (a) aucun intégrateur, (b) un intégrateur, (c) deux intégrateurs. (d) Que deviennent ces erreurs si l entrée est ampli ée par A? (e) Préciser les cas où il y aura rejet de perturbation de sortie de type échelon ou rampe. 2. Application On considère l asservissement par retour unitaire du système modélisé par le transfert : à l aide d un régulateur RC(p): F (p) = p( + 3p + 4p 2 ) (a) RC(p) = K donner les conditions de stabilité asymptotique sur K du système asservi; que vaut l erreur statique "() = lim (e(t) s(t)) pour l entrée e(t) = 3 2t + t 2? t! + p (b) RC(p) = K p quelles actions réalise ce régulateur? donner les conditions de stabilité asymptotique sur K et du système asservi; que vaut l erreur statique "() = lim (e(t) s(t)) pour l entrée e(t) = 3 2t + t 2 en t! fonction des paramètres du régulateur? dans toute la suite on utilisera ce régulateur. (c) Ajout d une perturbation de commande L asservissement précédent est en réalité soumis à une perturbation de commande connue, modélisée par d u (t) = At. Calculer l erreur statique "() = lim (e(t) s(t)) lorsque t! l asservissement ne subit que cette perturbation ( e(t) = 0 ). (d) Ajout d une perturbation de sortie L asservissement subit également une perturbation de sortie connue, modélisée par d s (t) = B(t 2 +). Calculer la sortie en régime permanent s ds () = lim (s(t)) lorsque l asservissement t! ne subit que cette perturbation ( e(t) = d u (t) = 0 ).
(e) cumul des e ets de l entrée et des di érentes perturbations Déduire des questions précédentes l expression de la sortie en régime permanent s RP (t) lorsque l asservissement subit l entrée e(t) et les perturbations d u (t) et d s (t) simultanément. (f) Conclure sur la position des intégrateurs par rapport aux types d entrées. SOLUTION Rappel Le principe du calcul des erreurs statiques (c est-à-dire en régime permanent en réponse à des entrées-tests) du système : F B0 = + b p + + b n p n a 0 + a p + a 2 p 2 + a d p d bouclé par retour unitaire, est basé sur l observation du transfert F BF = F B0 = N BF ; + F B0 D BF sous réserve de stabilité asymptotique : F BF = + b p + + b n p n a 0 + + (a + b )p + + (a n + b n )p n a d p d : Rappel 2 Le principe de l analyse du rejet de perturbations consiste à étudier le gain statique du transfert entre la perturbation ramenée à l échelon et la sortie.. (a) F BO = N(p) D(p) sans intégrateur (D(0) 6= 0) erreur statique en position " 0 () en réponse à l entrée échelon e(t) = " 0 () = (a 0 + ) a 0 + = a 0 a 0 + = + K s où K s est le gain statique de F BO : " 0 () étant non nulle, " () et " 2 () sont in nies en module. (b) F BO = N(p) p D(p) avec N(0)D(0) 6= 0, donc a 0 = 0 erreur statique en position " 0 () en réponse à l entrée échelon e(t) = (t) (t) " 0 () = = 0 erreur statique en vitesse " () en réponse à l entrée rampe e(t) = t " () = (a + b ) b = D(0) N(0) " () étant non nulle, " 2 () est in nie en module.
(c) F BO = p 2 N(p) D(p) avec N(0)D(0) 6= 0, donc a 0 = a = 0 erreur statique en position " 0 () en réponse à l entrée échelon e(t) = (t) " 0 () = = 0 erreur statique en vitesse " () en réponse à l entrée rampe e(t) = t " () = b b = 0 erreur statique en accélération " 2 () en réponse à l entrée e(t) = t2 2 " 2 () = (a 2 + b 2 ) b 2 = D(0) N(0) (d) Par linéarité, si l entrée est ampli ée par A, toutes les erreurs seront ampli ées par A : (e) Rejet de perturbations de sortie Lorsque le système F BO bouclé par retour unitaire est soumis uniquement à une perturbation de sortie d s, la lecture du schéma fonctionnel conduit à : s = d s F BO s d où : s = + F B0 d s : Ce transfert étant identique au transfert entrée-erreur e! " ( cf. remarque ), le comportement de la sortie en réponse à une perturbation d s de type échelon (respectivement rampe) sera identique à celui de l erreur en réponse à une entrée échelon (respectivement rampe). D après les calculs d erreur précédents, les perturbations d s = A (t) seront rejetées par les systèmes comportant au moins un intégrateur et celles du type rampe d s = At + B le seront par les systèmes comportant au moins deux intégrateurs.
2. Application (a) RC(p) = K Le dénominateur du système ainsi bouclé est : D + KN = 4p 3 + 3p 2 + p + K l application du critère de Routh fournit les conditions de stabilité asymptotique : 0 < K < 3=4 l erreur statique "() = lim (e(t) s(t)) = pour l entrée e(t) = 3 2t + t 2 ; d après les t! K résultats de la question, car la boucle ouverte F BO = ne contient qu un p( + 3p + 4p 2 ) intégrateur ( il en faudrait 2 pour qu elle soit constante et trois pour qu elle soit nulle). + p (b) RC(p) = K p Ce régulateur réalise les actions proportionnelle et intégrale. Le dénominateur du système ainsi bouclé est : D + KN = 4p 4 + 3p 3 + p 2 + Kp + K l application du critère de Routh fournit les conditions de stabilité asymptotique : K > 0 K < 3=4 4 3 (K)2 + K 3K > 0 qui correspondent, dans le plan (K; K) ; à la partie comprise entre la parabole et l axe K = 0. Pour l entrée e(t) = 3 2t + t 2 l erreur est la superposition des e ets de chaque entrée élémentaire (caractéristique des systèmes linéaires), soit : le transfert de la boucle ouverte étant : "() = 3" 0 () 2" () + 2" 2 (); F BO = il vient, d après les résultats de la question : K ( + p) p 2 ( + 3p + 4p 2 ) "() = 0 + 0 + 2 K = 2 K : Lorsque le système subit l entrée e(t) seule, l erreur en régime permanent "() = " e () vaut donc, si les conditions de stabilité sont véri ées : " e () = 2 K :
(c) Ajout d une perturbation de commande La lecture du schéma fonctionnel conduit, lorsque e(t) = 0; à : soit : " = s = F (d u + RC") " = F + RCF d u donc en remplaçant F et RC par leurs valeurs : G = F + RCF = p p 2 ( + 3p + 4p 2 ) + K( + p) : Si les conditions de stabilité sont véri ées, l erreur en régime permanent en réponse : à est G(0) = 0 à At est le gain statique de AG(p) p donc : = A K " du () = A K : (d) Ajout d une perturbation de sortie Lorsque e(t) = d u = 0; la sortie s ds due à d s (t) seule véri e, d après la lecture du schéma fonctionnel : s ds = d s + RCF ( s ds ) donc : s ds = + RCF d s donc en remplaçant F et RC par leurs valeurs : H = + RCF = p 2 ( + 3p + 4p 2 ) p 2 ( + 3p + 4p 2 ) + K( + p) : Si les conditions de stabilité sont véri ées, l erreur en régime permanent en réponse : à B est BH(0) = 0 à Bt 2 est le gain statique de 2 BH(p) p 2 donc : = 2B K s ds () = 2B K : Remarque : on aurait pu utiliser ici le résultat de la question (e) avec F B0 = RCF. Le transfert étant identique au transfert entrée-erreur e! " ( cf. remarque + RCF ), le comportement de la sortie en réponse à la perturbation d s sera identique à celui de l erreur en réponse à l entrée e = B(t 2 + ). D après les calculs d erreur de la question, RCF comportant deux intégrateurs, la perturbation B (t) sera rejetée et la perturbation Bt 2 produira à une sortie constante en régime permanent; sa valeur se déduit de celle de
l erreur " 2 () obtenue à la question c pondérée par 2B puisque " 2 () a été calculé pour l entrée test t2 2 ; soit : s ds () = 2B D(0) N(0) = 2B K : (e) cumul des e ets de l entrée et des di érentes perturbations La sortie en régime permanent s RP (t) lorsque l asservissement subit l entrée e(t) et les perturbations d u (t) et d s (t) simultanément est donc : soit : s RP (t) = e(t) " e () " du () + s ds () s RP (t) = 3 2t + t 2 + A + 2B 2 : K (f) Conclusion En allant des sorties vers les entrées, on remarque que : entre " et e il y a 2 intégrateurs et l entrée en t 2 conduit à une erreur constante, entre s et d u il y a intégrateur (celui de RC ) et la perturbation en t conduit à une sortie constante, entre s et d s il y a 2 intégrateurs et la perturbation en t 2 conduit à une sortie constante. l annulation d erreur dépend donc du nombre d intégrateurs entre l erreur et l entrée, avec ( cf. cours ) : " 0 () = " () = = " k () = 0 k+ intégrateurs ) " k+ () = constante "i () = i k de même le rejet de perturbation dépend du nombre d intégrateurs entre la sortie et la perturbation, avec les résultats similaires.